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Abstract

An analytical version of the discrete-ordinates method (the ADO method) is used to establish concise and particularly accurate
solutions to the problems of Poiseuille flow, thermal-creep flow and diffusion flow for a binary gas mixture confined between
parallel walls. The kinetic equations used to describe the #ilmbased on the McCormack mbéte mixtures. The analysis
yields, for the general (specular-diffe) case of Maxwell boundary conditions for ea€hhe two species, the velocity, heat-
flow and shear-stress profiles for both types of particles. Numerical results are reported for two binary mixtures (Ne—Ar and
He—Xe) with various molar concentrations. The complete solution requires only a (matrix) eigenvalue/eigenvector routine and
a solver of a system of linear algebraic equations, and thus the algorithm is considered especially easy to use. The developed
(FORTRAN) code requires typically less than a second on a 2.2 GHz Pentium IV machine to solve all three problems.

0 2004 Elsevier SAS. All rights reserved.

1. Introduction

Internal flows of rarefied gaseous mixtures caused by pressumeetature and density (or concentration) gradients, well
known as the Poiseuille, the thermal-creep and the diffusion-flow problems respectively, are of major importance in several
applications in physics and engineering. However, compared to the huge amount of work done for the case of a single gas
(see, for example, the books by Chapman and Cowling [1], Geatii [2], Williams [3], Bird [4 and Ferziger and Kaper [5],
as well as Sharipov and Seleznev’s [6] review article), the available literature for the case of gas mixtures is not extensive.
Early work for gaseous mixtures was concentrated on the estimation of the slip coefficients defined by semi-infinite half-
space problems [7—11]. This strong interest in the estimation of the slip coefficients is justified by the fundamental theoretical
significance and the practical importance of these coefficients. One of the major difficulties in dealing with gas mixtures is the
large number of parameters which are involved in the calicria. To deal with this situation, Ivchenko et al. [12,13] have
developed general and convenient expressions for the slip coefficients of various binary gases. More advanced calculations,
based on the McCormack model [14] and on the linearized Boltzmann equation for rigid-sphere interactions, have been provided
recently [15-19]. Additional numeral results based on a variational method foetingl, rarefied mixture flows were obtained
in Ref. [20]. The problem of Couette flow for a gas mixture in a plane channel has been solved [21] by a discrete velocity method
and in terms of an analytical discrete ordinates method [22]. However, the mentioned work was based on model equations with
one degree of freedom, and as a result correct expressions are provided only for one transport coefficient at a time. This situation
was improved by Sharipov and Kalempa in a work [23] where the flow of a gaseous mixture through a tube is studied based
on the McCormack kinetic model [14]. Numerical results based on the McCormack model have been reported [15-17] also for
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three half-space flow problems, i.e., the velocity-slip problem, the thermal-creep problem and the diffusion-slip problem. While,
in general, other linearized kinetic models for mixtures satisfy the conservation laws and the H theorem, the McCormack model
for mixtures satisfies these two conditions and, at the same time, provides correct expressions for the transport coefficients
(viscosity, thermal conductity, diffusion and thermal diffusion). In adtibn, recent work [15-18,224] with the McCormack

model has suggested that this kinetic model can be considered a valid alternative (especially when the cost of computational
implementation is noted) to the linearized Boltzmann equations for gas mixtures.

During the last few years, an analytical version of thecdéte-ordinates (ADO) method has been developed [25] and
established as a simple, efficient and highly accurate methodology for solving problems in rarefied gas dynamics. A large
number of a single-gas flow and thermal problems has been solved in a unified manner [26-28], while the method has also
been used [22,29] to solve problems for mixtures described by the Hamel model [30]. In the present work the ADO method is
used to solve in an efficient and accurate manner the McCormack model equations applied to the flow of binary gas mixtures
(between two parallel plates) driven by gradients of pressenepérature and density. Our objective here is to provide concise
and accurate solutions (to the considered problems) that define what we consider to be a high standard of accuracy. In addition
to defining good numerical results, the nealudions are valid for walconditions described by a general specular-diffuse
scattering law, and the solutions can be implemented at a computational cost much less, we believe, than the cost of evaluating
basic quantities of interest with strictly numerical solutions. Finally, we note that our numerical results are reported on a
species-specific basis so that various ways (that could depend on a specific application) of defining the velocity, heat-flow and
shear-stress profiles for the binary mixture can be used.

2. The McCormack model

In this work we base our analysis of a binary gas mixture on the McCormack model as introduced in an important paper
[14] published in 1973. While much of the formulation we use here was given in Ref. [18], we repeat some of that material
since now we must account explicitly for the pseire gradient, the tempeues gradient and the densigyadients that drive the
flow. It is convenient to linearize our problem about local (rathet absolute) Maxwkan distributions, and so we start with
the basic distribution functions written as

10620 = fLoW) {1+ [(1v? — §/2)Kr + Kp + (na/mKc e + ha(x. v)) (1a)
and

fox,2,0) = f20) {1+ [(r2v? = 5/2) K1 + Kp — (n1/mKc ]z + ha(x, v)}, (1b)
where

Fa0() = n (i /)2 €y = me [(2KTo). @

Herek is the Boltzmann constant;, andn, are the mass and the equilibrium density of th&h speciesy is the spatial
variable in the transverse, or cross-channel, directios the spatial variable in the longitudinal direction (both measured, for
example, in cm)p, with components, vy, v, and magnitude, is the particle velocity, andy is a reference temperature.

