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Abstract
We study the mean field Schrödinger problem (MFSP), that is the problem of finding
the most likely evolution of a cloud of interacting Brownian particles conditionally
on the observation of their initial and final configuration. Its rigorous formulation is
in terms of an optimization problem with marginal constraints whose objective func-
tion is the large deviation rate function associated with a system of weakly dependent
Brownian particles. We undertake a fine study of the dynamics of its solutions, includ-
ing quantitative energy dissipation estimates yielding the exponential convergence to
equilibrium as the time between observations grows larger and larger, as well as a
novel class of functional inequalities involving the mean field entropic cost (i.e. the
optimal value in (MFSP)). Our strategy unveils an interesting connection between for-
ward backward stochastic differential equations and the Riemannian calculus on the
space of probability measures introduced by Otto, which is of independent interest.
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1 Introduction and statement of themain results

In the seminal works [46,47] Schrödinger addressed the problem of finding the most
likely evolution of a cloud of independent Brownian particles conditionally on the
observation of their initial and final configuration. In modern language this is an
entropy minimization problem with marginal constraints. The aim of this work is
to take the first steps in the understanding of the Mean Field Schrödinger Problem,
obtained by replacing in the above description the independent particles by interacting
ones.

To obtain an informal description of the problem, consider N Brownian particles
(Xi,N

t )t∈[0,T ],1≤i≤N interacting through a pair potential W

⎧
⎨

⎩

dXi,N
t = − 1

N

N∑

k=1
∇W (Xi,N

t − Xk,N
t )dt + dBi

t

Xi,N
0 ∼ μin.

(1)
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The mean field Schrödinger problem: ergodic behavior… 477

Their evolution is encoded in the random empirical path measure

1

N

N∑

i=1

δXi,N· . (2)

At a given time T , the configuration of the particle system is visible to an external
observer that finds it close to an “unexpected” (écart spontané et considérable in [47])
probability measure μfin, namely

1

N

N∑

i=1

δXi,N
T

≈ μfin (3)

It is a classical result [4,20,49] that the sequence of empirical path measures (2) obeys
the large deviations principle (LDP). Thus, the problem of finding the most likely
evolution conditionally on the observations is recast as the problem of minimizing
the LDP rate function among all path measures whose marginal at time 0 is μin and
whose marginal at time T isμfin. This is the mean field Schrödinger problem (MFSP).
Extending naturally the classical terminology we say that an optimal path measure
is a mean field Schrödinger bridge (henceforth MFSB) and the optimal value is the
mean field entropic cost. The latter generalizes both the Wasserstein distance and the
entropic cost.

The classical Schrödinger problem has been the object of recent intense research
activity (see [36]). This is due to the computational advantages deriving from introduc-
ing an entropic penalization in the Monge-Kantrovich problem [19] or to its relations
with functional inequalities, entropy estimates and the geometrical aspects of optimal
transport. Our article contributes to this second line of research, recently explored by
the papers [17,28,32,34,43,44]. Leaving all precise statements to the main body of the
introduction, let us give a concise summary of our contributions.

Dynamics of mean field Schrödinger bridges Our mean field version of the
Schrödinger problem stems from fundamental results in large deviations for weakly
interacting particle systems such as [20,49] and shares some analogies with the control
problems considered in [16] and with the article [2] in which an entropic formulation
of second order variational mean field games is studied. Among the more fundamental
results we establish for the mean field Schrödinger problem, we highlight

• the existence of MFSBs and, starting from the original large deviations for-
mulation, the derivation of both an equivalent reformulation in terms of a
McKean–Vlasov control problem as well as a Benamou-Brenier formula,

• establishing that MFSBs solve forward backward stochastic differential equations
(FBSDE) of McKean–Vlasov type (cf. [10,11]).

The proof strategywe adopt in this article combines ideas coming from large deviations
and stochastic calculus of variations, see [18,23,52]. Another interesting consequence
of having a large deviations viewpoint is that we can also exhibit some regularity
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478 J. Backhoff et al.

properties of MFSBs, taking advantage of Föllmer’s results [25] on time reversal.
Building on [17,28] we establish a link between FBSDEs and the Riemannian calculus
on probability measures introduced by Otto [41] that is of independent interest and
underlies our proof strategies. In a nutshell, the seminal article [31] established that the
heat equation is the gradient flow of the relative entropy w.r.t. the squared Wasserstein
distance. Thus, classical first order SDEs yield probabilistic representations for first
order ODEs in the Riemannian manifold of optimal transport. Our observation may
be seen as the second order counterpart to the results of [31]: indeed we will present
an heuristic strongly supporting the fact that Markov solutions of “second order”
trajectorial equations (FBSDEs) yield probabilistic representations for second order
ODEs in the Riemannian manifold of optimal transport.

Ergodicity of Schrödinger bridges and functional inequalities Consider again (1)
and assume that W is convex so that the particle system is rapidly mixing and there
is a well defined notion of equilibrium configuration μ∞. If N and T are large, one
expects that

(i) The configurations 1
N

∑N
i=1 δXi

t
at times t = 0, T /2, T are almost independent.

(ii) The configuration at T /2 is with high probability very similar to μ∞.

Because of (i), even when the external observer acquires the information (3), he/she
still expects (ii) to hold. Thus mean field Schrödinger bridges are to spend most of
their time around the equilibrium configuration. All our quantitative results originate
in an attempt to justify rigorously this claim.

In thisworkwe obtain a number of precise quantitative energy dissipation estimates.
These lead us to the main quantitative results of the article:

• we characterize the long time behavior of MFSBs, proving exponential conver-
gence to equilibrium with sharp exponential rates,

• we derive a novel class of functional inequalities involving the mean field entropic
cost. Precisely, we obtain a Talagrand inequality and an HWI inequality1 that
generalize those previously obtained in [12] by Carrillo, McCann and Villani.

Regarding the second point above, we can in fact retrieve (formally) the inequalities
in [12] by looking at asymptotic regimes for the mean field Schrödinger problem.
Besides the intrinsic interest and their usefulness in establishing some of our main
results, our functional inequalities may have consequences in terms of concentration
of measure and hypercontractivity of non linear semigroups, but this is left to future
work.

The fact that optimal curves of a given optimal control problem spend most of
their time around an equilibrium is known in the literature as the turnpike property.
The first turnpike theorems have been established in the 60’s for problems arising in
econometry [39]; general results for deterministic finite dimensional problems are by
now available, see [50]. In view of the McKean–Vlasov formulation of the mean field
Schrödinger problem, some of our results may be viewed as turnpike theorems as well,

1 A Talagrand inequality states that a transportation cost is dominated by a divergence, whereas a HWI
inequality states that a divergence is dominated by a transportation cost and a Fisher information.
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but for a class of infinite dimensional and stochastic problems. An interesting feature
is that, by exploiting the specific structure of our setting, we are able to establish the
turnpike property in a quantitative, rather than qualitative form. The McKean–Vlasov
formulation also connects our findings with the study of the long time behavior of
mean field games [5,7–9].

Concerning the proof methods, our starting point is Otto calculus and the recent
rigorous results of [17] together with the heuristics put forward in [28]. The first new
ingredient of our proof strategy is the above mentioned connection between FBSDEs
andOtto calculus that plays a key role in turning the heuristics into rigorous statements.
It is worth remarking that using a trajectorial approach does not just provide with a
way of making some heuristics rigorous, but it also permits to obtain a stronger form
of some of the results conjectured in [28] which then simply follow by averaging
trajectorial estimates. The second new ingredient in our proofs involves a conserved
quantity that plays an analogous role to the total energy of a physical system. For such
quantity we derive a further functional inequality which seems to be novel already in
the classical Schrdinger problem (i.e. for independent particles) and allows to establish
the turnpike property.

Structure of the article In the remainder introductory section we state and comment
our main results. In Sect. 2 we provide a geometrical interpretation sketching some
interesting heuristic connections between optimal transport and stochastic calculus.
The material of this section is not used later on; therefore the reader who is not
interested in optimal transport may avoid it. Sections 3 and 4 contain the proofs of
our main results, the former being devoted to the results concerning the dynamics of
MFSBs and the latter one dealing with the ergodic results. Finally an appendix section
contains some technical results.

1.1 Frequently used notation

• (�,Ft ,FT ) is the canonical space of Rd -valued continuous paths on [0, T ], so
{Ft }t≤T is the coordinate filtration. � is endowed with the uniform topology.

• P(�) and P(Rd) denote the set of Borel probability measures on � and R
d

respectively.
• (Xt )t∈[0,T ] is the canonical (i.e. identity) process on �.
• Rμ is the Wiener measure with starting distribution μ.
• H(P|Q) denotes the relative entropy of P with respect to Q, defined as

EP

[
log

(
dP
dQ

)]
if P � Q and +∞ otherwise.

• Pt denotes the marginal distribution of a measure P ∈ P(�) at time t .
• Pβ(�) is the set of measures on � for which supt≤T |Xt |β is integrable. Pβ(Rd)

is the set of measures on R
d for which the function | · |β is integrable.

123



480 J. Backhoff et al.

• The β-Wasserstein distance on Pβ(�) is defined by

Pβ(�)2 	 (P,Q) 
→ Wβ(P,Q) :=
(

inf
Y∼P,Z∼Q

E

[

sup
t∈[0,T ]

|Yt − Zt |β
])1/β

.

With a slight abuse of notation we also denote byWβ the β-Wasserstein distance
on Pβ(Rd) defined analogously.

• For a given measurable marginal flow [0, T ] 	 t 
→ μt ∈ P(Rd), we denote by
L2((μt )t∈[0,T ]) the space of square integrable functions from [0, T ] × R

d to R
d

associated to the reference measure μt (dx)dt and the corresponding almost-sure
identification. We consider likewise the Hilbert space

H−1((μt )t∈[0,T ]),

defined as the closure in L2((μt )t∈[0,T ]) of the smooth subspace

{
� : [0, T ] × R

d → R
d s.t. � = ∇ψ, ψ ∈ C∞

c ([0, T ] × R
d)

}
.

• γ and λ are respectively the standard Gaussian and Lebesgue measure in R
d .

• Cl,m([0, T ] ×R
d ;Rk) is the set of functions from [0, T ] ×R

d to Rk which have l
continuous derivatives in the first (ie. time) variable and m continuous derivatives
in the second (ie. space) variable. The space Cm(Rd ;Rk) is defined in the same
way. C∞

c ([0, T ]×R
d) is the space of real-valued smooth functions on [0, T ]×R

d

with compact support. The gradient ∇ and Laplacian 	 act only in the space
variable.

• If f is a function and μ a measure, its convolution is x 
→ f ∗ μ(x) := ∫
f (x −

y)μ(dy).

1.2 Themean field Schrödinger problem and its equivalent formulations

We are given a so-called interaction potential W : Rd → R, for which we assume

W is of class C2(Rd ;R) and symmetric, i.e. W (·) = W (−·), (H1)

sup
z,v∈Rd ,|v|=1

v · ∇2W (z) · v < +∞.

Besides the interaction potential, the data of the problem are a pair of probability
measures μin, μfin on which we impose

μin, μfin ∈ P2(R
d) and F̃(μin), F̃(μfin) < +∞, (H2)
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The mean field Schrödinger problem: ergodic behavior… 481

where the free energy or entropy functional F̃ is defined for μ ∈ P2(R
d) by

F̃(μ) =
{∫

Rd logμ(x)μ(dx) + ∫

Rd W ∗ μ(x)μ(dx), if μ � λ

+∞, otherwise.
(4)

In the above, and in the rest of the article, we shall make no distinction between a
measure and its density against Lebesgue measure λ, provided it exists.

We recall that the McKean–Vlasov dynamics is the non linear SDE

{
dYt = −∇W ∗ μt (Yt )dt + dBt ,

Y0 ∼ μin, μt = Law(Yt ), ∀t ∈ [0, T ].
(5)

Under the hypothesis (H1), it is a classical result (see e.g. [13, Thm 2.6]) that (5)
admits a unique strong solution whose law we denote PMKV. The functional F̃ plays a
crucial role in the sequel. For the moment, let us just remark that the marginal flow
of the McKean–Vlasov dynamics may be viewed as the gradient flow of 1

2 F̃ in the
Wasserstein space (P2(R

d),W2(·, ·)).
If P ∈ P1(�) is given, then the stochastic differential equation

{
dZt = −∇W ∗ Pt (Zt )dt + dBt ,

Z0 ∼ μin,

admits a unique strong solution (cf. Sect. 3.2) whose law we denote 
(P). With this
we can now introduce the main object of study of the article:

Definition 1.1 The mean field Schrödinger problem2 is

inf
{
H(P|
(P)) : P ∈ P1(�), P0 = μin, PT = μfin

}
. (MFSP)

Its optimal value, denoted CT (μin, μfin), is called mean field entropic transportation
cost. Its optimizers are called mean field Schrödinger bridges (MFSB).

It is not difficult to provide existence of optimizers for (MFSP). In the classical
case, uniqueness is an easy consequence of the convexity of the entropy functional.
However, the rate function H(P|
(P)) is not convex in general.

Proposition 1.1 Grant (H1), (H2). Then (MFSP) admits at least an optimal solution.

Remark 1.1 The dynamics of the McKean–Vlasov dynamics for the particle system
(1) displays a wide array of different behaviors, including phase transitions, see [51]
for example. Thus, we do not expect uniqueness of mean field Schödinger bridges in

2 The choice of W as interaction mechanism is a particular one. Thus (MFSP) is not the only mean field
Schrödinger problem of interest. It would have been easy to include in the dynamics a confinement (single-
site) potential. However, since one of the goals of this article is to understand the role of the pair potential
W , we preferred not to do that, as the single site potential may be the one that determines the long time
behavior of mean field Schrödinger bridges.
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482 J. Backhoff et al.

general. However, in the case when W is convex, although the rate functionH(P|
(P))

is not convex in the usual sense, the entropy F is displacement convex in the sense of
McCann [38]. This observation was indeed used to prove uniqueness of minimizers
for F , and could be the starting point towards uniqueness for (MFSP).

1.2.1 Large deviations principle (LDP)

We start by deriving the LDP interpretation of (MFSP). Recall the interacting particle
system (Xi,N

t )t∈[0,T ],1≤i≤N of (1). The theory of stochastic differential equations
guarantees the strong existence and uniqueness for this particle system under (H1),
(H2). In the next theoremweobtain aLDP for the sequence of empirical pathmeasures;
in view of the classical results of [20], it is not surprising that the LDP holds. However,
even the most recent works on large deviations for weakly interacting particle systems
such as [4] do not seem to cover the setting and scope of Theorem 1.1. Essentially,
this is because in those references the LDPs are obtained for a topology that is weaker
than theW1-topology, that is what we need later on.

Theorem 1.1 In addition to (H1), (H2) assume that

∫

Rd
exp(r |x |)μin(dx) < ∞ for all r > 0. (6)

Then the sequence of empirical measures

{
1

N

N∑

i=1

δXi,N ; N ∈ N

}

,

satisfies the LDP on P1(�) equipped with the W1-topology, with good rate function
given by

P1(�) 	 P 
→ I (P) :=
{
H(P|
(P)), P � 
(P),

+∞, otherwise.
(7)

In fact we will prove in Sect. 3 a strengthened version of Theorem 1.1 where the
drift term is much more general. For this, we will follow Tanaka’s elegant reasoning
[49].

