
The MD2 Hash Function Is Not One-Way

Frédéric Muller

DCSSI Crypto Lab 51, Boulevard de Latour-Maubourg,
75700 Paris 07 SP France

Frederic.Muller@sgdn.pm.gouv.fr

Abstract. MD2 is an early hash function developed by Ron Rivest for
RSA Security, that produces message digests of 128 bits. In this paper,
we show that MD2 does not reach the ideal security level of 2128. We
describe preimage attacks against the underlying compression function,
the best of which has complexity of 273. As a result, the full MD2 hash
can be attacked in preimage with complexity of 2104.

1 Introduction

Cryptographic hash functions are an important primitive used in various situa-
tions. The main fields of applications are message authentication codes, digital
signatures, and therefore certificates. Hash functions are also used as a building
tool in many protocols and advanced constructions.

By definition, a hash function H is a function mapping an input message m
of arbitrary length to an output h of fixed length (typically this length ranges
from 128 to 512 bits) h = H(m)

The main properties expected from a cryptographic hash function are:

– Collision Resistance: it should be hard to find two inputs m and m′ that
map to the same output by H.

– Second Preimage Resistance: for a given m, it should be hard to find a
second input m′ such that m and m′ map to the same output by H.

– Preimage Resistance: for a given challenge h, it should be hard to find
an input m which maps to h by H.

More can be found on the theory of hash functions in [9, 10]. Most of the hash
functions used in practice belong to the so-called “MD family”. This family of
hash functions was initially developed by Ron Rivest for RSA Security. The first
proposal was MD2 [7], an early, non-conventional, byte-oriented design. It was
quickly followed by MD4 [11] and MD5 [12], two hash functions with a more
modern, 32-bit-oriented design. Despite not being collision-resistant [3], MD4
has inspired most modern hash functions designs, like the RIPEMD family or
the SHA family. Over the last years, the effort on attacking hash functions has
mostly concerned collision resistance [2-4, 15], since this property is essential for
many applications. However, few results have been reported regarding (second)
preimage attacks for these hash functions (see [5, 9]).

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 214–229, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The MD2 Hash Function Is Not One-Way 215

In this paper, we focus on the MD2 hash function [7]. Despite being the oldest
hash functions from its family, and despite using an old-fashioned architecture,
MD2 is still used in several contexts. For instance, if we look at the recent PKCS
#1 v2.1, a cryptographic standard from RSA Security [17], the MD2 hash is still
given as an example of one-way, collision-resistant hash function, while MD4
has been removed, presumably because of Dobbertin’s collision attack [3]. In
addition, it is precised that “MD2 (is) recommended only for compatibility with
existing applications based on PKCS #1 v1.5”. The underlying explanation is
that the use of MD2 was highly encouraged in the previous version from 1993 [16]
where MD2 was recommended as a “conservative design”. This confidence in
MD2 is not surprising because, despite being quite inefficient and based on an
older design philosophy, MD2 has surprisingly well resisted to cryptanalysis. The
only attack known is a collision attack against the compression function [14]. This
attacks works with the correct IV, however it no longer works when a checksum
is appended to the message, as imposed in the specifications [7]. For the full hash
function, no attack is known.

Consequently MD2 still appears in various applications and even some pro-
posed standards [1]. However, the crucial security point regarding MD2 is now
its use in public-key infrastructures. Many certificates have been generated with
RSA-MD2 in the past and many of them are still widely used (like Verisign cer-
tificates for instance). Actually, anyone can easily verify that recent versions of
Windows are delivered with those MD2 certificates. Therefore millions of users
are probably using MD2-based certificates on a regular basis. The security of
certificates is a particular problem. Indeed, collision attacks do not threat the
security of the scheme, because the input of the signature primitive (typically
the usual primitive used with MD2 is the RSA signature) is fixed. An attacker
needs to find a collision between two inputs of MD2, one of them being the
data part of the certificate. If he succeeds, he will manage to forge a new valid
certificate. Hence what is required here is exactly second preimage resistance of
MD2. This is an important motivation to analyze the security of MD2 regard-
ing preimage and second preimage attacks, which is the focus of this paper. We
obtained interesting new results and theoretical attacks. Since our best attack
against MD2 is more efficient than a naive guessing attack in 2128, MD2 can no
longer be considered a secure one-way hash function.

