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THE MEAN SQUARE OF THE PRODUCT OF THE RIEMANN

ZETA FUNCTION WITH DIRICHLET POLYNOMIALS

SANDRO BETTIN, VORRAPAN CHANDEE, AND MAKSYM RADZIWI L L

Abstract. Improving earlier work of Balasubramanian, Conrey and Heath-Brown
[BCHB85], we obtain an asymptotic formula for the mean-square of the Riemann zeta-
function times an arbitrary Dirichlet polynomial of length T 1/2+δ, with δ = 0.01515 . . ..
As an application we obtain an upper bound of the correct order of magnitude for
the third moment of the Riemann zeta-function. We also refine previous work of
Deshouillers and Iwaniec [DI84], obtaining asymptotic estimates in place of bounds.
Using the work of Watt [Wat95], we compute the mean-square of the Riemann zeta-
function times a Dirichlet polynomial of length going up to T 3/4 provided that the
Dirichlet polynomial assumes a special shape. Finally, we exhibit a conjectural esti-
mate for trilinear sums of Kloosterman fractions which implies the Lindelöf Hypothesis.

1. Introduction

We are interested in the mean-square of the product of the Riemann zeta-function
ζ(s) with an arbitrary Dirichlet polynomial A(s). More precisely, we would like to
understand

(1.1) I =

∫

R

∣∣ζ
(
1
2

+ it
)∣∣2 ·

∣∣A
(
1
2

+ it
)∣∣2φ

(
t

T

)
dt

with φ(x) a smooth function supported in [1, 2] and

A(s) :=
∑

n6T θ

an
ns
, an ≪ nε, θ < 1.

Asymptotic estimates for I have been used consistently to understand the distribution
of values of L-functions, the location of their zeros, and upper and lower bounds for the
size of L-functions. See, for example, [CGG86, Con89, Rad, Sou95].

It is crucially important to allow θ to be as large as possible. For example, if we could
take θ = 1 − ε in (1.1) then the Lindelöf Hypothesis would follow.

Balasubramanian, Conrey and Heath-Brown obtained an asymptotic formula for I
when θ < 1

2
. For θ < 1

2
and φ(t) the indicator function of the interval [1, 2], they show
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that

(1.2) I = T
∑

d,e6T θ

adae
[d, e]

·
(

log

(
T (d, e)2

2πde

)
+ 2γ + log 4 − 1

)
+ o(T ).

When A(s) is a mollifier, they show that one can go further and take θ < 1
2

+ 1
34

=
0.529411 . . . . Their motivation was to understand the location of the zeros of the
Riemann zeta-function. Specifically they deduce that at least 38% of the complex zeros
of ζ(s) are on the critical line ℜs = 1

2
. Improvements on the admissible length of A(s)

will lead to a further understanding of the zeros of ζ(s) on the critical line. (See also
[Con89]).

In complete generality the formula (1.2) fails when θ > 1. Balasubramanian, Conrey
and Heath-Brown conjecture that it remains true provided that θ < 1. This is known
as the θ = 1 conjecture. An important change occurs at θ = 1

2
. When θ < 1

2
only the

diagonal terms (in the sense of Section 3.1 below) contribute to I, while for θ > 1
2

there
is also a contribution from the non-diagonal terms which seems difficult to manage given
the generality of the Dirichlet polynomial A(s). The main result of our paper consists
in breaking the 1

2
barrier for an arbitrary Dirichlet polynomial. In fact, we prove (1.2)

for θ < 17
33

= 1
2

+ δ with δ = 1
66

≈ 0.01515....

Theorem 1. Let I and A(s) be as above. If θ < 1
2

+ δ, with δ = 1
66

then,

I =
∑

d,e6T θ

adae
[d, e]

·
∫

R

(
log

(
t (d, e)2

2πde

)
+ 2γ

)
φ

(
t

T

)
dt+O

(
T

3
20

+εN
33
20 + T

1
3
+ε
)
,

where N := T θ.

We notice that the off-diagonal terms contribute to the main term roughly those d
and e for which the logarithm in the above expression is negative.

Our main tool in the proof of Theorem 1 is an estimate for trilinear forms of Kloost-
erman fractions, which will appear in [BC]. This estimate improves a result of Duke,
Friedlander, Iwaniec in [DFI97a], dealing with bilinear sums. The use of Theorem 2
in their paper is also enough to break the 1

2
barrier, though with the smaller constant

δ = 1/190 ≈ 0.00526 in Theorem 1.
If we assume a general estimate for trilinear forms of Kloosterman fractions, such as,

SA,M,N :=
∑

a

∑∑

(m,n)=1

νaαmβn e

(
am

n

)

≪ε ‖α‖‖β‖‖ν‖(M +N)
1
2
+r+εAt + ‖ν‖A 1

2

(
‖α‖∞‖β‖N 1

2
+ε + ‖α‖‖β‖∞M

1
2
+ε
)
,

(1.3)

where M ≤ m < 2M, N ≤ n < 2N , A ≤ a < 2A, A ≪ (NM)
0.5−r
1+2t

+ε, and ‖ · ‖ and
‖ · ‖∞ denote the L2 and L∞ norms respectively, then the statement of Theorem 1 can
be replaced as follows.
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Theorem 2. Suppose that (1.3) is true for some r, t ≥ 0. Then

I =
∑

d,e6T θ

adae
[d, e]

·
∫

R

(
log

(
t (d, e)2

2πde

)
+ 2γ

)
φ

(
t

T

)
dt+O

(
T

1
2
−t+εN

1
2
+r+2t + T

1
3
+ε
)
,

for θ < 1
2

+ 0.5−r
1+2(r+2t)

and where N := T θ.

