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Key Role in Cellular and Amorphous Networks
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Abstract—We introduce a simple yet powerful and versatile
analytical framework to approximate the SIR distribution in the
downlink of cellular systems. It is based on the mean interference-
to-signal ratio and yields the horizontal gap (SIR gain) between
the SIR distribution in question and a reference SIR distribution.
As applications, we determine the SIR gain for base station
silencing, cooperation, and lattice deployment over a baseline
architecture that is based on a Poisson deployment of base
stations and strongest-base station association. The applications
demonstrate that the proposed approach unifies several recent
results and provides a convenient framework for the analysis
and comparison of future network architectures and transmission
schemes, including amorphous networks where a user is served by
multiple base stations and, consequently, (hard) cell association
becomes less relevant.

Index Terms—Stochastic geometry, Poisson point process, in-
terference, coverage, cellular network, HetNets.

I. INTRODUCTION

A. Motivation and contribution

The SIR distribution is a key metric in interference-limited

wireless systems. Due to high capacity demands and limited

spectrum, current- and next-generation cellular systems adopt

aggressive frequency reuse schemes, which makes interference

the main performance-limiting factor. To overcome coverage

and capacity problems due to interference, many sophisti-

cated transmission schemes, including base station cooperation

and silencing, successive interference cancellation, multi-user

MIMO, and multi-tier architectures have recently been pro-

posed. However, a simple evaluation and comparison of their

effect on the SIR distribution has been elusive.

In this paper, we propose a novel technique that provides

tight approximations of the SIR gain of advanced downlink

architectures and cooperation schemes over a baseline scheme.

It is based on the mean interference-to-signal ratio (MISR),

which is used to quantify the horizontal gap between two SIR

distributions. To account for the spatial irregularity of current

and future cellular system, we use point process models for

the positions of the base stations (BSs) [1], [2].

B. The horizontal gap in the SIR distribution

We focus on the complementary cumulative distribution

(ccdf) F̄SIR(θ) , P(SIR > θ) of the SIR1. There are two

ways to compare SIR distributions, vertically or horizontally,

see Fig. 1 for an illustration. Using the vertical gap, i.e., the
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1The ccdf is often referred to as the transmission success probability, while
its complement, the cdf, is the outage probability.
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Fig. 1. Example SIR ccdfs for a baseline and an improved scheme. The
vertical gap between the distributions depends strongly on the value of θ
where it is evaluated, while the horizontal gap is almost constant.

gain in the success probability, has several disadvantages: (1)

it depends strongly on the value of θ where it is evaluated; (2)

it is often unclear whether the gain is measured in absolute

or relative terms (for example, at -10 dB, the gap is 0.058, or

6.4%; at 0 dB, the gap is 0.22, or 39%, and at 20 dB, the gap

is 0.05, or 78%) (3) the gain also depends heavily on the path

loss law and fading models.

In contrast, the horizontal gap (SIR gain) is often quite

insensitive to the probability where it is evaluated and the path

loss models. In Fig. 1, for example, G(p) = 5 dB, irrespective

of p.

Formally, the horizontal gap is defined as

G(p) ,
F̄−1
SIR2

(p)

F̄−1
SIR1

(p)
, p ∈ (0, 1), (1)

where F̄−1
SIR is the inverse of the ccdf of the SIR and p is the

target success probability. We also define the asymptotic gain

(whenever the limit exists) as

G , G(1) = lim
p→1

G(p). (2)

A necessary and sufficient condition for this limit to exist

is that the two schemes provide the same diversity gain,

which implies that the two cdfs of SIR1 and SIR2 have the

same slope asymptotically as θ → 0. The diversity under

interference (DUI) is defined as [5, Def. 3]

d , lim
θ→0

logFSIR(θ)

log θ
. (3)

Here FSIR(θ) is the cdf of the SIR.
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II. THE MEAN INTERFERENCE-TO-SIGNAL RATIO

A. Definition

Definition 1 (IS̄R) The interference-to-average-signal ratio

IS̄R is defined as

IS̄R ,
I

Eh(S)
,

where I is the sum power of all interferers and S̄ = Eh(S) is

the signal power averaged over the fading. Its mean is denoted

by MISR , E(IS̄R).

