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1. Introduction

List of Symbols

H applied magnetic field β dependence of TC in volume
λ mean-field exchange parameter K compressibility
M magnetization α1 thermal expansion
σ reduced magnetization T0 ordering temperature (no volume coupling)
T temperature v volume
χ magnetic susceptibility v0 volume (no magnetic interaction)
N number of spins G Gibbs free energy
J spin Msat saturation magnetization
g gyromagnetic ratio S entropy

µB Bohr magneton p pressure
kB Boltzmann constant η Bean-Rodbell model parameter
TC Curie temperature BJ Brillouin function (spin J)

µe f f effective moment Hc critical field
C Curie constant x fraction of ferromagnetic phase

Effective field theories, such as the molecular mean-field model (Coey, 2009; Kittel, 1996), are
invaluable tools in the study of magnetic materials (Gonzalo, 2006). The framework of the
molecular mean-field allows a description of the most relevant thermodynamic properties
of a magnetic system, in a simplified way. For this reason, this century-old description of
cooperative magnetic effects is still used in ongoing research for a wide range of magnetic
materials, although its limitations are well known, such as neglecting fluctuation correlations
near the critical temperature and low temperature quantum excitations (Aharoni, 2000).
In this work, we present methodologies and results of a mean-field analysis of the
magnetocaloric effect (MCE) (Tishin & Spichin, 2003). The MCE is common to all magnetic
materials, first discovered in 1881 by the German physicist Emil Warburg. The effect describes
the temperature variation of a ferromagnetic material when subjected to an applied magnetic
field change, in adiabatic conditions. In isothermal conditions, there occurs a change in
magnetic entropy due to the magnetic field change, and heat is transferred. The first
major application of the MCE was presented in the late 1920s when cooling via adiabatic
demagnetization was independently proposed by Debye and Giauque. The application of the
adiabatic demagnetization process made it possible to reach the very low temperature value
of 0.25 K in the early 1930s, by using an applied field of 0.8 T and 61 g of the paramagnetic salt
Gd2(SO4)3·8H2O as the magnetic refrigerant.
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Pioneered by the ground-breaking work of G. V. Brown in the 1970’s, the concept
of room-temperature magnetic cooling has recently gathered strong interest by both
the scientific and technological communities (Brück, 2005; de Oliveira & von Ranke, 2010;
Gschneidner Jr. & Pecharsky, 2008; Gschneidner Jr. et al., 2005; Tishin & Spichin, 2003). The
discovery of the giant MCE (Pecharsky & Gschneidner, 1997) resulted in this renewed interest
in magnetic refrigeration, which, together with recent developments in rare-earth permanent
magnets, opened the way to a new, efficient and environmentally-friendly refrigeration
technology.
The development and optimization of magnetic refrigerator devices depends on a solid
thermodynamic description of the magnetic material, and its properties throughout the steps
of the cooling cycles. This work will present, in detail, the use of the molecular mean-field
theory in the study of ferro-paramagnetic phase transitions, and the MCE. The dependence of
magnetization on external field and temperature can be described, in a wide validity range.
This description is also valid for both second and first-order phase transitions, which will
become particularly useful in describing the magnetic and magnetocaloric properties of the
so-called "giant" and "colossal" magnetocaloric materials.
An overview of the Weiss molecular mean-field model, and the inclusion of magneto-volume
effects (Bean & Rodbell, 1962) is presented, providing the theoretical background for
simulating the magnetic and magnetocaloric properties of second and first-order
ferromagnetic phase transition systems. The numerical methods employed to solve
the transcendental equation to determine the M(H, T) (where M is magnetization, H
applied magnetic field and T Temperature) dependence of a ferromagnetic material with a
second-order phase transition are described. In the case of first-order phase transitions, the
use of the Maxwell construction is shown in order to estimate the equilibrium solution from
the two distinct metastable solutions and the single unstable solution of the state equation.
The generalized formulation of the molecular mean-field interaction leads to a novel
mean-field scaling method (Amaral et al., 2007), that allows a direct estimation of the
mean-field exchange parameters from experimental data. The application of this scaling
method is explicitly shown in the case of simulated data, to exemplify its application and
to highlight its robustness and general approach. Experimental magnetization data of second
(La-Sr-Mn-O based) and first-order (La-Ca-Mn-O based) ferromagnetic manganites is then
analyzed under this framework. We show how the Bean-Rodbell mean-field model can
adequately simulate the magnetic properties of these complex magnetic systems, candidates
for application for room-temperature magnetic refrigerant materials (Amaral et al., 2005;
Gschneidner & Pecharsky, 2000; Phan & Yu, 2007).
An overview of the MCE is presented, focusing on the use of the Maxwell relations to
estimate the magnetic entropy change of a magnetic phase transition. The thermodynamics
of the molecular mean-field model presents us also a new method to estimate the MCE from
magnetization data. Results of magnetic entropy variation values are compared, highlighting
the difficulties of estimating the MCE in first-order phase transition systems.
The interest on the magnetocaloric properties of first-order phase transition systems, in
terms of fundamental physics and also magnetic refrigeration applications, has opened
debate on the validity of the use of Maxwell relations to estimate the MCE in these systems
(Giguère et al., 1999). Using simulated data of a first-order mean-field system, we verify
the consequences of the common use of the Maxwell relation to estimate the MCE from
non-equilibrium magnetization data.
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The recent reports of "colossal" values of magnetic entropy change of first-order phase
transition systems (de Campos et al., 2006; Gama et al., 2004; Rocco et al., 2007) are also
discussed, and are shown to be related to the mixed-phase characteristics of the system.
We present a detailed description on how the misuse of the Maxwell relation to estimate
the MCE of these systems justifies the non-physical results present in the bibliography
(Amaral & Amaral, 2009; 2010).
Understanding the thermodynamics of a mixed-phase ferromagnetic system allows the
construction of a new methodology to correct the results from the use of the Maxwell effect
on magnetization data of these compounds. This methodology is theoretically justified,
and its application to mean-field data is presented (Das et al., 2010a;b). In contrast to
other suggestions in the bibliography (Tocado et al., 2009), this novel methodology permits
a realistic estimative of the magnetic entropy change of a mixed-phase first-order phase
transition system, with no need of additional magnetic or calorimetric measurements.

2. Molecular mean-field theory and the Bean-Rodbell model

2.1 Ferromagnetic order and the Weiss molecular field

A simplified approach to describing ferromagnetic order in a given magnetic material was
put forth by Weiss, in 1907. This concept of a molecular field assumes the magnetic
interaction between magnetic moments as equivalent to the existence of an additional internal
interaction/exchange field that is a function of the bulk magnetization M:

Htotal = Hexternal + Hexchange and Hexchange = λM, (1)

where λ is the mean-field exchange parameter.
The general representation of the molecular mean-field model is then

σ = f

[

H + λM

T

]

. (2)

where f is the general function that applies in the paramagnetic system (e. g. the Brillouin
function).
From a linear approximation of the susceptibility (Curie law):

χ =
M

H
=

NJ(J + 1)g2µ2
B

3kBTC
=

Nµ2
e f f

3kBTC
; (3)

where µe f f is the effective magnetic moment: µe f f = g[J(J + 1)]1/2µB.
We define the Curie temperature TC as the temperature where the ferromagnetic to
paramagnetic transition occurs, and there is a divergence in the susceptibility:

χ =
C

T − TC
, where C =

NJ(J + 1)g2µ2
B

3kB
and TC = Cλ. (4)

The exchange parameter can be estimated from the following relation, as long as N and J are
known.