The estimate of Duke, Friedlander, Iwaniec implies (1.3) with r = 23
48

and t = 1
2
, while

the estimate of Bettin and Chandee allows us to take r = 9
20

and t = 7
20

. We conjecture
that (1.3) holds true for all r, t ≥ 0.

Conjecture 1. Let A≪ (NM)
1
2
+ε. Then

(1.4) SA,M,N ≪ ‖α‖‖β‖‖ν‖(M+N)
1
2
+ε+‖ν‖A 1

2

(
‖α‖∞‖β‖N 1

2
+ε + ‖α‖‖β‖∞M

1
2
+ε
)
.

This conjecture essentially states that we expect square-root cancellation in the short-
est two sums, as long as the total saving does not exceed M or N . In the Appendix we
show that this is best possible, up to ε-powers.

Using the estimate (1.4) and Theorem 2, we obtain an asymptotic formula for I valid
for any θ < 1, and this implies the Lindelöf hypothesis. We state this as a corollary
below.

Corollary 1. Suppose that Conjecture 1 holds. Then the Lindelöf Hypothesis is true.

Conjecture 1 appears to be strictly stronger than the Lindelöf Hypothesis. Indeed
Conjecture 1 implies (1.2) with θ < 1, while the Lindelöf Hypothesis only gives the
cruder bound

I ≪ T 1+ε
∑

n≤T θ

|an|2
n

.

The proof of Theorem 2, on which Corollary 1 depends, is the same as that of The-
orem 1 except that we use (1.3) instead of Proposition 1. The modification will be
discussed at the end of Section 3.

Duke, Friedlander and Iwaniec apply their estimate to obtain bounds for the twisted
second moment of a Dirichlet L-function [DFI97b]. They show that,

∑

χ mod q

∣∣L
(
1
2
, χ
)∣∣2 ·

∣∣D
(
1
2
, χ
)∣∣2 ≪ q1+ε

for Dirichlet polynomials D(s, χ) with coefficients an ≪ nε and of length q1/2+δ′ with
some δ′ > 0. Our proof of Theorem 1 would not extend to give an asymptotic formula
in this case, and additional input is needed.

As an application of Theorem 1 we obtain an upper bound of the correct order of
magnitude for the third moment of the Riemann zeta-function.

Corollary 2. We have,
∫ 2T

T

∣∣ζ
(
1
2

+ it
)∣∣3dt≪ T (log T )9/4.
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We further indicate in Section 6.1 how to refine this result to obtain correct upper
bounds for the 2k-th moment, when k has the form k = 1+1/n. Previously Corollary 2
was known only on the assumption of the Riemann Hypothesis [HB81]. The only
sharp unconditional upper bounds that were previously known are for the classic cases
k = 0, 1, 2 and for k = 1/n, due to Heath-Brown [HB81].

With further applications in mind we investigate how much θ can be increased when
the Dirichlet polynomial A(s) is specialized.

1.1. Products of two Dirichlet polynomials. When A(s) can be written as a prod-
uct of two Dirichlet polynomials B(s)C(s), one can appeal to stronger estimates for
sums of Kloosterman sums due to Deshouillers and Iwaniec. In [DI84], Deshouillers and
Iwaniec consider the product of ζ(s) with two Dirichlet polynomials,

(1.5) J =

∫

R

∣∣ζ
(
1
2

+ it
)∣∣2 ·

∣∣A
(
1
2

+ it
)∣∣2 ·

∣∣B
(
1
2

+ it
)∣∣2dt

with

A(s) :=
∑

n6N

αn

ns
, B(s) :=

∑

k6K

βk
ks
, where αn ≪ nε, βk ≪ kε.(1.6)

They show that if N ≥ K, then

J ≪ T ε · (T + T 1/2N3/4K + T 1/2NK1/2 +N7/4K3/2).

Their proof depends on estimates for incomplete Kloosterman sums as developed in
[DI84]. Proceeding similarly as in the proof of Theorem 1, and using Deshouillers and
Iwaniec’s estimate, we refine their bound to an asymptotic estimate.

Theorem 3. Let J,A(s) and B(s) be as defined in (1.5) and (1.6), and let N > K.
Then,

J =
∑

d,e6NK

adae
[d, e]

·
∫

R

(
log

(
t(d, e)2

2πde

)
+ 2γ

)
φ

(
t

T

)
dt

+O(T ε · (T 1/2N3/4K + T 1/2NK1/2 +N7/4K3/2)),

with ad :=
∑

nk=d αnβk.

When the length ofN andK is chosen suitably, Theorem 3 allows us to take θ < 1
2
+ 1

10
.