First, we describe briefly the MD2 algorithm. Then, we focus on the compres-
sion function and describe several attacks. The best is a pseudo-preimage attack
with complexity 273. Finally, we show how to turn these attacks into an attack
for the full hash, which is not straightforward because of the checksum bytes.

2 The MD2 Hash Function

2.1 Generalities

The MD2 Message-Digest algorithm was developed in 1989 by Ron Rivest. The
actual specifications can be found in RFC 1319 [7]. This algorithm belongs,
together with MD4 and MD5, to the family of hash functions developed by Ron

216 F. Muller

Rivest for RSA Security. However, compared to the other algorithms of the family
(and to most actual hash functions), MD2 has several interesting particularities

– MD2 is a byte-oriented hash function. Indeed all instructions handle 8
bits of data. While this was useful for old architectures, today’s processors
can manipulate words of (at least) 32 bits. Consequently all modern hash
functions use 32-bit instructions. This is the case of MD4, MD5 and also for
the hash functions of the RIPEMD and SHA families.

– MD2 uses a checksum of 128 bits computed from the whole message and
appended as the last input block of the compression function. Hence MD2
does not follow the Merkle-Damg̊ard construction, contrarily to most actual
hash functions. Consequently classical results [9] on how to turn collisions
on the compression function to collisions for the whole hash function do not
apply here. This is the reason why the collision attack described in [14] does
not extend to the full MD2 hash.

– the compression function of MD2 has a different architecture from most
modern hash functions. Indeed it does not look like a block cipher. Instead,
a fixed “scrambling” function is iterated on a 384 bits long internal state.
The initial state is derived linearly from a message block of length 128 bits
and an intermediate hash of 128 bits. The final state is truncated to 128 bits.
This function uses simple instructions like XOR and a nonlinear S-box.

Therefore MD2 is a very early design of hash function and differs significantly
from modern hash functions. In terms of efficiency, it compares quite bad to its
challengers (mostly because of the byte-oriented structure).

2.2 Description of MD2

In this section, we describe more precisely the mechanisms used by the MD2
hash function (see [7] for the full specifications). The general description of MD2
is found in Figure 1.

0

. .

. . .

message with padding

checksum

F F F F hash

M M C

H

M 0 1 n.

Fig. 1. The MD2 Hash Function

All blocks manipulated have length 128 bits. We refer to the blocks of the
message by M0, . . . , Mn. The first step of MD2 is to append a padding to the

The MD2 Hash Function Is Not One-Way 217

initial message, then to compute a checksum block (that we call C). This in-
creases the length of the message by 1 block. Finally the compression function
(referred to as F) is applied iteratively to produce the hash value. If we call Hi

the i-th intermediate hash,

Hi+1 = F (Hi, Mi)

The IV of the hash function is H0 and is set by default to 0.

The Compression Function. A precise representation of the compression
function F is given in Figure 2. Each box in this figure contains one byte. F
is decomposed into 3 matrices - denoted by A, B and C - with 16 columns and
19 rows each. The first row of each matrix is initialized respectively with Hi,
Mi and Hi ⊕ Mi. Then the rows of each matrix are computed recursively from
top to bottom. The last rows of B and C are not used. The ’+’ symbol denotes
addition modulo 256.

Fig. 2. The Compression Function of MD2

The computations are based on a function φ from 16 bits to 8 bits. In the
case of the matrix A, this can be described by the equations:

At
i = φ(At−1

i , At
i−1)

= At−1
i ⊕ S(At

i−1)

where S is a fixed S-box of size 8 bits. Equations for matrices B and C are
exactly the same. This function φ is represented in Figure 3. For the particular
case i = 0, a byte extracted from another matrix is used instead of At

i−1 (see
Figure 2).

The Checksum Function. The checksum C is computed from the blocks of
message by iterating a non-linear checksum function, that we call G. Details on
G are not relevant for our attacks. Basically G uses only basic operations like
XOR and the S-box S. At a high-level, the following equations describe this
mechanism:

IC0 = 0
ICi+1 = G(ICi, Mi)

218 F. Muller

At−1
i

�

�� �
�

�

�

�

At
i−1 S At

i
�

Fig. 3. The φ function

G is a complicated function, however it is straightforward to compute the
intermediate checksum ICi from ICi+1 and Mi. The final value ICn+1 is the
appended checksum C. A precise description of G is available in [7].

