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Abstract Aim of this paper is to illustrate how some recent techniques developed within the
framework of spin glasses do work on simpler model, focusing on the method and not on
the analyzed system. To fulfill our will the candidate model turns out to be the paradigmatic
mean field Ising model. The model is introduced and investigated with the interpolation
techniques. We show the existence of the thermodynamic limit, bounds for the free energy
density, the explicit expression for the free energy with its suitable expansion via the or-
der parameter, the self-consistency relation, the phase transition, the critical behavior and
the self-averaging properties. At the end a formulation of a Parisi-like theory is tried and
discussed.

Keywords Cavity field · Spin glasses · Interpolating techniques

1 Introduction

In the past twenty years the statistical mechanics of disordered systems earned an always
increasing weight as a powerful framework by which analyze the world of complex networks
[1, 5, 15, 37, 40].

The “harmonic oscillator” of this field of research is the Sherrington-Kirkpatrick model
[38] (SK), on which several schemes have been tested along these years [21]; the first
method developed has been the replica trick [14] which, in a nutshell consists in expand-
ing the logarithm of the partition function Z(β) in a power series of such a function via
lnZ(β) = limn→0(Z(β)n − 1)/n, allowing, in some way, its analytic continuation to the
n → 0 limit [38]. Such analytic continuation is not at all simple and many efforts have been
necessary to examine this mathematical problem in the light of theoretical physics tools
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such as symmetries and their breaking [42]. In this scenario a solution has been proposed by
Parisi (and recently proved by Guerra [26] and Talagrand [44]) with the well known Replica
Symmetry Breaking scheme, both solving the SK-model by showing a peculiar “picture” of
the organization of the underlaying microstructure of this complex system [39], as well as
conferring a key role to the replica-trick method.

However the replica trick still pays the price of requiring an “a priori” ansatz at some
stage of its work and several mathematical problems concerning its foundations and validity
are still open [43].

As a consequence, in the past ten years, another method, called the cavity method [28],
has been largely improved, mainly thanks to its ability to work without ansatz and
to its natural predisposition to be implemented into the interpolating technique scheme
[6, 8, 26, 32, 33]. Although this method may be not fully empowered to solve the whole
SK-problem without working in synergy with the replica framework, it proved a valid alter-
native to address, at least, a number of questions [10, 20, 34].

The aim of this paper is to show some of the results attainable within the cavity method
by applying it to a simple model, the mean field Ising model [1, 42], which can be solved
with standard techniques without requiring nor the replica trick neither the cavity method
itself. Consequently attention should be payed on the method, which, once applied on a
paradigmatic simplest model, should be clearer to the non-expert reader than when applied
on complex systems as the SK.

The paper is structured as follows: Hereafter, still in the first section, the model is in-
troduced. In Sect. 2 the interpolating technique for obtaining the thermodynamic limit and
the bounds in the size of the system are discussed. In Sect. 3 the interpolating technique
to obtain an explicit expression for the free energy and consequently the phase diagram are
studied. Section 4 is dedicated to the phase transition: the lacking of commutativity of the in-
finite volume limit against a vanishing perturbing field, the scaling of the order parameter at
criticality and the self-averaging relations are discussed. Section 5 explains a trial technique
which aims to reproduce the Parisi scheme within this simpler framework.

1.1 Definition of the Model and Thermodynamics

The Hamiltonian of the Ising model is defined on N spin configurations σ : i → σi = ±1,
labeled by i = 1, . . . ,N , as [1, 42]

HN(σ) = − 1

N

∑

1≤i<j≤N

σiσj . (1)

We assume throughout the paper that, without explicit indications, there is no external field.
The thermodynamic of the model is carried by the free energy density fN(β) = FN(β)/N ,
which is related to the Hamiltonian via

e−βFN (β) = ZN(β) =
∑

σ

e
β
N

∑
1≤i<j≤N σiσj , (2)

ZN(β) being the partition function. For the sake of convenience we will not deal with fN(β)

but with the thermodynamic pressure α(β) defined via

α(β) = lim
N→∞

αN(β) = lim
N→∞

−βfN(β) = lim
N→∞

1

N
lnZN(β). (3)
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A key role will be played by the magnetization m, its fluctuations and its moments, and so
let us introduce it as

mN = 1

N

∑

1≤i≤N

σi, 〈mN 〉 =
∑

σ mNe−βHN (σ)

∑
σ e−βHN (σ)

. (4)

Let us consider also its rescaled fluctuation by introducing the following random variable

ξN(σ ) = 1√
N

∑

i

σi (5)

by which the magnetization can be expressed as 〈mN 〉 = 〈ξN 〉N−1/2; further, let us define
γ (β) = 1/(1 − β) and state, without proof [19], that in the interval 0 < β < βc = 1, in the
thermodynamic limit the distribution of ξ(σ ) = limN→∞ ξN(σ ) is a centered Gaussian with
variance equal to γ (β). The boundary at which the variance of the distribution diverges (i.e.
β = βc = 1) defines the onset of the broken ergodicity phase.

2 Thermodynamic Limit

2.1 Bounding the Free Energy in the System Size

The first step when dealing with the statistical mechanics package is, once defined the rele-
vant observable, checking that the model is well defined (i.e. it admits a good but nontrivial
thermodynamic limit). As this task may be not simple (as for the SK model or worst for the
Hopfield model of neural network1) working out its supN may help as a first pre-step. This
is usually a simpler task [22].

2.1.1 First Estimate of the Free Energy

Dealing with the simple Ising model it is possible to obtain a bound for the free energy
simply by aligning all the spins among themselves, however this procedure is not allowed in
models with competitive interactions (much more interesting and mathematically challeng-
ing); let us show how it works:

ZN(β) ≤
∑

σ

eβ/Ne
N(N−1)

2 ≤ 2Ne
β(N−1)

2 , (6)

1

N
lnZN(β) ≤ ln 2 + β

2

(
1 − 1

N

)
⇒ α(β) ≤ ln 2 + β

2
. (7)

Following this approach the next step is trying and bound, in the volume size, the free energy
from above and from below. For the Ising model this can be obtained as follows.