λ =
3kBTC

Ng2 J(J + 1)µ2
B

(5)

Typical values of λ correspond to molecular fields in the order of hundreds of Tesla.
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2.2 Magneto-volume effects: The Bean-Rodbell model

The Bean-Rodbell model (Bean & Rodbell, 1962) adds a phenomenological description
of magneto-volume effects to the classical molecular mean-field model of Weiss. The
dependence of exchange interaction on interatomic spacing is then considered, taking
into account three new parameters: β, which corresponds to the dependence of ordering
temperature on volume, and also the volume compressibility, K and thermal expansion α1.
The formulation behind the model is as follows:

TC = T0

[

1 + β

(

v − v0

v0

)]

, (6)

where TC is the Curie temperature corresponding to a lattice volume of v, while v0 is the
equilibrium lattice volume in the absence of magnetic interactions, corresponding to a Curie
temperature of T0 if magnetic interactions are assumed, but with no magneto-volume effects.
The free energy of the system can therefore be described, taking into account magnetic and
volume interactions. For simplicity, we consider a purely ferromagnetic interaction. For a
description including anti-ferromagnetic interactions, see Ref. (Bean & Rodbell, 1962).

G = Gfield + Gexchange + Gvolume + Gpressure + Gentropy (7)

Considering first a spin 1/2 system, and the molecular field exchange interaction, we have
that the Gibbs free energy per unit volume is:

Gv = −HMsatσ −
1

2
NkBTcσ2 +

1

2K

[

v − v0

v0

]2

+ p

(

v − v0

v0

)

− TNkB

[

ln 2 −
1

2
ln

(

1 − σ2
)

− σ tanh−1σ

]

− TSlattice. (8)

where σ is the reduced magnetization, Msat the saturation magnetization and N the number
of particles for volume v0. While the original description of Bean and Rodbell does not
initially consider the lattice entropy, we will keep the generality of the calculations along our
description of the model. The lattice entropy term is as follows:

Slattice = 3NkB

[

x

ex − 1
− ln(1− e−x)

]

, (9)

where x ≡ hν/kB T with ν being the phonon frequency. Eq. 9 can be expanded via the Debye
approximation:

Slattice = NkB

[

4 − 3 lnΘ/T + (3/40)(Θ/T2) + ...
]

(10)

where Θ ≡ hνmax/T. From the previous expression we obtain:

∂S/∂v ∼= −3NkBd ln(νmax)/dv = α1/K (11)

where α1 is the thermal expansion coefficient (α1 ≡ (1/v)(∂v/∂T)p) and K is the
compressibility (K ≡ −(1/v)(∂v/∂p)T).
By substituting Eq. 6 into Eq. 8, deriving in volume by using also Eq. 11, the relation between
magnetization and volume that corresponds to the energy minimum is
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v − v0

v0
=

1

2
NKkBT0βσ2 + Tvoα1 − pK (12)

By substituting the previous relation into the Gibbs free energy (Eq. 8), and minimizing in
respect to volume, we obtain

(Gv)min = −HMsatσ −
1

2
NkBT0σ2 [1 − β(pK − α1T)]

− p2K/2 − α2
1T2/2K + α1Tp −

1

2K
(

1

2
NkBT0σ2β)2

− TNkB

[

4 + ln2 −
1

2
ln(1 − σ2)− σ tanh−1σ

]

. (13)

By minimizing as a function of σ, we obtain the implicit dependence of σ on temperature, for
spin 1/2.

T

T0
=

σ

tanh−1σ

(

1 − β(pK − α1T) +
ησ2

3
+ MsatH

)

(14)

where the η parameter defines the order of the phase transition, if η ≤ 1, the transition is
second-order and if η > 1, the transition is first-order. The value of η is:

η =
3

2
NkBKT0β2 ; (spin = 1/2) (15)

ηJ =
5

2

[4J(J + 1)]2
[

(2J + 1)4 − 1
] NkBKT0β2 ; (arbitrary J spin). (16)

We can rewrite Eq. 14, in the more familiar molecular-mean field expression type, M = f [(H+

λM)/T], since tanh−1σ = (H + λ(M, T)M)/T, (for spin = 1/2):

tanh−1σ =
gµB H/2kB + (1 − βpK + βα1T)T0σ + (η/3)T0σ3

T
. (17)

We can therefore consider, in the absence of external pressure, and considering the lattice
entropy change small, that the molecular field dependence in magnetization follows the
simple form of Hexchange = λ1M + λ3M3.
Considering a generalized spin system, with no applied pressure, nor the lattice entropy
contribution, the implicit dependence of σ on temperature is

T(σ, H) =
gµB JH/kB + aT0σ + bT0σ3

B−1
J (σ)

, (18)

where

a =
3J

J + 1
; b =

9

5

(2J + 1)4 − 1

(2(J + 1))4
ηJ = b′ηJ (19)

and BJ
−1(σ) = ∂SJ /∂σ, where BJ is the Brillouin function for a given J spin.
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If the lattice entropy change is taken into consideration, the effect corresponds introducing
the βα1T term into the first-order term of the exchange field, in the same way as the spin 1/2
system.
If we choose to describe the exchange field as λ1 M + λ3M3, it becomes practical to rewrite the
conditions of the model explicitly in terms of the λ1 and λ3 parameters, bulk magnetization
M, spin and the saturation magnetization, Msat. This corresponds to the following expression,
where the η parameter can be defined as:

η = λ3/
[

b′T0kB/(gµB J2 M3
sat)

]

, (20)

where the b′ parameter is previously defined in Eq. 19. The λ3 parameter includes the β
(dependence of ordering temperature on volume) and K (compressibility) system variables.
The direct consequence of the previous expression is that, by substituting the T0 value, the
ratio of λ1 and λ3, together with the system parameters define the nature of the transition,
following the next simplified expression:

η =
3J2 M2

sat

b′
λ3

λ1
. (21)

2.3 Numerical approach

2.3.1 Second-order phase transitions

As shown in the previous section, the Bean-Rodbell model can describe a magnetovolume
induced first-order phase transition. While the numerical approach to simulate first-order
phase transitions in the Landau theory is straightforward (finding the roots of a polynomial
and then which of the two local minima corresponds to the absolute free energy minimum),
in the case of the Bean-Rodbell model the case is more complicated in computational terms.
Even in the more simple second-order phase transition, solving the transcendental equation
M = f [(H + λM)/T] cannot be done algebraically, and so numerical methods are employed.
The classic visual representation of the numerical approach is presented in Fig. 1.

Fig. 1. Graphical solution of the mean-field state equation, adapted from Ref. (Kittel, 1996).

This graphical approach is easily converted into numerically finding the roots of the following
function:

MsatBJ(J, λ1, λ3, M, H, T)− M(H, T); (22)

Finding the roots of the above equation can be numerically achieved by using the optimized
method suggested by T. Dekker, employing a combination of bisection, secant, and inverse
quadratic interpolation methods (Forsythe et al., 1976).
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2.3.2 First-order phase transitions

For the first-order phase transition, there are multiple solutions that need to be calculated,
corresponding to the stable (equilibrium), metastable and unstable branches. Fig. 2(a) shows
a representation of these solutions.
The methodology for obtaining the various M solutions in this situation is more numerically
intensive than in a second-order system, apart from subdividing the interval of magnetization
values into multiple sub-intervals to search for the multiple roots.
In order to calculate the critical field value Hc and consequently the full equilibrium solution
(stable branch), the Maxwell construction (Callen, 1985) is applied, which consists of matching
the energy of the two phases, in the so-called equal-area construction (Fig. 2(b)).