The bar over the S in the IS̄R indicates averaging over the

fading. The IS̄R is a random variable due to the random posi-

tions of the BSs relative to the typical user. For the following

discussion, we assume a power path loss law ℓ(r) = r−α with

a path loss exponent α and (power) fading with unit mean, i.e.,

for all fading random variables, E(h) = 1. We also assume

that the desired signal comes from a single BS at distance

R, while the interferers are located at distances Rk and their

transmit powers (relative to the one of the serving BS) are Pk.

In this case, the IS̄R is given by

IS̄R = Rα
∑

k∈I

hkPkR
−α
k ,

where I is the index set of the interferers and hk denotes the

channel (power) gain. The mean follows as

MISR , E(IS̄R) =
∑

k∈I

PkE

(

Rα

Rα
k

)

. (4)

So the MISR is a function of the distance ratios Rk/R
between the desired and interfering base stations, scaled by

the relative transmit powers.

B. The asymptotic gap for Rayleigh fading

Since hS̄ is the instantaneous signal power, we have

FSIR(θ) = P(hS̄ < θI) = P(h < θ IS̄R).

For exponential h and θ → 0, P(h < θx) ∼ θx, thus

P(h < θ IS̄R | IS̄R) ∼ θ IS̄R,

and, taking the expectation over the IS̄R,

P(h < θ IS̄R) ∼ θE(IS̄R).

So FSIR(θ) ∼ θMISR, and F̄−1
SIR(p) ∼ (1−p)/MISR, p → 1.

Consequently, the asymptotic gain between two SIR ccdfs (2)

can be expressed as

G =
MISR1

MISR2
, (5)

and if it is finite, we have F̄SIR2
(θ) ∼ F̄SIR1

(θ/G), θ → 0.

We will demonstrate in the next section that this relationship

provides an accurate approximation for the gain also at non-

vanishing values of θ, i.e., that F̄SIR2
(θ) ≈ F̄SIR1

(θ/G) for

all practical values of the success probability.

Other types of fading will be discussed in Sec. IV.

C. The HIP model and the baseline MISR

Definition 2 (HIP Model) A homogeneous independent

Poisson (HIP) model with n tiers consists of n independent

Poisson point processes (PPPs) Φk ⊂ R
2 with intensities λk,

k ∈ [n] and power levels Pk. Φk is the set of locations of the

base stations of the k-th tier.

Remarks:

• The HIP model was first introduced as a model for

cellular networks in [1] (but it was not termed HIP

model).

• The HIP model is doubly independent, since it exhibits

neither intra-tier nor inter-tier dependence. This makes

it highly tractable but also makes it less accurate in

situations where base stations are deployed in a repulsive

fashion (see, e.g., [3]) or where base stations of different

tiers are not placed independently.

• Quite remarkably, for the power path loss law with

Rayleigh fading and with strongest-BS association (on

average, i.e., not considering small-scale fading), the SIR

distribution for the HIP model does not depend on the

number of tiers n, their densities λk, or their power levels

Pk [4]. For α = 4, the ccdf of the SIR is given by the

extremely simple expression

F̄SIR[4](θ) =
1

1 +
√
θ arctan

√
θ
. (6)

Due to its tractability, the HIP model is the perfect candidate

for a baseline model against which the gains of other schemes

can be measured. Since the SIR distribution does not depend

on the density or number of tiers, we use a single-tier model

in the following to calculate the MISR for the HIP model.