1a key ingredient for the existence of the thermodynamic limit is the subadditivity or to the superadditivity
of the free energy with respect the system size. The Hopfield model shows, varying the storaged memory,
both the features. As a consequence there is a region of unknown width in which the model free energy is nor
subadditive neither superadditive.
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2.1.2 Upper Bound of the Free Energy

While for disordered systems bounding the free energy in the volume limit is not an easy
task, for a model with no disorder such bounds can be easily obtained [17, 31]. Consider the
trivial estimate of the magnetization m, valid for all trial fixed magnetization M

m2 ≥ 2mM − M2 (8)

and plug it into the partition function to get (neglecting terms vanishing in the thermody-
namic limit)

ZN(β) =
∑

σ

e
β
N

∑
1<i<j<N σiσj =

∑

σ

e
βNm2

2 ≥
∑

σ

eβmMNe− 1
2 βM2N.

Now this sum is easy to compute, since the magnetization appears linearly and therefore
the sum factorizes in each spin. Physically speaking, we replaced the two-body interaction,
which is difficult to deal with, with a one-body interaction. Then we try to compensate this
by modulating the field acting on each spin by means of a trial fixed magnetization and a
correction term quadratic in this trial magnetization M .

Remark 1 A recent method [4, 7, 24] introduced by Aizenman and coworkers for the spin-
glass theory is a powerful extension of this idea in which the key ingredient is letting interact
the system one is dealing with, with an external structure such that, sending the size of the
this structure to infinity, thanks to the mean field nature of the interaction, the system no
longer interacts with itself, making the mathematical control simpler because the two-body
term becomes suppressed.

The result is the following bound

1

N
lnZN(β) ≥ sup

M

{
ln 2 + ln cosh(βM) − 1

2
βM2

}
(9)

that holds for any size of the system N . The result is quite typical, the term ln 2 is there
because the sum over a spin of a Boltzmann factor linear in the spins is twice the hyperbolic
cosine, which appears as second term (that essentially gives the entropy). The third term is
the internal energy (multiplied by −β).

2.1.3 Lower Bound of the Free Energy

In order to get the opposite bound to (9), let us notice that the magnetization m can take
only 2N + 1 distinct values. We can therefore split the partition function into sums over
configurations with constant magnetization in the following way [31]

ZN(β) =
∑

σ

∑

M

δmMe
1
2 βNm2

(10)

using the trivial identity
∑

M

δmM = 1. (11)
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Now inside the sum m = M , which means also

m2 = 2mM − M2. (12)

Plugging the last equality into ZN(β) and using the trivial inequality

δmM ≤ 1

yields

ZN(β) ≤
∑

M

∑

σ

eβNmMe− 1
2 βNM2

. (13)

Now one can carry out the sum over σ bounding the remaining sum over M by 2N + 1
times its largest term gives then

ZN(β) ≤
∑

M

sup
M

{
ln 2 + ln cosh(βM) − 1

2
βM2

}
(14)

from which

1

N
lnZN(β) ≤ ln

2N + 1

N
+ sup

M

{
ln 2 + ln cosh(βM) − 1

2
βM2

}
. (15)

This gives, together with (9), the exact value of free energy per site at least in the thermody-
namic limit.

2.2 Bound by Interpolating the Size of the System

A breakthrough in showing the existence of the thermodynamic limit for mean field disor-
dered systems has been obtained recently within the Guerra-Toninelli interpolation scheme
[32, 35]. Previously several beautiful model-specific attempts were made [11–13], but this
interpolating scheme showed an immediate wide range of applications and its beauty is its
simplicity. We are going to introduce it applied to the Ising-model.

Divide the N spin system into two subsystems of N1 and N2 spins each, with N1 +
N2 = N . Denoting by m1(σ ), m2(σ ) the magnetization corresponding to the subsystems,
i.e.

m1(σ ) = 1

N1

N1∑

i=1

σi, m2(σ ) = 1

N2

N∑

i=N1+1

σi,

one sees that m(σ) is a convex linear combination of m1(σ ) and m2(σ ):

m(σ) = N1

N
m1(σ ) + N2

N
m2(σ ). (16)

Since the function x → x2 is convex, one has

ZN(β) ≤
∑

{σ }
exp(β(N1m

2
1(σ ) + N2m

2
2(σ ))) = ZN1(β)ZN2(β)

and

NfN(β) = − 1

β
lnZN(β) ≥ N1fN1(β) + N2fN2(β). (17)
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Theorem 1 The infinite volume limit for αN(β) does exist and equals its sup.

lim
N→∞

αN(β) = sup
N

αN(β) ≡ α(β). (18)

Proof In a nutshell the two key ingredients are the subadditivity (NfN ≥ N1fN1 + N2fN2)

and the property of the free energy density of being limited from above uniformly in N

which is established elementary by considering (9, 15). �

Unfortunately, the very simple approach we illustrated above as it is, does not apply to the
SK model, where the randomness of the couplings prevents us from exploiting subadditivity
directly on the Hamiltonian HN . However, the related strategy, which allows in some sense
an extension to mean field spin glass models is to interpolate between the original systems
of N spins, and two non-interacting systems, containing N1 and N2 spins, respectively,
and to compare the corresponding free energies. To this purpose, consider the interpolating
parameter 0 ≤ t ≤ 1, and the auxiliary partition function

ZN(t) =
∑

{σ }
exp(β(Ntm2(σ ) + N1(1 − t)m2

1(σ ) + N2(1 − t)m2
2(σ ))). (19)

Of course, for the boundary values t = 0,1 one has

− 1

Nβ
lnZN(1) = fN(β), (20)

− 1

Nβ
lnZN(0) = N1

N
fN1(β) + N2

N
fN2(β) (21)

and, taking the derivative with respect to t ,

− d

dt

1

Nβ
lnZN(t) = −

〈
m2(σ ) − N1

N
m2

1(σ ) − N2

N
m2

2(σ )

〉

t

≥ 0, (22)

where 〈 〉t denotes the Boltzmann-Gibbs thermal average with the extended weight encoded
in the t -dependent partition function (19). Therefore, integrating in t between 0 and 1, and
recalling the boundary conditions (20), (21), one finds again the superadditivity property
(17).