(a) (b)

Fig. 2. a) The multiple solution branches from the roots of Eq. 22, for a first-order transition
from the Bean-Rodbell model, and b) the Maxwell construction for determining the critical
field Hc and the full equilibrium solution, for a first-order magnetic phase transition system.

In numerical terms, applying this graphical methodology becomes a matter of integrating
the areas between the metastable and unstable solutions, between the Hc1 and Hc2 field
values, until the value of area 1 is equal to area 2. This operation is numerically intensive,
but manageable for realistic field interval values. The most important numerical concern
is adequately reproducing all branches (solutions), in a way that the algorithm correctly
integrates each area. In programming terms, this becomes a complicated problem, but
becomes controllable by a careful definition of the various number of roots of the functions,
and developing an optimized integration algorithm for each independent situation that can
appear within this approach.

2.3.3 Estimating magnetic entropy change

Within the molecular field model, the relation between the magnetic entropy and the magnetic
equation of state is simply defined. Let us consider that the magnetic equation of state is
a generalized f function, and so M = f [(H + λ(M, T)M)/T]. We can then integrate the
magnetic entropy relation:

SM =
∫

f−1(M)dM. (23)

So to calculate the entropy change between two distinct field values H1 and H2:

− ∆SM(T)∆H =
∫ M|H2

M|H1

f−1(M)dM. (24)

where f−1(M) is simply the argument of the state function for a given magnetization value:
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f−1(M) =
H + λ(M, T)M

T
. (25)

We can generalize the previous result by considering an explicit dependence of the exchange
field in temperature. We rewrite the previous equation as

f−1(M) =
H

T
+

λ(M, T)M

T
→ H = T f−1(M)− λ(M, T)M (26)

and using the following Maxwell relation (Callen, 1985):
(

∂S

∂M

)

T

= −

(

∂H

∂T

)

M

, (27)

entropy can be estimated by

∆S(T)H1→H2
= −

∫ MH2

MH1

(

∂H

∂T

)

M

dM, (28)

leading to

− ∆SM(T)H1→H2
=

∫ M|H2

M|H1

(

f−1(M)−

(

∂λ

∂T

)

M

M

)

dM. (29)

Compared to Eq. 24, the derivative ∂λ/∂T directly affects the result. We shall explore the use
of Eq. 24 to calculate the magnetic entropy change and compare it to the use of the Maxwell
relation.

3. A molecular mean-field scaling method

3.1 Methodology

As presented in section 2.2, the molecular mean-field theory gives us a simple and often
effective tool to describe a ferromagnetic system. If one is studying magnetization data
from a given material, obtaining the mean-field parameters is not immediate. To do so, one
usually needs to set the spin value and/or the number of ions N, and the mean-field state
function is the Brillouin function or Langevin function (for a high spin value). From then
on, the λ1 parameter can be obtained from low-field M versus T measurements and a linear
Curie-Weiss law fit of the inverse susceptibility. Subsequent fits to each M(H) isotherm can
then be performed. Such an approach can be quite complex, particularly if one considers
a system where the magnetic ions can have different spin states, such as mixed-valence
manganites, where the ratio between ions needs to be previously assumed (Szewczyk et al.,
2000). Obtaining higher orders of the mean-field exchange parameter (λ3, λ5, etc.) can be
done by performing simulations to describe experimental data, as done by Bean and Rodbell
to describe MnAs (Bean & Rodbell, 1962).
A different approach to obtain the mean-field parameters from experimental magnetization
data is presented here, based on data scaling. A summarized version of this work has been
published in 2007 (Amaral et al., 2007). We consider the general mean field law, M(H, T) =
f ((H + Hexch)/T), where the state function f is not pre-determined, and that λ (as in Hexch =
λM) may depend on M and/or T. Then for corresponding values with the same M, (H +
Hexch)/T) is also the same, the value of the inverse f −1(M) function:

H

T
= f−1(M)−

Hexch

T
(30)
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By taking H and T groups of values for a constant M and Eq. 30, the plot of H/T versus 1/T
is linear if λ does not depend on T. The slope is then equal to Hexch, for each M value. Then,
each isomagnetic line is shifted from the others, since its abscissa at H/T = 0 is simply the
inverse temperature of the isotherm which has a the spontaneous magnetization equal to the
M value (Fig. 3).

(a) (b)

Fig. 3. a) Isomagnetic (M = 10, 20 and 30 emu/g) points from mean-field generated data in
an M versus H plot (lines are eye-guides), and b) corresponding H/T versus 1/T plot (lines
are linear fits to isomagnetic points).

In a similar fashion, a simple case of a constant λ (i. e. independent of M and T), a plot of
H/MT versus 1/T will show parallel lines for all M values, with slope equal to Hexch/M,
which in turn is equal to λ.
In a first-order phase transition, the discontinuity of M(H, T) means that when interpolating
data for constructing the isomagnetic curves, care should be taken not to interpolate the
discontinuity in M(H, T). This is shown in Fig. 4 and is a direct consequence of there being a
region in the H/T versus 1/T plot that has no data, much like the preceding M(H, T) plot.

(a) (b)

Fig. 4. a) Isomagnetic (M = 10, 20 and 30 emu/g) points from mean-field generated data in
an M versus H plot (lines are eye-guides), and b) corresponding H/T versus 1/T plot (lines
are linear fits to isomagnetic points).

181The Mean-Field Theory in the Study of Ferromagnets and the Magnetocaloric Effect

www.intechopen.com



10 Will-be-set-by-IN-TECH

Extrapolating this linear relation within this region will not present any real physical result,
namely any relation to the spontaneous magnetization, which has a discontinuous jump. This
point will be clearer in further simulation results.
From Eq. 30, the dependence of the exchange field on M is obtained directly. In principle, one
can expect that the exchange field is given by a series of odd powers of M, Hexch = λM =
λ1 M + λ3M3 + . . . . This follows from the frequently found expansion of the free energy
in powers of M, e.g. when considering magnetovolume effects within the mean-field model
by the Bean-Rodbell model as described in section 2.2. Note that the demagnetizing factor is
intrinsically taken into account as a constant contribution to λ1:

Htotal = Happlied + Hexch − DM = Happlied + (λ1 − D)M + λ3M3 + . . . (31)

where D is the demagnetizing factor, in the simple assumption of an uniform magnetization.
After obtaining Hexch, the second step of this method consists on building the scaling plot
of M versus (H + Hexch)/T, where data should collapse to the one curve that describes the
system, the f function. Analyzing the f function is a further important step to study magnetic
systems and to compare the results of theoretical microscopic models.
The above mentioned collapse on the scaling plot can be used to evaluate the validity of the
mean-field analysis. In this sense the method is self-consistent: only if Hexch has been properly
evaluated, will the points collapse into a single curve.

3.1.1 Second-order phase transition

As a first immediate example of this methodology, let us consider mean-field generated
data, for a spin 2 system, with saturation magnetization of 100 emu g−1 and TC ∼ 300 K.
No dependence of λ on T was considered. M versus H data, from 290 to 330 K, at a 1 K
temperature step and 100 Oe feld step, are shown in Fig. 5(a).