3 Collision Attacks Against MD2

The only known cryptanalytic result against MD2 is the paper by Rogier and
Chauvaud [14]. In this paper, collisions on the compression function of F are de-
scribed. This attack works very well because the IV used in MD2 is O (although
a variant is proposed for other IV’s with an increased complexity). Details of
this attack are not essential here. The key idea is to use the symmetry between
matrices B and C when Hi = 0. (the first rows are equal in this case). Unfortu-
nately collisions cannot be extended to the full MD2 because of the checksum
bytes.

Although collision attacks may be of interest in many contexts, there are
several arguments why researching efficient collision attacks for MD2 is no longer
a major concern.

– First, one has to take into account the dimension of MD2. The produced
hashed values have length only 128 bits. Therefore birthday paradox attacks
have complexity of the order of 264. This is not a satisfying level of security for
modern applications. As an example, the MD5 hash function (whose output
have also a length of 128 bits) is actually the subject of a distributed attack to
find collisions [8]. It is clear that the interest of finding complicated shortcut
attacks diminishes when efficient attacks using a large computational power
are possible [18].

– Secondly, MD2 is no longer widely used in practice. For instance, in MAC or
signatures, the collision resistance of a hash function is generally a require-
ment, but MD2 is no longer recommended for such applications. However,
as we mentioned previously, MD2 is still used in some certificates. In this
context, collision resistance is not really a concern but preimage and second
preimage resistance are required.

The MD2 Hash Function Is Not One-Way 219

4 Preimage Attacks Against MD2 Compression Function

A large variety of definitions for preimage and second preimage attacks exist in
the literature, depending on what is a fixed challenge for the attacker and what
can be freely chosen. A classical reference is [9], however a new classification of
these notions has been recently given in [13].

In this section, we focus only on (preimage) attacks against the compression
function of MD2. It is well known that these attacks can generally be extended
to attacks against the whole hash (see [9]).

4.1 Three Scenarios

According to the previous notations, the compression function F operates by:

Hi+1 = F (Hi, Mi)

where the Hi’s are intermediate hash values and Mi is a message block (see
Section 2.2). Basically we can consider 3 attack scenarios at this point:

1. Hi+1 and Hi are given and the attacker must find an appropriate Mi.
2. Hi+1 and Mi are given and the attacker must find an appropriate Hi.
3. Hi+1 is given and the attacker must find appropriate Hi and Mi.

Any of these attacks may be of interest to attack the whole hash. Obviously,
the 1st and 2nd attack are very similar because the roles of Hi and Mi in F are
almost symmetric.

These 3 attack scenarios have received different names in the literature. Re-
cently the names “aPre” (“a” stands for “always”), “ePre” (“e” stands for “ev-
erywhere”) and “Pre” have been given to these 3 notions [13]. In [9], the ter-
minology of “preimage resistance” and “pseudo-preimage resistance” is used. In
the following sections, we envisage each scenario separately and propose new
attacks.

4.2 Attacking Scenario 1

In this scenario, we suppose that Hi and Hi+1 are a fixed challenge and our goal
is to find an appropriate Mi such that

Hi+1 = F (Hi, Mi)

First, we notice that a solution does not necessarily exist. Indeed all variables
have length 128 bits, so in average only one solution Mi is expected, but there is
no guarantee. We propose an attack that recovers all solutions corresponding to a
given challenge (Hi, Hi+1). Basically our attack is a sophisticated combination of
exhaustive search and meet-in-the-middle attacks. It proceeds with two distinct
steps. In the following, we call (m0, . . . , m15) the 16 bytes of Mi.

First Step. The first step of the attack is to derive all possible information from
the challenge (Hi, Hi+1). These two objects are stored at the first and last row
of matrix A (see Figure 4 where dashed cells correspond to the known bytes).