The interpolation method, which may look unnecessarily complicated for the Curie-
Weiss model, is actually the only one working in the case of mean field spin glass systems.

3 The Structure of the Free Energy

In this chapter we adapt the work [6] (in which a novel interpolating cavity field technique
was developed for the SK model) to the mean field Ising model.

The main idea of the cavity field method is to look for an explicit expression of αN(β) =
−βfN(β) upon increasing the size of the system from N particles (the cavity) to N + 1 so
that, in the limit of N that goes to infinity [25, 27]

lim
N→∞

(−βFN+1(β)) − (−βFN(β)) = −βf (β) (23)

because the existence of the thermodynamic limit (Sect. 2.2) implies only vanishing correc-
tion of the free energy density.
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Note Strictly speaking the limit does exist surely just in the Cesàro sense [23] (Cesàro limits
are employed when analyzing sequences which can oscillate and do not converge, i.e. the
Liebnitz series converges to zero in the Cesàro sense [36]) but this level of mathematical
rigor will not be presented along the paper.

3.1 Interpolating Cavity Field

As we will see, the interpolating technique can be very naturally implemented in the cavity
method; let us consider the partition function of a system made by N + 1 spins:

ZN+1(β) =
∑

σ

e−βHN+1(σ )

=
∑

σN+1=±1

∑

σ

e
β

N+1
∑

1≤i<j≤N σiσj e
β

N+1
∑

1≤i≤N σiσN+1 . (24)

With the gauge transformation σi → σiσN+1, which, of course, is a symmetry of the Hamil-
tonian, we get

ZN+1(β) = 2ZN(β∗)ω̃(e
β

N+1
∑

1≤i≤N σi ) (25)

where ω̃ is the Boltzmann state at the inverse temperature β∗ = β N
N+1 (note that in the

thermodynamic limit the shifted temperature converges to the real one β∗ → β). Let us
reverse the temperature shift and apply the logarithm to both the sides of (25) to obtain

lnZN+1

(
β

N + 1

N

)
= ln 2 + lnZN(β) + lnωN(e

β
N

∑
1≤i≤N σi ). (26)

Equation (26) tell us that via the third term of its r.h.s. we can bridge an Ising system with
N particles at an inverse temperature β to an Ising system with N + 1 particles at a shifted
inverse temperature β∗ = β(N + 1)/N . Focusing on such a term let us make the following
definitions.

Definition 1 We define an extended partition function ZN(β, t) as

ZN(β, t) =
∑

σ

e−βHN (σ)e
t
N

∑
1≤i≤N σi . (27)

Note that the above partition function, at t = β , turns out to be, via the global gauge
symmetry σi → σiσN+1, a partition function for a system of N + 1 spins at a shifted tem-
perature β∗ apart a constant term. On the same line

Definition 2 We define the generalized Boltzmann state 〈 〉t as

〈F(σ)〉t = 〈F(σ)e
t
N

∑
1≤i≤N σi 〉

〈e t
N

∑
1≤i≤N σi 〉 , (28)

F(σ) being a generic function of the spins.
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Definition 3 Related to the Boltzmann state 〈 〉 we define the cavity function Ψ (β, t) =
limN→∞ ΨN(β, t) as

Ψ (β, t) = lim
N→∞

ΨN(β, t) = lim
N→∞

ln〈e t
N

∑
1≤i≤N σi 〉. (29)

It will appear clear, while reading the paper, when we deal with the finite-N cavity func-
tion and when with its thermodynamic limit.

Definition 4 We define respectively as fillable and filled monomials the odd and even mo-
menta of the magnetization weighted by the extended Boltzmann measure such that

– 〈m2n+1
N 〉t with n ∈ N is fillable

– 〈m2n
N 〉t with n ∈ N is filled

Proposition 1 The cavity function Ψ (β, t) is the generating function of the centered mo-
menta of the magnetization, examples of which are

∂ΨN(β, t)

∂t
= 〈mN 〉t , (30)

∂2ΨN(β, t)

∂t2
= 〈m2

N 〉t − 〈mN 〉2
t . (31)

Proof The proof is straightforward and can be obtained by simple derivation:

∂ΨN(β, t)

∂t
= ∂t lnωN(e

t
N

∑
1≤i≤N σi ) = ∂t ln

∑

σ

e−βHN (σ)e
t
N

∑
i σi

=
∑

σ
1
N

∑
1≤i≤N σie

−βHN (σ)e
t
N

∑N
i σi

∑
σ e−βHN (σ)e

t
N

∑N
i σi

= 〈mN 〉t .

The second derivative is worked out exactly as the first. �

Remark 2 We stress that in the disordered counterpart (i.e. the SK model) a proper interpo-
lating cavity function is defined by introducing

√
t instead of t . This reflects the property of

the Gaussian coupling of adding another extra derivation due to Wick theorem. It is worth
nothing that again the Gaussian coupling makes necessary the normalization factor

√
N in-

stead of N in front of the Hamiltonian such that the adaptation from Ising t/N to SK
√

t/N

is the same for t and N .

3.2 The Free Energy via the Interpolating Cavity Method

The fact that the free energy is expressed as the difference between an entropy term coming
from a one-body interaction and the internal energy times β is typical of thermodynamics.
We found this feature when looking at the bounds (9), (15); now, stating the next funda-
mental theorem, we find the same structure via this interpolating version of the cavity field
method (and again we will find it in the next section when dealing with the Parisi-like the-
ory).
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Theorem 2 The following relation holds in the thermodynamic limit:

α(β) = ln 2 + Ψ (β, t = β) − β
∂α(β)

∂β
. (32)

Proof Let us consider again the partition function of a system made up by (N + 1) spins
and point out with β the true temperature and with β∗ = β(1 + N−1) the shifted one:

ZN+1(β) =
∑

σN+1

e
β√
N+1

�1≤i<j≤N+1σiσj

= 2
∑

σN

e
β∗√
N

�1≤i<j≤N σiσj
e

β√
N+1

∑
1≤i≤N σi

. (33)

Now we multiply and divide by ZN(β∗) the right hand side of (33), then we take the log-
arithm on both sides and subtract from every member the quantity lnZN+1(β