(a) (b)

Fig. 5. a) Isothermal magnetization versus applied magnetic field, from 200 to 400 K, at a 1 K
temperature step and 100 Oe field step and b) Isomagnetic H/T versus 1/T plot, of data
from the molecular mean-field model, from M = 5 emu/g (dark blue line) to M = 75 emu/g
(orange line), with a 5 emu/g step.

We then plot H/T versus 1/T at constant values of magnetization, following Eq. 30 (Fig. 5(b)).
Since λ does not depend on T, there is a linear behavior of the isomagnetic curves, which are
progressively shifted into higher 1/T values. From Eq. 30, the slope of each isomagnetic line
of Fig. 5(b) will then give us the dependence of the exchange field in M (Fig. 6(a)).

182 Thermodynamics – Systems in Equilibrium and Non-Equilibrium

www.intechopen.com



The Mean-field Theory in the Study of Ferromagnets and the Magnetocaloric Effect 11

(a) (b)

Fig. 6. a) Fit of the exchange field dependence on M. Solid squares represent the slope of
each isomagnetic curve, from Figure 5(b) and b) Brillouin function fit of scaled data from the
mean-field model, from Figure 5(a).

Having determined the λ(M) dependence, we can now proceed to scale all the magnetization
data, to determine the mean-field state function (Fig. 6(b)).
As expected, the scaled data closely follows a Brillouin function, with spin 2, and a saturation
magnetization of 100 emu g−1. We can then describe, interpolate and extrapolate M(H, T)
at will, since the full mean-field description is complete (exchange parameters and state
function).

3.1.2 First-order phase transition

As shown previously, this approach is also valid if a first-order magnetic phase transition in
considered. There is no fundamental difference on the methodology, apart from the expected
higher order terms of λ(M). Care must be taken when interpolating M(H) data within the
irreversibility zone, so that no values of M correspond to the discontinuities. We simulate a
first-order magnetic phase transition by adding a λ3 dependence of the molecular exchange
field, equal to 1.5 (Oe emu−1 g)3, to the previous second-order transition parameters.
Isothermal magnetization data is shown in Fig 7(a). The discontinuity in magnetization
values is visible, and we can estimate that the critical field is around 2.5 T, for this simulation
parameters.
From the M(H, T) data, we plot the corresponding isomagnetic H/T versus 1/T plot (Fig.
7(b)).
As shown previously in Fig. 4 b), if interpolations in M(H, T) are done within the
discontinuities, points that do not follow the expected linear behavior appear. These points
should not be included for the linear fits to determine λ(M). In the rest of the plot, the linear
relation between H/T and 1/T is kept, as expected. Linear fits are then easily made to each
isomagnetic line, and we obtain the exchange field dependence on magnetization (Fig. 8(a)).
The λ1 M + λ3M3 dependence of the mean-field exchange parameter is well defined. We
obtain λ1 and λ3 values that are, within the fitting error, equivalent to the initial parameters.
This shows us that the first-order nature of the transition and the associated discontinuities
should not affect this mean-field scaling methodology.
We can then construct the scaling plot, using the obtained λ1 and λ3 parameters (Fig. 8(b)).
From the scaling plot and the subsequent fit with the Brillouin function, we obtain values of
spin and saturation magnetization close to the the initial parameters of the simulation.
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(a) (b)

Fig. 7. a) Isothermal M versus H data of a first-order magnetic phase transition, from the
Bean-Rodbell model and b) corresponding isomagnetic H/T versus 1/T plot, for a
first-order mean-field system, and a 5 emu g−1 step.

(a) (b)

Fig. 8. a) Exchange field fit for a first-order mean-field system, with the λ1M + λ3M3 law,
and b) corresponding mean-field scaling plot and Brillouin function fit.

3.2 Applications

In the previous section, we have shown how it is possible to obtain directly from bulk
magnetization data, and only considering the mathematical properties of the general
mean-field expression M = f [(H + λM)/T], a direct determination of the molecular field
exchange parameter λ and its dependence on M, and the mean-field state function f , which
will contain information on the magnetic entities in play, and their interactions.
One immediate application for this method is to use this description of the magnetic
properties of the system as a way to interpolate/extrapolate experimental data, and/or
as a smoothing criteria to noisy M(H, T) and corresponding ∆SM(T) curves. It is worth
mentioning that while this can be also performed within Landau theory, since the mean-field
theory is not limited to small M values, the mean-field description of the system can have
a broader application range: lower T and higher H values, up to saturation. Still, the
methodology presented here is time-consuming, even with optimized numerical data analysis
programs. When considering experimental magnetization data for T < TC, care must be taken
to adequately disregard data from the magnetic domain region (low fields). Still, the ability
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to determine the mean-field parameters directly from experimental data becomes attractive
taking in mind that one can estimate magnetic entropy (and consequently magnetic entropy
change) within the mean-field model, by using Eq. 29, reproduced here for convenience.

− ∆SM(T)H1→H2
=

∫ M|H2

M|H1

(

f−1(M)−

(

∂λ

∂T

)

M

M

)

dM.

And so not only can the M(H, T) values be interpolated/extrapolated, the entropy curves and
their dependence in field and temperature can also be easily interpolated and extrapolated as
well. This becomes particularly appealing if one wishes to make thermal simulations of a
magnetic refrigeration device, and, within a physical model (and not by purely numerical
approximations), the magnetocaloric response of the material, at a certain temperature and a
certain field change is directly calculated. As an example of this approach, bulk isothermal
magnetization data of two ferromagnetic manganite systems will be analyzed in this section.
Fig. 9(a) shows the magnetization data of the ferromagnetic, second-order phase transition
La0.665Er0.035Sr0.30MnO3 manganite, obtained by SQUID measurements. Fig. 9(b) shows the
isomagnetic H/T versus 1/T plot, up to 50 emu/g in a 5 emu/g step, which could be reduced
in order to have more points.

(a) (b)

Fig. 9. a) Magnetization data of La0.665Er0.035Sr0.30MnO3 and b) corresponding isomagnetic
H/T versus 1/T plot. Lines are eye-guides.

Each point at constant M is obtained from data interpolation os the isothermal M(H) data.
From linear fits to the H/T versus 1/T plot, the dependence of the exchange field in
magnetization is directly obtained (Fig. 10(a)). The exchange field is fitted to a λ1M + λ3M
function. The scaling plot is then constructed (Fig. 10(b)).
For calculation purposes, the scaling function of Fig. 10(b) was described as an odd-terms
polynomial function. The Fig. shows some data point that are clearly deviated from the
scaling function. These points correspond to the magnetic domain region (low fields, T < TC).
With the exchange field and mean-field state function described, the magnetic behavior of this
material can then be simulated. Also, magnetic entropy change can be calculated from the
mean-field relation of Eq. 29. Result from these calculations, together with the experimental
M(H, T) data and ∆SM(H, T) results from Maxwell relation integration are shown in Fig. 11.
A good agreement between the experimental M(H, T) curves and the mean-field generated
curves with the obtained parameters is obtained. The entropy results show some deviations,
particularly near TC. While the mean-field theory does not consider fluctuations near

185The Mean-Field Theory in the Study of Ferromagnets and the Magnetocaloric Effect

www.intechopen.com



14 Will-be-set-by-IN-TECH

(a) (b)

Fig. 10. Interpolating a) experimental M(H, T) data and b) magnetic entropy change results
by mean-field simulations for the second-order phase transition manganite
La0.665Er0.035Sr0.30MnO3.