220 F. Muller

Fig. 4. Initial knowledge when Hi+1 and Hi are fixed

Fig. 5. Known values in the matrix A

Because of the structure of φ (this function is used to compute the contents
of the matrices, see Section 2.2), more information can be derived directly from
the challenge. For instance, when At

i−1 and At
i are known, we can obtain At−1

i

since:

At
i = φ(At−1

i , At
i−1)

= At−1
i ⊕ S(At

i−1)

In Figure 5, we represented by dashed boxes the large portion of A that
can be directly derived this way. The second row is known because the byte
introduced on the left hand side is known and always equal to 0.

In addition, if we guess the byte introduced on the left hand side of
the 3rd row in A (i.e. C1

15 + 1), then we can derive the full content of matrix
A by similar considerations. In particular the bytes Ai

15’s are known, and also
the bytes Ci

15’s for i > 0.

Second Step. Then, the second step of the attack is to perform a meet-in-
the-middle attack on the matrices B and C to find an appropriate value of Mi.
Basically at this point, we know what enters on the left hand side of B and what
exits on the right hand side of C. Hence, we apply the following “meet-in-the-
middle” algorithm:

The MD2 Hash Function Is Not One-Way 221

– Guess the 4 bytes (B1
15, . . . , B

4
15)

• for all values of the 8 bytes (m0, . . . , m7),
∗ compute the 4 bytes (B1

7 , . . . , B4
7) (this is possible because the se-

quence of Ai
15’s is known)

∗ compute the 4 bytes (C1
7 , . . . , C4

7) (this is possible because Hi is
known)

∗ store these 4 + 4 = 8 bytes in a table T1
• sort T1 (which has 264 entries of 64 bits each)
• Repeat the same process with (m8, . . . , m15) to obtain a table T2 that

contains also the bytes (B1
7 , . . . , B4

7 , C1
7 , . . . , C4

7).
• Find all collisions between T1 and T2. This can be done efficiently by

computing the joint product T = T1 �� T2 (see [19]) with complexity of
the order of 264

• The resulting table T contains on average 264 candidate values for Mi =
(m0, . . . , m15)

• Loop over all these candidates to find all valid Mi’s

One can also refer to Figure 6 for the general philosophy of this attack.
Dashed boxes represent the 8 bytes stored in tables T1 and T2, where we look
for collisions.

Fig. 6. The general philosophy of the attack

Analysis. In this attack, there are two outside loops. A loop of size 28 comes
from the First Step of the attack (we need to guess one byte in order to find
the full content of A). Besides an outside loop of length 232 is required in the
“meet-in-the-middle” algorithm. Inside these loops we need to create and to sort
the tables T1 and T2. Those are tables with 264 entrees, sorted using a key of 64
bits. Sorting the tables can be done efficiently with an appropriate “bucket-sort”
algorithm so the cost is above 264 instructions. Creating the tables has also a
cost of the order of 264 instructions. Since these two operations are performed
twice (once for T1 and once for T2), the complexity is of the order of

Complexity = 28 × 232 × (4 × 264) = 2106

basic instructions. This corresponds approximatively to 295 applications of the
compression function (a quick estimation shows that about 211 instructions are
needed for the compression function).

222 F. Muller

This should be compared to the complexity of an exhaustive search to find a
preimage which would cost 2128 applications of the compression function. How-
ever, our attack requires about 271 bits of memory. High memory requirements
are known to increase the “real” cost of attacks [20]. Nevertheless this complex-
ity is of the order of 23n/4 while 2n would be expected for a good compression
function on n bits. An improved attack is also proposed in Appendix A to reduce
these memory requirements. Further improvements have been investigated but
no attack with complexity below 23n/4 was found.

4.3 Attacking Scenario 2

In the second scenario, the message block Mi is fixed and we search an appro-
priate Hi. Attacking this scenario is very similar to attacking scenario 1 because
there is an important symmetry in the compression function.

In the previous attack we managed to reconstruct the content of A from the
initial challenge, and then applied a “meet-in-the-middle” attack to B and C. In
Scenario 2, we can reconstruct the content of B from the challenge (Mi, Hi+1)
and then attack by the middle the matrices A and C. Details of this attack are
not very helpful to break the full MD2 hash, so we decided not to explore further
this scenario.