∗); expanding
lnZN+1(β) around β = β∗ as

lnZN+1(β) − lnZN+1(β
∗) = (β − β∗)∂β∗ lnZN+1(β

∗) + O((β − β∗)2) (34)

with

β − β∗ = β∗
(√

N + 1

N
− 1

)
= β∗

2N
+ O(N−1) (35)

we substitute β with β∗ inside the state ω and neglecting corrections O(N−1) we have:

lnZN+1(β
∗) + (β − β∗)∂β∗ lnZN+1(β

∗)

= ln 2 + lnZN(β∗) + lnωN,β∗(e
β√
N+1

∑
1<i<N σi

) + O(N−1), (36)

where, with the symbol ωN,β∗ we stressed that the temperature inside the Boltzmann average
is the shifted one. Using the variable α(β∗) and renaming β∗ → β in the thermodynamic
limit we get:

α(β) + β
dα(β)

dβ
= ln 2 + Ψ (β, t = β) (37)

and this is the thesis of the theorem. �

3.3 Saturability and Gauge-Invariance

The next step is to motivate why we introduced the whole machinery: The first reason we
are going to show are peculiar properties of both the filled and the fillable monomials (see
Definition 4). In the thermodynamic limit, the first class do not depend on the perturbation
induced by the cavity field and, at t = β , the latter (via the σi → σiσN+1 symmetry) is
projected into the first class. The second reason is that the free energy can be expanded via
these monomials, so a good control of them means a good knowledge of the thermodynamic
of the system.

Theorem 3 In the N → ∞ limit the averages 〈m2n
N 〉 of the filled monomials are t -

independent for almost all values of β , such that

lim
N→∞

∂t 〈m2n
N 〉t = 0.
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Proof Without loss of generality we will prove the theorem in the simplest case (for 〈m2
N 〉);

it will appear immediately clear how to generalize the proof to higher order monomials. Let
us write the cavity function as

ΨN(β, t) = lnZN(β, t) − lnZN(β) (38)

and derive it with respect to β:

∂ΨN(β, t)

∂β
= N

2
(〈m2

N 〉 − 〈m2
N 〉t ). (39)

We can introduce an auxiliary function ΥN(β, t) = (〈m2
N 〉 − 〈m2

N 〉t ) such that:

ΥN(β, t) = 2

N
∂βΨN(β, t) (40)

and integrate it in a generic interval [β1, β2]:
∫ β2

β1

ΥN(β, t)dβ2 = 4

N
[ΨN(β2, t) − ΨN(β1, t)]. (41)

Now we must control ΨN(β, t) in the N → ∞ limit; the simplest way is to look at its
t -streaming ∂tΨN(β, t) = 〈mN 〉t such the N -dependence is just taken into account by the
Boltzmann factor inside the averages and, as 〈mN 〉t ∈ [−1,1], in the thermodynamic limit
Ψ (β, t) remains bounded and the second member of (41) goes to zero such that, ∀ [β1,β2],
ΥN(β, t) converges to zero implying 〈m2

N 〉t → 〈m2
N 〉. �

Remark 3 A consequence of this property, in the spin glass theory, turns out to be the sto-
chastic stability of a large class of overlap polynomials [16, 41].

The next theorem is crucial for this section, so, for the sake of simplicity, we split it in two
part: at first we prove the following lemma than it will make us able to proof the core of the
theorem itself which will be showed immediately after. For a clearer statement of the lemma
we take the freedom of pasting the volume dependence of the averages as a subscript close
to the perturbing tuning parameter t .

Lemma 1 Let 〈 〉N and 〈 〉N,t be the states defined, on a system of N spins, respectively by
the canonical partition function ZN(β) and by the extended one ZN(β, t); if we consider the
ensemble of indexes {i1, . . . , ir} with r ∈ [1,N ], then for t = β , where the two measures be-
come comparable, thanks to the global gauge symmetry (i.e. the substitution σi → σiσN+1)
the following relation holds

ωN,t=β(σi1 · · ·σir ) = ωN+1(σi1 · · ·σir σ
r
N+1) + O

(
1

N

)
(42)

where r is an exponent, so if r is even σ r
N+1 = 1, while if it is odd σ r

N+1 = σN+1.

Proof Let us write ωN,t for t = β , defining for the sake of simplicity π = σi1 · · ·σir :

ωN,t=β(π) =
[∑

σ

1

ZN(β)
e

β√
N

∑
1≤i<j≤N σiσj + β√

N

∑
i σi

π

]
. (43)
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Introducing first a sum over σN+1 at the numerator and at the denominator, (which is the
same as multiply and divide for 2N because there is still no dependence to σN+1) and mak-
ing the transformation σi → σiσN+1, the variable σN+1 appears at the numerator and it is
possible to build the status at N + 1 particles with the little temperature shift which vanishes
in the thermodynamic limit:

ωN,t=β(π) = ωN+1(πσ r
N+1) + O

(
1

N

)
. (44)

�

Using this lemma we are able to proof the following

Theorem 4 Let 〈M〉t be a fillable monomial of the magnetization, (this means that 〈mM〉
is filled). We have:

lim
N→∞

lim
t→β

〈M〉t = 〈mM〉. (45)

Proof The proof is a straightforward application of Lemma 1. �

3.4 Self-Consistency of the Order Parameter via its Streaming

Usually it is much simpler to evaluate the internal energy than the free energy because
there is no contribution by the entropy, which, especially in complex system, can make
things much harder; consequently if we learn how to extrapolate information from the cavity
function, which is deeply related to the entropy, we can obtain information for the free
energy. To fulfill this task we state the following theorem.