Letting Rk be the distance from the typical user to the k-th

nearest BS, the distribution of the distance ratio νk = R1/Rk

follows from [5, Lemma 3] as

Fνk (x) = 1− (1− x2)k−1, x ∈ [0, 1],

and the α-th moments are

E(ναk ) =
Γ(1 + α/2)Γ(k)

Γ(k + α/2)
. (7)

For equal powers Pk ≡ 1, the MISR (4) follows as2

E(IS̄R) =

∞
∑

k=2

Γ(1 + α/2)Γ(k)

Γ(k + α/2)
=

2

α− 2
, α > 2. (8)

For α = 4, MISR = 1, which implies FSIR(θ) ∼ θ, θ → 0.

III. APPLICATIONS

A. Base station silencing

We consider the (single-tier) HIP model and let IS̄R
(!n)

denote the IS̄R if the n strongest interfering BSs (on average)

are silenced and all BSs transmit at the same power.

2The parameter κPPP calculated as the limit limθ→0 FSIR(θ)/θ in [6,
Cor. 1] is identical to the MISR for the PPP.
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Fig. 2. Gain from silencing one base station in HIP model for α = 4. In
this case, from (9), G = 3/2 (or 1.76 dB).

If the nearest interfering BS is silenced, the MISR is

obtained by subtracting E(να2 ) from (8), which yields

E(IS̄R
(!1)

) =
2

α− 2
− 2

α+ 2
=

8

α2 − 4
.

For general n,3

E(IS̄R
(!n)

) =
2Γ(1 + α/2)

α− 2

Γ(n+ 2)

Γ(n+ 1 + α/2)
.

For α = 4, E(IS̄R
(!n)

) = 2
n+2 , and the asymptotic gain per

(5) is simply

Gsilence[4] =
1

E(IS̄R
(!n)

)
= 1 +

n

2
. (9)

Fig. 2 shows the SIR distributions for the HIP model without

silencing, for the HIP model with silencing of one BS, and

the MISR-based approximation. The approximation is tight for

success probabilities above 3/4; after that, it is pessimistic.

B. Base station cooperation for worst-case users

We focus on worst-case users in the single-tier HIP model,

which are the ones located at the vertices of the Voronoi

tessellation [4], [7]. These locations are marked by × in Fig. 3,

and the SIR ccdf is denoted as F̄×

SIR accordingly. Worst-case

users are at a significant disadvantage if they are served by a

single BS since they have two other BSs at the same distance.

With (non-coherent) joint transmission4 from the 3 equidis-

tant BSs and α = 4, the ccdf follows from [4, Thm. 2] as

F̄×,coop
SIR[4] (θ) = F̄ 2

SIR[4](θ/3) =
(

1+
√

θ/3 arctan(
√

θ/3)
)−2

.

(10)

where F̄SIR[4] is the SIR ccdf for the typical user in the HIP

model given in (6). The factor of 3 is due to the gain in signal

power, while the exponent of 2 is due to the larger distance

of the nearest BS than in the case of the typical user.

For n ∈ {1, 2, 3} cooperating BSs, it follows from [4,

Thm. 4] that

MISR×

n−coop =
4+ (3 − n)(α− 2)

n(α− 2)
.

3The same result has been obtained in [5, Prop. 1] by calculating FSIR(θ)
as θ → 0. The proof here is much shorter, though.

4The amplitudes of the three signals are adding up, and the combined
received signal is still subject to Rayleigh fading.
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Fig. 3. Illustration of worst-case user locations. Base stations are marked by
⊙, and the crosses × are the vertices of the Voronoi tessellation and mark
the locations of the worst-case users. These users have the same distance to
the 3 nearest BSs.
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Fig. 4. SIR ccdf for worst-case users without cooperation and with 3-BS
cooperation (from (10)) and MISR-based approximation for α = 4. Here
G = 6 (7.8 dB).

So for n = 3, the gain relative to no cooperation (n = 1) is

G3−coop =
MISR×

1−coop

MISR×

3−coop

= 3 +
3

2
(α− 2).