We note that the constantSy, Kp, and K¢ define respectively measures of the temperature, pressure and density gradients
that drive the flow (in the direction). Since the componantf Egs. (1) due to the gradients of the number densities have
been normalized in a special way, we note explicitly how this d@se. We consider that the spatial variations of the number
densities are given as

nO[(Z) =n0[(l+k()lz)i [o4 217 27 (3)

wheren1 andny, along withky andky, are constants. Now, sineg (z) + n2(z) = n, wheren = n1 + ny is the total (constant)
density, it follows that

nikq +noko =0. (4)
We thus find it convenient to introduce the (arbitrary) normalization
k1= (n2/n)K¢ (5)

to obtain the forms given in Egs. (1). This normalization requires only the ratio of number densities (as is the case elsewhere in
the formulation of the problem), and this normalization is convenient since the limiting casg®nf» approaching zero are
in clear evidence.
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It follows from McCormack’s work [14] that the perturbations satisfy the coupled equations

d
Sa(€) +cx aha(x; ¢) + wgYaha(x, €)= wy Va[:ot {h1,ho}(x,¢), a= 12 (6)
wherec, with components,, ¢y, c¢; and magnitude, is a dimensionless velocity variable,

0y = [ma/(2kTo)]? )

and the collision frequencies, are to be defined. Here we write the integral operators as

[o.SlNe eRNe o]

2
1 _ 2
Lalhy h2)x. €)= —35 Y f f f & hp(x.c)Kpa(c e de, de, A/, ®)
p=1

—00 —00 —00

where the kernel&g , (¢/, ¢) are listed explicitly in Appendix A. In addition, we find that the source terms in Eq. (6) can be
written as

51(6) = ez [(c? = 5/2)K1 + Kp + (n2/m)Kc] (9a)
and
Sa(e) = [ (¢ = 5/2)Kr + Kp — (n1/mKc]- (9b)

We note that in obtaining Eqg. (6) from the form given by McCormack [14], we have introduced the dimensionless velocity
differently in the two equations, i.e., for the case= 1 we used the transformatian= wqv, whereas for the case= 2 we
used the transformatian= wov. As we wish to work with a dimensionless spatial variable, we introduce

T =x/ly, (20)
where

lo="p (11)
is the mean-free path (based on viscosity) introduced byighaand Kalempa [15]. Herdollowing Ref. [15], we write

vo = (2kTo/m)"/?, (12)
where

nimj +npmp
m=—————.

13
nitno (13)

As in Ref. [18], we express the viscosity of the mixture in terms of the partial presByrasd the collision frequencies, as

w=P1/y1+ P2/v2, (14)
where
P,
fa M (15)
Py ni+no
4) (4 4)1-1
Y11= [ll/lll/z — vi%vé’i][lpz + l)i%] (16a)
and
4) (4 4)1-1
yp = ['111&[/2 — vi%vé’i][lpl + vé’i] . (16b)
Here definitions from Ref. [18] and listed in Appendix A of this work are being used,
3 3 4
V=it vy - (17a)
and
3 3 4
Wy = vy + 5 —v5 ). (17b)

Finally, to compact our notation we introduce

Ou = Yawalo (18)
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or, more explicitly,

Ou = Yu w(ma/m)l/z, (19)

ni+n
and so we rewrite Eq. (6) in terms of thevariable as

50(€) + € 3o (1, ) + 0uha (7, ©) = 0 Lalht, ho) (. ), (20)
where now

S1(¢) = cz[(¢? = 5/2)kr + kp + (n2/m)kc] (21a)
and

Sa(e) = ¢;[ (¢ = 5/2)kr +kp — (n1/n)kc], (21b)
with

ky=10Ks, A=P.T,C. (22)

Note that we now use the upper-case subscriptsr, C} to label the problems driven respectively by gradients in pressure,
temperature and density.