1.2. Specializing one of the Dirichlet polynomials. A specific case of interest is
A(s)B(s) with A(s) of length N =

√
T and smooth coefficients, and B(s) arbitrary and

as long as possible. One can think of such estimates as estimates for the twisted fourth
moment of the Riemann zeta-function. In this case we can go further by combining the
trilinear sums estimate used to prove Theorem 1 with Watt’s strengthening [Wat95] of
the groundbreaking work of Deshouillers-Iwaniec on estimates for sums of Kloosterman
sums [DI83].
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Theorem 4. Let J,A(s) and B(s) be as defined in (1.5) and (1.6). Let N ≪ T
1
2
+ε

for all ε > 0 and assume that αn = ψ(n) with ψ(x) a smooth function such that

ψ(j)(x) ≪j x
−j for all j > 0. Let K ≪ T

1
4 and βk ≪ kε for all ε > 0. Moreover

assume αn is supported on [NT−ξ1 , 2N ] and βk is supported on [KT−ξ2 , 2K], where
0 ≤ ξ1 ≤ 1

5
, 0 ≤ ξ2 ≤ 1

16
. Then,

J =
∑

d,e6NK

adae
[d, e]

·
∫

R

(
log

(
t(d, e)2

2πde

)
+ 2γ

)
φ

(
t

T

)
dt+

+O

(
T

1
2
+εK2 +KN

3
4T

3
8
+ε + T

39
40

+ 1
8
ξ1+

2
5
ξ2+ε

)
,

where ad =
∑

nk=d αnβk.

Remark. Theorem 4 yields an asymptotic formula for 5ξ1 + 16ξ2 < 1 (and N ≪ T
1
2 ,

K ≪ T
1
2
−ε). We remark that this range could be enlarged with a little more work.

We notice that Theorem 4 allows us to take θ < 3
4

for Dirichlet polynomials of

the form A(s)B(s) with A(s) pretending to be ζ(s) and B(s) of length up to T 1/4−ε.
Thus, following the work of Radziwi l l [Rad12], Theorem 4 could be applied to give
a sharp upper bound for the 2k-th moment of the Riemann zeta function for 2k <
5, conditionally on the Riemann hypothesis (however, we remark that this has been
recently proven for all k ≥ 0 by Harper [Har]). It would be interesting to investigate if
Theorem 4 has other applications, for example to the study of large gaps between the
zeros of the Riemann zeta-function (see [Bre]).

Theorem 4 refines upon Watt’s result, who uses his Kloosterman sum estimate to give
(essentially) an upper bound of the form J ≪ T 1+ε + T 1/2+εK2, for an, bn supported
on dyadic intervals. Theorem 4 should also be compared with the asymptotic formula
for the twisted fourth moment of Hughes and Young [HY10]. Their result allows to get
an asymptotic formula for the second moment of ζ2(s)B(s) with B(s) of length up to
T 1/11−ε.

Acknowledgments

We are very grateful to Brian Conrey for suggesting to us the problem of breaking
the 1

2
barrier in Theorem 1 and to Micah B. Milinovich and Nathan Ng for pointing out

the paper of Duke, Friedlander, Iwaniec [DFI97a]. We also wish to thank the referee for
a very careful reading of the paper and for indicating several inaccuracies and mistakes.

2. Estimates for sums of Kloosterman sums

Remark. Throughout the paper, we use the common convention in analytic number
theory that ε denotes an arbitrarily small positive quantity that may vary from line to
line.

In this section, we collect the estimates for sums of Kloosterman sums that will be
used to prove the theorems.
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The following Proposition is from [BC], and we will use it when dealing with the
contribution of the off-diagonal terms in Theorem 1 and 4.

Proposition 1. Let αm, βn, νa be complex numbers, where M ≤ m < 2M, N ≤ n <
2N , and A ≤ a < 2A. Then for any ε > 0, we have

∑

a

∑∑

(m,n)=1

νaαmβn e

(
am

n

)
≪ε ‖α‖‖β‖‖ν‖

(
1 +

A

MN

) 1
2

×
(

(AMN)
7
20

+ε(M +N)
1
4 + (AMN)

3
8
+ε(AN + AM)

1
8

)
,

(2.1)

where ‖ · ‖ denotes the L2 norm.

The off-diagonal terms in Theorem 3 will be estimated using the following bound,
due to Deshouillers and Iwaniec [DI84].

Proposition 2 (Deshouillers, Iwaniec). Let L, J, U, V ≥ 1 and |c(u, v)| ≤ 1. We then
have

∑

1≤ℓ≤L

∑

1≤j≤J
(ℓ,̺j)=1

∣∣∣∣∣∣∣∣

∑

1≤u≤U

∑

1≤v≤V
(v,ℓ)=1

c(u, v) e

(
u
̺vj

ℓ

)
∣∣∣∣∣∣∣∣

≪ (LJUV )1/2+ε
{

(LJ)1/2 + (U + V )1/4[LJ(U + ̺V )(L+ ̺V 2) + ̺UV 2J2]1/4
}
.

Finally, to estimate the off-diagonal terms in Theorem 4, we will use the following
Proposition, which can be derived easily from Proposition 4.1 of Watt [Wat95].