4.4 Attacking Scenario 3

Finally, we suppose that only Hi+1 is fixed, and the problem is to find any pair
(Hi, Mi) solution of the equation

Hi+1 = F (Hi, Mi)

This type of attack is often referred to as a pseudo-preimage attack on the
compression function [9]. Of course, it is easier to find such a solution because
we have more degrees of freedom. Therefore we wish to find an attack with
complexity better than the previous 295. In this section, we describe an attack
with complexity of the order of 273 against this scenario.

The Attack. First, one should notice that many solutions exist to this problem.
Indeed, we expect

2128 × 2128

2128 = 2128

solutions in average. Therefore it is reasonable to impose some additional con-
straints.

Like for the previous attacks, we first derive all possible information from
the given challenge (Hi+1 here). In addition, we impose the constraint that
A1

15 = A2
15 = c, where c is some constant, say c = 0 for instance. Figure 7

represents the resulting known values in the matrix A.
We observe that the complete rightmost column of A is known, which helps

when considering the behavior of matrix B. At this point, a 6 bytes constant
(k0, . . . , k5) is chosen at random. Then we apply the following algorithm:

The MD2 Hash Function Is Not One-Way 223

Fig. 7. Known values in the matrix A

– Pick 272 messages Mi of the form

Mi = (m0, . . . , m9, k0, . . . , k5)

where the mi’s are chosen at random. It is straightforward to compute the
matrix B for each Mi since the rightmost column of A is known. Hence we
build a table T (with 272 entries) where we store the rightmost column of
B, i.e. the Bi

15’s.
– Pick 264 intermediate hashes Hi of the form

Hi = (h0, . . . , h9, k0, . . . , k5)

where the hi’s are chosen at random1. It is straightforward to compute the
complete matrix A for each Hi. Therefore all values Ci

15 for i > 0 are also
known. Besides

Hi ⊕ Mi = (∗, . . . , ∗, k0 ⊕ k0, . . . , k5 ⊕ k5)

thus the 6 rightmost boxes of the first row of C are known and equal to 0.
Hence a lot of information about C can be derived (see Figure 8). By the
way, the bytes Bi

15 for 11 ≤ i ≤ 17 are also known at this point. We store
these elements in a table T ′.

The final step of the attack is to find collisions on the objects of 56 bits

(B11
15 , . . . , B17

15)

that have been computed by two different means and stored in tables T and T ′.
Using the birthday paradox, we expect 280 collisions because

|T | × |T ′| × 2−56 = 272 × 264 × 2−56 = 280

1 Actually there is an extra constraint, that φ(A0
0) = A1

0. Thus only 1 out of 256 values
of Hi are valid. Once (h1, . . . , h9) are chosen, the value of h0 is fully determined.
This induce no extra cost but must be taken into account when choosing the Hi’s.

224 F. Muller

Fig. 8. Known values in the matrix C

All these collisions can be found efficiently by computing T �� T ′ (see [19]).
Each collision corresponds to some pair (Hi, Mi). In order for this pair to solve
the initial problem, we need an additional equality between

– the bytes (B1
15, . . . , B

10
15) stored in table T

– the value of the same bytes obtained when we fill up all the content of matrix
C (which is possible for each candidate since Hi ⊕ Mi is now known).

Hence a little extra processing is required to find a real solution and a condi-
tion on 80 bits must be verified. However, we have 280 candidates from the joint
product of T and T ′ so one “real” solution should be found among them. The
probability of failure (i.e. that no solution exists) can be roughly approximated
to 1

e � 0.368. Otherwise, we can pick a little more candidates for Mi and Hi or
choose other constants.

Analysis. The bottleneck in the previous attack is the time spent analyzing
each of the 280 candidates (Hi, Mi). However, using an “early-abort” strategy,
most candidates can be eliminated after the first check for the value B1

15. There-
fore, only half a row of matrix C must be computed in average. To compute the
compression function, 3 × 18 = 54 rows are computed. So we have a speedup by
a factor

2 × 54 � 26.75

compared to a full computation of F .
Therefore this pseudo-preimage attack has complexity of about 273.25 com-

putations of the compression function, and requires about 278 bits of memory.
This is much faster than the expected value of 2128. All attacks against the
compression function are summarized in Table 1.