For the considered problems, the flow in a channel defineddy—a, a] is symmetric about the centerline, and so we seek
solutions of Eq. (20) that satisfy

ho (=T, —Cx, ¢y, ¢z) = ha(T, cx, Cy, Cz) (23)
for all - and allc. Note that
he(t,€) & ho(T,cx,cy,cz). (24)

In addition to Eq. (23), we wish our solotis to satisfy the Maxwell fecular/diffuse) boundary condition at the walls. Because
of the imposed symmetry condition, we need consider only

ho(—a,cx,cy, ;) = (A —ag)ha(—a, —cx, ¢y, ¢z) + aaT{hg}(—a), (25)

for ¢y > 0 and allcy andc;. Note that we use; anday to denote two accommodation coefficients (which need not be the
same). In addition, we have used

2 (ool elNe ¢]
Tihe)(r) = ~ / / /e_c/zha(r, —c, c;, c;)c; dc’, dcfv dc; (26)
—00—00 0

to denote the diffuse term in Eq. (25). In this work we seek to compute the velocity profiles

1 oo 00 X0
Ug (7)) = 37 / / / e_czha(r, ¢)cz dey dey de, (27a)
T
—00 —00 —O0
the shear-stress profiles

[o.SNe RN o]

1 _2
Po(T) = 37 / / / € ¢ hg (1, €)cxcz dey dey de; (27b)

—00 —00 —00

and the heat-flow profiles

l oo o0 o0
_ 2
go(t) = =7 / / / e “hy(t, c)(c2 —5/2)c; dey dey de; (27¢)
—00 —00 —0O0
for T € [—a, a]. It follows that we can obtain these quantities from “moments” of Eq. (20). To this end, we first multiply Eq. (20)
by

$1(cy. co) = (AjmyeEFD (28)
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and integrate over all, and allc;. We then repeat this procedure using

(22
$alcy, c) =A/me D (4 2 - 2)c..

Defining
X o0
g20—1(T,cx) = / / d1(cy, cz)ha (T, €) dey de;
—00 —O0
and
oo o0
820(T,cx) = / / ¢2(cy, cp)ha(t, €) dcy de;,
—00 —00

we find from these projections four coupled balance equations which we write (in matrix notation) as
a o
S(&) +€a—TG(r, §+XG6(r,§)=% / Y(ENKE §G(T, &) dE,
—0o0

where the components 6i(z, £) aregy (1, £), for o =1, 2, 3 and 4, where we now ugen place ofc, and where
¥ =diag{o1, 01, 02, 02}

and
pE=n M2,

In addition, we find that the inhomogeneous source term in Eqg. (31) can be written as

(1/2)[kp + (na/mkc +kr (£2 — 1/2)]
kr

(1/D[kp — (n1/mkc +kr (E% = 1/2)]
kr

NGRS

We note that the elements ; (&',&) of the kernelK (¢/, &) in Eq. (31) are listed here in Appendix B.

649

(29)

(30a)

(30b)

31)

(32

(33)

(34)

So, if we can solve Eq. (31), subject to the stated sytryrend boundary conditions, wean compute thguantities of

interest from

i (7) = / W (E)g2u1(r. 8) &,

pal®) = f V(&) g2 1(r, E)E
and

G (T) = / FO[(E2 - 12 g20-1(1.6) + g20(r. £)] .

(35a)

(35h)

(35¢)

We require symmetry and boundary conditions for tiiegroblem,” and so we project Egs. (23) and (25) againsty, c;)

andgz(cy, cz) to find the symmetry condition
G(—-1,-§)=G(1,§),

for all T and all¢, and the bounds condition
G(—a,§)=8G(—a,—§), §&€(0,00),

subject to which we must solve Eq. (31). Here

S=diag{l—ay,1—a1,1—az, 1—ap}.

(36)

@7

(38)
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In addition to the species-specific velocity and heat-flow profiles listed in Egs. (27), we intend to compute the mass and heat-flow
rates defined for each species= 1, 2) by

a a
1 1
Uy = ﬁ / Uy (T) dr and QC{ = ﬁ /qa (T) dT, (39a,b)
—da —a

with which we can use Egs. (35) once tigproblem has been solved.

3. Generalized Onsager relations

As we are dealing with scattering laws that satisfy “time reversal’ symmetry, there are Onsager relations [31-34] that we can
use in this work. We can establish these relations in the current setting, i.e. frothmnablem, as follows: we write Eq. (31)
for two (different) source terms as

o0
d
S16) +61-G1(1.6) + ZG1(r.6) = / VEVKE . 6)Gy(r, &) e’ (40)
—00
and
a o0
S2(=§) —§5-Go(r, =§) + ZGa(r, —§) = X / V(ENKE, —£)Go(r, &) g (41)
—00

Now, we multiply Eq. (40) by (?;)G;(r, —&)X, multiply Eq. (41) byyr (s)GI(r, &)X, integrate both resulting equations over
all £ and subtract the results, one from the other, to obtain

o o0
d
[ velele ~oxs16 - 6l OxS2-0]ck + o [ V6T -6 XGa(r ¢ ek =L (o). (42)
—00 —00
Here the superscript T denotes the matrix transpose operation,
X =diag{x1, x2, x3, x4}, (43)
is a constant and
x o0
L) = / / YOV ENG (1, —[XEK(E &) — KT (&, &) EX]G(r, ') e . (4)
—00 —00

Noting from Appendix B that the elements Kf(¢’, £) are such that if

X= diag{anml_l/Z, nlml_l/z, 2n2m;1/2, nzmgl/z}, (45)
then we can show that

XZKE & =K'(8)ZX, (46)
and soL(t) = 0. Now, considering tha, (—t, —&) = G4 (7, £) and that