Proposition 3 (Watt). Let H,C, P, V, R, S ≥ 1 and δ ≤ 1. Assume that for some
ε > 0 we have

X :=

(
RV SP

HC

) 1
2

≫ (RSPV )ε,

(RS)2 ≥ max

(
H2C,

SP

V
(RSPV )ε

)
.

(2.2)

Moreover, assume that α(x), β(x) are complex valued smooth functions, supported on
the intervals [1/2, H ] and [1/2, C] respectively, such that

α(j)(x), β(j)(x) ≪j (δx)−j

for all j ≥ 0. Assume ar, bs are sequences of complex numbers supported on [R/2, R],
[S/2, S] respectively and are such that ar ≪ rε, bs ≪ sε. Finally, assume that for all
i, j ≥ 0,

di+j

dyidyj
γr,s(x, y) ≪i,j x

−iy−j,
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where for all r and s, γr,s(x, y) is supported on [V/2, V ] × [P/2, P ]. Then

∑∑

s∼S, r∼R

∑∑∑∑

h,c,p,v,
(rv,sp)=1

α(h)β(c)γr,s(v, p)arbs e

(
±hcrv

sp

)

≪ δ−
7
2HCR(V + SX)

(
1 +

HC

RS

) 1
2
(

1 +
P

V R

) 1
2
(

1 +
H2CPX2

V S3R4

) 1
4

(HCRV PS)20ε.

(2.3)

Proof. Firstly using smooth partitions of unity, we can assume that α(x), β(x) are
supported on [H/2, H ] and [C/2, C], since the bound (2.3) is weaker (and the con-
ditions (2.2) stricter) for larger values of H and C. Moreover, by dividing by Rε and
Sε if necessary, we can assume ar, bs ≪ 1.

By Poisson’s formula,
∑

(v,sp)=1

γ(v, p) e

(
±hcrv

sp

)
=

∑∗

u (mod sp)

e

(
±hcru

sp

) ∑

v≡u (mod sp)

γ(v, p)

=
∑∗

u (mod sp)

e

(
±hcru

sp

)
1

sp

∑

ℓ

e

(
−ℓu
sp

)∫

R

γ(y, p) e

(
ℓy

sp

)
dy

=
∑

ℓ

S(hcr,∓ℓ, sp)
∫

R

γ(ysp, p) e(ℓy) dy.

If ℓ = 0, the Kloosterman sum reduces to a Ramanujan sum, and one has S(hcr,∓ℓ, sp) ≪
(hc, sp). Thus, the contribution to (2.3) coming from the terms ℓ = 0 is bounded by

∑∑

s∼S, r∼R

∑∑∑

h,c,p
(r,sp)=1

α(h)β(c)arbs
(hc, sp)

sp
V ≪ RVHC(HCP )ε.

Also, integrating by parts repeatedly, we see that the terms with ℓ ≥ SP
V

(RSPV )ε give
a negligible contribution. For the remaining terms, we introduce a smooth partition of
unity

1 =
∑′

L

θL(x), ∀x ≥ 1,

where θL(x) is supported in [L/2, 3L] (with L≪ SP
V

(RSPV )ε), satisfies θL(x)j ≪j L
−j

for all j ≥ 0, and is such that
∑′

L≤X 1 ≪ log(2 + X) for all X ≥ 1. Thus, we need to
bound
∑∑

s∼S, r∼R

∑∑∑

h,c,p,
(r,sp)=1

∑

0<|ℓ|<SP
V

(RSPV )ε

α(h)β(c)arbsS(hcr,∓ℓ, sp)
∫

R

γ(ysp, p) e(ℓy)dy

=
∑′

L

∫

y∼ V
SP

∑∑

s∼S,r∼R

∑∑∑

h,c,p,
(r,sp)=1

∑

ℓ∼L

α(h)β(c)ω(ℓ, y)arbsS(hcr,∓ℓ, sp)fs(p, y) dy,
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where fs(p, y) := γ(ysp, p), ω(ℓ, y) = θ(ℓ) e(ℓy), and
∑′ denotes the sum over the

partitions of unity. We remark that for y ∼ V
SP

, we have dj

dpj
fs(p, y) ≪ p−j, and that

dj

dℓj
ω(ℓ, y) ≪ (L−1 + V

SP
)j ≪ L−j(RSPV )jε. By Proposition 4.1 of Watt [Wat95], the

sums inside the integral are bounded by

δ−
7
2 (RV LP )

7
2
εHCL(RSX)1+ε

(
1 +

HC

RS

) 1
2
(

1 +
L

RS

) 1
2
(

1 +
H2CLX2

(RS)4

) 1
4

,

and summing over L and integrating over y completes the proof of the proposition. �

3. The proof of Theorem 1

We start by expressing
∣∣ζ
(
1
2

+ it
)∣∣2 as a sum of length approximately T 1+ε. Let G(w)

be an entire function with rapid decay along vertical lines, that is G(x+ iy) ≪ y−A for
any fixed x and A > 0. Suppose G(−w) = G(w), G(0) = 1, G(1/2) = 0. We will use the
following form of the approximate functional equation for |ζ(s)|2.