Remark 1.2 Having a rate function implies Prob[ 1
N

∑N
i=1 δXi,N· ≈P]≈exp(−NI (P))

heuristically. Hence Problem (MFSP) has the desired interpretation of finding themost
likely evolution of the particle system conditionally on the observations (when N is
very large).

1.2.2 McKean–Vlasov control and Benamou-Brenier formulation

We now reinterpret the mean field Schrödinger problem (MFSP) in terms ofMcKean–
Vlasov stochastic control (also known as mean field control).
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The mean field Schrödinger problem: ergodic behavior… 483

Lemma 1.1 Let P be admissible for (MFSP). There exists a predictable process
(αP

t )t∈[0,T ] s.t.

EP

[∫ T

0
|αP

t |2dt

]

< +∞ (8)

and so that

Xt −
∫ t

0

(
−∇W ∗ Ps(Xs) + αP

s

)
ds (9)

has law Rμin
under P. The problem (MFSP) is equivalent to

inf

{
1

2
EP

[∫ T

0
|αP

t |2dt

]

: P ∈ P1(�), P0 = μin, PT = μfin, αP as in (9)

}

,

(10)

as well as to

inf
1

2
EP

[∫ T

0
|�t + ∇W ∗ Pt (Xt )|2dt

]

s.t. P ∈ P1(�), P0 = μin, PT = μfin, P ◦
(

X · −
∫ ·

0
�sds

)−1

= Rμin
.

(11)

The formulations (10)–(11) can be seen asMcKean–Vlasov stochastic control prob-
lems. In the first case one is steering through αP part of the drift of a McKean–Vlasov
SDE. In the second case one is controlling the drift � of a standard SDE but the
optimization cost depends non-linearly on the law of the controlled process. In both
cases, the condition PT = μfin is rather unconventional. By analogy with the theory of
mean field games, one could refer to (10)–(11) as planning McKean–Vlasov stochastic
control problems, owing to this type of terminal condition.

The third and last formulation of (MFSP) we propose relates to the well known
fluid dynamics representation of theMongeKantorovich distance due to Benamou and
Brenier (cf. [53]) that has been recently extended to the standard entropic transportation
cost [15,27]. The interest of this formula is twofold: on the one hand it clearly shows
that (MFSP) is equivalent and gives a rigorous meaning to some of the generalized
Schrödinger problems formally introduced in [28,34]. On the other hand, it allows
to interpret (MFSP) as a control problem in the Riemannian manifold of optimal
transport. This viewpoint, that we shall explore in more detail in Sect. 2, provides with
a strong guideline towards the study of the long time behavior of Schrödinger bridges.

We define the set A as the collection of all absolutely continuous curves
(μt )t∈[0,T ] ⊂ P2(R

d) (cf. Sect. 4.2) such that μ0 = μin, μT = μfin and

(t, z) 
→ ∇ logμt (z) ∈ L2(dμtdt),

(t, z) 
→ ∇W ∗ μt (z) ∈ L2(dμtdt).
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484 J. Backhoff et al.

We then define

C B B
T (μin, μfin) := inf

(μt )t∈[0,T ]∈A,
∂t μt +∇·(wt μt )=0

1

2

∫ T

0

∫

Rd
|wt (z)

+ 1

2
∇ logμt (z) + ∇W ∗ μt (z)s|2μt (dz)dt . (12)

Theorem 1.2 Let (H1), (H2) hold. Then

CT (μin, μfin) = C B B
T (μin, μfin).

If P is optimal for (MFSP) and the latter is finite, then (Pt )t∈[0,T ] is optimal in (12)
and its associated tangent vector field w is given by

−∇W ∗ Pt (z) + �t (z) − 1

2
∇ log Pt ,

where � is as in Theorem 1.3 below.
Conversely, if (μt )t∈[0,T ] is optimal for C B B

T (μin, μfin) and the latter is finite, then
there exists an optimizer of CT (μin, μfin) whose marginal flow equals (μt )t∈[0,T ].

1.3 Mean field Schrödinger bridges

Leveraging the stochastic control interpretation, and building on the stochastic calculus
of variations perspective, we obtain the following necessary optimality conditions for
(MFSP).

Theorem 1.3 Assume (H1), (H2) and let P be optimal for (MFSP). Then there exist
� ∈ H−1((Pt )t∈[0,T ]) such that

(dt × dP-a.s.) αP
t = �t (Xt ), (13)

where (αP
t )t∈[0,T ] is related to P as in Lemma 1.1. The process t 
→ �t (Xt ) is contin-

uous3 and the process (Mt )t∈[0,T ] defined by

Mt := �t (Xt ) −
∫ t

0
ẼP̃

[
∇2W (Xs − X̃s) · (�s(Xs) − �s(X̃s))

]
ds (14)

is a continuous martingale under P on [0, T [, where (X̃t )t∈[0,T ] is an independent
copy of (Xt )t∈[0,T ] defined on some probability space (�̃, F̃, P̃) and ẼP̃ denotes the

expectation on (�̃, F̃, P̃).

We shall refer to � as the corrector of P. Correctors will play an important role in
the ergodic results. In this part, we give an interpretation of Theorem 1.1 in terms of
stochastic analysis (FBSDEs) and partial differential equations.

3 More precisely, it has a continuous version adapted to the P-augmented canonical filtration.
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The mean field Schrödinger problem: ergodic behavior… 485

1.3.1 Planning McKean–Vlasov FBSDE for MFSB

We consider the following McKean Vlasov forward-backward stochastic differential
equation (FBSDE) in the unknowns (X , Y , Z):

⎧
⎪⎪⎨

⎪⎪⎩

dXt = −Ẽ[∇W (Xt − X̃t )]dt + Ytdt + dBt

dYt = Ẽ
[∇2W (Xt − X̃t ) · (Yt − Ỹt )

]
dt + Zt · dBt

X0 ∼ μin, XT ∼ μfin.

(15)

As in the stochastic control interpretation of the mean field Schrödinger problem, here
too the terminal condition XT ∼ μfin is somewhat unconventional. We hence call this
forward-backward system the planning McKean–Vlasov FBSDE.

Thanks to the results in Sect. 1.2.2 we can actually solve (15). If P is optimal for
(MFSP) with associated � as recalled in Theorem 1.3 above, all we need to do is take
Yt := �t (Xt ) and reinterpret (9) for the dynamics of the canonical process X and (14)
for the dynamics of Y (in the latter case using martingale representation).

One remarkable aspect of this connection between Schrödinger problems and FBS-
DEs is that one can prove existence of solutions to such FBSDEs by a purely variational
method. Indeed, we remark that (15) is beyond the scope of existing FBSDE theory,
such as Carmona and Delarue’s [11, Theorem 5.1]. Further, we also obtained for free
an extra bit of information: the constructed process Y lives in H−1((Pt )t∈[0,T ]). This is
in tandemwith the usual heuristic relating FBSDEs and PDEs (where Y is conjectured
to be an actual gradient) as explained in Carmona and Delarue’s [10, Remark 3.1].
In fact, if we make the additional assumption that Yt = ∇ψt (Xt ) for some potential
ψt (x), and we set μt = (Xt )#P, then after some computations we arrive at the PDE
system4:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tμt (x) − 1
2	μt (x) + ∇ · ((−∇W ∗ μt (x) + ∇ψt (x))μt (x)) = 0

∂t∇ψt (x) + 1
2∇	ψt (x) + ∇2ψt (x) · ( − ∇W ∗ μt (x) + ∇ψt (x)

)

= ∫

Rd ∇2W (x − x̃) · (∇ψt (x) − ∇ψt (x̃))μt (dx̃),

μ0(x) = μin(x), μT (x) = μfin(x).

(16)

1.3.2 Schrödinger potentials and the mean field planning PDE system

The PDE system (16) is the literal translation of the planningMcKean–Vlasov FBSDE
in the case when the process Y is an actual gradient, Y = ∇ψ . In the next corollary we
show that if this is the case, and if ψ is sufficiently regular, then (16) can be rewritten
as a system of two coupled PDEs, the first being a Hamilton–Jacobi–Bellman equation
for ψ , and the second one being a Fokker-Planck equation. This type of PDE system
is the prototype of a planning mean field game [33].

4 The Laplacian of a vectorial function is defined coordinate-wise.
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Corollary 1.1 Let P be an optimizer for (MFSP), �·(·) be as in Theorem 1.3 and set
μt = Pt for all t ∈ [0, T ]. If μ·(·) is everywhere positive and of class C1,2([0, T ] ×
R

d;R) and �·(·) is of class C1,2([0, T ]×R
d;Rd) then there exists ψ : [0, T ]×R

d →
R such that �t (x) = ∇ψt (x) for all (t, x) ∈ [0, T ] × R

d . Moreover, (ψ·(·), μ·(·))
form a classical solution of

⎧
⎪⎪⎨

⎪⎪⎩

∂tψt (x)+ 1
2	ψt (x)+ 1

2 |∇ψt (x)|2=∫

Rd ∇W (x − x̃) · (∇ψt (x)−∇ψt (x̃))μt (dx̃),

∂tμt (x) − 1
2	μt (x) + ∇ · ((−∇W ∗ μt (x) + ∇ψt (x))μt (x)) = 0,

μ0(x) = μin(x), μT (x) = μfin(x)

(17)

A fundamental result [26,57] concerning the structure of optimizers in the classical
Schrödinger problem is that their density takes a product form, i.e.

μt = exp(ψt + ϕt ),

where ϕt (x), ψt (x) solve respectively the forward and backward Hamilton Jacobi
Bellman equation

{
∂tψ + 1

2	ψ + 1
2 |∇ψ |2 = 0,

−∂tϕ + 1
2	ϕ + 1

2 |∇ϕ|2 = 0.
(18)

It is interesting to see that this structure is preserved in (MFSP), at least formally.
The effect of having considered interacting Brownian particles instead of independent
ones is reflected in the fact that the two Hamilton–Jacobi–Bellman PDEs are coupled
not only through the boundary conditions but also through their dynamics.

Corollary 1.2 Using the same notation and under the same hypotheses of Corollary1.1,
if we define ϕ : [0, T ] × R

d → R via

μt = exp(−2W ∗ μt + ϕt + ψt )

then (ψ·(·), ϕ·(·)) solves

{
∂tψt (x) + 1

2	ψt (x)+ 1
2 |∇ψt (x)|2=∫ ∇W (x − x̃) · (∇ψt (x)−∇ψt (x̃))μt (dx̃),

−∂tϕt (x)+ 1
2	ϕt (x)+ 1

2 |∇ϕt (x)|2=∫ ∇W (x − x̃) · (∇ϕt (x) − ∇ϕt (x̃))μt (dx̃).

1.4 Convergence to equilibrium and functional inequalities

Our aim is to show thatMFSBs spendmost of their time in a small neighborhood of the
equilibrium configuration μ∞, to study their long time behavior, and to derive a new
class of functional inequalities involving the mean field entropic cost CT (μin, μfin).

123



The mean field Schrödinger problem: ergodic behavior… 487

Throughout this section we make the assumption that W is uniformly convex, ie.
that

∃κ > 0 s.t . ∀z ∈ R
d , ∇2W (z) ≥ κId×d , (H3)

where the inequality above has to be understood as an inequality between quadratic
forms. Under (H3) the McKean Vlasov dynamics associated with the particle system
(1) converges in the limit as T → +∞ to an equilibrium measure μ∞, that is found
by minimizing the functional F̃ over the elements of P2(R

d) whose mean is the same
as μin. Existence and uniqueness of μ∞ has been proven in [38].

We shall often assume that μin and μfin have the same mean:

∫

Rd
x μin(dx) =

∫

Rd
x μfin(dx). (H4)

Remark 1.3 Assumption (H3) is a classical one ensuring exponential convergence rates
for the McKean–Vlasov dynamics. It may be weakened in various ways, see the work
[12] by Carrillo, McCann and Villani or the more recent [3] by Bolley, Gentil and
Guillin, for instance. It is an interesting question to determine which of the results
of this section still hold in the more general setup. Hypothesis (H4) can be easily
removed using the fact that the mean evolves linearly along any Schrödinger bridge
(see Lemma 4.2 below). We insist that the only key assumption is (H3).

Long time behavior of mean field games The articles [5,7–9] study the asymptotic
behaviour of dynamic mean field games showing convergence towards an ergodic
mean field game with exponential rates. Following [33], we can associate to (17) an
ergodic PDE systemwith unknowns (λ, ψ,μ). Such PDE system expresses optimality
conditions for the ergodic control problem corresponding to (10). It is easy to see that
(0, 0, μ∞) is a solution of that ergodic system. Therefore, we are addressing the same
questions studied in the above mentioned articles. However, the equations we are
looking at are quite different. A fundamental difference is that the coupling terms in
(10) are not monotone in the sense of [6, Eq.(7) p. 8].

1.4.1 Exponential convergence to equilibrium and the turnpike property

A key step towards the forthcoming quantitative estimates is to consider the time-
reversed version of our mean field Schrödinger problem. For Q ∈ P(�) the time
reversal Q̂ is the law of the time reversed process (XT −t )t∈[0,T ]. In Lemma 4.5 we
prove that if P is an optimizer for (MFSP), then P̂ optimizes

inf
{
H(Q|
(Q)) : Q ∈ P1(�), Q0 = μfin, QT = μin

}
. (19)

The optimality of P̂ implies the existence of an associated process �̂ as described
in Theorem 1.3. We show at Theorem 1.6 below that the function
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[0, T ] 	 t 
→ EP[�t (Xt ) · �̂T −t (X̂T −t )] (20)

is a constant, that we denote EP(μin, μfin) and call the conserved quantity. Naturally
this quantity depends also on T but we omit this from the notation.

Theorem1.4 confirms the intuition thatmeanfieldSchrödinger bridges are localized
around μ∞ providing an explicit upper bound for F(Pt ) along any MFSB, where

F(μ) = F̃(μ) − F̃(μ∞). (21)

We recall that μ∞ is found by minimizing F̃ among all elements of P2(R
d) whose

mean is the same as μ. If F̃ is thought of as a free energy, then F should be thought
of as a divergence (from equilibrium). A graphical illustration of Theorem 1.4 and the
turnpike property is provided in the appendix.

Theorem 1.4 Assume (H1)–(H4) and let P be an optimizer for (MFSP). For all t ∈
[0, T ] we have

F(Pt ) ≤ sinh(2κ(T − t))

sinh(2κT )

(
F(μin) − EP(μin, μfin)

2κ

)

+ sinh(2κt)

sinh(2κT )

(
F(μfin) − EP(μin, μfin)

2κ

)
+ EP(μin, μfin)

2κ
. (22)

Moreover, for all fixed θ ∈ (0, 1) there exists a decreasing function B(·) such that

F(PθT ) ≤ B(κ)(F(μin) + F(μfin)) exp(−2κ min{θ, 1 − θ}T ) (23)

uniformly in T ≥ 1.

In particular, sinceF(PθT ) dominatesW2(PθT , μ∞) (see e.g. [12, (ii), Thm 2.2 1]),
we obtain that PθT converges exponentially to μ∞ with exponential rate proportional
to κ . The proof of (22) is done by bounding the second derivative of the function t 
→
F(Pt ) along Schrödinger bridges with the help of the logarithmic Sobolev inequality
established in [12]. To obtain (23) from (22) we use a functional inequality for the
conserved quantity and a Talagrand inequality for CT (μin, μfin), that are the content
of Theorem 1.6 and Corollary 1.3 below. It is worthmentioning that the estimates (22),
(23) (as well as (32) below) appear to be new even for the classical Schrödinger bridge
problem and have not been anticipated by the heuristic articles [28,34]. Conversely,
the above mentioned estimates admit a geometrical interpretation in the framework
of Otto calculus that allows to formally extend their validity to the whole class of
problems studied in [28].