Theorem 5 When a generic well defined function of the spins F(σ) is considered, the fol-
lowing streaming equation holds:

∂〈FN(σ)〉t
∂t

= 〈FN(σ)mN 〉t − 〈FN(σ)〉t 〈mN 〉t . (46)

Proof The proof is straightforward and can be obtained by simple derivation:

∂〈FN(σ)〉t
∂t

= ∂t

∑
σ FN(σ )e−βHN (σ)e

t
N

∑
1<i<N σi

∑
σ e−βHN (σ)e

t
N

∑
1<i<N σi

=
(∑

σ FN(σ ) 1
N

∑
1<i<N σie

−βHN (σ)e
t
N

∑
1<i<N σi

∑
σ e−βHN (σ)

)

−
(∑

σ FN(σ )e−βHN (σ)e
t
N

∑
1<i<N σi

∑
σ e−βHN (σ)

)

×
(∑

σ
1
N

∑
1<i<N σie

−βHN (σ)e
t
N

∑
1<i<N σi

∑
σ e−βHN (σ)

)

= 〈FN(σ)mN 〉t − 〈FN(σ)〉t 〈mN 〉t . �
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We now want to expand the cavity function via filled monomials of the magnetization by
applying the streaming equation (46) directly to its derivative, thanks to (30). It is immediate
to find that the streaming of 〈mN 〉t obeys the following differential equation

∂t 〈mN 〉t = 〈m2
N 〉t − 〈mN 〉2

t (47)

which, thanks to Theorem 4, becomes trivial in the thermodynamic limit. In fact, calling
m = limN→∞ mN and skipping the subscript t on limN→∞〈m2

N 〉t = 〈m2〉 we obtain

1

〈m2〉∂t 〈m〉t = 1 −
( 〈m〉2

t

〈m2〉
)

which is easily solved by splitting the variables and the solution is

〈m〉t =
√

〈m2〉 tanh(
√

〈m2〉t). (48)

Once evaluated (48) by using the gauge at t = β (i.e. 〈m〉t=β = 〈m2〉) we get

√
〈m2〉 = tanh(β

√
〈m2〉) (49)

which is the well known self-consistency equation for the Ising-model.

3.5 The Free Energy Expansion

From (48) it is possible to obtain an explicit expression for the cavity function to plug into
(32) solving for the free energy. In fact we have

lim
N→∞

ΨN(β, t) = lim
N→∞

∫ t

0
dt ′〈mN 〉t ′ =

∫ t

0
dt ′

√
〈m2〉 tanh(

√
〈m2〉t ′) (50)

from which is immediate to solve for Ψ (β, t):

Ψ (β, t) = ln cosh (
√

〈m2〉t). (51)

The last term still missing to fulfill the expression of the free energy via (32), which is
immediate to obtain, is the internal energy.

Proposition 2 The internal energy of the Ising model is

β
dαN(β)

dβ
= β

2
〈m2

N 〉. (52)

Proof The proof is straightforward and can be obtained by direct calculation on the same
line of the previous proofs. �

Pasting all together we have

Proposition 3 The free energy of the Ising model is

α(β) = ln 2 + ln cosh(β
√

〈m2〉) − β

2
(
√

〈m2〉)2. (53)

Proof The proof proceeds by making explicit (32). �
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4 The Phase Transition

4.1 Breaking Commutativity of Infinite Volume Against Vanishing Perturbation Limits

The motivation of this section can be found, always in the context of spin glasses in [9].
Let us move one step backward and consider (53) at finite N . The receipt to ob-

tain the expression of the free energy via the filled monomial is to perform at first
the N → ∞ limit to saturate the fillable term and then the t → β limit to free the
measure from the perturbation (making it works as a cavity field). So in other words
α(β) = limt→β limN→∞ αN(β, t). But what if we exchange the limits such that α∗(β) =
limN→∞ limt→β αN(β, t)?

Simply, thanks to the gauge invariance limN→∞ limt→β〈mN 〉 = 0 implying Ψ (β, t) = 0,
defining the high temperature expression for α∗(β), so

α(β) = lim
t→β

lim
N→∞

αN(β, t) �= lim
N→∞

lim
t→β

αN(β, t) = α∗(β). (54)

Alternatively one can solve (47) for the variable 〈ξN(σ )〉t by sending first N → ∞ and
check that these fluctuations scale accordingly to the paragraph after (5).

Furthermore there is a range in temperature (the paramagnetic phase) in which α(β) =
α∗(β) such that the two limits limt→β limN→∞ and limN→∞ limt→β do commute. This can
be understood as follows: If we consider just the “high temperature region” (i.e. the para-
magnetic phase) saturability implies 〈m2〉 = 0 (because limN→∞〈m〉t → 〈m2〉 ∈ [0,1] such
that 〈m2

N 〉 = 0 or 1 but 〈m2(β = 0)〉 = 0) and the high temperature expression holds. In the
range β ∈ [0,1] the global symmetry of the Hamiltonian σi → σiσN+1 is a symmetry of the
Boltzmann state too, while in the range β ∈ ]1,∞] the Boltzmann state shares no longer
this invariance and ergodicity is lost.

Once understood the existence of a phase transition thanks to the lacking of the com-
mutativity encoded in (54) we dedicate the next section to the finding of the critical point,
which defines the onset of ergodicity breaking, together with the control of the system at
criticality.

4.2 Critical Behavior: Scaling Laws

Critical exponents are needed to characterize singularities of the theory at the critical point
and, for us, this information is encoded in the behavior of the order parameter

√〈m2〉.
Assuming for the moment that βc = 1 (where βc stands for the critical point in temper-

ature), close to criticality, we take the freedom of writing G(β) ∼ G0 · (β − 1)γ , where the
symbol ∼ has the meaning that the term at the second member is the dominant but there are
corrections of order higher than τ γ .