The MD2 Hash Function Is Not One-Way 225

Table 1. Summary of the attacks against the compression function

Attack Fixed Challenge Variable Time Memory
Simple Hi+1 and Hi Mi 295 271

Improved Hi+1 and Hi Mi 295 238

Pseudo-Preimage Hi+1 Hi and Mi 273 278

5 Preimage Attacks for the Full MD2 Hash

The objective of a preimage attack is, for a given challenge h, to find a message
m such that hashing m with MD2 gives h:

MD2(m) = h

Classical techniques exist to turn attacks against the compression function
into attacks against the full hash. However they apply to classical iterated hash
functions, like those based on the Merkle-Damg̊ard paradigm. The use of an
additional checksum in MD2 make things slightly more complicated.

5.1 Attacking MD2 Without the Checksum

If we omit the checksum, it is straightforward to apply the previous attacks
directly to MD2. For instance, the attack described in Section 4.2 is immediately
useful. Indeed, for a given (Hi, Hi+1), we are able to find Mi such that:

Hi+1 = F (Hi, Mi)

faster than exhaustive search. If we take Hi = 0 (i.e. the IV of the MD2 spec-
ifications) and Hi+1 = h (the target value), the message of 1 block m = Mi

basically solves the preimage problem (some extra work might be necessary to
ensure the padding is correct). Anyway, this clearly no longer works when the
checksum block is appended at the end.

Preimage attacks against the full hash can also be found based on a pseudo-
preimage attack (like the one described in Section 4.4, with complexity 273). For
instance, a general meet-in-the-middle technique is:

– Pick 2100 random values of the first block of message M1, and store all
intermediate hashes H1 in a table T1.

– Apply 228 times the pseudo-preimage attack and, for each solution (H2, M2),
store the intermediate hash H2 in a table T2.

– Search for a collision between some H1 in table T1 and some H2 in table T2.
The corresponding message m = (M1, M2) is a solution.

Since 2100×228 = 2128, a collision is indeed expected. Hence this attack builds
a solution m of length two blocks and has complexity of the order of 2101, which
is faster than exhaustive search. However when the checksum is used, this input
message is likely to be invalid. Indeed, we need a collision on the intermediate
hash values and the intermediate checksums simultaneously.

226 F. Muller

5.2 A Chaining Attack

The principle of chaining attacks is to iterate an attack against the compression
function, while chaining the intermediate variables used in each attack. Here, we
first choose at random a sequence of intermediate hashes of the form:

0 = H0, H1, . . . , H127, H128 = h

For each pair (Hi, Hi+1), we apply the attack of Section 4.2 to find all solu-
tions of:

Hi+1 = F (Hi, Mi)

A constraint we add is that at least two solutions Mi and M ′
i must be found,

for all i. Assuming F is a random function, this should happen with a reasonable
probability (called p). It can roughly be approximated by 1 minus the probability
to have exactly 0 or 1 solution:

p � 1 − (1 − 2−128)2
128−1 − (1 − 2−128)2

128

� 1 − 2 e−1

� 0.264

If there are less than 2 solutions, we throw away Hi+1 and pick another value.
In average, we need to apply 128 × p−1 � 29 times the attack of Section 4.2 to
find an appropriate pair of solutions (Mi, M

′
i) for all i.

Then, we have 2128 possible messages that are solution of the preimage prob-
lem for MD2 with challenge h (there are 2 possible blocks of message for all i).
Among them, one of the message is likely to satisfy the checksum constraint, i.e.
its last block should be the checksum of the 127 previous blocks. To find this
message, a simple meet-in-the-middle attack applies:

– Compute the 264 intermediate checksums IC64 by testing the two possible
blocks of message at all positions i, 0 ≤ i ≤ 63.

– Compute the 264 intermediate checksums IC64 by inverting the checksum
function G, starting for both values M127 and M ′

127, and for all blocks of
message at positions i, 64 ≤ i < 127.

– Search for a collision between these 2 lists of 264 elements

This technique is similar to the one used in [6]. The resulting attack against
the full hash is only marginally slower than the attack against the compression
function, since the deterioration corresponds to a factor 29. Therefore it will
cost about 295 × 29 = 2104 applications of the compression function. In addi-
tion, a memory of 271 bits is required (or 238 using the improved algorithm of
Appendix A). This is much faster than a naive exhaustive search.