Remark 1.4 The exponential rate in (23) has a sharp dependence on κ . To see this, fix
μin and choose μfin = PMKV

T . Then it is easy to see that the restriction of PMKV to the
interval [0, T ] is an optimizer for (MFSP). Setting θ = 1/2 and considering (23) for
T = 2t we arrive at

∀t ≥ 1/2, F(PMKV
t ) ≤ B(κ) exp(−2κt)
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Thus, we obtain the same exponential rate as in [12]5, that is easily seen to be optimal
under the assumption that W is κ-convex. A similar argument can be used to show the
optimal dependence of the rate in θ .

In the previous theorem we showed that, when looking at a timescale that is propor-
tional to T , the marginal distribution of any Schrödinger bridge is exponentially close
to μ∞. Here we show that for a fixed value of t , we have an exponential convergence
towards the law of the McKean–Vlasov dynamics PMKV, see (5).

Theorem 1.5 Assume (H1)–(H4) and let P be an optimizer for (MFSP). For all t ∈
[0, T ] we have

W2
2 (Pt ,P

MKV
t )

≤ 2t

( F(μin)

exp(2κT ) − 1
+ exp(2κT ) − exp(2κ(T − t))

exp(2κ(T − t)) − 1

F(μfin)

exp(2κT ) − 1

)

(24)

In particular, the above theorem tells that W2
2 (Pt ,PMKV

t ) decays asymptotically at
least as fast as exp(−2κT ) when T is large.

1.4.2 Functional inequalities for the mean field entropic cost

It is well known that analysing the evolution of entropy-like functionals along the so-
called displacement interpolation of optimal transport has far reaching consequences
in terms functional inequalities [55]. Since (MFSP) provides with an alternative way
of interpolating between probability measures, it is tempting to see if it leads to new
functional inequalities involving the cost CT (μin, μfin). Here, we present a Talagrand
and anHWI inequality that we used in order to study the long time behavior ofMFSBs.
They generalize their respective counterparts in [48], [42]. Both inequalities are based
on another upper bound for the evolution of F along MFSBs, whose presentation we
postpone to Theorem 4.1.

The following Talagrand inequality tells that the mean field entropic cost grows at
most linearly with F :

Corollary 1.3 (A Talagrand inequality) Assume (H1)–(H4). Then for all T > 0 we
have

∀t ∈ (0, T ), CT (μin, μfin) ≤ 1

exp(2κt) − 1
F(μin)

+ exp(2κ(T − t))

exp(2κ(T − t)) − 1
F(μfin). (25)

In particular, choosing μfin = μ∞ leads to

CT (μin, μ∞) ≤ 1

exp(2κT ) − 1
F(μin). (26)

5 Some doubt on the numeric value of the exponential rates may arise from the fact that in our definition
of F̃ , there is no 1/2 in front of W , as it is the case in [12, Eq. 1.3]. However, as we pointed out before, the
McKean–Vlasov dynamics for the particle system (1) is the gradient flow of 1/2F̃ and not of F̃ .
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Unlike the classical case, in the entropic HWI inequality the Wasserstein distance
is replaced by the conserved quantity EP in the first term on the rhs and by the mean
field entropic cost in the second term. An extra positive contribution 1

4IF is present in
the first term. Our interpretation is that this compensates for the fact that in the “gain”
term we put the cost CT , that is larger than the squared Wasserstein distance. In order
to state the HWI inequality, we introduce the non linear Fisher information functional
IF defined for μ ∈ P2(R

d) by

IF (μ) =
⎧
⎨

⎩

∫

Rd

∣
∣
∣∇ logμ + 2∇W ∗ μ(x)

∣
∣
∣
2
μ(dx), if ∇ logμ ∈ L2

μ

+∞ otherwise.
(27)

where by ∇ logμ ∈ L2
μ we mean μ � λ and that logμ is an absolutely continuous

function on R
d whose derivative is in L2

μ. The non linear Fisher information can be

seen to be equal to the derivative of the free energy F̃ along the marginal flow of the
McKean Vlasov dynamics.

Corollary 1.4 (An HWI inequality) Assume (H1)–(H3) and choose μfin = μ∞. If P is
an optimizer for (MFSP) and t 
→ IF (Pt ) is continuous6 in a right neighbourhood
of 0, then

F(μin) ≤ 1 − exp(−2κT )

2κ

(

IF (μin)

(
1

4
IF (μin) − EP(μ

in, μ∞)

))1/2

−(1 − exp(−2κT ))CT (μin, μ∞). (28)

It is worth noticing that by letting T → +∞ in the above HWI inequality we obtain
the logarithmic Sobolev inequality [12, Thm 2.2]. Indeed, CT (μin, μ∞) is always non
negative and we shall see at Theorem 1.6 below that EP(μin, μ∞) → 0. The short time
regime is also interesting. Indeed, if W = 0, CT (μin, μ∞) is the standard entropic
cost and we have under suitable hypothesis on μin (see [40])

lim
T →0

TCT (μin, μ∞) = 1

2
W2

2 (μin, μ∞). (29)

The heuristic arguments put forward in [28] tell that (29) is expected to be true even
when W is a general potential satisfying (H1). Following again (29), one also expects
that

lim
T →0

T 2

4
IF (μin) − T 2EP(μ

in, μ∞) = W2
2 (μin, μ∞). (30)

Putting (29) and (30) together we obtain an heuristic justification of the fact that in
the limit as T → 0 (28) becomes the classical HWI inequality put forward in [12],

6 We were not able to conclude that in general (H1) and (H2) imply this, although we could establish the
continuity of IF (Pt ) on any open subinterval of [0, T ].
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namely

F(μin) ≤ W2(μ
in, μ∞)IF (μin)1/2 − κW2

2 (μin, μ∞).

Our last result is a functional inequality that establishes a hierarchical relation
between the conserved quantity and the mean field entropic cost: the former is expo-
nentially small in T and κ in comparison with the latter. We may refer to this as
an energy-transport inequality since the conserved quantity may be geometrically
interpreted as the total energy of a physical system (cf. [17, Corollary 1.1]).

Theorem 1.6 Assume (H1)–(H4) and let P be an optimizer. Then the function

[0, T ] 	 t 
→ EP[�t (Xt ) · �̂T −t (X̂T −t )] (31)

is constant. Denoting this constant by EP(μin, μfin), we have

|EP(μin, μfin)| ≤ 4κ

exp(κT ) − 1

(
CT (μin, μfin)CT (μfin, μin)

)1/2
. (32)

In general the term CT (μin, μfin)CT (μfin, μin) in (32) cannot be simplified further,
since typicallyCT (μin, μfin) �= CT (μfin, μin). E.g.CT (δ0, ν) = 0 if ν is the law of the
unconstrainedMcKean–Vlasov SDE at time T started at zero, whereasCT (ν, δ0) > 0,
as it takes effort to drive such SDE to zero.

2 Connections with optimal transport

In this section we shall see how the results of this article relate to the Riemannian
calculus onP2(R

d) introduced byOtto [41], at least formally. The reader not interested
in optimal transport per se is encouraged to skip this section in a first reading. The
link is rooted in a seemingly novel connection between (McKean–Vlasov) FBSDEs
and second order ODEs in the Riemannian manifold of optimal transport that we find
of independent interest. To better understand this connection, let us begin by recalling
that in the seminal article [31] it is proven that the marginal flow of the trajectorial
SDE

dXt = −∇U (Xt )dt + dBt (33)

can be interpreted as the gradient flow of the entropy functional

μ 
→ 1

2

∫

Rd
logμ(x)μ(dx) +

∫

Rd
U (x)μ(dx)

w.r.t. the 2-Wasserstein metric. Thus, first order Itô SDEs provide with probabilistic
representations for first order ODEs in the Riemannian manifold of optimal transport.
Of course, since a path measure is not fully determined by its one time marginals,

123



492 J. Backhoff et al.

the SDE (33) contains more information than the gradient flow equation. It has been
shown in [17] that the marginal flow of a classical Schrödinger bridge satisfies a
second order ODE, more precisely a Newton’s law in which the acceleration field is
the Wasserstein gradient of the Fisher information functional. The natural question is
then: What trajectorial (second order) SDE governs the dynamics of a Schrödinger
bridge and yields a probabilistic representation for the associated Newton’s law? In
order to answer this, let us first recall some notions of Otto calculus.

2.1 Second order calculus onP2(R
d)

In the next lines, we sketch the ideas behind the Riemannian calculus on P2(R
d).

It would be impossible to provide a self-contained introduction in this work and we
refer to [53] or [29] for detailed accounts. The main idea is to equip P2(R

d) with a
Riemannian metric such that the associated geodesic distance is W2(·, ·). To do this,
one begins by identifying the tangent space TμP2 at μ ∈ P2(R

d) as the space closure
in L2

μ of the subspace of gradient vector fields

TμP2 = {∇ϕ, ϕ ∈ C∞
c (Rd)}L2

μ
.

Thevelocity (first derivative) of a sufficiently regular curve [0, T ] 	 t 
→ μt ∈ P2(R
d)

is then defined by looking at the only solution vt (x) of the continuity equation

∂tμt + ∇ · (vtμt ) = 0

such that vt ∈ TμtP2 for all t ∈ [0, T ]. Finally, the Riemannian metric (Otto metric)
〈·, ·〉TμP2 is defined by

〈∇ϕ,∇ψ〉TμP2 =
∫

Rd
∇ϕ · ∇ψ(x) μ(dx). (34)

It can be seen that the constant speed geodesic curves associated to the Riemannian
metric we have introduced coincide with the displacement interpolations of optimal
transport and that the corresponding geodesic distance is indeedW2(·, ·). This makes
it possible to carry out several explicit calculations. In particular, we can compute the
gradient gradW2F and the Hessian HessW2F of a smooth functional F : P2(R

d) →
R. At least formally, we have

〈gradW2F ,∇ϕ〉TμP2 = d

dh
F((id + h∇ϕ)#μ)

∣
∣
∣
h=0

〈∇ϕ,HessW2
μ F(∇ϕ)〉TμP2 = d2

dh2F((id + h∇ϕ)#μ)

∣
∣
∣
h=0

,

where we used the notation # for the push forward. In particular, setting W = 0 for
simplicity in (27) we obtain that the classical Fisher information functional I has a
gradient that can be computed with the rules above. One obtains that (cf. [54])
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gradW2I(μ) = −2∇	 logμ − ∇|∇ logμ|2.

The Levi-Civita connection associated to the Riemannian metric (34) can also be
explicitly computed with the help of the orthogonal projection operator �μ : L2

μ →
TμP2. To do this, consider a regular curve (μt )t∈[0,T ] with velocity (vt )t∈[0,T ] and a
tangent vector field t 
→ ut ∈ TμtP2 along (μt )t∈[0,T ]. It turns out that if one defines
the covariant derivative D

dt ut of (ut )t∈[0,T ] along (μt )t∈[0,T ] as the vector field

D
dt

ut = �μt (∂t ut + Dut · vt )

then this covariant derivative satisfies the compatibility with themetric and the torsion-
free identity, i.e. it is the Levi-Civita connection. The acceleration of the curve
(μt )t∈[0,T ] is then the covariant derivative of the velocity along the curve, i.e.

D
dt

vt = ∂tvt + 1

2
∇|vt |2. (35)

2.2 Newton’s laws and FBSDEs

According to the above discussion the Newton’s law in (P2(R
d), 〈., .〉T·P2)

{ D
dt vt = 1

8grad
W2I(μt )

μ0 = μin, μT = μfin
(36)

provides with a geometrical interpretation for the PDE system (see [17] for more
details)

⎧
⎪⎪⎨

⎪⎪⎩

∂tμt (x) + ∇ · (∇φt (x)μt (x)) = 0

∂t∇φt (x) + 1
2∇|∇φt (x)|2 = − 1

4∇	 logμt (x) − 1
8∇| logμt (x)|2

μ0 = μin, μT = μfin,

(37)

where to derive the latter equation we observe that the requirement that vt ∈ TμtP2 for
all t ∈ [0, T ] is formally equivalent to vt = ∇φt for some time dependent potential
(t, x) 
→ φt (x).

As we have seen in Sect. 1.3.1, solutions of the FBSDE

⎧
⎪⎪⎨

⎪⎪⎩

dXt = Ytdt + dBt

dYt = Zt · dBt

X0 ∼ μin, XT ∼ μfin,

(38)
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having the additional property that Yt = ∇ψt (Xt ) yield a probabilistic representation
for

⎧
⎪⎪⎨

⎪⎪⎩

∂tμt (x) − 1
2	μt (x) + ∇ · (∇ψt (x)μt (x)) = 0,

∂t∇ψt (x) + 1
2∇	ψt (x) + ∇2ψt (x) · ∇ψt (x) = 0,

μ0(x) = μin(x), μT (x) = μfin(x).

(39)

Some tedious though standard calculations allow to see that the change of variable
φt = − 1

2 logμt + ψt transforms the PDE system (39) in (37). Summing up, we have
obtained the following

Informal statement We have:

(i) If (Xt , Yt , Zt )t∈[0,T ] is a solution for the FBSDE (38) such that Yt = ∇ψt (Xt )

for some time-varying potential ψ , then the marginal flow (μt )t∈[0,T ] of Xt is a
solution for the Newton’s law (36).

(ii) If P is the (classical) Schrödinger bridge between μin and μfin, then under P
the canonical process (Xt )t∈[0,T ] is such that there exist processes (Yt )t∈[0,T ],
(Zt )t∈[0,T ] with the property that (Xt , Yt , Zt )t∈[0,T ] is a solution for (38) and Yt

is as in (i)

We leave it to future work to prove a rigorous version of the informal statement above.
On the formal level, there is no conceptual difficulty in extending it to include the
interaction potential W . Essentially, the only difference is that one has to deal with
the non linear Fisher information functional IF instead of I.

Beside its intrinsic interest, the parallelism between Newton’s laws and FBSDEs is
very useful when studying the long time behavior of the latter. Indeed, the Riemannian
structure underlying (36) allows to find tractable expressions for the first and second
derivative of entropy-like functionals along the marginal flow of the FBSDE.

Remark 2.1 Classical Schrödinger bridges are h−transforms in the sense ofDoob [22].
Therefore, one can also describe their dynamics with a first order SDE and a PDE that
encodes the evolution of the drift field. This is not strictly speaking a probabilistic
representation of (36) since there is already a PDE involved. Our FBSDE approach
may be viewed as a way to interpret in a trajectorial sense the PDE governing the drift
in the h−transform representation.

3 Themean field Schrödinger problem and its equivalent
formulations: proofs

In this part we complement the discussion undertaken in Sect. 1.2 and provide the
proofs of the results stated therein. This section is organized into four subsections so
that

• Section 3.1 contains the proof of Theorem 3.1, which generalizes Theorem 1.1,
along with several useful lemmas,

123



The mean field Schrödinger problem: ergodic behavior… 495

• Section 3.2 is where we prove Proposition 1.1, Lemma 1.1 and Theorem 1.3.
• Theorem 1.2 is proven in Sect. 3.3.
• Finally, Corollary 1.1 and 1.2 are proven in Sect. 3.4.