Guo(—a,§)=8Go(—a,—§), §>0, (47)
we can integrate Eq. (42) overfrom —a to « to find

a o0
[ [ velehe-oxsie - 61w ox52-)] de e =0 (48)
—a —0o0

Consider the special case:
1 na/n
S1(6) = (1/2)k 0 + (1/2)k 0
0 0

(49)
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and
(1/2)(% - 1/2)
1
S =k , 50
2O =11 1262~ 1/2) (%0
1
with
G1(1,6)=Gp(1,§) +Gc(r,8) and Gp(7,§) =Gr(t,%). (51a,b)
For this special case, we find from Eq. (48) that
kr[x1(Q@p.1+ Qc,1) +x3(Qp 2+ Oc,2)] = x1[kp + (n2/mkc|Ur 1+ x3kp — (n1/m)kc U 2, (52)
where, in general,
a a
1 1
U= P / upga(t)dr and Qpq= P /CIA,a(T)dT (53a,b)
—da —a
for A= P, T,C anda = 1, 2. For the special casg- =0, Eq. (52) yields
kr(x1Qp,1+x30p 2) =kp(x1Ur 1+ x3UT 2), (54)
while for the special casep = 0, Eq. (52) yields
kr(x10¢,1+x30¢,2) =kc[x1(n2/m)Ur 1 — x3(n1/m)Ur 2). (55)
For the casé; =0, Eq. (52) yields only a tautology-8 0; however, if we go back and use
1 no/n
0 0
S16)=/2kp | 1 | and SpE)=/Dke| (56a,b)
0 0
along with
G1(7,§)=Gp(7,8) and Ga(7,§) =Gc(7,8), (57a,b)
we can deduce from Eg. (48) that
kc[x1(n2/m)Up 1 —x3(n1/m)Up 2] =kp(x1Uc1+ x3Uc 2). (58)

It is clear that Egs. (54), (55) and (58) can be used to express some of the quantities we wish to establish in terms of other
guantities we also seek. When not used in this way, these expressions can be used as checks on computation work.

4, Particular solutions

Since the three problems we consider here differ only in the driving or source term in our balance equation, we develop our
solutions to these three problems all at once. As mentioned earlier in this work, we seek a solution, valid &¢-adl, a),
of Eq. (31) where the inhomogeneous source term is given by Eq. (34). We note that the elementary solutions of our discrete-
ordinates version of Eq. (31) were developed and reported in our previous work [18], and we will use these elementary solutions
to solve theG problem, but we also require a particular solution of Eqg. (31) to account for the inhomogeneous term. We thus
seek a particular solutiof# , (z, £) that can be used with solutions of the homogeneous equation to define the complete solution.
Considering tha$ (&) has two basic types of elements, one we can associaté widmdk- and the other witti, we propose
a particular solution of the form

Gp(1.6) =G .5+ 6P (. ¢), (59)
where

GV (&)= At? + Bt + CE?+ D (60)
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and
E(E2—1/2— sw)
@) 2E
G = 61
p (tvé) F(§2—1/2—rw) ( )
2F
After some algebra we find we can express the constants required in Eq. (60) as
aldf —2a101 c1 dy
0 0 0 2c1 —4aq
A= B= C= and D= 62a—d
Kalazz ’ —2\a1o2 |’ c3 0 ’ ( )
0 0 0 2c3 —4haq
where the remaining constants are defined by the linear system
ay lkp + (n2/n)kcl/o1
vl 1| 2| ke —(1/mkcljoz | (63)
c3 0
dy 0
Here the elements of the coefficient mathik are given by
2 1 2
mi1=2+a51-r%),  miz=-ni)— (5205, (64a,b)
1 2 1
miz=rniy+ G255, mia=-2y). (64¢,d)
mp1 =21+ 417(2?)1(% —-53%),  map= sngi + (5/2)s3n(2?)1, (64e.f)
1 2 1
mp 3= —n(z,)l - (5/2)77%,{, mp 4= 2sn§i (649,h)
6 2 .
m31=—4+ (16/5)(B1+inSy).  maz=21- 1)+ 1/DnL>. (64i,)
6 2 2
m3g=—201)— /20y  mza=1iy. (64K,))
= (16/5)12) + [(16/5)8, — 4] =-20% — (s5/242) 64
ma 1= (16/5n5’1 + [(16/5)p2 — 4],  map ny1 — (s/D15 7. (64m,n)
mag=2(1- ) +(1/Dn5) and mys=—sns). (640,p)
In writing the elements of th&f matrix we have used
r=(my/m)Y?, 5= (my/mp? (65a,b)
and other quantities defined in Ref. [18] and listed in Appendix A, along with
r=s(01/02), (66)
whereoq1 andos are given by Eq. (18). Continuing, we find, in regard to Eq. (61), that
e
w = (5/4)r =2 (67)
»D
1,2
and that the constanfs and F are solutions of the linear system
E| kr [ 1/oq
vE-E ) e
where the elements of the coefficient matNxare given by
212, (1 6 212, (1
ni1=—01+ 6B iy n12=ny— /837 e, (69a,b)
6 212, (1 212, (1
np1= né)l - (5/8)s3[n§j] /néﬁ)l and npp2=—-®2+ (5/8)[n§,)1] /néi, (69c,d)
with
5 5 6 5 5 6
Pr=npytnip -y and d2=nyy+ny) -0y (70a.b)