The standard way to look at the scaling of the order parameter is by expanding the hy-
perbolic tangent around

√〈m2〉 ∼ 0 obtaining

√
〈m2〉 = tanh(β

√
〈m2〉) ∼ β

√
〈m2〉 − (β

√〈m2〉)3

3
(55)

by which one gets

√
〈m2〉(1 − β) + 1

3
(β(

√
〈m2〉)3) ∼ 0. (56)
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The first solution of (56) is
√〈m2〉 = 0 (which is also the only solution in the ergodic phase)

while the other two solutions can be obtained by solving

(
√

〈m2〉)2 ∼ (β − 1)3

β3
∼ 3

(
1 − 1

β

)
(57)

close to the critical point, obtaining

√
〈m2〉 ∼ (β − 1)

1
2 (58)

which gives as the critical exponent γ = 1/2.
Within our framework the procedure is by using directly the streaming equation (46),

choosing F(σ) = 〈m〉t , expanding iteratively in filled monomials, obtaining

〈m〉t = 〈m2〉t −
∫ t

0
〈m〉2

t ′dt ′

= 〈m2〉t −
∫ t

0
dt ′

(
〈m2〉2t ′2 − 2〈m2〉t ′

∫ t ′

0
dt ′′〈m〉2

t ′′ +
(∫ t ′

0
dt ′′〈m〉2

t ′′

))

= 〈m2〉t − 〈m2〉2 t3

3
+ O(〈m2〉4), (59)

where higher order terms, close to criticality, can be neglected. Now by applying saturability
(Theorem 4) at t = β we get

〈m2〉(β − 1) = 〈m2〉2 β3

3
+ O(〈m2〉4) (60)

from which we can derive both the critical point and the scaling exponent: To find the critical
point it is enough to rewrite (60) switching to the rescaled order parameter ξ(σ ), such that,
by applying a central limit argument, its fluctuations become

√
〈ξ(σ )2〉 = 〈ξ(σ )2〉√

(β − 1)

β3

3

which diverge as soon as the denominator approaches zero (i.e. for β → 1−).
Finding the critical exponent happens on the same line by rewriting (60) as

√
〈m2〉√(β − 1) ∼ 〈m2〉β

3

3

and considering, close to criticality, β3 ∼ 1, which immediately yields

√
〈m2〉 ∼ (β − 1)

1
2 (61)

according to (58).

Remark 4 Using (59) to work out an expansion of the cavity function we obtain

Ψ (t) =
∫ t

0
dt〈m〉t =

∫ t

0
dt

(
〈m2〉t − 〈m2〉2 t3

3
+ O(〈m2〉4)

)
(62)
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which gives

Ψ (t) = 〈m2〉 t
2

2
− 〈m2〉2 t4

12
+ O(〈m2〉4) (63)

in perfect agreement with the expansion of the logarithm of the hyperbolic cosine.

Note The same method, respectively applied on the SK and on the Viana-Bray model [45]
of diluted spin glass, has been discussed in [2] and [10].

Remark 5 Using the expansion (63) for the free energy expression in (32) we obtain

α(β) = ln 2 + β

2
(β − 1)〈m2〉 − β4

12
〈m2〉2 + · · · (64)

by which we argue the critical point must be βc = 1. This can be seen as follows: Let us note
that A(β) = (β/2)(β − 1) is the coefficient of the second order of the expansion in power
of the order parameter (i.e.

√〈m2〉). In the ergodic phase (with preserved symmetry) the
minimum of the free energy corresponds to a zero order parameter (i.e.

√〈m2〉 = 0). This
implies that A(β) ≥ 0. Anyway, immediately below the critical point values of the order
parameter different from zero are possible if and only if A(β) ≤ 0 and consequently at the
critical point A(β) must be zero.

This identifies the critical point βc = 1.
Coherently, for the same reason the first order term in the expansion must be identically

zero.

Note An identical approach holds also for the SK spin glass model [6].

4.3 Self-Averaging Properties

As a sideline, to try and make the work as close as possible to a guide for more complex
models, it is possible to derive the “locking” of the order parameter, which, in other context
(i.e. spin glasses) is found as a set of equations called Ghirlanda-Guerra [20] and Aizenman-
Contucci [3], while in simpler systems as the one we are analyzing, not surprisingly [16],
do coincide with just one kind of self-averaging.

The idea we follow [6–8] is deriving filled monomial with respect to the interpolating
parameter, remembering that, in the thermodynamic limit, they do not depend on such a
parameter end evaluating the “fillable” result (which do depends on t ) at t = β to free the
measure from the perturbing cavity field.

Proposition 4 The self-averaging properties, consequence of the invariance of filled mono-
mials with respect the perturbing field, hold in the thermodynamic limit; an example being

0 = lim
N→∞

∂t 〈m2
N 〉 = 〈m3〉t − 〈m2〉〈m〉t = 〈m4〉 − 〈m2〉2. (65)

Even though we followed the derivation presented in [6] (and deepen in [8] for its di-
lute variant) to obtain such constraints, for the Ising model it is straightforward to check
that the original idea presented in [20] concerning the self-averaging of the internal energy
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shares the same relation. In fact, defining 〈E〉 = limN→∞ EN and EN = HN(σ)/N , by direct
evaluation we have

Remark 6 The self-averaging property of the order parameter is a consequence of self-
averaging of the internal energy

lim
N→∞

(〈EN 〉2 − 〈E2
N 〉) = 0 ⇒ (〈m2〉2 − 〈m4〉) = 0.

Note In this system without disorder the AC relations and the GG identities do coincide
because of the absence of the external average over the noise, which introduce different
kinds of self-averaging as discussed for instance in [18].

A less known alternative, richer of surprises, emerges again when investigating the cavity
function. Of course in simple system such investigation will not tell us much more than what
showed so far, but, remembering we want to show a working method more than the results
themselves it offers for this particular system, we want to explore this last variant.

Remembering Theorem 4 and Proposition 3 let us rewrite the free energy according to

α(β) = ln 2 + ln cosh(
√〈m〉t t)|t=β − β

2

√
〈m2〉 (66)

and emphasize that the total derivative with respect to β is

dα(β)

dβ
= ∂α(β)

∂β
+ ∂α(β)

∂
√〈m2〉

∂
√〈m2〉
∂β

, (67)

while, from the general law of thermodynamics [42], we know the total derivative of the free
energy with respect to β is the internal energy

dα(β)

dβ
= 1

2
(
√

〈m2〉)2. (68)

With this preamble let us move evaluating the partial derivative of the free energy still with
respect β:

∂α(β)

∂β
= −1

2
(
√

〈m2〉)2 + (
√〈m〉t tanh(

√〈m〉t t))|t=β

= −1

2
(
√

〈m2〉)2 + (
√

〈m2〉 tanh(
√

〈m2〉β)

which thanks to self-consistency for the order parameter (49) becomes

−1

2
(
√

〈m2〉)2 + (
√

〈m2〉)2 = 1

2
(
√

〈m2〉)2 (69)

hence

∂α(β)