In the whole section, apart from Sect. 3.1 that has its own assumptions, we always
assume that (H1), (H2) are in force, even if we do not write them down explicitly in
the statements of the lemmas and propositions.

3.1 A large deviations principle for particles interacting through their drifts

We consider for N ∈ N the interacting particle system

⎧
⎨

⎩

dXi,N
t = 1

N

N∑

k=1
b

(
t, Xi,N , Xk,N

)
dt + dBi

t

Xi,N
0 ∼ μin, i = 1, . . . , N .

where {Bi : i = 1, . . . , N } are independent Brownian motions and {Xi,N
0 : i =

1, . . . , N } are independent to each other and to the Brownian motions. Regarding the
drift b, we assume

[0, T ] × � × � 	 (t, ω, ω̄) 
→ b(t, ω, ω̄) ∈ R
d is progressively measurable, (40)

|b(t, ω1, ω̄1) − b(t, ω2, ω̄2)| ≤ C

{

sup
s≤t

|ω1
s − ω2

s | + sup
s≤t

|ω̄1
s − ω̄2

s |
}

(41)

∫ T

0
|b(s, 0, 0)|ds ≤ C, (42)

for some constant C > 0 and all (t, ω1, ω2, ω̄1, ω̄2) ∈ [0, T ]×�4. Finally, regarding
the measure μin we assume that

∫

Rd
exp(r |x |β)μin(dx) < ∞ for all r > 0. (43)

We stress that the usual theory of stochastic differential equations guarantees the strong
existence and uniqueness for the above interacting particle system. Furthermore, if
P ∈ P1(�) then the same arguments show that the stochastic differential equation

{
dXP

t = [∫
b

(
t, XP, ω̄

)
P(dω̄)

]
dt + dBt

XP
0 ∼ μin,

admits a unique strong solution. We denote 
(P) the law of XP. We can now state the
main result of this part, which contains Theorem 1.1 as a very particular case.
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Theorem 3.1 Let β ∈ [1, 2) and assume (40), (41), (42), (43). Then the sequence of
empirical measures

{
1

N

N∑

i=1

δXi,N· : N ∈ N

}

,

satisfies a LDP on Pβ(�) equipped with the Wβ -topology, with good rate function
given by

Pβ(�) 	 P 
→ I (P) :=
{
H(P|
(P)), P � 
(P),

+∞, otherwise.
(44)

The result is sharp, in that it fails for β = 2; see [56]. We follow Tanaka’s reasoning
[49] in order to establish this large deviations result. We remark that the assumption
on exponential moments (43) is only used in the proof of Theorem 3.1, and not in the
results preceding this proof.

For Q ∈ Pβ(�) we consider the equation

Yt (ω) = ωt +
∫ t

0

[∫

b(s, Y (ω), Y (ω̄))Q(dω̄)

]

ds. (45)

Lemma 3.1 Take Y (0)
t (ω) := ω0, Q ∈ Pβ(�), and consider the iterations

Y (n+1)
t (ω) = ωt +

∫ t

0

[∫

b(s, Y (n)(ω), Y (n)(ω̄))Q(dω̄)

]

ds, s ≤ T .

Then

(a) The iteration is well-defined ω-by-ω (in particular, the Q-integrals are well-
defined and finite) and in fact supn EQ

[
supt≤T |Y n

t |β]
is finite.

(b) For each ω ∈ � the sequence {Y (n)(ω)}n∈N is convergent in the sup-norm to

some limiting continuous path Y (∞)(ω). Further EQ

[
supt≤T |Y (∞)

t |β
]

< ∞,

EQ

[
supt≤T |Y (∞)

t − Y (n)
t |

]
→ 0, and Y (∞) is adapted to the canonical filtration.

Proof From the Lipschitz assumption on b we first derive

sup
s≤t

|Y (n+1)
s | ≤ sup

s≤t
|ωs | +

∫ T

0
|b(s, 0, 0)|ds + C

∫ t

0
sup
r≤s

|Y (n)
r |dr

+ C
∫ t

0
EQ

[

sup
r≤s

|Y (n)
r |

]

dr . (46)

Raising this to β, taking expectations and using Jensen’s inequality, we derive

EQ

[

sup
s≤t

|Y (n+1)
s |β

]

≤ C ′
(

1 + EQ

[

sup
s≤T

|ωs |β
]

+
∫ t

0
EQ

[

sup
r≤s

|Y (n)
r |β

]

dr

)

,
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where C ′ only depends on T and β. From this we establish for some R ≥ 0 that

sup
n

EQ

[

sup
s≤t

|Y (n)
s |β

]

≤ ReRt .

Now denote 	n
t := sups≤t |Y (n)

s − Y (n−1)
s |. Again by the Lipschitz property

	n+1
t ≤ C

∫ t

0

{
	n

s + EQ[	n
s ]

}
ds,

which we can bootstrap to obtain

	n+1
t + EQ[	n+1

t ] ≤ 3C
∫ t

0

{
	n

s + EQ[	n
s ]} ds.

Observe that 	1
t ≤ 2 sups≤T |ωs − ω0| + C , so from the above inequality we obtain

by induction that 	n+1
t + EQ[	n+1

t ] ≤ C ′′ tn

n! . From this {	n
T + EQ[	n

T ]}n∈N is (for
each ω) summable in n, so the same happens to {	n

T }n∈N and therefore the uniform
limit of the Y (n) exists for all ω. We denote by Y (∞) this limit. By Fatou’s lemma

EQ

[
supt≤T |Y (∞)

t |β
]

< ∞. Since
(
EQ[	n

T ])n∈N is summable we must also have

EQ

[
supt≤T |Y (∞)

t − Y (n)
t |

]
→ 0. Since clearly each Y (n) is adapted so is Y (∞) too.

��
Lemma 3.2 For any Q ∈ Pβ there exists a unique adapted continuous process satis-
fying (45) pointwise. Denoting YQ this process, we further have

Q ◦ (YQ)−1 ∈ Pβ(�).

Proof If X and Y are solutions, then the Lipschitz assumption on b implies

EQ

[

sup
s≤t

|Ys − Xs |
]

≤ K
∫ t

0
EQ

[

sup
r≤s

|Yr − Xr |
]

dr ,

so from Grönwall we derive EQ
[
sups≤T |Ys − Xs |

] = 0. With this, and using again
the Lipschitz assumption on b, we find

sup
s≤t

|Ys − Xs | ≤ K
∫ t

0
sup
r≤s

|Yr − Xr |dr ,

so by Grönwall we deduce that X = Y pointwise. For the existence of a solution we
employ Point (b) of Lemma 3.1, taking limits in the iterations therein (the exchange
of limit and integral is justified by the Lipschitz property of b). Finally Q ◦ (YQ)−1 ∈
Pβ(�) follows by Point (b) of Lemma 3.1 too. ��
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Thanks to this result we can define the operator

� :(Pβ,Wβ) → (Pβ,Wβ)

Q 
→ �(Q) := Q ◦ (YQ)−1,
(47)

where YQ denotes the unique solution of (45).

Lemma 3.3 YRμin

is the unique strong solution to the McKean–Vlasov SDE

{
dZt = [∫

b (t, Z , ω̄)P(dω̄)
]
dt + dBt

Z ∼ P, Z0 ∼ μin.

Furthermore, if {Xi,N : i ≤ N , N ∈ N} is the aforementioned interacting particle
system, which is driven by {Bi : i ∈ N} independent Brownian motions started like
μin, then

�

(
1

N

N∑

i=1

δBi·

)

= 1

N

N∑

i=1

δXi,N· , a.s. (48)

Proof That YRμin

is a solution to the McKean–Vlasov SDE is clear since ω is a Brow-
nian motion under Rμin

. That the solution is unique follows by observing that the drift
in this SDE is Lipschitz jointly in Z and P = Law(Z), from where usual arguments
apply. For the second point, consider first ω1, . . . , ωN continuous paths and define
Q = 1

N

∑N
i=1 δωi . Then for all 1 ≤ i ≤ N we have

YQ
t (ωi ) = ωi

t +
∫ t

0

(
1

N

∑

k≤N

b(s, YQ(ωi ), YQ(ωk))

)

ds.

Replacing the deterministic paths ω1, . . . , ωN by those of B1, . . . , B N we conclude.
��

The key observation is that 1
N

∑N
i=1 δBi satisfies a large deviations principle in

Pβ(�) equipped with theWβ topology, with good rate function given by the relative

entropyH(·|Rμin
). This is true for β < 2 under our exponential moments assumption

(43), but fails for β = 2, as follows easily from [56]. By Lemma 3.3 we may derive,
via the contraction principle ([21, Theorem 4.2.1]) a large deviations principle for

{
1

N

N∑

i=1

δXi,N : N ∈ N

}

,

if we could only establish the continuity of �. This is our next step.

Lemma 3.4 � is Lipschitz-continuous and injective.
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Proof We first prove the Lipschitz property. Let π be a coupling with first marginal Q
and second marginal P. Denoting (ω, ω̄) the canonical process on � × �, and by the
Lipschitz assumption on b, we have

Eπ

[

sup
s≤t

|YQ
s (ω) − Y P

s (ω̄)|β
]

≤ K
∫ t

0
Eπ

[
|YQ

s (ω) − Y P
s (ω̄)|β

]
ds

+Eπ

[

sup
s≤t

|ωs − ω̄s |β
]

.

By Grönwall we have

Eπ

[

sup
s≤T

|YQ
s (ω) − Y P

s (ω̄)|β
]

≤ K ′
Eπ

[

sup
s≤T

|ωs − ω̄s |β
]

,

so taking infimum over such π we conclude that

Wβ(�(Q),�(P)) ≤ K ′Wβ(Q,P).

We now prove that � is injective. Let P = �(Q) = �(Q̂). By definition we have
Q-a.s.

ωt = YQ
t (ω) −

∫ t

0

[∫

b(s, YQ
s (ω), YQ

s (ω̄))Q(dω̄)

]

ds

= YQ
t (ω) −

∫ t

0

[∫

b(s, YQ
s (ω), ω̄)P(dω̄)

]

ds,

and the same holds for Q̂ instead of Q. Denoting

F(ω) := ω −
∫ ·

0

[∫

b(s, ω, ω̄)P(dω̄)

]

ds,

we therefore have

ωt = F(YQ)t (Q − a.s.),

ωt = F(Y Q̂)t (Q̂ − a.s.).

Hence Q = �(Q) ◦ (F)−1 = P ◦ (F)−1 = �(Q̂) ◦ (F)−1 = Q̂. ��
We can now provide the proof of Theorem 3.1:

Proof of Theorem 3.1 As we have observed, if {Bi : i ∈ N} is and iid sequence of
Rμin

-distributed processes, then 1
N

∑N
i=1 δBi· satisfies a large deviations principle in

Pβ(�) equipped with theWβ topology, with good rate function given by the relative

entropy H(·|Rμin
). By (48), and since � : (Pβ,Wβ) → (Pβ,Wβ) is continuous,
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the contraction principle establishes that { 1
N

∑N
i=1 δXi,N· : N ∈ N} satisfies a large

deviations principle in Pβ(�) equipped with the Wβ topology. Since � is injective
the good rate function is given by

Ĩ (P) :=
{
H(�−1(P)|Rμin

) if P ∈ range(�)

+∞ otherwise.

In fact observe that if P ∈ range(�) and �−1(P) � Rμin
then7 P � Rμin

, so

Ĩ (P) :=
{
H(�−1(P)|Rμin

) if P ∈ range (�) and P � Rμin

+∞ otherwise.

Now take P ∈ range(�) and call Q = �−1(P). It is immediate by the definition of
(·)
that 
(P) = Rμin ◦ (YQ)−1. On the other hand observe that the filtration generated by
YQ is equal to the canonical filtration: indeed YQ is adapted and conversely

ωt = YQ
t −

∫ t

0

[∫

b(s, YQ
s , ω̄)P(dω̄)

]

ds =: ht (Y
Q),

so the canonical process is YQ-adapted. From this

d
(
Q ◦ (YQ)−1

)

d
(
Rμin ◦ (YQ)−1

) = ERμin

[
dQ

dRμin |σ(YQ)

]

= dQ

dRμin ◦ h.

Hence

H(P|
(P)) = H(Q ◦ (YQ)−1|Rμin ◦ (YQ)−1) = EQ◦(YQ)−1

[

log
dQ

dRμin ◦ h

]

= H(Q|Rμin
) = H(�−1(P)|Rμin

),

and therefore

Ĩ (P) =
{
H(P|
(P)) if P ∈ range (�) and P � Rμin

+∞ otherwise.

The next step is to show that P � Rμin
implies P ∈ range(�). In fact, denote by τ the

adapted transformation

ω 
→ τt (ω) = ωt −
∫ t

0

∫

b(s, ω, ω̄)P(dω̄)ds.

7 Let P = �(Q) for Q � Rμin
. The process YQ satisfies pointwise dYQ

t = dωt + b̄(t, YQ)dt , where

b̄(t, y) = ∫
b(t, y, YQ(ω̄))Q(dω̄). We have Rμin ◦ (YQ)−1 � Rμin

since in fact their relative entropy is

finite. Hence, if Rμin
(A) = 0 then Rμin

((YQ)−1(A)) = 0, and so Q � Rμin
implies Q((YQ)−1(A)) = 0

therefore P(A) = 0 as desired.
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On the other hand call XP the unique adapted pointwise solution to

XP
t = ω0 +

∫ t

0

[∫

b
(

s, XP, ω̄
)
P(dω̄)

]

ds + ωt ,

which exists by Lemma 3.2 applied to the drift
∫

b(·, ·, ω̄)P(dω̄). As we recall in

Lemma 5.4, XP and τ are P-a.s. inverses if P � Rμin
, since the above drift is Lipschitz.

Now introduce Q := P ◦ (τ )−1, so that Q ◦ (XP)−1 = P and in particular

XP
t = ω0 +

∫ t

0

[∫

b
(

s, XP, XP(ω̄)
)
Q(dω̄)

]

ds + ωt .

By Lemma 3.2 we have �(Q) := Q ◦ (YQ)−1 = Q ◦ (XP)−1 = P.
We have arrived at

Ĩ (P) =
{
H(P|
(P)) if P � Rμin

+∞ otherwise.

To obtain the desired form (44) of the rate function it suffices to use Lemma 5.2 in the
Appendix. ��

3.2 McKean–Vlasov formulation and planningMcKean–Vlasov FBSDE

Proof of Lemma 1.1 and Proposition 1.1
Under (H1) for any P ∈ P1(�) the vector field

[0, T ] × R
d 	 (t, x) 
→ −∇W ∗ Pt (x) := −

∫

Rd
∇W (x − z)Pt (dz),

is very well-behaved. Precisely:

Lemma 3.5 Let P ∈ P1(�) and grant (H1). Then the time-dependent vector field
(t, x) 
→ −∇W ∗ Pt (x) belongs C0,1([0, T ] × R

d ;Rd) and is uniformly Lipschitz in
the space variable.