(a) (b)

Fig. 11. Interpolating a) experimental M(H, T) data and b) magnetic entropy change results
by mean-field simulations for the second-order phase transition manganite
La0.665Er0.035Sr0.30MnO3.

TC, these deviations can be attributed to that fact. Still, by considering disorder effects
(chemical/structural inhomogeneity), a better description of magnetocaloric properties can
be obtained (Amaral et al., 2008).
We now consider bulk magnetization data of a the first-order ferromagnetic phase transition
La0.638Eu0.032Ca0.33MnO3 manganite. Fig. 12(a) shows isothermal magnetization data
obtained from SQUID measurements, and Fig. 12(b) shows the corresponding isomagnetic
H/T versus 1/T plot.
The exchange field Hexch dependence on magnetization (Fig. 13(a)) and the mean-field state
function (Fig. 13(b)) are then obtained.
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(a) (b)

Fig. 12. a) Magnetization data of La0.638Eu0.032Ca0.33MnO3 and b) corresponding isomagnetic
H/T versus 1/T plot. Lines are eye-guides.

(a) (b)

Fig. 13. Interpolating a) experimental M(H, T) data and b) magnetic entropy change results
by mean-field simulations for the second-order phase transition manganite
La0.665Er0.035Sr0.30MnO3.

Like the previous example of the second-order manganite, the mean-field state function f
is fitted to a polynomial function, for calculation purposes. With the λ1 and λ3 exchange
parameters and the f function described, M(H, T) simulations can be performed, and
compared to the experimental values. Also, magnetic entropy change can be estimated from
the mean-field relation of Eq. 29 and compared to results form the use of the Maxwell relation.
Results are shown in Fig. 14.
The results of this mean-field scaling method are also very promising for this first-order phase
transition system. The insight that can be gained from the use of this methodology for a
given magnetic system can be of great interest. In a simplistic approach, we can say that if
this scaling method does not work, then the system does not follow a molecular mean-field
behavior, and other methods need to be pursued in order to interpret the magnetic behavior
of the system. It is important to emphasize that this scaling analysis is global, in the sense that
it encompasses the consistency of the whole set of magnetization data.
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(a) (b)

Fig. 14. Interpolating a) experimental M(H, T) data and b) magnetic entropy change results
by mean-field simulations, of the first-order phase transition manganite
La0.638Eu0.032Ca0.33MnO3.

3.3 Limitations

Of course, there are limitations to the use of this method, even if one is successful in
determining the exchange field parameters and, from what appears to be a good scaling
plot, determine the mean-field exchange function. For extensive and smooth M(H, T) data,
interpolating isomagnetic data should not pose a real problem, but choosing which points in
the H/T versus 1/T to fit or to disregard (due to magnetic domains or from the discontinuities
of first-order transitions) can remove the confidence on the final scaling plot, and consequently
on the mean-field state function.
This simple approach also does not take into account any potencial explicit dependence of
the exchange field on temperature. While this dependence is possible, it is generally not
considered in the molecular mean-field framework. On the examples we have shown earlier,
no such λ(T) dependence was considered.
Nevertheless, the best way to evaluate if the mean-field model and obtained parameters are
able to describe experimental data is to compare simulations to experiment.

4. The magnetocaloric effect in first-order magnetic phase transitions

4.1 Estimating magnetic entropy change from magnetization measurements

The most common way to estimate the magnetic entropy change of a given magnetic material
is from isothermal bulk magnetization measurements. To this effect, one has to simply
integrate the Maxwell relation. However, the validity of this approach has been questioned
for the case of a first-order magnetic phase transition. The first argument comes from purely
numeric considerations, since the discontinuities of the thermodynamic parameters, common
to first-order transitions, will make the usual numerical approximations less rigorous in their
vicinity. Since the first reports of materials presenting the giant MCE, anomalous ‘spikes’
in the ∆SM(T) plots are commonly seen in literature, for first-order systems. This so-called
magnetocaloric peak effect, is present in results form magnetization measurements, but does
not appear in calculations using specific heat data.
Indeed, the most immediate culprit for these peaks to occur would be the numerical
approximations, which become less rigorous near the transition (Wada & Tanabe, 2001). The
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peak effect has also been discussed in other perspectives, most notably by Pecharsky and
Gschneidner (Pecharsky & Gschneidner, 1999) and Giguère et al. (Giguère et al., 1999), for the
case of Gd5Si2Ge2. Their arguments behind the presence of the entropy peak (and its absence
in results for calorimetric measurements) differed considerably. Pecharsky and Gschneidner
argue that (Pecharsky & Gschneidner, 1999):

“The obvious sharp peak observed in ∆SM(T) calculated from magnetization data
significantly exceeds that calculated from heat capacity and is most likely associated
with the fact that the magnetic transition occurs simultaneously with the crystal
structure change in this alloy system. The magnetization data reflect only the changes
in the magnetic entropy and are insensitive to the overlapping changes in the lattice
entropy, while heat capacity data reflect the change in the combined entropies (lattice,
electronic and magnetic), thus providing more reliable magnetocaloric effect values.”

Giguère et al. in contrast argue that (Giguère et al., 1999):

“The sudden, discontinuous entropy change is related to the phase transition itself,
and is approximately independent of the applied field. The field shifts the transition
only to higher temperatures. This entropy change cannot be calculated from the
Maxwell relations, for two reasons: (i) It is not a magnetic entropy change, and (ii)
M(T) or M(H) is not a continuous, derivable function. For first order transitions, the
Clausius-Clapeyron (CC) equation offers a way to calculate the entropy change.”

The arguments are in almost total disagreement with each other. The only point in common
is that the direct use of the Maxwell relation on magnetization data would only report on
the change of magnetic entropy, and not the change in ‘non-magnetic’ (lattice/electronic)
entropy. Our analysis of this subject starts exactly in this point. What is ‘magnetic entropy’ and
‘non-magnetic’ entropy change, and why would non-magnetic entropy changes be invisible
in magnetization measurements.

4.1.1 Thermodynamics

Let us go back to some basics. To estimate entropy change from specific heat measurements,
one needs to measure Cp in both zero and non-zero applied field. The difference between
curves, integrated in T, will then correspond to the entropy difference between the H = 0 and
H �= 0 conditions. This is rigorously the MCE, as seen by isothermal entropy change. On the
other hand, magnetic measurements give us the bulk magnetization value, which is then used
as a thermodynamic variable. If the dependence of M on H and T is known, then the magnetic
entropy change is easily calculated. The only possible entropy change that is invisible in
magnetization measurements would then be the non-magnetically coupled entropy change in
lattice/electronic degrees of freedom. Now, magnetization is defined thermodynamically as

M(H, T, p) =

(

∂G

∂H

)

T,p

, (32)

so any change of the Gibbs free energy of system due to a change in applied field will then
result on a change of the M value. In other words, any change within the thermodynamic
system that occurs due to a change in applied field has repercussions in M. And so the
full magnetic entropy change is obtainable from M(H, T). This point of view will become
clearer upon investigating a magnetovolume coupling induced first-order phase transition.
As we will show, the use of the CC relation does not allow us to calculate ‘non-magnetic
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entropy’ variations, as the entropy change due to the lattice volume change is directly
calculated from the use of the Maxwell relation. It is helpful to have a visual sense of the
application of the Maxwell relation on magnetization data to obtain entropy change, as we
will discuss in the following section. A summarized version of the following section is given
in (Amaral & Amaral, 2010).