Fig. 4 shows the SIR distribution for worst-case users without

cooperation, with cooperation from the 3 nearest BSs, and the

MISR-based approximation.

C. Non-Poisson deployment

An SIR gain can also be obtained by deploying the BSs

more regularly (repulsively) than a PPP. This gain has been

termed deployment gain in [6], [8]. Exact closed-form results

for the SIR distribution for non-Poisson deployments are im-

possible to derive. However, the MISR-based approximation,

relative to the HIP model, is fairly easy to evaluate and quite

accurate.

Simulations show that the MISR of the square lattice is

quite exactly half of that of the PPP, irrespective of the path

loss exponent, i.e., the deployment gain is 3 dB. Fig. 5 shows

that the resulting approximation is extremely accurate over a
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Fig. 5. SIR ccdf for the square lattice and MISR-based approximation for
α = 4 (Rayleigh fading).

wide range of θ. As a result,

F̄ sq
SIR[4](θ) ≈ F̄SIR[4](θ/2),

where F̄SIR[4] is given in (6). For the triangular lattice (hexag-

onal cells), the gain is slightly larger, about 3.4 dB, which is

the maximum achievable.

IV. GENERAL FADING AND DIVERSITY

So far we have discussed the case of Rayleigh fading. The

MISR framework easily extends to other types of fading or

transmission schemes with diversity (e.g., coherent BS coop-

eration, MIMO, retransmission). As pointed out in Sec. I.B,

the two schemes that are compared need to provide the same

diversity gain d defined in (3).

For example, if the fading distribution satisfies Fh(x) ∼
axm, x → 0, (as, e.g., in Nakagami-m fading)

FSIR(θ) ∼ aθmE(IS̄R
m
),

the diversity order is m—if the m-th moment of the IS̄R is

finite.5 The asymptotic gain follows as

G(m) =

(

E(IS̄R
m
1 )

E(IS̄R
m
2 )

)1/m

≈ G(1),

where the approximation by G(1) holds since the factor

E(IS̄R
m
)1/m/MISR is about the same for both schemes

and thus cancels approximately. This is illustrated in Fig. 6

for Nakagami-2 fading and the square lattice. The shift by

G(1) = 3 dB still yields a very good approximation.

V. CONCLUSIONS

The SIR distributions of two transmission schemes or de-

ployments in cellular networks that provide the same diversity

gain are, asymptotically, horizontally shifted version of each

other, and the asymptotic gap (or gain) between them is

quantified by the ratio of the MISRs of the two schemes.

We demonstrated that this asymptotic gain G provides a good

approximation for the gain at finite θ. If the spectral efficiency

(in nats/s/Hz) is approximated as R ≈ log(1 + θ), the results

5For the PPP, it can be shown that all moments of the IS̄R are finite.
Whether this holds for all stationary point processes is under investigation.
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Fig. 6. SIR ccdf of HIP model, square lattice, and MISR-based approximation
for α = 4 and Nakagami-2 fading.

show that an SIR gain G results in a spectral efficiency gain of

log(1+Gθ)− log(1+ θ) or, if the target θ is relatively small,

simply (G−1)θ. Also, any quantity of interest that depends on

the SIR distribution, such as the ergodic rate E log(1 + SIR),
can readily be approximated using the ccdf F̄SIR(θ/G).

Due to its tractability, the HIP model is the prime candidate

as a reference model. The MISR of other networks is relatively

easy to determine by simulation since it only depends on the

BS and user locations and the transmit power levels, but not

on the fading.

We anticipate that future networks will not be based on a

strict cellular architecture but will become amorphous due to

cooperation between BSs at different levels, relays, and dis-

tributed antenna systems. Since an exact analytical evaluation

for the SIR distribution for these sophisticated and cognitive

architectures seems hopeless, we believe that the proposed

MISR framework will play an important role in the analysis

of such emerging amorphous networks.
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