∂
√〈m2〉

∂
√〈m2〉
∂β

= 0. (70)
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Let us split the evaluation of (70) in two terms A,B (such that the equation reduces to
AB = 0) by defining and evaluating

A = ∂α(β)

∂
√〈m2〉 = β(

√
〈m2〉 − tanh(β

√
〈m2〉)), (71)

B = ∂
√〈m2〉
∂β

= N

4
√〈m2〉 (

√
〈m4〉 − (

√
〈m2〉)2). (72)

Putting together the results AB = 0 we obtain

β(
√

〈m2〉 − tanh(β
√

〈m2〉)) N

4
√〈m2〉 (

√
〈m4〉 − (

√
〈m2〉)2) = 0. (73)

This equation acts as a bound and, thought in terms of the expression (70), has a vague
variational taste. As in simple system it does not tell us much more than that the prod-
uct of self-consistency and self-averaging goes to zero faster than N−1, in complex sys-
tem has a key role both in defining the locking of the order parameters [6] as in control-
ling the system at criticality [10]. Furthermore in such equation the two key ingredient for
the behavior of the system, i.e. self-consistency and self-averaging, appear together as a
whole.

4.4 Hamilton-Jacobi Formalism: Order Parameter Self-Averaging and Response to Field

This section has been adapted from the work [29] where the method, in the framework of
spin glasses, were originally developed.

We want to investigate the self-averaging of the magnetization itself. This can be
achieved in several ways also within the interpolating techniques. For the sake of com-
pleteness we want to show a very elegant technique based on two interpolating parameters.

4.4.1 The Structure of the Hamilton-Jacobi Equation

Let us consider a generalized partition function depending on two parameter t, x (that we
are going to think about in terms of generalized time and space) such that the corresponding
free energy can be written as follows

αN(t, x) = 1

N
lnZN(t, x) = 1

N
ln

∑

σ

e
t

2N

∑
1≤i<j≤N σiσj +x

∑
1≤i≤N σi (74)

and let us consider its t and x streaming (with obvious meaning, in the averages, of the
subscript 〈 〉t,x ):

∂αN(t, x)

∂t
= −1

2
〈m2

N 〉t,x , (75)

∂αN(t, x)

∂x
= 〈mN 〉t,x . (76)
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Let us also define a potential VN(t, x) as the variance of the magnetization in these extended
averages:

VN(t, x) = 1

2
(〈m2

N 〉t,x − 〈mN 〉2
t,x) (77)

and introduce an Hamilton function SN(t, x) as SN(t, x) = −αN(t, x). It is now possible to
formulate the next

Proposition 5 In the generalized space of the interpolants the following Hamilton-Jacobi
equation holds

∂SN(t, x)

∂t
+ 1

2

(
∂SN(t, x)

∂x

)2

+ VN(t, x) = 0. (78)

The plan now is as follows: Let us try and solve at first the free-field solution
(V (t, x) = 0), from which the proper solution of the mean field Ising model (53) will follow
and we will argue that limN→∞(〈m2

N 〉 − 〈mN 〉2) = 0 (because V (t, x) = 0).

4.4.2 The Free Field Solution: Self-Averaging

If the t -dependent potential is zero then the energy is a constant of motion such that the
Lagrangian L, which is trivially 1

2 (
∂SN (t,x)

∂x
)2, does not depend on t (remember that in this

formal bridge with classical mechanics the interpolating parameter t takes the same meaning
of time) and the trajectories of motion are the straight lines x(t) = x0 + 〈m〉t .

If we denote by a bar the Hamilton function which satisfies the free-field problem, such
solution S̄(t, x) can be worked out finding a point in the space of solution plus the integral
of the Lagrangian over the time

S̄(t, x) = S̄(t0, x0) +
∫

dt ′L(t ′, x). (79)

Anyway, as we already stressed, the Lagrangian, in the free-field problem does not depend
on time and the integral inside (79) turns out to be a simple product, furthermore, as initial
point (t0, x0) in the plane (t, x) we choose a generic x0 but t0 = 0 as this choice enable
us to neglect the two body interaction in the partition function and the problem becomes
straightforward.

So we have

∂S̄N(t, x)

∂t
+ 1

2

(
∂S̄N(t, x)

∂x

)2

= 0 (80)

on the trajectories x = x0 + 〈m〉t . To enforce now the generalized partition function defined
in (74) to be the true one of statistical mechanics, remembering that S(t, x) = −α(t, x)

and so S̄(t, x) = −ᾱ(t, x), we must evaluate the solution at t = β,x = 0. The solution is
immediate and is

S̄(t, x) = S̄(0, x0) +
∫

dtL(t, x) = −ln 2 − ln cosh(〈m〉t) + t

2
〈m2

N 〉, (81)

ᾱ(β) = ln 2 + ln cosh(β〈m〉) − β

2
〈m2〉 (82)
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which coincides with the solution of the model (53) assuming that

lim
N→∞

√
〈m2

N 〉 = 〈m〉 (83)

which is perfect agreement to our request V (t, x) = 0.

4.4.3 Response to a Field

We understood that, due to the global gauge symmetry, we can think at the cavity field both
as an added spin of the system as well as an external perturbation. Once considered the cavity
field x

∑N

i σi as a perturbation it may be interesting asking what the associated observable
is for such a field. It is immediately to check that the observable is the magnetization.

∂x

1

N
ln

∑

σ

e−tHN (σ)+x
∑N

i σi |t=β,x=0 = 〈mN 〉t=β,x=0 = 〈mN 〉. (84)

While it may still look unnecessary for the Ising model we stress that the cavity field nat-
urally puts in evidence the symmetry of the perturbing field needed to have a projector
(a proper “active” selector in the free energy landscape). In fact, it is immediate to think at
the perturbing field as a magnetic field of strength x/β in some proper units. In complex
systems, as spin glasses, understanding the right coupling field it is not immediate and this
property can be of precious help as discussed in [9].

5 Parisi-Like Representation

As a final section, following the early ideas of Guerra [30], we try and introduce a formalism
close to the Parisi scheme for spin glasses. This trial is of course not necessary for the
mean field Ising model, but the existence of this possibility acts as a bridge to a better
understanding of the Parisi theory itself.