Lemma 1 (Approximate functional equation). For T < t < 2T, we have

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2

= 2
∑

m1,m2

1

(m1m2)
1
2

(
m1

m2

)it

W

(
2πm1m2

t

)
+O

(
T−2/3

)
,

where

W (x) :=
1

2πi

∫

(2)

x−wG(w)
dw

w
,

and where we use the notation
∫
(c)

to mean an integration up the vertical line from

c− i∞ to c+ i∞.

The proof of the lemma can be found in Lemma 3 of [LR].

Remark. Notice that W (ℓ)(x) ≪ℓ,A min
(
1, x−A

)
for x > 0 and all ℓ ∈ N .

The error term in Lemma 1 produces an error term bounded by T
1
3
+ε, and thus

I = 2
∑

n1,n2,m1,m2

an1an2

(m1m2n1n2)
1
2

∫

R

(
m1n2

m2n1

)it

W

(
2πm1m2

t

)
φ

(
t

T

)
dt+O(T

1
3
+ε)

= D + S +O(T
1
3
+ε),

where the sum is over n1, n2 ≤ N , D is the sum when m1n2 = m2n1, and S is the sum
when m1n2 6= m2n1.

3.1. Diagonal terms. Firstly, we consider the diagonal terms m1n2 = m2n1. For
j = 1, 2, we write mj = ℓn∗

j , where n∗
j =

nj

(n1,n2)
. The contribution of the diagonal term
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is

D = 2
∑

n1,n2,ℓ

an1an2(n1, n2)

ℓn1n2

∫

R

W

(
2πℓ2n∗

1n
∗
2

t

)
φ

(
t

T

)
dt

=
2

2πi

∑

n1,n2,ℓ

an1an2(n1, n2)

ℓn1n2

∫

R

∫

(2)

(
2πℓ2n∗

1n
∗
2

t

)−w

G(w)
dw

w
φ

(
t

T

)
dt

=
2

2πi

∑

n1,n2

an1an2(n1, n2)

n1n2

∫

R

∫

(2)

(
t

2πn∗
1n

∗
2

)w

ζ(1 + 2w)G(w)
dw

w
φ

(
t

T

)
dt.

(3.1)

This term will be later combined with a contribution from the off-diagonal terms.
Together, they give the main term in Theorem 1.

3.2. Off-Diagonal terms. In this section, we consider the terms with m1n2 6= m2n1.
We write m1n2 −m2n1 = ∆.

Since W (x) ≪ x−A when x ≫ 1, we can truncate the sum over m1, m2 to when
m1m2 ≤ T 1+ε. We introduce a smooth partition of unity

1 =
∑′

M

FM(x), T−100 ≤ x ≤ T 1+ε,(3.2)

where FM(x) is smooth, supported in [M/2, 3M ], and it satisfies F
(j)
M (x) ≪j

1
Mj for all

j ≥ 0. Moreover we can choose a partition of unity which satisfies
∑′

M 1 ≪ log(2 + T ).
Therefore

S = 2
∑′

N1

∑′

N2

∑′

M

∑

∆ 6=0

∑

n1,n2,m1,m2
m1n2−m2n1=∆

an1an2

(m1m2n1n2)
1
2

×
(∫

R

(
1 +

∆

m2n1

)it

W

(
2πm1m2

t

)
φ

(
t

T

)
dt

)
FN1(n1)FN2(n2)FM(m2) +O(1),

(3.3)

where N1, N2 ≤ N and M ≤ T 1+ε.
Next we show that the terms with |∆| > D, D := MN1

T 1−ε , give a negligible contribution.
In fact,

dℓ

dtℓ
W

(
2πm1m2

t

)
≪ℓ,A

1

tℓ
min

(
1,

(
2πm1m2

t

)−A
)
,
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whence, integrating by part ℓ times, we have

∑′

N1,N2,M

∑

|∆|>D

∑

n1,m2

∑

n2,m1
m1n2−m2n1=∆

an1an2

(m1m2n1n2)
1
2

(∫

R

(
1 +

∆

m2n1

)it

W

(
2πm1m2

t

)
φ

(
t

T

)
dt

)

× FN1(n1)FN2(n2)FM(m2)

≪ℓ

∑′

N1,M

∑

|∆|>D

∑

n1∼N1,m2∼M

∑

m1≤T 1+ε

n2≤N,
m1n2−m2n1=∆

T−ℓ+1+ε

(m1m2n1n2)
1
2

∣∣∣∣log

(
1 +

∆

m2n1

)∣∣∣∣
−ℓ

≪ℓ

∑′

N1,M

∑

|∆|>D

∑

n1∼N1,m2∼M

1√
n1m2

∑

m1≤T 1+ε

n2≤N,
m1n2−m2n1=∆

1√
n2m1

T−ℓ+1+ε ·
(
m2n1

|∆|

)ℓ

≪A,ε T
−A,

where ℓ is large enough.
Now, if |∆| < D, then ∆

m2n1
≪ 1

T 1−ε , and

m1 =
m2n1 + ∆

n2

= m2
n1

n2

(
1 +

∆

m2n1

)
.