4.1.2 Visual representation

Let us consider a second-order phase transition system. M is a valid thermodynamic
parameter, i.e., the system is in thermodynamic equilibrium and is homogeneous.
Numerically integrating the Maxwell relation corresponds to integrating the magnetic
isotherms in field, and dividing by the temperature difference:

∆SM =
H ′

∑
0

(

Mi+1 − Mi

Ti+1 − Ti

)

∆Hi =

∫ H ′

0 [M(Ti+1, H)− M(Ti, H)] dH

Ti+1 − Ti
(33)

which has a direct visual interpretation, as seen in Fig. 15(a).
If the transition is first-order, there is an ‘ideal’ discontinuity in the M vs. H plot. Still,
apart from expected numerical difficulties, the area between isotherms can be estimated, (Fig.
15(b)).

(a) (b)

Fig. 15. Schematic diagrams of a a) second-order and b) first-order M vs. H plots, showing
the area between magnetic isotherms. From Eq. 33 these areas directly relate to the entropy
change.

The CC relation is presented in Eq. 34
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∣
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∣

∣

∆M

∆S

∣

∣

∣

∣

, (34)

where ∆M is the difference between magnetization values before and after the discontinuity
for a given T, ∆HC is the shift of critical field from ∆T and ∆S is the difference between the
entropies of the two phases.
The use of the CC relation to estimate the entropy change due to the first-order nature of the
transition also has a very direct visual interpretation (Fig. 16(a)):
From comparing Figs. 15(b) and 16(a), we can see how all the magnetic entropy variation that
can be accounted for with magnetization as the order parameter is included in calculations
using the Maxwell relation (Fig. 16(b)).
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(a) (b)

Fig. 16. a) schematic diagram of the area for entropy change estimation from the
Clausius-Clapeyron equation, from a M vs. H plot of a magnetic first-order phase transition
system, and b) magnetic entropy change versus temperature, estimated from the Maxwell
relation (full symbols) and corresponding entropy change estimated from the
Clausius-Clapeyron relation (open symbols).

All the magnetic entropy change is accounted for in calculations using the Maxwell relation.
So there is no real gain nor deeper understanding of the systems to be had from the use
of the CC relation to estimate magnetic entropy change. The ‘non-magnetic entropy’ is
indeed accounted for by the Maxwell relation. The argument that the entropy peak exists,
but specific heat measurements measure the lattice and electronic entropy in a way that
conveniently smooths out this peak, is in contrast with the previously shown results. The
entropy peak effect does not appear in calculations on purely simulated magnetovolume
first-order transition systems, which seems to conflict with the arguments from Pecharsky
and Gschneidner.
Of course, all of this reasoning and arguments have a common presumption: M is a valid
thermodynamic parameter. In truth, for a first-order transition, the system can present
metastable states, and so the measured value of M may not be a good thermodynamic
parameter, and also the Maxwell relation is not valid. In the following section, the
consequences of using non-equilibrium magnetization data on estimating the MCE is
discussed.

4.2 Irreversibility effects

We consider simulated mean-field data of a first-order phase transition system, with the same
initial parameters as used for the M(H, T) data shown in Fig. 7(a), now considering the
metastable and stable solutions of the transcendental equation. Results are shown in Fig.
17(a).
To assess the effects of considering the non-equilibrium solutions of M(H, T) as
thermodynamic variables in estimating the magnetic entropy change via the Maxwell relation,
we use the three sets of M(H, T) data. The result is presented in Fig. 17(b).
The use of the Maxwell relation on these non-equilibrium data produces visible deviations,
and in the case of metastable solution (2), the obtained peak shape is quite similar to that
reported by Pecharsky and Gschneidner for Gd5Si2Ge2 (Pecharsky & Gschneidner, 1999).
In this case ∆SM(T) values from caloric measurements follow the half-bell shape of the
equilibrium solution, but from magnetization measurements, an obvious sharp peak in
∆SM(T) appears. Similar deviations have been interpreted as a result of numerical artifacts
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(a) (b)

Fig. 17. a) M versus H isotherms from Landau theory, for a first-order transition, with
equilibrium (solid lines) and non-equilibrium (dashed and dotted lines), and b) estimated
∆SM versus T for equilibrium and non-equilibrium solutions, from the use of the Maxwell
relation.

(Wada & Tanabe, 2001), but are not present in a first-order system with no visible hysteresis
(Hu et al., 2001).
For the considered model parameters, the overestimation of ∆SM from using the Maxwell
relation in nonequilibrium can be as high as 1/3 of the value obtained under equilibrium, for
an applied field change of 5 T.
For large values of H, where M is near saturation in the paramagnetic region, the upper limit
to magnetic entropy change, ∆SM(max)= NkBln(2J + 1), is reached, which for the chosen
model parameters is ∼ 60 J.K−1.kg−1. However, this is exceeded by around 10% by the use
of the Maxwell relation to non-equilibrium values. If a stronger magneto-volume coupling
is considered (λ3 = 8 Oe (emu/g)−3), the limit can be exceeded by ∼ 30 J.K−1kg−1, clearly
breaking the thermodynamic limit of the model, falsely producing a colossal MCE (Fig. 18).

Fig. 18. −∆SM(T), obtained from the use of the Maxwell relation on equilibrium (black line)
and metastable (colored lines) magnetization data from the Bean-Rodbell model with a
magnetic field change of 1000 T.

The mean-field model also allows the study of mixed-state transitions, by considering
a proportion of phases (high and low magnetization) within the metastability region.
Magnetization curves are shown in the inset of Fig. 19, for λ3 = 2 Oe (emu/g)−3,
corresponding to a critical field ∼ 10T. The mixed-phase temperature region is from 328 to
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329 K, where the proportion of FM phase is set to 25% at 329 K, 50% at 328.5 K and 75% at 328
K.
The deviation resulting from using the mixed-state M vs. H curves and the Maxwell relation
to estimate ∆SM is now larger compared to the previous results (Fig. 19), since now the
system is also inhomogeneous, further invalidating the use of the Maxwell relation. The
thermodynamic limit to entropy change is again falsely broken. Note how the temperatures
that exceed the limit of entropy change are the ones that include mixed-phase data to estimate
∆SM.
This result shows how the estimated value of ∆SM can be greatly increased solely as
a consequence of using the Maxwell relation on magnetization data from a mixed-state
transition, which is the case of materials that show a colossal MCE (Liu et al., 2007). It is worth
noting that, at this time, there are no calorimetric measurements that confirm the existence of
the colossal MCE, and its report came from magnetization data and the use of the Maxwell
relation.

(a) (b)

Fig. 19. a) M vs. H isotherms of a mixed-phase system from the mean-field model and b)
corresponding ∆SM(T) for ∆H=5T from Maxwell relation (open symbols), and of the
equilibrium solution (solid symbols).

In the next section, an approach to make a realistic MCE estimation from mixed-phase
magnetization data is presented.