Proof We begin by proving continuity. Fix t, x and (tn, xn) → (t, x). The sequence
∇W (xn − Xtn ) converges pointwise to ∇W (x − Xt ), since X is the (continu-
ous) canonical process. By the fundamental theorem of calculus and (H1) we have
|∇W (xn − Xtn )| ≤ C1+C2 sups∈[0,T ] |Xs |. Since P ∈ P1(�), we may use dominated
convergence to conclude EP[∇W (xn − Xtn )] → EP [∇W (x − Xt )]. The space Lips-
chitzianity of −∇W ∗ Pt follows from (H1). Space differentiability follows similarly
from (H1) and dominated convergence. ��

We will often make use of the next technical lemma, whose proof we defer to the
appendix:
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Lemma 3.6 Let μ ∈ P2(R
d) and b̄ be of class C0,1([0, T ] × R

d ;Rd) and such that

∀t ∈ [0, T ], x, y ∈ R
d |b̄(t, x) − b̄(t, y)| ≤ C |x − y| (49)

for some C < +∞. Define R̄ as the law of the SDE

dXt = b̄(t, Xt )dt + dBt , X0 ∼ μ (50)

and let P ∈ P(�) with X0 ∼ μ. The following are equivalent

(i) H(P|R̄) < +∞.
(ii) There exist a P-a.s. defined adapted process (ᾱt )t∈[0,T ] such that

EP

[∫ T

0
|ᾱt |2dt

]

< +∞ (51)

and

Xt −
∫ t

0
[b̄(s, Xs) + ᾱs] ds (52)

is a Brownian motion under P.

Moreover, if (i), or equivalently (ii), holds, then we have

H(P|R̄) = 1

2
EP

[∫ T

0
|ᾱt |2dt

]

(53)

and

EP

[

sup
t∈[0,T ]

|Xt |2 + |b̄(t, Xt )
2|

]

< +∞. (54)

In particular, if (i), or equivalently (ii), holds we have that P ∈ P2(�).

We turn to proving Lemma 1.1 stated in the introduction:

Proof of Lemma 1.1 Define the vector field b̄(t, z) := −∇W ∗Pt (z). Lemma 3.5 grants
that b̄ fulfills the hypotheses of Lemma 3.6, giving the desired conclusions. ��

We can prove Proposition 1.1 of the introduction, concerning the existence of
MFSBs. Recall the definition of 
(P) and (MFSP) from the introduction.

Proof of Proposition 1.1 Let Rμin
be the law of the Brownian motion started at μin.

(H2) grants that the classical Schrödinger problem (namely wrt. Brownian motion) is
admissible. To see this, it suffices to verify that the couplingμin⊗μfin is admissible for
the static version of the Schrödinger problem [36,Def 2.2] and then use the equivalence
between the static and dynamic versions [36, Prop 2.3]. Therefore, there exist some
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P ∈ P(�) such that P0 = μin andH(P|Rμin
) < +∞. Lemma 3.6 (or its specialization

Lemma5.1 in the appendix) yields that P ∈ P1(�). On the other handLemma5.2 in the
appendix proves that for any P ∈ P(�)H(P|
(P)) < +∞ if and only ifH(P|Rμin

) <

+∞. Thus (MFSP) is admissible as well. Now observe that P 
→ H(P|
(P)) is lower
semicontinuous in Pβ(�), since on the one hand the relative entropy is jointly lower
semicontinuous in the weak topology, and on the other hand 
 is readily seen to be
continuous inP1(�). Recalling the definition of the operator� given in (47), to finish
the proof we only need to justify that

θM := {P ∈ P1(�) : H(�−1(P)|Rμin
) ≤ M, P0 = μin},

is relatively compact inP1(�) for each M , since the proof of Theorem 3.1 established8

that H(�−1(P)|Rμin
) = H(P|
(P)) if P � Rμin

. Now remark that

θM ⊂�
(
{Q : H(Q|Rμin

)≤ M,Q0=μin}
)
⊂�

(
{Q : H(Q|Rγ )≤ M̄,Q0=μin}

)
,

where γ denotes the standard Gaussian, since by the decomposition of the entropy we
have

H(P|Rγ ) = H(μin|γ ) + H(P|Rμin
),

and by Assumption (H2)

H(μin|γ ) =
∫

logμin(x)μin(dx) −
∫

log(γ (x))μin(dx)

=
∫

logμin(x)μin(dx) + c −
∫ |x |2

2
μin(dx) < ∞.

As � is per Lemma 3.4 Lipschitz in P1(�), it remains to prove that {H(Q|Rγ ) ≤ M̄}
is W1-compact. This can be easily done by hand, or by invoking Sanov Theorem in
theW1-topology for independent particles distributed according to Rγ (see e.g. [56]),
finishing the proof. ��

Proof of Theorem 1.3We split the proof into two propositions, namely Propositions 3.1
and 3.2. We begin by addressing the issue of Markovianity of the minimizers. Recall
the definition of H−1((μt )t∈[0,T ]) given under ‘frequently used notation.’ We rely
strongly on the work [14] by Cattiaux and Léonard for the proof of the following
result:

8 This part of the proof did not use the existence of exponential moments for μin. If we assume existence
of exponential moments, then the compactness of θM follows from Theorem 3.1, since the rate function
must be good.
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Proposition 3.1 Let P be optimal for (MFSP). Then there exists � ∈ H−1((Pt )t∈[0,T ])
such that

(dt × dP-a.s.) αP
t = �t (Xt ), (55)

where (αP
t )t∈[0,T ] is given in Lemma 1.1.

Proof If P be optimal for (MFSP), then it is also optimal for

inf {H(Q|
(P)) : Q ∈ P1(�), Qt = Pt for all t ∈ [0, T ]} , (56)

since 
(P) only depends on the marginals of P. The above problem is an instance of
[14], ie. its optimizer is a so-called critical Nelson process. However, the drift of the
path-measure 
(P) may not fulfill the hypotheses in [14]. For this reason we need to
make a slight detour. Let θn ∈ C∞

c ([0, T ] × R
d) and Rn be defined as in Lemma 5.3

in the appendix, meaning that ∇θn· (·) converges to −∇W ∗ Pt (z) in H−1((Pt )t∈[0,T ])
and that Rn is the law of

dYt = ∇θn
t (Yt )dt + dBt , Y0 ∼ μin ∈ P2(R

d).

For any n consider the problem

min
{
H(Q|Rn) : Q ∈ P1(�), Qt = Pt for all t ∈ [0, T ]} . (57)

Using [14, Lemma 3.1,Theorem 3.6] we obtain that for all n the unique optimizer P̄
of (57) is the same for all n, and is such that there exists � ∈ H−1((Pt )t∈[0,T ]) such
that

Xt −
∫ t

0
�s(Xs)ds (58)

is a Brownian motion under P̄. Lemma 3.5 grants that if we set b̄(t, z) = −∇W ∗Pt (z)
then the hypotheses of Lemma 3.6 are met. SinceH(P|
(P)) < +∞, we derive from
(54) therein that

EP̄

[∫ T

0
|∇W ∗ Pt (Xt )|2dt

]

= EP

[∫ T

0
|∇W ∗ Pt (Xt )|2dt

]

< +∞.

Hence

EP̄

[∫ T

0
|�t (Xt ) + ∇W ∗ Pt (Xt )|2dt

]

< +∞. (59)

Using the implication (i i) ⇒ (i) of Lemma 3.6 we finally obtain that H(P̄|
(P)) <

+∞ and therefore that we can use Lemma 5.3 for the choice Q = P̄ therein.
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Now consider Q admissible for (56) and such that H(Q|
(P)) < +∞. Using
Lemma 5.3 twice we obtain

H(P̄|
(P)) = lim inf
n→+∞ H(P̄|Rn) ≤ lim inf

n→+∞ H(Q|Rn) = H(Q|
(P))

Thus P̄ is also an optimizer for (56). But then P̄ = P since (56) can have at most one
minimizer by strict convexity of the entropy and convexity of the admissible region.
Combining (58) with (9) we get that

∫ t
0

(−∇W ∗ Ps(Xs) + αP
s − �s(Xs)

)
ds is a

continuousmartingalewithfinite variation.But then it is constant P-a.s. The conclusion
follows setting �t (z) := �t (z) + ∇W ∗ Pt (z) and observing that ∇W ∗ P·(·) ∈
H−1((Pt )r∈[0,T ]). ��

Notice that the above proposition proves the first half of Theorem 1.3 from the
introduction. We now establish the second half of this result:

Proposition 3.2 Assume that P is optimal for (MFSP). Then �t (Xt ) has a continuous
version adapted to the P-augmented canonical filtration, and the process (Mt )t∈[0,T ]
defined by

Mt := �t (Xt ) −
∫ t

0
ẼP̃

[
∇2W (Xs − X̃s) · (�s(Xs) − �s(X̃s))

]
ds (60)

is a continuous martingale under P on [0, T [ and satisfies EP

[∫ T
0 |Mt |2dt

]
< +∞.

To carry out the proof, we will use a well-known characterization of martin-
gales (see e.g. [23]) which is as follows: an adapted process (Mt )t∈[0,T ] such that

EP

[∫ T
0 |Mt |2dt

]
< +∞ is a martingale in [0, T [ under P if and only if

EP

[∫ T

0
Mt htdt

]

= 0 (61)

for all adapted processes (ht )t∈[0,T ] such that

EP

[∫ T

0
|ht |2dt

]

< +∞, and
∫ T

0
ht dt = 0 P − a.s. (62)

Proof Define (Mt )t∈[0,T ] via (60).Using (H1), (8) and (54)we get thatEP[
∫ T
0 |Mt |2dt]

< +∞. Therefore, using the characterization of martingales [23, pp. 148–149] in
order to show that Mt is a martingale on [0, T [ we need to show (61) for all adapted
processes (ht )t∈[0,T ] satisfying (62). By a standard density argument, one can show
that it suffices to obtain (61) under the additional assumption that (ht )t∈[0,T ] is bounded
and Lipschitz, i.e.

∀t ∈ [0, T ], ω, ω̄ ∈ �, sup
s∈[0,t]

|hs(ω) − hs(ω̄)|
≤ C sup

s∈[0,t]
|ωs − ω̄s |, sup

t∈[0,T ]
|ht (ω)| ≤ C, (63)
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for some C > 0. Consider now a process (ht )t∈[0,T ] satisfying (62) and (63) and for
ε > 0 define the shift transformation

τ ε : � −→ �, τε
t (ω) = ωt + ε

∫ t

0
hs(ω)ds. (64)

Under the current assumptions, τ ε admits an adapted inverse Y ε, i.e. there exists an
adapted process (Y ε

t )t∈[0,T ] such that

P − a.s. τ ε
t (Y ε(ω)) = Y ε

t (τ ε(ω)) = ωt ∀t ∈ [0, T ]. (65)

Indeed, since H(P|
(P)) < +∞, Lemma 5.2 in the appendix yields that P � Rμin
;

this entitles us to apply Lemma 5.4 in the same section, providing the existence of the
inverse Y ε.

If we set Pε = P ◦ (τ ε)−1 we have that Pε ∈ P1(�) is admissible for (MFSP),
thanks to (62). Moreover, Lemma 1.1 and (65) imply that

Xt −
∫ t

0

(
εhs(Y

ε) + �s(Y
ε
s ) − ∇W ∗ Ps(Y

ε
s )

)
ds

is a Brownian motion under Pε. Combining (8), (63) and (H1) we get that

1

2
EPε

[∫ T

0

∣
∣�t (Y

ε
t ) + εht (Y

ε) − ∇W ∗ Pt (Y
ε
t ) + ∇W ∗ Pε

t (Xt )
∣
∣2dt

]

< +∞.

(66)

Lemma 3.5 grants that b̄(t, x) = −∇W ∗ Pε
t (x) fulfills the hypothesis of Lemma 3.6

and (66) allows to use the implication (i i) ⇒ (i) which yields that H(Pε|
(Pε)) is
finite and equals the left hand side of (66). Using the definition of Pε, we can rewrite
H(Pε|
(Pε)) as

1

2
EP

[∫ T

0
|εht + �t (Xt ) + ∇W ∗ Pε

t (τ
ε
t ) − ∇W ∗ Pt (Xt )|2ds

]

.

Imposing optimality of P and letting ε to zero, using Taylor’s expansion

0 ≤ lim inf
ε→0

H(Pε|
(Pε)) − H(P|
(P))

ε

= EP

[∫ T

0
�t (Xt ) ·

(

ht + ẼP̃

[

∇2W (Xt − X̃t ) ·
∫ t

0
hs − h̃sds

])

dt

]

.

In the above equation, (X̃t , h̃t )t∈[0,T ] is an independent copy of (Xt , ht )t∈[0,T ] defined
on some probability space (�̃, F̃, P̃) and ẼP̃ denotes the expectation on (�̃, F̃, P̃).
Moreover, the exchange of limit and expectation is justified by (49), (8) and the domi-
nated convergence theorem. Using the symmetry of W , and taking±h, we can rewrite
the latter condition as
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0 = EP

[∫ T

0
�t (Xt ) · htdt

]

+EP

[∫ T

0
ẼP̃

[
(�t (Xt )−�t (X̃t )) · ∇2W (Xt − X̃t )

]
·
∫ t

0
hsds dt

]

.

By integration by parts and the boundary condition (62) , we arrive at

0=EP

[∫ T

0

(

�t (Xt )−
∫ t

0
ẼP̃

[
(�s(Xs) − �s(X̃s)) · ∇2W (Xs − X̃s)

]
ds

)

· htdt

]

,

proving the desired martingale property. By [45, Theorem IV.36.5] we know that a
martingale in an augmented Brownian filtration admits a continuous version. Using
again Lemma 5.2 we have that P � Rμ, and we so obtain a continuous version of our
martingale (60), and a fortiori of �t (Xt ). ��

3.3 Benamou-Brenier formulation

Wefinally turn to the Benamou-Brenier formulation. Recall thatCT (μin, μfin) denotes
the optimal value of the mean field Schrödinger problem. We define the set A as the
collection of all absolutely continuous curves (μt )t∈[0,T ] ⊂ P2(R

d) (see Sect. 4.2)
such that

(t, z) 
→ ∇ logμt (z) ∈ L2(dμtdt),

(t, z) 
→ ∇W ∗ μt (z) ∈ L2(dμtdt).

Recall from the introduction the problem

C B B
T (μin, μfin)

:= inf
(μt )t∈[0,T ]∈A,

∂t μt +∇·(wt μt )=0

1

2

∫ ∫ ∣
∣
∣
∣wt (z) + 1

2
∇ logμt (z)

+∇W ∗ μt (z)|2 μt (dz)dt (67)

In (67), solutions to the continuity equation ∂tμt + ∇ · (wtμt ) = 0 are meant in the
weak sense.

Proof of Theorem 1.2 We first show that CT (μin, μfin) ≥ C B B
T (μin, μfin). To this end,

we may assume that the l.h.s. if finite and denote P an optimizer. As established in
Theorem 1.3, the drift of X under P is equal to

∫ t

0
�s(Xs) − ∇W ∗ Ps(Xs)ds,

123



508 J. Backhoff et al.

where � ∈ H−1((Pt )t∈[0,T ]) and

CT (μin, μfin) = 1

2

∫ ∫

|�t (z)|2Pt (dz)dt .

As we will see in Lemma 4.4 and Remark 4.1, the flow of marginals (Pt )t∈[0,T ] is
absolutely continuous and its tangent velocity field v is given by

vt (z) := −∇W ∗ Pt (z) + �t (z) − 1

2
∇ log Pt .

Hence

CT (μin, μfin) = 1

2

∫ ∫ ∣
∣
∣
∣vt (z) + 1

2
∇ log Pt + ∇W ∗ Pt (z)

∣
∣
∣
∣

2

Pt (dz)dt .