Hence for T < t < 2T,

1

m1
=

n2

m2n1

(
1 − ∆

m2n1
+O

(
1

T 2−ε

))
;

(
1 +

∆

m2n1

)it

= e
it log

(

1+ ∆
m2n1

)

= e
it ∆

m2n1

(
1 − it∆2

2m2
2n

2
1

+O

(
1

T 2−ε

))
,

and

W

(
2πm1m2

t

)
= W

(
2πm2

2n1

tn2

)
+

2πm2∆

tn2

W ′

(
2πm2

2n1

tn2

)
+O

(
1

T 2−ε

)
.

Since m1m2 ≤ T 1+ε, we have m2(m2n1 + ∆) ≤ n2T
1+ε. Hence M ≪ T 1/2+ε

√
N2

N1
, and

the error term from using the above approximations in (3.3) is

≪ T

T 2−ε

∑′

N1

∑′

N2

∑′

M≪T 1/2+ε
√

N2
N1

∑

0<|∆|≤D

∑

n1∼N1
n2∼N2

∑

m2∼M

1

m2n1

≪
∑′

N1

∑′

N2

∑′

M≪T 1/2+ε
√

N2/N1

MN1N2

T 2−ε
≪

√
TN

3/2
2 N

1/2
1

T 2−ε
≪ N2

T 3/2−ε
,

using that D = MN1/T
1−ε and that M ≪ T 1/2+ε

√
N2

N1
. Thus, we have

S = A + E +O

(
1 +

N2

T 3/2−ε

)
,
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where

A = 2
∑′

N1

∑′

N2

∑′

M≤T 1/2+ε
√

N2
N1

∑

0<|∆|≤D

∑

n1,n2

∑

n1m2≡−∆ (mod n2)
m2>0

an1an2

m2n1
×

×
(∫

R

e

(
∆t

2πm2n1

)
W

(
2πm2

2n1

tn2

)
φ

(
t

T

)
dt

)
FM(m2)FN1(n1)FN2(n2),

(3.4)

and

E = 2
∑′

N1

∑′

N2

∑′

M≤T 1/2+ε
√

N2
N1

∑

0<|∆|≤D

∑

n1,n2

∑

n1m2≡−∆ (mod n2)
m2>0

an1an2

m2n1
FM(m2)FN1(n1)FN2(n2)×

×
∫

R

e

(
∆t

2πm2n1

)[
W

(
2πm2

2n1

tn2

)(
− ∆

2m2n1
− it∆2

2m2
2n

2
1

)
+

2πm2∆

tn2
W ′

(
2πm2

2n1

tn2

)]
φ

(
t

T

)
dt,

(3.5)

since the rest of the terms arising from the above approximations also give a contribution
which is O

(
N2T−3/2+ε

)
.

First, we consider A. Giving an eligible bound for E is easy and we will do it in the
next section.

Extracting the common divisor d of n1 and n2, we re-write the sum (3.4) as

A = 2
∑

d≤N

1

d

∑′

N1,N2≤N

∑′

M≤T 1/2+ε
√

N2
N1

∑

0<|∆|≤D
d

∑

n1,n2
(n1,n2)=1

adn1adn2 FN1(dn1)FN2(dn2)AM,Ni
(n1, n2,∆),

where

AM,Ni
(n1, n2,∆) =

∑

m2≡−n1∆ (mod n2)

FM(m2)

m2n1

(∫

R

e

(
∆t

2πm2n1

)
W

(
2πm2

2n1

tn2

)
φ

(
t

T

)
dt

)
.

By Poisson summation formula,

AM,Ni
(n1, n2,∆) =

1

n1n2

∑

h∈Z

e

(
−hn1∆

n2

)∫ ∞

0

e

(
−hx
n2

)
FM (x)

x
×

×
∫

R

e

(
∆t

2πxn1

)
W

(
2πx2n1

tn2

)
φ

(
t

T

)
dt dx.

After the change of variable x→ x
n1

, this becomes

AM,Ni
(n1, n2,∆) =

1

n1n2

∑

h∈Z

ÃM,Ni
(h, n1, n2,∆) e

(
−hn1∆

n2

)
,

where

ÃM,Ni
(h, n1, n2,∆) =

∫ ∞

0

e

(
− hx

n1n2

)FM

(
x
n1

)

x

∫

R

e

(
∆t

2πx

)
W

(
2πx2

n1n2t

)
φ

(
t

T

)
dt dx.

To understand the contribution of ÃM,Ni
(h, n1, n2,∆), we consider the following three

cases.
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Case 1: h = 0. The contribution to A from h = 0 is

A0 = 2
∑

d≤N

∑′

N1≤N

∑′

N2≤N

∑′

M≤T 1/2+ε
√

N2
N1

∑

0<|∆|≤D
d

∑

n1,n2

(n1,n2)=1

adn1adn2 FN1(dn1)FN2(dn2)

dn1n2

×
∫

R

∫ ∞

0

FM

(
x

n1

)
e

(
∆t

2πx

)
W

(
2πx2

n1n2t

)
dx

x
φ

(
t

T

)
dt.