Since the required particular solutions have been established, we can use them with the elementary solutions of our discrete-
ordinates version of the homogeneous equation to define the complete solution, and so we are ready to solve the problems.
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5. Complete solutions

In Ref. [18] the ADO method was developed for the McCormack model, and in that process the elementary solutions of our
discrete-ordinates version of Eq. (31) were established alnskgjuently used to solve the half-space viscous-slip problem and
the thermal-creep problem for mixtures. In order to avoid much repetition, we do not repeat a development of these elementary
solutions here, but a brief review of these solutions is given in Appendix C. And so we express our solutidhi firobéem as

4N
G(r.2£) =Gp(1.£5) + A1G1 + Y Aj[@(v; ) e TNV L o), 5 e @DV, (71)
j=2
where the constant$; and {A ;} are to be determined so that the result given by Eqg. (71) satisfies a discrete-ordinates version
of the boundary condition, viz.,
G(—a,§)=8G(—a,—§;) (72)

fori =1,2,..., N. Here our “half-range” quadrature scheme usésveights and nodes$w;, &;}. Again, the elementary
solutionsG 1 and @ (v;, £§;), as well as the separation constafts}, are used here as previously [18] introduced. Note
that the solution listed as Eq. (71) already satisfies the symmetry condition

G(1,§) =G(-1,-§). (73)

To complete the solution listed as Eq. (71), we substitute that expression into Eq. (72) and solve the resulting system of linear
algebraic equations to establish the constantaind {A ;}. It follows that we can now compute the species-specific quantities
uq (1), po(t) andgy () from discrete-ordinates versions of Egs. (35). In this way, we find

4N
u1(1) = Ay — swE +ay(010)% + (1/2cy +d1+ Y AN, 1 (vj)[e@FI/Vi em@=D/vj], (74a)
j=2
4N
us(t) =sA1—rwkF + )»al(azr)z +(1/2)c3+ Z A./NM,Z(VJ)[E_(H'H)/V/' + e_(a_r)/vf], (74b)
j=2
4N
pi(t) =—ato17+ Y AjN, 1(vj)[e” TN — eI, (752)
j=2
AN
p2(t) = —haroat + Y AjN, a(v)[e” @DV — g @OV, (75b)
j=2
4N
q1(1) = (5/2)(E +c1) —4ag+ Y AjNg 1(vj)[e" @D/ 4 e (@=D)/v] (76a)
j=2
and
AN
q42(0) = (5/2)(F + c3) — dhay + Y AjNg 2(v)[e”@TD/Vi 4 em@0/vi], (76b)
j=2

In Egs. (74-76) we have used the normalization integrals

N
Nua®j)=F3 Y wip E)[@ (). &) + S (v). —&0)]. (77a)
k=1
N
Npaj)=Fg Y wer E&[P (), &) — D, —&0)] (77b)
k=1
and
N
NgaWj) = wi EF] o E[P ). 8) + @), —&0)]. (770)

k=1
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where
1 0 £2-1/2 0
0 0 1 0
Fi=|o|> F2=| 1| Fq1®= 0 and F (5= £2-1/2 (78a—d)
0 0 0 1

In addition to the species-specific velocity, shear-stress, and heat-flow profiles listed as Egs. (74)—(76), we intend to compute
the mass and heat-flow rates defined for each spegiesl( 2) by Egs. (39), and so we can integrate Eqgs. (74) and (76) to find

AN

U= %[Al —swE+ (1/2)c1 +d1 + (1/3)a1(01a)2] + aiz Z AjVjNu,l(Vj)[l _ e_2“/“j], (79a)
j=2
1 1 AN
V2=~ [sA1 —rwF + (1/2c3 + (1/3rar(o20)?] + — Y AjvjNy 2(vj)[1— e 2/Vi], (79b)
a
j=2
1 1 AN
01= ;[(5/2)(E +c1) — 401] + a_z Z AjVqu,l(Vj)[l _ e—2a/vj] (80a)
Jj=2
and
1 1 4N 2
Q2= [6/2(F +c3) —har] + — D AjviNg a(wp[1—e V], (80b)
j=2

To be clear, we note that Eqgs. (74)—(76), (79) and (80) are valid for all three problems: Poiseuille flow, thermal-creep flow,
and flow driven by density gradients, and so for any one of the problems some terms involving solutions to Egs. (63) and
(68) will vanish. As our solutions are complete, we proceed tolément the algorithms to establish numerical results for the
problems of interest.