We conclude the desired inequality by noticing that ∇ log Pt ∈ L2(dPtdt) and ∇W ∗
Pt ∈ L2(dPtdt). Towit, the first statement follows from [25, Thm3.10] combinedwith
Lemma 5.2 in our appendix, and the second from (54) used with b̄ = −∇W ∗ Pt (z).
We now establishCT (μin, μfin) ≤ C B B

T (μin, μfin), so we may assume that (μt )t∈[0,T ]
is feasible for the r.h.s. and leads to a finite value. Denote by ṽ its tangent velocity
field. We define �t (z) := ṽt (z) + 1

2∇ logμt (z), so from the continuity equation for
(μt )t∈[0,T ] we deduce the following equation in the distributional sense

∂tμt + ∇ · (μt�t ) − 1

2
	μt = 0.

Observing that� ∈ H−1((μt )t∈[0,T ]), wemay apply the equivalence “(a) iff (c)” in [14,
Theorem 3.4].9 We thus obtain a measure P whose marginals are exactly (μt )t∈[0,T ],
and by the uniqueness statement in [14, Theorem 3.4] we also know that the drift of
X under P is precisely �s(Xs). Hence

1

2

∫ ∫ ∣
∣
∣
∣ṽt (z) + 1

2
∇ logμt (z) + ∇W ∗ μt (z)

∣
∣
∣
∣

2

μt (dz)dt

= 1

2

∫ ∫

|�t (z) + ∇W ∗ μt (z)|2 μt (dz)dt

= 1

2
EP

[∫ T

0
|�(Xt ) + ∇W ∗ Pt (Xt )|2dt

]

≥ CT (μin, μfin),

where the inequality follows from the equivalent expression of CT (μin, μfin) given in
(10).

9 That is for the construction of a Nelson process with marginals (μt )t∈[0,T ], with respect to the reference
measure given by Wiener started at μin.
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We have proven CT (μin, μfin) = C B B
T (μin, μfin), and the other statements follow

from the previous arguments. ��

3.4 Schrödinger potentials andmean field PDE system: proofs

We start with an observation concerning the link between (15) and (16):

Remark 3.1 It is worth stressing that the link between (15) and (16) can be established
if the FBSDE solution Yt is a gradient vector field depending only on t and Xt . We
have gathered preliminary evidence that (15) admits non Markov solutions even in
the simple case when W = 0. More precisely, we expect that all processes in the
reciprocal class of Brownian motion (meaning that they share the same bridges, but
see [37] for details) fulfilling the marginal constraints of (1.1) are solutions to (15).
This is in contrast with what is expected for standard FBSDEs [10, Lemma 3.5] whose
boundary conditions are not of planning type.

We now provide the belated proofs:

Proof of Corollary 1.1 We know by Theorem 1.1 that� belongs to H((μt ))t∈[0,T ]. The
regularity hypothesis imposed on �t (x) and μt (x) allow us to conclude that � is a
true gradient, i.e. there existψ such that�t (x) = ∇ψt (x) for all (t, x) ∈ [0, T ]×R

d .
Lemma 1.1 together with Theorem 1.3 yield that μt is a weak solution of the Fokker
Planck equation in (17). Because of the regularity assumptions we made on � and μ,
we can conclude that μt is indeed a classical solution. For the same reasons, we can
turn the martingale condition (1.3) into the system of PDEs

∀i = 1, . . . , d ∂t∂xi ψt (x) + L(∂xi ψt (x))

−
∫

Rd
∂xi ((∇W (x − x̃)) · (∇ψ(x) − ∇ψ(x̃))μt (dx̃) = 0,

whereL is the generator 1
2	+(∇(−W ∗μt +ψt ))·∇. After some tedious but standard

calculations we can rewrite the above as

∂xi

(

∂tψt (x) + 1

2
	ψt (x) + 1

2
|∇ψt (x)|2

+
∫

Rd
∇W (x − x̃) · (∇ψt (x) − ∇ψt (x̃)μt (dx̃))

)

= 0

Since ψ is defined up to the addition of a function that depends on time only, the
conclusion follows. ��

Corollary 1.2 can be proven with a direct calculation using the definition of ϕt and
(17).
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4 Convergence to equilibrium and functional inequalities: proofs

In this part we complement the discussion undertaken in Sect. 1.4 and provide proofs
for the results stated therein. This section is organized as follows:

• Sections 4.1, 4.2, 4.3 are devoted to stating and proving some preparatory results
that we shall use at different times in the proofs of the main results.

• In Section 4.4 we prove Theorem 1.6, andwe state and prove Theorem 4.1 together
with its corollaries: the Talagrand (Corollary 1.3) and the HWI (Corollary 1.4)
inequalities.

• Finally, in Sect. 4.5 we prove Theorems 1.4 and 1.5.

In all the lemmas and theorems in this subsection we always assume (H1)–(H2) to
hold, and throughout P, αP, �, M are as given in Theorem 1.3. We refer to Sects. 1.2
and 1.4 for any unexplained notation.

4.1 Exponential upper bound for the corrector

Recall that we called� the corrector. The goal of this part is to quantify the size of the
corrector, as stated in Lemma 4.3 below. Before doing this we prove two preliminary
lemmas. As usual, we denote by 〈·〉 the quadratic variation of a semimartingale.

Lemma 4.1 We have

∀t ∈ [0, T [, EP[|Mt |2] = EP[〈M〉t ] < +∞. (68)

Moreover the function t 
→ E [〈M〉t ] is continuous on [0, T [ and

∀t ∈ [0, T [, sup
s∈[0,t]

EP[|�s(Xs)|2] < +∞ (69)

Proof We have shown at Theorem 3.2 that EP

[∫ T
0 |Mt |2dt

]
< +∞ which gives that

EP
[|Mt |2

]
< +∞ for almost every t ∈ [0, T [. But since EP

[|Mt |2
]
is an increasing

function of t , we get EP
[|Mt |2

]
< +∞ for all t ∈ [0, T [. To complete the proof of

(68) it suffices to observe that by definition of quadratic variation and since Mt is an
L2-martingale on [0, T [, we have EP

[|Mt |2
] = EP[〈Mt 〉]. To prove the continuity of

t 
→ EP[〈M〉t ] we start by observing that since Mt is a continuous martingale, then
〈M〉t has continuous and increasing paths. Thus, we obtain by monotone convergence
that EP[〈M〉t+h] → EP[〈M〉t ] as h ↓ 0, which gives the desired result. The proof
of (69) follows from (60), the bounded Hessian of W (see(H1)) and the first part of
Theorem 1.3. ��
Lemma 4.2 The function t 
→ EP[Xt ] is linear, the function t 
→ EP[�t (Xt )] is
constant, and

∀t ∈ [0, T [, EP[Xt ] = EP[X0] + EP[�0(X0)]t
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Proof Using the symmetry of W and the martingale property (60) it is easily derived
that EP[�t (Xt )] is constant as a function of t . Therefore we get for all t ∈ [0, T ]

EP[Xt ] = EP[X0] −
∫ t

0
EP[∇W ∗ Ps(Xs)]ds + EP[�0(X0)]t

Using again the symmetry of W we get that
∫ t
0 EP[∇W ∗ Ps(Xs)]ds = 0, from which

the conclusion follows. ��

We can now provide some key estimates on the corrector:

Lemma 4.3 Assume (H1)–(H4). If P is an optimizer for (MFSP) and � the associated
corrector, then for any t ∈ (0, T ) we have

1

2
EP

[∫ t

0
|�s(Xs)|2ds

]

≤ exp(2κt) − 1

exp(2κT ) − 1
CT (μin, μfin), (70)

and

1

2
EP

[
|�t (Xt )|2

]
≤ 2κ CT (μin, μfin)

exp(2κ(T − t)) − 1
. (71)

Proof Consider the function t 
→ ϕ(t) defined by

ϕ(t) = 1

2
EP

[∫ t

0
|�s(Xs)|2ds

]

.

Fubini’s theorem allows to interchange the time integral and the expectation to get
that ϕ is an absolutely continuous function with derivative

ϕ′(t) = EP

[
|�t (Xt )|2

]
. (72)

From Itô’s formula and Theorem 1.3 we get that for all t ∈ [0, T [

|�t (Xt )|2 − |�0(X0)|2 = 2
∫ t

0
�r (Xr ) · dMr

+ 2
∫ t

0
�r (Xr ) · ẼP̃[∇2W (Xr − X̃r )·

(�r (Xr ) − �r (X̃r ))] dr + 〈M〉t .

We observe that the fact that Mt is a martingale together with (69) and (68) make sure

that EP

[∫ t
0 �r (Xr ) · dMr

]
= 0. Thus, taking expectation on both sides of the above
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equation yields

ϕ′(t) − ϕ′(0) = EP

[

2
∫ t

0
�r (Xr ) · ẼP̃[∇2W (Xr − X̃r ) · (�r (Xr ) − �r (X̃r ))] dr

]

+EP[〈M〉t ]. (73)

Because of (69) we can use Fubini’s Theorem and write

EP

[

2
∫ t

0
�r (Xr ) · ẼP̃[∇2W (Xr − X̃r ) · (�r (Xr ) − �r (X̃r ))] dr

]

= 2
∫ t

0
EP

[
�r (Xr ) · ẼP̃[∇2W (Xr − X̃r ) · (�r (Xr ) − �r (X̃r ))]

]
dr

=
∫ t

0
EP⊗P̃

[
(�r (Xr ) − �r (X̃r )) · ∇2W (Xr − X̃r ) · (�r (Xr ) − �r (X̃r ))

]
dr ,

(74)

where we used the symmetry of W to obtain the last expression. Plugging it back in
(73) and using that t 
→ ϕ′(t) is

• continuous on [0, T [ because so are (74) and E[〈M〉t ] (cf. Lemma 4.1),
• increasing on [0, T [ since W is convex and the quadratic variation is an increasing
process,

we conclude that t 
→ ϕ′(t) is absolutely continuous on the same interval. More-
over, using the κ-convexity of W and again the fact that the quadratic variation is an
increasing process we get

ϕ′′(t) ≥ 2κ EP[|�t (Xt )|2] = 2κ ϕ′(t) (75)

where to establish the last inequality we used that the hypothesis on μin and μfin

together with Lemma 4.2 imply EP[�t (Xt )] = 0. The bound (70) follows by integrat-
ing the differential inequality (75) as done for instance in Lemma 5.5 in the Appendix,

and observing that 1
2EP

[∫ T
0 |�r (Xr )|2dr

]
= H(P|
(P)). To prove (71), we begin by

observing that (75) also yields that

∀s ∈ [t, T ], EP

[
|�s(Xs)|2

]
≥ exp(2κ(s − t))EP

[
|�t (Xt )|2

]
. (76)

Next, by definition of entropic cost we get the trivial bound

CT (μin, μfin) = 1

2
EP

[∫ T

0
|�s(Xs)|2ds

]

≥ 1

2
EP

[∫ T

t
|�s(Xs)|2dt

]

The desired conclusion follows by plugging (76) in the above equation and some
standard calculations. ��
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4.2 First derivative ofF

We compute the first derivative of F along the marginal flow of Q, assuming that
H(Q|
(Q)) < +∞ and that Q is Markov. To do this, we use an approach based on
optimal transport, and some results of [25]. To be self-contained, we recall the basic
notions of optimal transport we need to state the results. We refer to [1] for more
details.

Tangent space Let μ ∈ P2(R
d). The tangent space TanμP2 at μ is the closure in

L2
μ of

{
∇ψ;ψ ∈ C∞

c (Rd)
}

.

Since L2
μ is an Hilbert space, given an arbitrary � ∈ L2

μ, there exists a unique projec-
tion �μ(�) of � onto TanμP2(R

d).

Absolutely continuous curves and velocity field Following [1, Th 8.3.1], we say
that a curve (μt )t∈[0,T ] ⊆ P2(R

d) is absolutely continuous if there exists a Borel
measurable vector field (t, z) 
→ wt (z) such that

• (wt )t∈[0,T ] solves (in the sense of distributions) the continuity equation

∂tμt + ∇ · (wtμt ) = 0. (77)

• wt satisfies the integrability condition

∫ T

0

(∫

Rd
|wt (z)|2μt (dz)

)1/2

dt < +∞.

Consider an absolutely continuous curve (μt )t∈[0,T ]. It is a consequence of the
results in Chapter 8, and in particular of Proposition 8.4.5 of [1], that there exist a
unique Borel measurable vector field vt (z) solving (77) and such that z 
→ vt (z)
belongs to the tangent space TanμtP2 for almost every t ∈ [0, T ]. We call such vt the
(tangent) velocity field of (μt )t∈[0,T ].

Remark 4.1 Let (μt )t∈[0,T ] be an absolutely continuous curve and wt (z) be in
H−1((μt )t∈[0,T ]). It is rather easy to see that z 
→ wt (z) belongs to TanμtP2 for
almost every t ∈ [0, T ].

Throughout the rest of the paper, if Q ∈ P(�) is such thatH(Q|
(Q)) < +∞, we
say that Q is Markov if α

Q
t is σ(Xt )-measurable for all t ∈ [0, T ], (αQ

t )t∈[0,T ] being
defined by (8). In that case we write �

Q
t (Xt ) instead of α

Q
t .

Lemma 4.4 Let Q be such that H(Q|
(Q)) < +∞ and Markov. Then
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(i) (Qt )t∈[0,T ] is an absolutely continuous curve. Its tangent velocity field is given
by

vt (z) = −∇W ∗ Qt (z) + �Qt (�
Q
t (z)) − 1

2
∇ logQt (z). (78)

Moreover,

∫ T

0

∫

Rd
|vt |2dQtdt < +∞. (79)

(ii) The function t 
→ F(Pt ) is absolutely continuous and

∀0 ≤ s ≤ t, F(Qt ) − F(Qs) =
∫ t

s

∫

Rd

(∇ logQr

+2∇W ∗ Qr
)
(z) · vr (z)Qr (dz) dr . (80)

Proof Proof of (i) To show that (Qt )t∈[0,T ] is absolutely continuous it suffices to show
that there exists a distributional solution of the continuity equation

∂tQt + ∇ · (wtQt ) = 0 (81)

with the property that

∫ T

0

(∫

Rd
|wt (z)|2Qt (z)

)1/2

dt < +∞. (82)

Let now ϕ ∈ C∞
c (]0, T [×R

d). Using Itô’s formula and taking expectation we obtain

∫ T

0

∫

Rd

(
∇ϕ(t, z)

( − ∇W ∗ Qt (z)+�
Q
t (z)

)+ 1

2
	ϕ(t, z)+∂tϕ(t, z)

)
Qt (dz)=0.