4.3 Estimating the magnetocaloric effect from mixed-phase data

It is possible to describe a mixed-phase system, by defining a percentage of phases x,
where one phase has an M1(H, T) magnetization value and the other will have an M2(H, T)
magnetization value. In a coupled magnetostructural transition, one of the phases will be
in the ferromagnetic state (M1) and the other (M2) will be paramagnetic. By changing
the temperature, the phase mixture will change from being in a high magnetization state
(ferromagnetic) to a low magnetization state (paramagnetic), and so the fraction of phases
(x) will depend on temperature. Explicitly, this corresponds to considering the total
magnetization of the system as Mtotal = x(T)M1 +(1− x(T))M2, for H < Hc(T) and M = M1

for H > Hc(T), where x is the ferromagnetic fraction in the system (taken as a function
of temperature only), M1 and M2 are the magnetization of ferromagnetic and paramagnetic
phases, respectively and Hc is the critical field at which the phase transition completes.
So if we substitute the above formulation in the integration of the Maxwell relation, used to
estimate magnetic entropy change, we can establish entropy change up to a field H as
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∆Scal =
d

dT

∫ H

0
[xM1 + (1 − x)M2] dH′ =

∂x

∂T

∫ H

0
(M1 − M2)dH′ + ∆Savg (35)

for H < Hc, where

∆Savg = x
∫ H

0

∂M1

∂T
dH′ + (1 − x)

∫ H

0

∂M2

∂T
dH′. (36)

Out of these terms, ∆Savg is due to the weighted contribution of the ferro- and paramagnetic
phase in the system while the first term results from the phase transformation that occurred in
the system during temperature and field variation. In order to obtain the entropy change up
to a field above the critical magnetic field Hc, its temperature dependence plays an important
role (latent heat contribution) and total entropy change can be formulated as

∆Scal =
∂

∂T

∫ Hc(T)

0
[xM1 + (1 − x)M2] dH′ +

∂

∂T

∫ H

Hc(T)
M1dH′

=
∂x

∂T

∫ Hc(T)

0
(M1 − M2)dH′ + (1 − x)

∂

∂T
Hc [M1 − M2]CT + ∆Savg

+
∫ H

Hc(T)

∂M1

∂T
dH′. (37)

The first term in the previous expression represents the contribution of phase transformation,
while the second term represents the fraction (1-x) of the latent heat contribution which is
measured in the calorimetric experiment in the region of mixed state (since part of the sample
is already in the ferromagnetic state, at zero field) and the last two terms are solely from the
magnetic contribution.
For both H < Hc and H > Hc cases, the contribution from the temperature dependence
of mixed phase fraction (∂x/∂T) represents the main effect from non-equilibrium in the
thermodynamics of the system and therefore creates major source of error in the entropy
calculation.
So, by estimating magnetic entropy change using the Maxwell relation and data from a
mixed-phase magnetic system adds a non-physical term, which, as we will see later, can be
estimated from analyzing the magnetization curves and the x(T) distribution. Let us use
mean-field generated data and a smooth sigmoidal x(T) distribution (Fig. 20).

Fig. 20. Distribution of ferromagnetic phase of system, and its temperature derivative.

Such a wide distribution will then produce M versus H plots that strongly show the
mixed-phase characteristics of the system, since the step-like behavior is well present (Fig.
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21(a)). Using the Maxwell relation to estimate magnetic entropy change, we obtain the peak
effect, exceeding the magnetic entropy change limit (Fig. 21(b)).

(a) (b)

Fig. 21. a) Isothermal M versus H plots of a simulated mixed-phase system, from 295 to 350
K (0.5 K step) and b) magnetic entropy change values resulting from the direct use of the
Maxwell relation.

As the entropy plot shows us, the shape of the entropy curve and the ∂x/∂T function (Fig.
20) share a similar shape. This points us to Eqs. 35 or 37. It seems that the left side of the
entropy plot may just be the result of the presence of the mixed-phase states, while for the
right side of the entropy plot, there is some ‘true’ entropy change hidden along with the ∂x/∂T
contribution. By using Eqs. 35 or 37, we present a way to separate the two contributions, and
so estimate more trustworthy entropy change values. We plot the entropy change values
obtained directly from the Maxwell relation, as a function of ∂x/∂T. This is shown in Fig.
22(a), for the data shown in Figs. 21(a) and 20.
Plotting entropy change as a function of the temperature derivative of the phase distribution
gives us a tool to remove the false ∂x/∂T contribution to the entropy change. As we can see in
Fig. 22(a), there is a smooth dependence of entropy in ∂x/∂T, which allows us to extrapolate
the entropy results to a null ∂x/∂T value, following the approximately linear slope near the
plot origin (dashed lines of Fig. 22(a)). This slope is constant as long and the magnetization
difference between phases (M1 − M2) is approximately constant, which is observed in strongly
first-order materials. The results of eliminating the ∂x/∂T contribution to the Maxwell relation
result are presented in Fig. 22(b).
By eliminating the contribution of the temperature derivative of the mixed-phase fraction,
the entropy ‘peak’ effect is eliminated, in a justified way. The resulting entropy curve
resembles the results obtained from specific heat measurements when compared to results
from magnetic measurements, as seen in Refs. (Liu et al., 2007) and (Tocado et al., 2009),
among others.
However, this corrected entropy is always less than the value in equilibrium condition. This
is because we deal with a fraction (1-x) of the phase M2 remaining to transform which will
give a fraction of latent heat entropy (Eq. 37) since part (x) of phase is already transformed at
zero field. This average entropy change weighted by the fraction of each phase present, can be
measured in calorimetric experiments. We regard x(T) and ∂x/∂T as parameters that can be
externally manipulated by changing the measurement condition/sample history and should
therefore be carefully handled to obtain the true entropy calculation.
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(a) (b)

Fig. 22. a) Entropy change, as obtained from the use of the Maxwell relation of mixed-phase
magnetization data, versus a) ∂x/∂T and b) versus T, with values extrapolated to
∂x/∂T → 0.

We can conclude that, for a first-order magnetic phase transition system, estimating magnetic
entropy change from the Maxwell relation can give us misleading results. If the system
presents a mixed-phase state, the entropy ‘peak’ effect can be even more pronounced, clearly
exceeding the theoretical limit of magnetic entropy change.

5. Acknowledgements

We acknowledge the financial support from FEDER-COMPETE and FCT through Projects
PTDC/CTM-NAN/115125/2009, PTDC/FIS/105416/2008, CERN/FP/116320/2010, grants
SFRH/BPD/39262/2007 (S. Das) and SFRH/BPD/63942/2009 (J. S. Amaral).

6. References

Aharoni, A. (2000). Introduction to the Theory of Ferromagnetism, Oxford Science Publications.
Amaral, J. S. & Amaral, V. S. (2009). The effect of magnetic irreversibility on estimating the

magnetocaloric effect from magnetization measurements, Appl. Phys. Lett. 94: 042506.
Amaral, J. S. & Amaral, V. S. (2010). On estimating the magnetocaloric effect from

magnetization measurements, J. Magn. Magn. Mater. 322: 1552.
Amaral, J. S., Reis, M. S., Amaral, V. S., Mendonça, T. M., Araújo, J. P., Sá, M. A., Tavares, P. B.

& Vieira, J. M. (2005). Magnetocaloric effect in Er- and Eu-substituted ferromagnetic
La-Sr manganites, J. Magn. Magn. Mater. 290: 686.

Amaral, J. S., Silva, N. J. O. & Amaral, V. S. (2007). A mean-field scaling method for first- and
second-order phase transition ferromagnets and its application in magnetocaloric
studies, Appl. Phys. Lett. 91(17): 172503.

Amaral, J. S., Tavares, P. B., Reis, M. S., Araújo, J. P., Mendonça, T. M., Amaral, V. S. & Vieira,
J. M. (2008). The effect of chemical distribution on the magnetocaloric effect: A case
study in second-order phase transition manganites, J. Non-Cryst. Solids 354: 5301.