6. Numerical results

The first thing to note in regard to our numerical work is the way we defined the quadrature scheme for the analytical
discrete-ordinates method used in this work. To keep matters simple, we used the transformation

vE) =e¢ (81)

to mapé € [0, co) ontov € [0, 1], and we then used the Gauss-Legendre scheme mapped (linearly) onto the interval [0,1]. In
order to evaluate the merits of the solutions developed here, we have elected to use two data cases defined by Sharipov and
Kalempa [15]. These data cases refer to a mixture of the species: (i) Ne—Ar and (ii) He—Xe. As we are reporting numerical work
only for the case of rigid-sphere interactions, we can see that the McCormack model requires, for this case, only three ratios:
the mass ratigm1/m>2), the diameter ratidd1 /d>) and the density ratitn1/n2).

For the sake of our computations we consider that the data

mp=39948 m1=20183 dp/d1=1406 (Ne—Ar mixture)
and

mo=13130, m1=4.0026 dp/d1=2226 (He—Xe mixture)
are exact. We tabulate our results for these two cases in terms of the molar concentration defined (in terms of the first particle)
as

__m/n2 . (82)
1+n1/no

The case of Poiseuille flow (the flow is driven by a pressure gradient) is definég by0 andkc = 0, and we use the
normalizationk p = 1. The case of thermal-creep flow (the flow is driven by a temperature gradient) is defikgd=bH@ and
kc = 0, and we use the normalizatidr = 1. Similarly, the diffusion problem (the flow is driven by density gradients) is
defined bykp = 0 andky = 0, and we use the normalizatiég = 1. In Tables 1-18 we list some typical results for the three
considered problems.|#hough we have computedldhe basicquantitiesuy (t), g« (t) and py(r), we have (for economy
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Table 1
Poiseuille flow: flow and heat-flow rates for the cage=ap = 1.0 andC =0.1

Ne—Ar mixture He—Xe mixture
2a -Up1 —Up 2 Op1 Op2 -Up -Up 2 Op1 0Op2
1.0(-2) 3.13154 3.04727 1.29186 1.24409 3.20579 3.06987 1.33690 1.25508
1.0(-1)  2.03927 2.04260 7.58314(-1)  7.31284(-1)  2.00315 2.06850 7.80915(-1)  7.43033(-1)
5.0(-1) 1.49107 1.62938 4.69652(-1) 4.62701(-1) 1.26587 1.66420 4.63446(-1) 4.76619(-1)
1.0 1.35397 1.57617 3.65900(-1)  3.65355(-1)  9.96783(-1)  1.61843 3.44238(-1)  3.80277(-1)
2.0 1.31671 1.64325 2.71804(-1) 2.73769(-1) 7.78403(-1) 1.69631 2.37146(-1) 2.88712(-1)
5.0 1.53137 2.05580 1.63348(-1)  1.63311(-1)  6.19341(-1)  2.13058 1.25825(-1)  1.75270(-1)
1.0(2) 2.06527 2.85384 9.91237(-2) 9.75227(-2) 6.51489(-1) 2.95526 7.09569(-2) 1.05635(-1)
1.0(2) 1.29100(1)  1.81574(1)  1.19141(-2)  1.14534(-2)  3.27297 1.86619(1)  7.99528(-3)  1.25106(-2)
Table 2
Poiseuille flow: flow and heat-flow rates for the cage= ap = 1.0 andC = 0.5

Ne—Ar mixture He—Xe mixture
2a -Upa -Up2 Opa Op2 -Upa =Up2 Opa 0p2
1.0(-2) 3.10616 3.02370 1.27762 1.22908 3.24528 3.16046 1.35344 1.29477
1.0(-1) 2.03930 2.05770 7.50236(-1) 7.23678(-1) 2.06546 2.23164 7.98472(-1) 7.98436(-1)
5.0(-1)  1.53186 1.70422 4.67838(-1)  4.60551(-1)  1.36343 1.96756 4.83707(-1)  5.53625(-1)
1.0 1.42127 1.68809 3.66210(-1) 3.63662(-1) 1.11366 2.02467 3.65903(-1) 4.64547(-1)
2.0 1.41820 1.80091 2.73030(-1)  2.71089(-1)  9.15792(-1)  2.24341 2.58665(-1)  3.72465(-1)
5.0 1.69784 2.29897 1.63915(-1)  1.59459(-1)  7.90925(-1)  2.95106 1.42778(-1)  2.40457(-1)
1.0(1) 2.31504 3.21022 9.90113(-2)  9.43089(-2)  8.70636(-1)  4.11144 8.25396(-2)  1.49194(-1)
1.0(2) 1.45191(1) 2.04217(1) 1.18150(-2) 1.09753(-2) 4.37688 2.49728(1) 9.56954(-3) 1.81380(-2)
Table 3
Poiseuille flow: flow and heat-flow rates for the cage= ap = 1.0 andC =0.9