6 Second Preimage Attacks

A second preimage attack consists, on the challenge of a message m, to provide
a second message m′ which gives the same MD2 hash:

MD2(m) = MD2(m′)

The MD2 Hash Function Is Not One-Way 227

The resistance of MD2 against this type of attack is critical for the security
of existing certificates. Indeed a certificate generally consists in a data part m
and a signature of the data part. To compute this signature, a hash of the data
part is generally computed. If an attacker is able to replace m with an other
data part m′ mapping to the same hash, he is able to forge a new certificate.

If we omit the checksum blocks for MD2, it is straightforward to find a second
preimage, based on the previous attacks. For any of the intermediate steps

Hi+1 = F (Hi, Mi)

in the original message m, we apply the attack described in Section 4.2. With
probability p � 0.26, another message block M ′

i , mapping Hi to Hi+1 is found.
Then we can simply substitute M ′

i to Mi to forge a new certificate.
Unfortunately, when the checksum is used, this attack no longer works be-

cause the checksum is altered by the previous substitution. Therefore the last
block of message is no longer valid.

We could not find a dedicated second preimage attack against the full MD2,
including the checksum bytes. An attack is still possible by applying a preimage
attack on h = MD2(m). The result m′ is a preimage of h and is very likely to
be different from m. Unfortunately m′ is very constrained:

– its length is at least 128 blocks (including the checksum block), so the mes-
sage m′ is of length > 2 Kbytes. Some variants of the attack can increase
this message length but it is not possible to reduce it. This is slightly larger
than a typical certificate, however a trade-off between the size of the forged
certificate and the probability of success could also be envisaged.

– at least 128 blocks in the forged certificates are random and therefore cannot
be chosen by the attacker.

All together, it seems difficult for the moment to forge new certificates that
respect the required format. However we are not far from it and we think it
is an interesting topic for further research. We encourage a deeper analysis of
the MD2 hash function whose security, especially regarding (second) preimage
attacks is important for many existing certificates.

7 Conclusion

In this paper, we described preimage and pseudo-preimage attacks against the
compression function of MD2, the best of which has complexity 273. The re-
sulting attack against the full hash (including the checksum) costs about 2104

applications of the compression function. As a consequence, MD2 can no longer
be considered a secure one-way hash function.

These results are also very interesting from a theoretical point of view, be-
cause preimage attacks against hash functions are quite rare. Most of the research
in recent years has focused on finding collisions for hash functions.

228 F. Muller

References

1. D. Balenson. RFC 1423 - Privacy Enhancement for Internet Electronic Mail: Part
III: Algorithms, Modes, and Identifiers, february 1993. RSA Laboratories.

2. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lectures Notes in
Computer Science, pages 56–71. Springer, 1998.

3. H. Dobbertin. Cryptanalysis of MD4. In D. Gollmann, editor, Fast Software
Encryption – 1996, volume 1039 of Lectures Notes in Computer Science, pages
53–69. Springer, 1996.

4. H. Dobbertin. The Status of MD5 after a Recent Attack. CryptoBytes, 2(2):1–6,
1996.

5. H. Dobbertin. The First Two Rounds of MD4 are Not One-Way. In S. Vaude-
nay, editor, Fast Software Encryption – 1998, volume 1372 of Lectures Notes in
Computer Science, pages 284–292. Springer, 1998.

6. A. Joux. Multicollisions in iterated hash functions. Application to cascaded con-
structions. In Advances in Cryptology – CRYPTO’04, To appear.

7. B. Kaliski. RFC 1319 - The MD2 Message-Digest Algorithm, april 1992. RSA
Laboratories.

8. MD5CRK, a new distributed computing project. See http://www.md5crk.com/.
9. A. Menezes, P. van 0orschot, and S. Vanstone. Handbook of Applied Cryptography.

CRC Press, 1996.
10. B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,

Katholieke Universiteit Leuven, 1993.
11. R. Rivest. The MD4 Message Digest Algorithm. In A. Menezes and S. Vanstone,

editors, Advances in Cryptology – CRYPTO’90, volume 537 of Lectures Notes in
Computer Science, pages 303–311. Springer, 1991.