Bean, C. P. & Rodbell, D. S. (1962). Magnetic disorder as a first-order phase transformation,
Phys. Rev. 126(1): 104.

Brück, E. (2005). Developments in magnetocaloric refrigeration, J. Phys D: Appl. Phys.
38(23): R381.

196 Thermodynamics – Systems in Equilibrium and Non-Equilibrium

www.intechopen.com



The Mean-field Theory in the Study of Ferromagnets and the Magnetocaloric Effect 25

Callen, H. B. (1985). Thermodynamics and an introduction to thermostatistics, 2nd edn, John Wiley
and Sons, New York, USA.

Coey, J. (2009). Magnetism and Magnetic Materials, Cambridge University Press, Cambridge.
Das, S., Amaral, J. S. & Amaral, V. S. (2010a). Handling mixed-state magnetization data for

magnetocaloric studies – a solution to achieve realistic entropy behaviour, J. Phys D:
Appl. Phys. 43(15): 152002.

Das, S., Amaral, J. S. & Amaral, V. S. (2010b). Prediction of realistic entropy behavior from
mixed state magnetization data for first order phase transition materials, J. Appl. Phys.
107(9): 09A912.

de Campos, A., Rocco, D. L., Carvalho, A. M. G., Caron, L., Coelho, A. A., Gama, S.,
da Silva, L. M., Gandra, F. C. G., dos Santos, A. O., Cardoso, L. P., Von Ranke, P. J. &
de Oliveira, N. A. (2006). Ambient pressure colossal magnetocaloric effect tuned by
composition in Mn1−xFexAs, Nature Materials 5(10): 802.

de Oliveira, N. A. & von Ranke, P. J. (2010). Theoretical aspects of the magnetocaloric effect,
Physics Reports-Review Section of Physics Letters 489(4-5): 89.

Forsythe, G. E., Malcolm, M. A. & Moler, C. B. (1976). Computer Methods for Mathematical
Computations, Prentice-Hall.

Gama, S., Coelho, A. A., de Campos, A., Carvalho, A. M. G., Gandra, F. C. G., von Ranke,
P. J. & de Oliveira, N. A. (2004). Pressure-induced colossal magnetocaloric effect in
MnAs, Phys. Rev. Lett. 93(23): 237202.

Giguère, A., Foldeaki, M., Gopal, B. R., Chahine, R., Bose, T. K., Frydman, A. & Barclay,
J. A. (1999). Direct measurement of the “giant” adiabatic temperature change in
Gd5Si2Ge2, Phys. Rev. Lett. 83(11): 2262.

Gonzalo, J. A. (2006). Effective Field Approach to Phase Transitions and Some Applications to
Ferroelectrics, World Scientific, Singapore.

Gschneidner Jr., K. A. & Pecharsky, V. K. (2008). Thirty years of near room temperature
magnetic cooling: Where we are today and future prospects, International Journal of
Refrigeration 31(6): 945.

Gschneidner Jr., K. A., Pecharsky, V. K. & Tsokol, A. O. (2005). Recent developments in
magnetocaloric materials, Reports on Progress in Physics 68(6): 1479.

Gschneidner, K. A. & Pecharsky, V. K. (2000). Magnetocaloric materials, Annual Review of
Materials Science 30: 387.

Hu, F. X., Shen, B. G., Sun, J. R., Cheng, Z. H., Rao, G. H. & Zhang, X. X. (2001). Influence of
negative lattice expansion and metamagnetic transition on magnetic entropy change
in the compound LaFe11.4Si1.6, Appl. Phys. Lett. 78(23): 3675.

Kittel, C. (1996). Introduction to Solid State Physics, 7th edn, John Wiley and Sons, New York.
Liu, G. J., Sun, J. R., Shen, J., Gao, B., Zhang, H. W., Hu, F. X. & Shen, B. G. (2007).

Determination of the entropy changes in the compounds with a first-order magnetic
transition, Appl. Phys. Lett. 90(3): 032507.

Pecharsky, V. K. & Gschneidner, K. A. (1997). Giant magnetocaloric effect in Gd5Si2Ge2, Phys.
Rev. Lett. 78(23): 4494.

Pecharsky, V. K. & Gschneidner, K. A. (1999). Heat capacity near first order phase transitions
and the magnetocaloric effect: An analysis of the errors, and a case study of
Gd5(Si2Ge2) and Dy, J. Appl. Phys. 86(11): 6315.

Phan, M. H. & Yu, S. C. (2007). Review of the magnetocaloric effect in manganite materials, J.
Magn. Magn. Mater. 308(2): 325.

197The Mean-Field Theory in the Study of Ferromagnets and the Magnetocaloric Effect

www.intechopen.com



26 Will-be-set-by-IN-TECH

Rocco, D. L., de Campos, A., Carvalho, A. M. G., Caron, L., Coelho, A. A., Gama, S., Gandra,
F. C. G., dos Santos, A. O., Cardoso, L. P., von Ranke, P. J. & de Oliveira, N. A. (2007).
Ambient pressure colossal magnetocaloric effect in Mn1−xCuxAs compounds, Appl.
Phys. Lett. 90(24): 242507.

Szewczyk, A., Szymczak, H., Wisniewski, A., Piotrowski, K., Kartaszynski, R., Dabrowski, B.,
Kolesnik, S. & Bukowski, Z. (2000). Magnetocaloric effect in La1−xSrxMnO3 for x =
0.13 and 0.16, Appl. Phys. Lett. 77(7): 1026.

Tishin, A. M. & Spichin, Y. I. (2003). The Magnetocaloric Effect and its Applications, IOP
Publishing, London.

Tocado, L., Palacios, E. & Burriel, R. (2009). Entropy determinations and magnetocaloric
parameters in systems with first-order transitions: Study of MnAs, J. Appl. Phys.
105: 093918.

Wada, H. & Tanabe, Y. (2001). Giant magnetocaloric effect of MnAs1−xSbx , Appl. Phys. Lett.
79(20): 3302.

198 Thermodynamics – Systems in Equilibrium and Non-Equilibrium

www.intechopen.com



Thermodynamics - Systems in Equilibrium and Non-Equilibrium

Edited by Dr. Juan Carlos Moreno PirajÃ¡n

ISBN 978-953-307-283-8

Hard cover, 306 pages

Publisher InTech

Published online 10, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Thermodynamics is one of the most exciting branches of physical chemistry which has greatly contributed to

the modern science. Being concentrated on a wide range of applications of thermodynamics, this book gathers

a series of contributions by the finest scientists in the world, gathered in an orderly manner. It can be used in

post-graduate courses for students and as a reference book, as it is written in a language pleasing to the

reader. It can also serve as a reference material for researchers to whom the thermodynamics is one of the

area of interest.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

J. S. Amaral, S. Das and V. S. Amaral (2011). The Mean-Field Theory in the Study of Ferromagnets and the

Magnetocaloric Effect, Thermodynamics - Systems in Equilibrium and Non-Equilibrium, Dr. Juan Carlos

Moreno PirajÃ¡n (Ed.), ISBN: 978-953-307-283-8, InTech, Available from:

http://www.intechopen.com/books/thermodynamics-systems-in-equilibrium-and-non-equilibrium/the-mean-

field-theory-in-the-study-of-ferromagnets-and-the-magnetocaloric-effect



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