Ne—Ar mixture He—Xe mixture
2a -Up1 —Up2 Op1 Op,2 -Up1 —Upp Op1 Op2
1.0(-2) 3.06548 2.98686 1.25474 1.20534 3.22483  3.29990 1.33689 1.34799
1.0(-1) 2.03919 2.08230 7.37124(-1) 7.11311(-1) 2.12216 2.61950 7.95867(-1) 9.06593(-1)
5.0(-1) 1.59350 1.81866 4.64202(-1) 4.55308(-1) 1.54903 2.84528 4,99178(-1) 7.21660(-1)
1.0 1.52076 1.85450 3.65685(-1) 3.58724(-1) 1.38238 3.28422 3.90486(-1) 6.49129(-1)
2.0 1.56409 2.02776 2.73859(-1) 2.65133(-1) 1.28765 4.05510 2.89944(-1) 5.54492(-1)
5.0 1.93129 2.63930 1.64001(-1) 1.53337(-1) 1.34787 5.88585 1.72930(-1) 3.80512(-1)
1.0(1) 2.66694 3.71165 9.83806(—2) 8.97607(—2) 1.65613 8.44365 1.04733(-1) 2.42386(-1)
1.0(2) 1.68991(1) 2.37707(1) 1.16178(-2) 1.03415(-2) 8.86120 5.06357(1) 1.26896(-2) 3.01801(-2)
Table 4
Thermal-creep flow: flow and heat-flow rates for the case- ao = 1.0 andC =0.1

Ne—Ar mixture He—Xe mixture
2a Uri Ur2 -0r1 -0r2 Uri Ur2 -0r1 -0r2
1.0(-2) 1.29775 1.24317 6.96161 6.71756 1.34069 1.25267 7.15929 6.76398
1.0(-1) 7.79481(-1)  7.27975(-1)  4.23995 4.03660 7.95118(-1)  7.33994(-1)  4.30012 4.07409
5.0(-1) 5.04030(-1) 4.57327(-1) 2.52515 2.37304 4.88947(-1)  4.60391(-1)  2.44517 2.40018
1.0 3.99784(-1) 3.60059(-1) 1.86238 1.73625 3.72120(-1) 3.62534(-1) 1.74832 1.75870
2.0 2.97975(-1) 2.69678(-1) 1.27311 1.17488 2.63133(-1) 2.72174(-1) 1.15883 1.19260
5.0 1.73993(-1)  1.61647(-1) 6.68158(-1)  6.07544(-1)  1.42890(-1)  1.64410(-1) 5.91896(-1)  6.18728(-1)
1.0(1) 1.02298(-1) 9.70265(-2)  3.71913(-1)  3.35234(-1)  8.06819(-2)  9.94462(-2)  3.26921(-1)  3.42027(-1)
1.0(2) 1.18387(-2) 1.14651(-2) 4.08923(-2) 3.65350(-2) 8.98868(-3) 1.18784(-2) 3.58120(-2) 3.73382(-2)
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Table 5
Thermal-creep flow: flow and heat-flow rates for the case- ap = 1.0 andC =0.5
Ne—Ar mixture He—Xe mixture
2a Ura Ur,2 -0r1 —0r.2 Ura Ur,2 —0r1 —0r.2
1.0(-2) 1.28163 1.22344 6.88967 6.63068 1.35640 1.27783 7.24044 6.89818
1.0(-1) 7.64126(-1) 7.04136(-1) 4.18048 3.94394 8.09649(-1) 7.34418(-1)  4.40281 4.14936
5.0(-1) 4.88714(-1) 4.31182(-1) 2.47924 2.28308 5.03756(-1) 4.38798(-1) 2.56176 241481
1.0 3.85468(-1) 3.36569(-1) 1.82280 1.65557 3.87730(-1) 3.39538(-1) 1.85988 1.75635
2.0 2.86396(-1) 2.52285(-1) 1.24092 1.11026 2.78850(-1) 2.56857(-1) 1.25439 1.18460
5.0 1.67929(-1) 1.53812(-1) 6.47569(-1) 5.68856(-1) 1.55811(-1) 1.65810(-1) 6.54556(-1) 6.13918(-1)

1.0(1)  9.94318(-2) 9.37173(-2) 3.59328(-1) 3.12663(-1) 8.98271(-2) 1.07456(-1)  3.65585(-1)  3.39855(-1)
1.0(2)  1.16145(-2) 1.12574(-2) 3.93864(-2)  3.39620(-2)  1.02813(-2)  1.40614(-2)  4.04933(-2)  3.71661(-2)

Table 6
Thermal-creep flow: flow and heat-flow rates for the cage- ap = 1.0 andC = 0.9
Ne—Ar mixture He—Xe mixture
2a Ura Ur,2 -0r1 —0r,.2 Ura Ur,2 —0r1 —0r,.2
1.0(-2) 1.25578 1.19217 6.77376 6.49261 1.33803 1.28883 7.16542 6.98850
1.0(-1) 7.40521(-1) 6.68298(-1) 4.08628 3.80237 8.00111(-1) 6.87816(-1)  4.40249 4.10035
5.0(-1) 4.68744(-1) 3.97808(-1) 2.41260 2.16110 5.06387(-1) 3.50078(-1) 2.64206 2.25559
1.0 3.69472(-1) 3.10763(-1) 1.76955 1.55441 3.97993(-1) 2.62194(-1) 1.96132 1.59073
2.0 2.76059(-1) 2.37272(-1) 1.20082 1.03502 2.96442(-1) 2.19562(-1) 1.35617 1.04556
5.0 1.64271(-1) 1.49916(-1) 6.23307(-1) 5.26476(-1) 1.76612(-1) 1.90699(-1) 7.27836(-1) 5.30803(-1)