12. R. Rivest. RFC 1321 - The MD5 Message-Digest Algorithm, april 1992. RSA
Laboratories.

13. P. Rogaway and T. Shrimpton. Cryptographic Hash Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance. In B. Roy and W. Meier, editors, Fast Software
Encryption – 2004, pages 349–366, 2004. Pre-proceedings Version.

14. N. Rogier and P. Chauvaud. MD2 Is not Secure without the Checksum Byte.
Designs, Codes and Cryptography, 12(3):245–251, november 1997. An early version
of this paper was presented at the 2nd SAC Workshop in 1995.

15. B. Van Rompay, A. Biryukov, and B. Preneel. Cryptanalysis of 3-Pass HAVAL.
In C. Laih, editor, Advances in Cryptology – ASIACRYPT’03, volume 2894 of
Lectures Notes in Computer Science, pages 228–245. Springer, 2003.

16. RSA Laboratories. PKCS #1 v1.5 : RSA Encryption Standard, 1993. Available
at http://www.rsalabs.com/pkcs/pkcs-1.

17. RSA Laboratories. PKCS #1 v2.1 : RSA Encryption Standard, 2002. Available
at http://www.rsalabs.com/pkcs/pkcs-1.

18. P. van Oorschot and M. Wiener. Parallel Collision Search with Cryptanalytic
Applications. Journal of Cryptology, 12(1):1–28, 1999.

19. D. Wagner. A Generalized Birthday Problem. In M. Yung, editor, Advances in
Cryptology – Crypto’02, volume 2442 of Lectures Notes in Computer Science, pages
288–303. Springer, 2002. Extended Abstract.

20. A. Wiemers. The Full Cost of Cryptanalytic Attacks. Journal of Cryptology,
17(2):105–124, March 2004.

The MD2 Hash Function Is Not One-Way 229

A A Memory-Efficient Attack

The attack described in Section 4.2 is much faster than an exhaustive search,
however the large memory requirements make it highly unpractical and prob-
ably contributes to under-estimate the “real” complexity. Here, we propose an
improved attack regarding the data complexity.

The general idea of the attack of Section 4.2 is to split the target Mi in two
halves (m0, . . . , m7) and (m8, . . . , m15) of 64 bits each. The improved attack
consists in splitting Mi in 4 parts instead of 2 using the following algorithm:

– Guess the 6 bytes {(B1
7 , B2

7), (B1
15, B

2
15), (C

1
7 , C2

7)}
• guess the 4 bytes m0, . . . , m3

∗ compute and store in table T1 the bytes B1
3 , B2

3 , C1
3 , C2

3
• guess the 4 bytes m4, . . . , m7

∗ compute and store in table T2 the bytes B1
3 , B2

3 , C1
3 , C2

3
• guess the 4 bytes m8, . . . , m11

∗ compute and store in table T3 the bytes B1
11, B

2
11, C

1
11, C

2
11

• guess the 4 bytes m12, . . . , m15
∗ compute and store in table T4 the bytes B1

11, B
2
11, C

1
11, C

2
11

• Compute the joint product T = T1 �� T2 of size 232. It contains candidate
values for (m0, . . . , m7).

• Compute the joint product T ′ = T3 �� T4 of size 232. It contains candi-
date values for (m8, . . . , m15).

• Guess 2 additional bytes B3
15 and B4

15
∗ For each element of T compute the 4 bytes B3

7 , B4
7 , C3

7 , C4
7

∗ Compute similarly these 4 bytes for each element of T ′

∗ Search for a collision in the two resulting lists.
• This results in a list of 232 candidates for (m0, . . . , m15).

This slightly more complex attack has complexity of the order of

28 × 248 × 216 × 232 � 2104

instructions, like previously. However the largest tables we handle have 232 en-
tries of 32 bits. The philosophy of this improved attack is described in Figure 9.

Fig. 9. The general philosophy of the improved attack

	Introduction
	The MD2 Hash Function
	Generalities
	Description of MD2

	Collision Attacks Against MD2
	Preimage Attacks Against MD2 Compression Function
	Three Scenarios
	Attacking Scenario 1
	Attacking Scenario 2
	Attacking Scenario 3

	Preimage Attacks for the Full MD2 Hash
	Attacking MD2 Without the Checksum
	A Chaining Attack

	Second Preimage Attacks
	Conclusion
	A Memory-Efficient Attack