(3.6)

Now, we can extend the sum over ∆ to ∆ ∈ Z \ {0}, since it can be shown as before
that the terms |∆| ≥ D/d give a negligible contribution. Making the change of variables
y = t/x and integrating by parts twice we see that the second line of (3.6) is equal to

− 1

∆2

∫

R

∫ ∞

0

e

(
∆y

2π

)
d2

dy2

(
FM

(
t

n1y

)
W

(
2πt

n1n2y2

)
1

y

)
dy φ

(
t

T

)
dt

= − 1

∆2

∫

R

∫

R(t,n1)

e

(
∆y

2π

)
d2

dy2

(
FM

(
t

n1y

)
W

(
2πt

n1n2y2

)
1

y

)
dy φ

(
t

T

)
dt+O

(
1

∆2

)
,

where R(t, n1) = {y | T−100 < t
n1y

< T 1/2+ε
√

N2

N1
} and where we estimated trivially the

part of the integral over y with y ∈ R>0 \ R(t, n1), using the properties of W and FM

(and n1 ≪ T ). Thus, summing over M we have

∑′

M

∫

R

∫ ∞

0

FM

(
x

n1

)
e

(
∆t

2πx

)
W

(
2πx2

n1n2t

)
dx

x
φ

(
t

T

)
dt =

= − 1

∆2

∫

R

∫

R(t,n1)

e

(
∆y

2π

)
d2

dy2

(
W

(
2πt

n1n2y2

)
1

y

)
dy φ

(
t

T

)
dt+O

(
log(2 + T )

∆2

)

= − 1

∆2

∫

R

∫ ∞

0

e

(
∆y

2π

)
d2

dy2

(
W

(
2πt

n1n2y2

)
1

y

)
dy φ

(
t

T

)
dt+O

(
log(2 + T )

∆2

)
.

Therefore, summing over N1, N2, we have

A0 = −2
∑

d≤N

∑

|∆|6=0

∑

n1,n2≤
N
d

(n1,n2)=1

adn1adn2

dn1n2∆2

∫

R

∫ ∞

0

e

(
∆y

2π

)
d2

dy2

(
W

(
2πt

n1n2y2

)
1

y

)
dy φ

(
t

T

)
dt

+O(T ε)

= −2
∑

d≤N

∑

n1,n2≤
N
d

(n1,n2)=1

adn1adn2

dn1n2

∫

R

∫ ∞

0

∑

|∆|6=0

1

∆2
e

(
∆y

2π

)
d2

dy2

(
W

(
2πt

n1n2y2

)
1

y

)
dy φ

(
t

T

)
dt

+O(T ε)

= A0,+ + A0,− +O(T ε),
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where we can take the sum over ∆ inside the integrals since they converge absolutely,
and after a change of variables,

A0,± = −2
∑

d≤N

∑

n1,n2≤
N
d

(n1,n2)=1

adn1adn2

dn1n2

∫

R

∫ ∞

0

∞∑

∆=1

(eiy + e−iy)
d2

dy2

(
W

(
2π∆2t

n1n2y2

)
1

y

)
dy φ

(
t

T

)
dt

= −2
∑

n1,n2≤N

an1an2(n1, n2)

n1n2

∫

R

∫ ∞

0

∞∑

∆=1

2 cos(y)
d2

dy2

(
W

(
2π∆2t

n∗
1n

∗
2y

2

)
1

y

)
dy φ

(
t

T

)
dt,

where we recall that n∗
i = ni

(n1,n2)
for i = 1, 2. We notice that

∞∑

∆=1

d2

dy2

(
W

(
2π∆2t

n∗
1n

∗
2y

2

)
1

y

)
=

1

2πi

∞∑

∆=1

∫

(2)

(
2π∆2t

n∗
1n

∗
2

)−w

(2w − 1)(2w − 2)y2w−3G(w)
dw

w

=
1

2πi

∫

( 5
4
)

ζ(2w)

(
2πt

n∗
1n

∗
2

)−w

(2w − 1)(2w − 2)y2w−3G(w)
dw

w
.

For 0 < ℜ(s) < 1, we have

∫ ∞

0

cos(y)ys−1dy = Γ(s) cos
(πs

2

)

(see, for example, [GR07], formula 3.381, 5., page 346), whence we are left with

−2

2πi

∫

( 1
4
)

Γ(2w) cos(πw)ζ(2w)

(
2πt

n∗
1n

∗
2

)−w

G(w)
dw

w
,

where we used the multiplication formula for the gamma function, the identity cos(x−
π) = − cos(x), and we moved the line of integration without encountering any pole, due
to the assumption that G(w) vanishes at w = 1

2
. Thus,

A0 +O(T ε)

=
2

2πi

∑

n1,n2

an1an2(n1, n2)

n1n2

∫

R

∫

( 1
4
)

2 cos(πw)Γ(2w)ζ(2w)

(
2πt

n∗
1n

∗
2

)−w

G(w)
dw

w
φ

(
t

T

)
dt

=
−2

2πi

∑

n1,n2

adn1an2(n1, n2)

n1n2

∫

R

∫

(− 1
4
)

ζ(1 + 2w)