1.0(1)  9.81307(-2) 9.29254(-2)  3.44642(-1) 2.88381(-1) 1.06568(-1) 1.47813(-1) 4.11585(-1)  2.91218(-1)
1.0(2)  1.15422(-2) 1.12988(-2) 3.76349(-2)  3.12260(-2)  1.28394(-2)  2.24585(-2)  4.60515(-2)  3.15465(-2)

Table 7
Diffusion problem: flow and heat-flow rates for the cage=a» = 1.0 andC = 0.1

Ne—Ar mixture He—Xe mixture
2a -Uca Uc2 Oc1 —0c,2 -Uc1 Uc,2 Oc1 —0c.2
1.0(-2) 2.77607 2.98111(-1) 1.14822 1.21229(-1) 2.87606 3.01165(-1) 1.20310 .23030-1)
1.0(-1) 1.66666 1.77893(-1)  6.34270(-1) 6.22830(-2)  1.76520 1.82902(-1)  7.02941(-15339%6-2)
5.0(-1) 9.58818(-1) 1.03044(-1) 3.36170(-1) 2.73719(-2) 1.05070 1.10047(-1)  4.16128(-1081433-2)
1.0 6.87238(-1)  7.45597(-2) 2.29570(-1) 1.56476(-2) 7.71775(-1) 8.20853(-2)  3.07005(—13496Q%-2)
2.0 451661(-1) 4.96839(-2) 1.42297(-1) 7.29034(-3) 5.23605(-1) 5.70182(-2) 2.08176(—1989328-3)
5.0 2.23628(-1) 2.50935(-2) 6.53257(-2) 1.89775(-3) 2.70765(-1)  3.06436(-2)  1.06166(—1)163802-3)

1.0(1)  1.20528(-1) 1.36674(-2) 3.39294(-2)  6.14453(—4)  1.49135(-1) 1.72958(-2)  5.77571(-901254-4)
1.0(2)  1.28532(-2)  1.47192(-3) 3.49800(-3) 2.77607(-5) 1.62130(-2) 1.92839(-3)  6.19865(1F6646—5)

Table 8
Diffusion problem: flow and heat-flow rates for the cage=a» = 1.0 andC = 0.5

Ne—Ar mixture He—Xe mixture
2a -Uca Uc,2 Oc1 —0c,2 -Uc1 Uc,2 Oc1 —0c.2
1.0(-2) 1.52411 1.47110 6.28995(-1) 5.95086(-1) 1.61549 1.53930 6.76630(—1)2993%—1)
1.0(-1) 9.05666(-1) 8.68490(-1) 3.43509(-1) 2.97828(-1) 1.00297 9.45379(-1)  3.99354(-1358713-1)
5.0(-1) 5.11142(-1) 4.93657(-1) 1.80443(-1) 1.25672(-1) 6.10823(-1) 5.77758(-1)  2.41260(-158585% 1)
1.0 3.60950(-1) 3.52082(-1) 1.23476(-1) 7.08475(-2) 4.56056(-1) 4.35149(-1)  1.80938(-1372949-2)
2.0 2.32691(-1) 2.30210(-1)  7.73296(-2) 3.34738(-2)  3.15372(-1) 3.05408(-1) 1.25262(—1]31184-2)
5.0 1.12430(-1)  1.13339(-1) 3.63830(-2) 9.96489(-3) 1.66792(-1) 1.65831(-1) 6.55315(—220331%-2)

1.0(1)  5.99349(-2) 6.09516(-2) 1.92098(-2) 3.94041(-3) 9.27885(-2)  9.39011(-2)  3.60561(-997562-3)
1.0(2)  6.33187(-3) 6.48821(-3) 2.01367(-3) 2.91614(-4) 1.01714(-2) 1.04880(-2)  3.9060143)6720—5)
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Table 9
Diffusion problem: flow and heat-flow rates for the cage= a = 1.0 andC = 0.9
Ne—Ar mixture He—Xe mixture
2a -Uc1 Uc,2 Oc.1 -0c2 -Uc1 Uc2 Oc.1 -0c,2
1.0(-2) 2.98972(-1) 2.59225 1.22938(-1) 1.03952 3.19703(-1) 2.82660 1.33657(-1) 1.15239
1.0(-1) 1.74696(-1)  1.50406 6.59906(—2)  4.99395(-1)  2.00530(-1)  1.75516 7.96602(=2)  6.00948(-1)
5.0(-1) 9.55855(-2) 8.29410