(83)

Lemma 5.2 in the appendix grants that under the current assumptions H(Q|Rμin
) <

+∞, where Rμin
is theWienermeasure started atμin. But then, using [25, Thm3.10]10

we obtain that logQt is an absolutely continuous function for almost every t and that
(t, z) 
→ ∇ logQt (z) belongs to H−1((Qt )t∈[0,T ]). Therefore we can use integration
by parts in (83) to obtain

∀t ∈ [0, T ], 1

2

∫

Rd
∇ϕ(t, z)Qt (dz) = −1

2

∫

Rd
	 logϕ(t, z) · ∇ logQt (z)Qt (dz)

which gives, using the definition of the projection operator �Qt , that the rhs of (78)
solves the continuity equation in the sense of distributions. Next, we observe that (8)

10 Strictly speaking, Föllmer’s result is only concerned with the case μin = δ0. However, a simple adap-
tation of his argument show that its validity extends to any μin satisfying (H2).
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grants that�Qt (�
Q(t, z)) ∈ H−1((Q)t∈[0,T ]). We have already shown that∇ logQt ∈

H−1((Q)t∈[0,T ]), and (54) used with b̄ = −∇W ∗ Qt (z) yields that −∇W ∗ Qt (z) ∈
H−1((Q)t∈[0,T ]). Thus vt (z) ∈ H−1((Q)t∈[0,T ]) as well, which gives (82) and (79).
Finally, Remark 4.1 yields that (vt )t∈[0,T ] is indeed the tangent velocity field.
Proof of (ii) From point (i) we know that z 
→ ∇ logQt (z) belongs to L2

Qt
for almost

every t ; this implies that∇ logQt +2∇W ∗Qt belongs to the subdifferential ofF at Qt

for almost every t (see e.g. [1, Thm. 10.4.13]). The chain rule [1, sec. E, pp. 233–234]
gives the desired result (80), provided its hypothesis are verified.We have to check that
(a) (Qt )t∈[0,T ] is an absolutely continuous curve and F(Qt ) < +∞ for all t ∈ [0, T ],
(b) F(·) is displacement λ-convex for some λ ∈ R, and (c) that

∫ T

0

(∫

Rd
|vt |2dQt

)1/2 (∫

Rd

∣
∣
∣∇ logQt + 2∇W ∗ Qt

∣
∣
∣
2
dQt

)1/2

dt < +∞.

To wit, (a) follows from point (i) and the fact that H(Q|
(Q)) < +∞, and (b) is a
consequence of displacement convexity of the entropy and (H1). Finally, (c) is granted
by (79) and the fact that ∇ logQt (z)+ 2∇W ∗Qt (z) belongs to H−1((Qt )t∈[0,T ]) (see
the proof of (i)). ��

4.3 Time reversal

ForQ ∈ P(�) the time reversal Q̂ is the lawof the time reversed process (XT −t )t∈[0,T ].
In this section we derive an expression forH(Q̂|
(Q̂)) and use it to derive the bound
(91) below, which plays a fundamental role in the proof of Theorem 4.1.

Proposition 4.1 Let Q ∈ P1(�) be Markov and such that H(Q|
(Q)) < +∞.

(i) If Q0 = μin, QT = μfin then H(Q̂|
(Q̂)) < +∞ as well and

H(Q̂|
(Q̂)) = H(Q|
(Q)) + F(μin) − F(μfin) (84)

(ii) If Q0 = μfin, QT = μin then H(Q̂|
(Q̂)) < +∞ as well and

H(Q|
(Q)) = H(Q̂|
(Q̂)) + F(μin) − F(μfin) (85)

Proof We only prove (i), (ii) being completely analogous. Recalling (see Lemma 5.2)
that H(Q|
(Q)) < +∞ implies H(Q|Rμin

) < +∞, we can use [25, Thm. 3.10,
Eq. 3.9] to obtain that there exist a Borel measurable vector field b̂t (x) such that

Xt −
∫ t

0
b̂s(Xs)ds

is a Brownian motion under P̂ and that

Q̂ − a.s. b̂t (Xt ) = −bT −t (Xt ) + ∇ logQT −t (Xt ) ∀t ∈ [0, T ], (86)
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where bt (z) is the drift ofQ, that, in viewofLemma1.1wewrite as−∇W ∗Qt +�
Q
t (z).

Thus, we deduce that under Q̂ we have that

Xt −
∫ t

0
−∇W ∗ Q̂s(Xs) + �̂Q

s (Xs)ds

is a Brownian motion, where

Q̂ − a.s. �̂
Q
t (Xt ) = −�

Q
T −t (Xt )

+∇ logQT −t (Xt ) + 2∇W ∗ QT −t (Xt ) ∀t ∈ [0, T ]. (87)

In the proof of Lemma 4.4, it was shown that (∇ logQt )t∈[0,T ], (∇W ∗ Q·)t∈[0,T ]
and (�

Q
t )t∈[0,T ] are all in H−1((Qt )t∈[0,T ]). This implies that (�̂

Q
t )t∈[0,T ] ∈

H−1((Q̂t )t∈[0,T ]) as well. But then using (i i) ⇒ (i) in Lemma 3.6 for the choice
b̄(t, z) = −∇W ∗ Q̂t (z) we get that H(Q̂|
(Q̂)) < +∞ and

H(Q̂|
(Q̂)) = 1

2
EQ̂

[∫ T

0
|�̂Q

t (Xt )|2dt

]

.

Using (87) in the above equation we get

H(Q̂|
(Q̂))

= 1

2
EQ̂

[∫ T

0
|�Q

T −t (Xt ) − (∇ logQT −t (Xt ) + 2∇W ∗ QT −t (Xt )
)|2dt

]

= 1

2
EQ

[∫ T

0
|�Q

t (Xt )|2dt

]

+ 1

2
EQ

[ ∫ T

0

(∇ logQt (Xt ) + 2∇W ∗ Qt (Xt )
)·

( − 2�Q
t (Xt ) + ∇ logQt (Xt ) + 2∇W ∗ Qt (Xt )

)
dt

]

(78)= H(Q|
(Q)) − EQ

[∫ T

0

(∇ logQt (Xt ) + 2∇W ∗ Qt (Xt )
) · vt (Xt )dt

]

.

The conclusion follows from point (ii) of Lemma 4.4. ��
Aconsequence of Proposition 4.1 is that optimality is preserved under time reversal.

Lemma 4.5 Let P be an optimizer for (MFSP). Then P̂ optimizes

inf
{
H(Q|
(Q)) : Q ∈ P1(�), Q0 = μfin, QT = μin

}
. (88)

Proof Let us observe that since (H2) makes no distinction between μin and μfin,
the problem (88) admits at least an optimal solution by Proposition 1.1. Applying
Proposition 3.1 inverting the roles of μin, μfin we get that the optimizers of (88) are
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Markov. So it suffices to show that for any Markov Q admissible for (88) we have
H(Q|
(Q)) ≥ H(P̂|
(P̂)). Take any such Q. We have

H(Q|
(Q))
Prop. 4.1(i i)= H(Q̂|
(Q̂)) + F(μin) − F(μfin)

Opt. of P≥ H(P|
(P)) + F(μin) − F(μfin)

Prop. 4.1(i)= H(P̂|
(P̂)).

��

4.4 Functional inequalities: proofs and the behaviour ofF

The goal of this section is to prove Theorem 1.6 as well as the Talagrand and HWI
inequalities. The latter are colloraries of the following new result concerning the
behaviour of F along bridges:

Theorem 4.1 Assume (H1)–(H4) and let T > 0 be fixed. If P is an optimizer for
(MFSP), then for all t ∈ [0, T ] we have

F(Pt ) ≤ exp(2κ(T − t)) − 1

exp(2κT ) − 1
F(μin) + exp(2κT ) − exp(2κ(T − t))

exp(2κT ) − 1
F(μfin)

− (exp(2κ(T − t)) − 1)(exp(2κt) − 1)

exp(2κT ) − 1
CT (μin, μfin). (89)

This bound generalizes to the mean field setup the results of [17], and may be seen
as a rigorous version of some of the heuristic arguments put forward in [28] and [34],
upon slightly modifying the definition of CT .

4.4.1 Proof of Theorem 4.1

Using a time reversal argument, we prove the bound (91) which is the key ingredient
of the proof of Theorem 4.1 together with the bound for the correction term (70).

The backward corrector �̂ is obtained by the same argument used in Proposi-
tion 4.1, replacing (MFSP) with (88) to obtain that there exist a Borel measurable
vector field �̂t (z) ∈ H−1((P̂t )t∈[0,T ]) such that

Xt −
∫ t

0

(
−∇W ∗ P̂s(Xs) + �̂s(Xs)

)
ds

is a Brownian motion under P̂. Moreover, the following relation holds

P̂ − a.s. �̂t (Xt ) = −�T −t (Xt ) + ∇ log PT −t (Xt )

+2∇W ∗ PT −t (Xt ) ∀t ∈ [0, T ]. (90)
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Lemma 4.6 Assume (H3), (H4) and let P be an optimizer for (MFSP). Then

F(Pr ) + 1

2
EP

[∫ T

r
|�s(Xs)|2ds

]

≤ exp(2κ(T − r)) − 1

exp(2κT ) − 1
CT (μin, μfin)

+exp(2κ(T − r)) − 1

exp(2κT ) − 1
F(μin) + exp(2κT ) − exp(2κ(T − r))

exp(2κT ) − 1
F(μfin) (91)

and

1

2
EP

[
|�̂T −r (Xr )|2

]
≤ 2κ CT (μfin, μin)

exp(2κr) − 1
(92)

hold for all r ∈ (0, T ).

Proof Using (78) we can rewrite the above equation (90) as

P̂ − a.s. �̂t (Xt ) = �T −t (Xt ) − 2vT −t (Xt ) ∀t ∈ [0, T ] (93)

From Proposition 4.5 we also know that P̂ is optimal for (88) and hence that
H(P̂|
(P̂)) = CT (μfin, μin). Therefore, by inverting again the roles of μin and μfin,
we can use Lemma 4.3 for the problem (88) setting t = T − r to derive that

1

2
EP̂

[∫ T −r

0
|�̂s(Xs)|2ds

]

≤ exp(2κ(T − r)) − 1

exp(2κT ) − 1
H(P̂|
(P̂)). (94)

Thanks to (93) we can write

1

2
EP̂

[∫ T −r

0
|�̂s(Xs)|2ds

]

= 1

2
EP

[∫ T

r
|�s(Xs)|2ds

]

−EP

[∫ T

r

(
2�s(Xs) − 2vs(Xs))vs(Xs)ds

]

(78)+�∈H−1= 1

2
EP

[∫ T

r
|�s(Xs)|2ds

]

−EP

[∫ T

r

(∇ log Ps(Xs) + 2∇W ∗ Ps(Xs)
) · vs(Xs) ds

]

(80)= 1

2
EP

[∫ T

r
|�s(Xs)|2ds

]

+ F(Pr ) − F(μfin). (95)

The bound (91) follows by plugging in (95) into (94) using the above equation, (84)
and recalling thatH(P|
(P)) = CT (μin, μfin). The proof of (92) goes along the same
lines: Since P̂ is optimal for (88) we also get from Lemma 4.3, and in particular from
(71) for the choice t = T − r that
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1

2
EP̂

[
|�̂T −r (XT −r )|2

]
≤ 2κ CT (μfin, μin)

exp(2κr) − 1
.

��
Now the proof of Theorem 4.1 and its corollaries in the introduction is an easy task,

given all the preparatory work.

Proof of Theorem 4.1 It amounts to add (70) and (91) with the choice r = t , and use
the relation

H(P|
(P)) = 1

2
EP

[∫ T

0
|�t (Xt )|2dt

]

= CT (μin, μfin).

��
Proof of Corollary 1.3 It follows from Theorem 4.1 (Eq. (89)), observing thatF(Pt ) ≥
0. ��
Proof of Corollary 1.4 Combining (90), (93), (31) we get that

∫

Rd
|vt |2(x)Pt (dx) = −EP(μ

in, μ∞) + 1

4
IF (Pt ).

Using the above relation, Cauchy Schwartz inequality and the continuity of IF (Pt ) in
a neighborhood of 0, (80) we get that

lim inf
t→0

1

t
(F(Pt ) − F(P0)) ≥ −

(

IF (μin)
(1

4
IF (μin) − EP(μ

in, μ∞)
)
)1/2

.

(96)

Consider now the bound (89). Observing thatF(μ∞) = 0, subtractingF(μin) on both
sides, dividing by t , letting t → 0, using (96) and finally rearranging the resulting
terms we get (28). ��

4.4.2 Proof of Theorem 1.6

We prove here Theorem 1.6 of the introduction. In the proof we will write

∫

Rd
∇2W (X̂t − y) · (�̂t (X̂t ) − �̂t (y)) P̂t (dy),

instead of

ẼP̃

[
∇2W (Xs − X̃s) · (�s(Xs) − �s(X̃s))

]
,

which is used in the rest of the article. This is done in order to better deal with time
reversal.
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Proof of Theorem 1.6 Let Mt be the martingale defined at (14). Since P̂ is optimal for
(88), from Proposition 3.2 we get that

M̂t = �̂t (Xt ) −
∫ t

0

∫

Rd
∇2W (X̂s − y) · (�̂s(Xs) − �̂s(y)) P̂s(dy) ds

is an L2-martingale on [0, T [ under P̂. We define the stochastic processes

At :=
∫

Rd
∇2W (Xs − y) · (�s(Xs) − �s(y))Ps(dy)

and

Ât :=
∫

Rd
∇2W (X̂s − y) · (�̂s(X̂s) − �̂s(y)) P̂s(dy).

We have, using the Markovianity of both P and P̂, that

EP

[
�t (Xt ) · �̂T −t (X̂T −t )

]

= EP

[

(Mt +
∫ t

0
Asds) · (M̂T −t +

∫ T −t

0
Âsds)

]

= EP

[(

EP[MT |X[0,t]] +
∫ t

0
Asds

)

·
(

EP[M̂T |X̂[0,T −t]] +
∫ T −t

0
Âsds

)]

= EP

[

EP[�T (XT ) −
∫ T

t
Asds |X[0,t]] · EP[�̂T (X̂T ) −

∫ T

T −t
Âsds |X̂[0,T −t]]

]

= EP

[

EP[�T (XT ) −
∫ T

t
Asds |Xt ] · EP[�̂T (X̂T ) −

∫ T

T −t
Âsds |X̂t ]

]

= EP

[(

�T (XT ) −
∫ T

t
Asds

)

·
(

�̂T (X̂T ) −
∫ T

T −t
Âsds

)]

.

Therefore,

d

dt
EP

[
�t (Xt ) · �̂T −t (X̂T −t )

]

= EP

[

−At · (�̂T (X̂T ) −
∫ T

T −t
Âs) + ÂT −t · (�T (XT ) −

∫ T

t
Asds)

]

= EP

[
−At · (M̂T − M̂T −t + �̂T −t (X̂T −t )) + ÂT −t · (MT − Mt + �t (Xt ))

]
.

Taking conditional expectation w.r.t. σ(X[0,t]) and using that both At and ÂT −t are
X[0,t]-measurable we get that the above expression equals

EP

[
−At · �̂T −t (X̂T −t ) + ÂT −t · �t (Xt )

]
.
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Using the fact that W is symmetric and the definition of At , ÂT −t , one easily obtains
that the latter expression is worth 0. Indeed it holds that

EP

[
At · �̂T −t (X̂T −t )

]
= EP

[
ÂT −t · �t (Xt )

]

=
∫

Rd×Rd
(�̂T −t (x) − �̂T −t (y)) · ∇2W (x − y) · (�t (x)

−�t (y))Pt (dx)Pt (dy).

The proof that the function (31) is constant on (0, T ) is now concluded. In order to
establish (32) we set t = T /2 in (31) and Cauchy Schwartz to get that

|EP(μin, μfin)| ≤
(
EP[|�T /2(XT /2)|2]EP[|�̂T /2(X̂T /2)|2]

)1/2
.