Using the replica trick Parisi expressed the free energy of the Sherrington-Kirkpatrick
model by relating it to a trial function f (q, y(q)) which obeys a nonlinear PDE and has a
nontrivial dependence on a peculiar order parameter [0,1] � q → x ∈ [−1,1]. We propose
hereafter the same scheme with an order parameter [−1,+1] � m̃ → x ∈ [−1,1]; for the
sake of clearness our function f (q, y(q)) will be written as f (m̃, y(m̃)), m̃ being the trial
magnetization (now depending on x) and y = (m̃

∑N

i σi/N).
We are now ready to state the main proposition of this section

Proposition 6 The free energy of the Ising model can be expressed via an order parameter
[−1,1] � m̃ → x ∈ [−1,1] and a function f (m̃, y(m̃)) as follows

α(β) = min
x(m̃)

(
ln 2 − β

2

∫ m̃

0
x(m̃′)dm̃′ + f (0,0)

)
(85)

where the function f (m̃, y(m̃)) obeys the following Cauchy problem

{
∂m̃f (m̃, y) + x(m̃)|∂yf (m̃, y)| = 0,

f (1, y) = ln cosh(βy).
(86)
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Remark 7 The above equation immediately reveals a big difference between the Ising model
and the SK: linearity. In fact the Parisi equation for the spin glasses [38] is a non linear PDE
and shows several bifurcation points, while, in the problem (86), once chosen a branch for m̃,
the evolution is unique.

Proof The simplest way to obtain a control of the streaming of f (m̃, y(m̃)) with respect to
both its variables is by introducing an auxiliary function as

Φ(m̃) = ln〈ef (m̃, m̃
N

∑N
i σi )〉 (87)

such that

Φ(1) = ln〈ef (1, 1
N

∑
i σi )〉 = Ψ (t = β), (88)

as can be explicitly checked for every even Boltzmann state, and that

Φ(0) = f (0, y(0) = 0). (89)

If we can state that f (0,0) = Ψ (t = β) the result is obtained: To impose the bridge
f (0,0) = Φ(0) = Φ(1) = Ψ (t = β) it is sufficient (but not necessary) to derive Φ with
respect to m̃ and constrain the derivative to be zero. For the sake of convenience, let us
introduce

〈a〉f = 〈aef 〉
〈ef 〉

so to write

dΦ

dm̃
= 〈∂m̃f 〉f + 1

N

N∑

i

〈σi∂yf 〉f (90)

and let us consider the following bounds

1

N

N∑

i

〈σi∂yf 〉f ≤
∣∣∣∣

1

N

N∑

i

〈σi∂yf 〉f
∣∣∣∣ ≤ 1

N

N∑

i

|〈σi∂yf 〉f |

≤ 1

N

N∑

i

〈|∂yf |〉f = |∂yf |.

The introduction of the function modulus allows one to use a function [−1,1] � m̃ → x ∈
[−1,1] such that

1

N

N∑

i

〈σi∂yf 〉f = x(m̃)|∂yf |. (91)

�

Remark 8 The existence of the function modulus inside the r.h.s. of (91) allows one to take
into account just one branch at time with complete symmetry between the two branches.
This reflects the properties of the magnetization in the broken ergodicity phase.

By substituting the expression of (91) into (90) we obtain the Parisi-like equation for
ferromagnetism (86).
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To start solving (86) let us make the following change of variable

p = −
∫ 1

m̃

dm̃′x(m̃′) (92)

by which, thanks to the Jacobian of the transformation (92), the Parisi-like equation for the
Ising model turns out to be solvable with the D’Alambert technique. In fact we get

∂pf (p,y) + ∂yf (p, y) = 0

solved by f (p,y) = ln cosh(t (p + y)) → f (q, y) = ln cosh(t (y ± ∫ 1
q

dq ′x(q ′))), where the
± signs are chosen accordingly to the branch of the chosen derivative of f with respect to y.

Solving for the Ψ (t = β) we get

Ψ (t = β) = ln cosh

(
β

∫ 1

0
dm̃′x(m̃′)

)
(93)

which shows a deep connection among Parisi theory and our formulation (see Theorem 2).
Let us now equate (51) with (93): We immediately obtain

√
〈m2〉 = 〈m〉 =

∫ 1

0
dm̃x(m̃) (94)

by which we argue that the function x(m̃) has the meaning of a probability density for
the order parameter (i.e. the magnetization) and the solution for the free energy follows
straightforwardly.

Further one could go beyond this scheme, but this will not be discussed here, working
out the equivalent of the broken replica bound to make sharper statements concerning the
x(m̃) following [26].

Remark 9 Another possibility is by exploring the replica trick method [38] assigning a
delta-like probability distribution for the interaction matrix Jij (i.e. P (Jij ) ∼ δ(Jij − 1))
which factorizes replicas and no ansatz is required in this simple case.

6 Conclusion

In this paper we have studied the mean field Ising model with the interpolating techniques.
These methods, which have been at the basis of a recent breakthrough in spin glass the-
ory turn out to be of great generality, as this test on simpler model demonstrated. Several
techniques, linked one to another by the interpolation method, have been shown throughout
the paper: key ingredients for the free energy thermodynamic limit are the sub-additivity
and the bounds in the volume size. Another central role is played by the gauge invariance
when analyzing the expression of the free energy itself: via this symmetry the cavity field
becomes a perturbing external field (what is called stochastic stability in spin glass litera-
ture) and vice versa and the synergy between the two approaches enables one to work out
several properties of the model as the critical behavior and the self-averaging relations. The
technique with two interpolating parameters has also been discussed: a suitable streaming
of a generalized free energy with respect to properly defined parameters can bring to the
formulation of an Hamilton-Jacobi equation in the interpolation space by which again the
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solution of the model and the self-averaging can be deduced. At the end a formulation of the
theory in terms of Parisi representation is tried, with particular emphasis on the meaning of
the order parameter.

As a last remark we stress that this work has been written with the aim of developing
a simpler but dense exercise of statistical mechanics to make these techniques ready to be
used by the reader not familiar with the field of spin-glasses.
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