The desired conclusion follows from (71) and (92). ��

4.5 Convergence to equilibrium: proofs

4.5.1 Proof of Theorem 1.4

Proof of Theorem 1.4 Lemma 4.4 provides with

d

dt
F(Pt )

(80)= EP
[
(∇ log Pt (Xt ) + 2∇W ∗ Pt (Xt )) · vt (Xt )

]

(90)+(93)= 1

2
EP

[(
�t (Xt ) + �̂T −t (X̂T −t )

)
·
(
�t (Xt ) − �̂T −t (X̂T −t )

)]

= 1

2
EP

[
|�t (Xt )|2 − |�̂T −t (X̂T −t )|2

]
.

Reasoning as in the proof of Lemma 4.3 we get that both EP
[|�t (Xt )|2

]
and

EP

[
|�̂T −t (X̂T −t )|2

]
are differentiable as functions of t in the open interval (0, T ).

Moreover

1

2

d

dt
EP

[
|�t (Xt )|2 − |�̂T −t (X̂T −t )|2

]

(72)+(75)≥ κEP

[
|�t (Xt )|2 + |�̂T −t (X̂T −t )|2

]

= κ EP

[
|�t (Xt ) + �̂T −t (X̂T −t )|2 − 2�t (Xt ) · �̂T −t (X̂T −t )

]

(87)= κ EP

[
|∇ log Pt (Xt ) + 2∇W ∗ Pt (Xt )|2

]
− 2κ EP(μ

in, μ f in).

The κ-convexity of W and the fact that the center of mass EP[Xt ] is constant (see
Lemma 4.2) allow to use the logarithmic Sobolev inequality [12, (ii), Thm 2.2] to
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obtain11

κEP

[
|∇ log Pt (Xt ) + 2∇W ∗ Pt (Xt )|2

]
≥ 4κ2F(Pt ).

Thus we have proven that for almost every t ∈ [0, T ]
d

dt2
F(Pt ) ≥ 4κ2F(Pt ) − 2κEP(μ

in, μ f in),

from which (22) follows by integrating this differential inequality (see Lemma 5.6).
Setting t = θT in (22) and using (32) to bound the conserved quantity gives (23) after
some standard calculations. ��

4.5.2 Proof of Theorem 1.5

Proof of Theorem 1.5 Let P be optimal for (MFSP) and� be given by Proposition 3.1.
Then if we define

Bt := Xt −
∫ t

0
∇W ∗ Ps(Xs) + �s(Xs)ds

the process (Bt )t∈[0,T ] is a Brownian motion under P. Since the McKean Vlasov SDE
admits a unique strong solution, there exists a mapY : � −→ � such thatY◦ B· := Y
satisfies Y0 = X0 (P − a.s.) and

P − a.s. Yt = Y0 −
∫ t

0
∇W ∗ PMKV

s (Ys)ds + Bt .

Define now δ(t) = EP[|Xt −Yt |2]. Using Itô’s formulawe get that δ(t) is differentiable
with derivative

δ′(t) = −2EP[(Xt − Yt ) · (∇W ∗ Pt (Xt ) − ∇W ∗ PMKV
t (Yt ))]

+2EP[(Xt − Yt ) · �t (Xt )]

The same arguments as in Lemma 4.3 give

2EP[(Xt − Yt ) · (∇W ∗ Pt (Xt ) − ∇W ∗ PMKV
t (Yt ))] ≥ 2κEP[|Xt − Yt |2] ≥ 0.

Moreover, by Cauchy Schwartz:

EP[(Xt − Yt ) · �t (Xt )] ≤ EP

[
|Xt − Yt |2

]1/2
EP

[
|�t (Xt )|2

]1/2
.

11 Again, the apparent mismatch between the constant in the Log Sobolev inequality from [12] and the
one we use here is due to the fact that in our definition of F̃ , there is no 1/2 in front of W .
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Therefore

δ′(t) ≤ 2δ(t)1/2EP

[
|�t (Xt )|2

]1/2

which gives

(
√

δ)′(t) ≤ EP

[
|�t (Xt )|2

]1/2
.

Integrating the differential inequality and using that δ(0) = 0:

√
δ(t) ≤

∫ t

0
EP

[
|�s(Xs)|2

]1/2
ds ≤ t1/2

( ∫ t

0
EP

[
|�s(Xs)|2

]
ds

)1/2

(70)≤ t1/2
(
2
exp(2κt) − 1

exp(2κT ) − 1
CT (μin, μfin)

)1/2
.

The conclusion follows from (25) and the observation that W2
2 (Pt ,PMKV

t ) ≤ δ(t). ��
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5 Appendix

We begin with the promised graphical illustration of Theorem 1.4 (Fig. 1).

Fig. 1 A qualitative illustration
of the turnpike property
expressed by Theorem 1.4: at
first F(μt ) decreases
exponentially fast and then it
stays close to the minimum
value for a long time; towards
the end it abruptly increases to
reach its final value

123

http://creativecommons.org/licenses/by/4.0/


524 J. Backhoff et al.

The following lemma is well known. For simple proofs see [35] or the appendix of
[24].

Lemma 5.1 For μ ∈ P2(R
d) let Rμ be the law of the Brownian with initial law μ. For

P ∈ P(�) with P ◦ (X0)
−1 = μ the following are equivalent

(i) H(P|Rμ) < +∞.
(ii) There exist a P-a.s. defined adapted process (αt )t∈[0,T ] such that

EP

[∫ T

0
|αt |2dt

]

< +∞

and

Xt −
∫ t

0
αsds

is a Brownian motion under P.

Moreover, if (ii) holds, then

H(P|Rμ) = 1

2
EP

[∫ T

0
|αt |2dt

]

. (97)

and

EP

[
sup

t∈[0,T ]
|Xt |2

]
< +∞. (98)

With the help of Lemma 5.1 we can readily prove its generalization given in
Lemma 3.6 concerning the case when Rμ is replaced by the law of a diffusion with
Lipschitz drift.

Proof of Lemma 3.6 The proof of (i) ⇒ (i i) follows the arguments in [35]. Now
assume that (i i) holds. Because of the continuity of t 
→ b̄(t, 0) and (49) we get that

∀(t, x) ∈ [0, T ] × R
d , |b̄(t, x)| ≤ C ′(1 + |x |) (99)

for some C ′ < +∞. Consider the sequence of stopping times Tn = inf{t ≥ 0 :
|Xt | = n} ∧ T . Using (99), (52) and some standard calculations we find that there
exist C ′′ < +∞ such P almost surely

∀n ∈ N, t ∈ [0, T ] : sup
r≤t

|Xr∧Tn |2

≤ C ′′
(

|X0|2 + 1 +
∫ t

0
sup
r≤s

|Xr∧Tn |2ds +
∫ t

0
|ᾱs |2ds + sup

r≤t
|Br∧Tn |2

)

where B is a Brownian motion. Taking expectation, using (8), using Grönwall’s
Lemma, and eventually letting n → +∞, one obtains

sup
t∈[0,T ]

EP

[
sup

t∈[0,T ]
|Xt |2

]
< +∞. (100)
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But then, thanks to (99) and (51)we also obtain thatEP[
∫ T
0 |b̄(s, Xs)+ᾱs |2ds] < +∞.

Lemma 5.1 yields then (as usual Rμ is Wiener measure started like μ)

H(P|Rμ) < +∞, and H(P|Rμ) = 1

2
EP

[∫ T

0
|b̄(t, Xt ) + ᾱt |2dt

]

. (101)

Under the current hypotheses on b, Rμ and R̄ are mutually absolutely continuous and

dRμ

dR̄
= exp

(

−
∫ T

0
b̄(t, Xt ) · dXt + 1

2

∫ T

0
|b̄(t, Xt )|2dt

)

.

Therefore, using some standard calculations and (i i) we get

EP

[

log
dRμ

dR̄

]

= −EP

[∫ T

0

(

ᾱt + 1

2
b̄(t, Xt )

)

· b̄(t, Xt )dt

]

< +∞. (102)

Since Rμ and R̄ are mutually absolutely continuous andH(P|Rμ) < +∞ we get that
P � R̄ and

H(P|R̄) = EP

[

log
dP

dRμ
+ log

dRμ

dR̄

]

(103)

Thus,H(P|R̄) < +∞ if bothH(P|Rμ) and EP

[
log dRμ

dR̄

]
are finite. But this is indeed

the case, thanks to (102), (101). The proof that (i i) ⇒ (i) is now complete. The
desired form of the relative entropy follows by plugging in (101) and (102) into (103).
Finally (54) follows from (100) and (99), and the last statement from (54). ��
Lemma 5.2 Let μin ∈ P(Rd) and P ∈ P1(�) with P0 = μin. ThenH(P|
(P)) < +∞
if and only if H(P|Rμin

) < +∞.

Proof Define b̄(t, z) = −∇W ∗ Pt (z). Lemma 3.5 ensures that b̄ is of class C0,1 and
that (49) holds. Assume that H(P|
(P)) < +∞ and let (ᾱt )t∈[0,T ] be given by the
implication (i) ⇒ (i i) of Lemma 3.6. If we define (αt )t∈[0,T ] by

P − a.s. αt = b̄(t, Xt ) + ᾱt , ∀t ∈ [0, T ],

then (54) together with (51) entitle us to use the implication (i i) ⇒ (i) of Lemma 5.1
to obtain the desired result. The converse implication is done inverting the roles of
Lemmas 3.6 and 5.1. ��
Lemma 5.3 Assume (H1), (H2) P,Q ∈ P1(�) be such thatH(P|
(P)),H(Q|
(P)) <

+∞ and (Qt )t∈[0,T ] = (Pt )t∈[0,T ]. If (θn)n∈N ⊆ C∞
c ([0, T ] × R

d) is such that ∇θn

converges to −∇W ∗ Pt (z) in H−1((Pt )t∈[0,T ]), i.e.

lim
n→+∞

∫

[0,T ]×Rd
|∇θn

t (z) + ∇W ∗ Pt (z)|2Pt (dz) dt = 0, (104)
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then

lim
n→+∞H(Q|Rn) = H(Q|
(P)),

where Rn is the law of

dYt = ∇θn
t (Yt )dt + dBt , Y0 ∼ μin ∈ P2(R

d).

Proof By Lemma 5.2 we have H(Q|Rμin
) < +∞, where Rμin

is the law of the
Brownian motion with initial law μin. Using implication (i) ⇒ (i i) from Lemma 5.1
and then (i i) ⇒ (i) together with (53) from Lemma 3.6 for the choice b̄ = ∇θn , we
get for all n ∈ N:

H(Q|Rn) = 1

2
EQ

[∫ T

0
|αt − ∇θn

t (Xt )|2dt

]

, (105)

where αt is the dirft of Q (see Lemma 5.1). Moreover, using H(Q|
(P)) < +∞ and
Lemma 3.6, we also get that

H(Q|
(P)) = 1

2
EQ

[∫ T

0
|αt + ∇W ∗ Pt (Xt )|2dt

]

. (106)

Using (Qt )t∈[0,T ] = (Pt )t∈[0,T ] and (104) we get

lim
n→+∞EQ

[∫ T

0
|∇θn

t (Xt )|2dt

]

= EQ

[∫ T

0
|∇W ∗ Pt (Xt )|2dt

]

. (107)

On the other hand, let ᾱt (Xt ) be a measurable version of EQ[αt |Xt ], the existence
of which is guaranteed e.g. by [30, Proposition 4.4]. Using conditional Jensen and

EQ

[∫ T
0 |αt |2dt

]
< +∞, it is easy to verify that ᾱ ∈ H−1((Pt )t∈[0,T ]). Moreover

EQ

[∫ T

0
αt · ∇θn

t (Xt )dt

]

=
∫

[0,T ]×Rd
ᾱt (z) · ∇θn

t (z)Pt (dz)dt .

Since ᾱ ∈ H−1((Pt )t∈[0,T ]) we get from (104), (Qt )t∈[0,T ] = (Pt )t∈[0,T ] and the basic
properties of conditional expectation

lim
n→+∞

∫

[0,T ]×Rd
ᾱt (z) · ∇θn

t (z)Pt (dz)dt = EQ

[∫ T

0
αt · ∇W ∗ Pt (Xt )dt

]

.

(108)

Gathering (106), (108), (105), (107) the conclusion follows. ��

123



The mean field Schrödinger problem: ergodic behavior… 527

Lemma 5.4 Assume P � Rμ and that (ht )t∈[0,T ] is an adapted process satisfying the
Lipschitz condition in (63). Then the shift τε defined at (64) admits an almost sure
inverse, i.e. there exists an adapted process (Y ε

t )t∈[0,T ] such that

P − a.s. τ ε
t (Y ε(ω)) = Y ε

t (τ ε(ω)) = ωt ∀t ∈ [0, T ]. (109)

Proof Let Rμ be the law of the Brownian motion started atμ. The fact that (109) holds
Rμ almost surely under the Lipschitz condition (63) is a classical result, see e.g. [52,
pp. 209–210]. In this case the a.s. inverse is nothing but the strong solution of the SDE

dY ε
t = −εht (Y

ε
t )dt + dBt

We conclude by P � Rμ. ��
The next lemma follows from [17, Lemma 4.1]:

Lemma 5.5 Let c : [0, T ] → R be twice differentiable on (0, T ) with c(0) = 0 and

let κ ∈ R. If d2

dt2
c(t) ≥ 2κ d

dt c(t) for all t ∈ (0, T ), then

∀t ∈ [0, T ], c(t) ≤ exp(2κt) − 1

exp(2κT ) − 1
c(T ). (110)

The following lemma is also useful for the quantitative estimates:

Lemma 5.6 Let ϕ : [0, T ] → R be twice differentiable on (0, T ) and assume that
ϕ(t) satisfies the differential inequality

d2

dt2
ϕt ≥ λ2ϕt − λE

where E is a constant. Then we have for all 0 ≤ t ≤ T ,

ϕt ≤
(

ϕ0 − E

λ

)
sinh(λ(T − t))

sinh(λT )
+

(

ϕT − E

λ

)
sinh(λt)

sinh(λT )
+ E

λ
. (111)

Proof Consider the function γt = ϕt − ψt , where ψt is the right hand side of (111).
It is easily verified that d2

dt2
ψt = λ2ψt − λE and ψ0 = ϕ0, ψT = ϕT . Consequently,

we have that d2

dt2
γt ≥ λ2γt for t ∈ [0, T ] and γ0 = γT = 0. Assume γt1 > 0 for some

t1. Since γ0 = 0, there must exist t0 ≤ t1 such that γt0 > 0 and d
dt γt0 > 0. But this

contradicts Lemma 5.7 below. ��
Lemma 5.7 Assume that λ ≥ 0. Let 0 ≤ t0 < T and γ : [0, T ] → R be a function
satisfying

⎧
⎨

⎩

d2

dt2
γt ≥ λγt , t ∈ [t0, T ],

γt0 > 0, γT = 0.
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Then d
dt γt0 ≤ 0.

Proof Assume ad absurdum that d
dt γt0 > 0. Since γT = 0 it must be that t1 = inf{t ≥

t0; d
dt γt = 0} belongs to (t0, T ]. By definition of t1, and since d

dt γt0 > 0 we have that
γt ≥ γt0 > 0 for all t ∈ [t0, t1]. But then

0 >
d

dt
γt1 − d

dt
γt0 =

∫ t1

t0

d2

dt2
γtdt ≥ λ

∫ t1

t0
γtdt ≥ 0,

which is absurd. ��
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