(
t

2πn∗
1n

∗
2

)w

G(w)
dw

w
φ

(
t

T

)
dt,

where we used the functional equation of the Riemann zeta function (e.g. Chapter 10
in [Dav00]), and then we made the change of variables w → −w and use the fact that
G(w) = G(−w).
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From (3.1), we have

D + A0 =
2

2πi

∑

n1,n2

an1an2(n1, n2)

n1n2

∫

R

∫

(2)

(
t

2πn∗
1n

∗
2

)w

ζ(1 + 2w)G(w)
dw

w
φ

(
t

T

)
dt

− 2

2πi

∑

n1,n2

an1an2(n1, n2)

n1n2

∫

R

∫

(−1/4)

(
t

2πn∗
1n

∗
2

)w

ζ(1 + 2w)G(w)
dw

w
φ

(
t

T

)
dt+O(T ε)

=
∑

n1,n2

an1an2(n1, n2)

n1n2

∫

R

(
log

t

2πn∗
1n

∗
2

+ 2γ

)
φ

(
t

T

)
dt+O(T ε),

since

Resw=0x
wζ(1 + 2w)

G(w)

w
=

1

2
log x + γ.

Now we have the main term. The rest of the off-diagonal terms contribute to the error
term as shown in the following two cases.

Case 2: |h| ≥ N2

dM
T ε. In this case and in Case 3, we define Hd := N2

dM
T ε. By changing

variable t = xy, we have

1

n1n2

ÃM,Ni
(h, n1, n2,∆) =

1

n1n2

∫

R

e

(
∆y

2π

)∫ ∞

0

e

(
− hx

n1n2

)
FM

(
x

n1

)
W

(
2πx

n1n2y

)
φ
(yx
T

)
dx dy.

Since FM is supported in [M/2, 3M ], x ≍ N1M
d

. Moreover, y
T
≍ 1

x
≍ d

N1M
due to the

support of φ, and 1
n1n2y

≪ T ε1

x
≍ dT ε1

N1M
because of the rapid decay of W. Hence integrating

by parts ℓ+ 1 times, for T ≤ t ≤ 2T we have

1

n1n2

∫ ∞

0

e

(
− hx

n1n2

)
FM

(
x

n1

)
W

(
2πx

n1n2y

)
φ
(yx
T

)
dx

≪ℓ,ε
d2

N1N2

(
n1n2

h

dT ε1

MN1

)ℓ+1
MN1

d

≪
(
T ε1

h

)ℓ+1(
N2

dM

)ℓ

.

Therefore, the contribution to S when |h| > Hd is

≪
∑

d≤N

∑′

N1,N2≤N,

M≤T 1/2+ε
√

N2
N1

∑

0<|∆|≤D
d

∑

n1,n2

(n1,n2)=1

adn1adn2 FN1(dn1)FN2(dn2)

d

∑

|h|≥Hd

dT

hN1M

(
N2T

ε1

dMh

)ℓ

≪ T−A,

when ℓ is sufficiently large. Thus, the terms |h| > Hd give a negligible contribution.



THE MEAN SQUARE OF THE PRODUCT OF ζ(s) WITH DIRICHLET POLYNOMIALS 15

Case 3: 0 < |h| < Hd. It is sufficient to consider the terms 0 < h < Hd. By changing
variables t = yx, and x to xn1n2, we will consider the dyadic contribution

A∗
M,N1,N2

:=
∑

n1,n2
(n1,n2)=1

∑

0<|∆|≤D
d

∑

0<h<Hd

adn1adn2 FN1(dn1)FN2(dn2)

d
×

× e

(
−h∆n1

n2

)∫ ∞

0

e(−hx)FM (xn2)

∫

R

e

(
∆y

2π

)
W

(
2πx

y

)
φ
(yxn1n2

T

)
dy dx.

We write φ in term of its Mellin transform φ̃, to separate the variables n1 and n2.
Let h∆ = a, A = DHd

d
= N1N2

d2T 1−ε , and νx,y(a) =
∑

h∆=a e
(
−hx + ∆y

2π

)
. Therefore we have

A∗
M,N1,N2

=
1

(2πi)d

∫ ∞

0

∫

R

∫

(ε)

W

(
2πx

y

) ∑

0<|a|<A

νx,y(a)×

×
∑

n1,n2
(n1,n2)=1

adn1adn2 FN1(dn1)FN2(dn2)FM(xn2)

nw
1 n

w
2

e

(
−an1

n2

)
φ̃(w)

Tw

xwyw
dw dy dx.

Since FM is supported in [M/2, 3M ], x ≍ dM
N2

. Moreover, y ≍ T
xn1n2

≍ Td
MN1

because φ is

supported in [1,2]. Thus, using Proposition 1, we have

A∗
M,N1,N2

≪ 1

d

∫

x≍ dM
N2

∫

y≍ Td
MN1

(
(N1N2A)

17
20

+ε

d
17
10

−ε

(N1 +N2)
1
4

d
1
4

+
(N1N2A)

7
8
+ε

d
7
4
−ε

(AN1 + AN2)
1
8

d
1
8

)
dy dx

≪
(
T

3
20

+ε (N1N2)
7
10

d
53
20

(N1 +N2)
1
4 + T ε (N1N2)

7
8

d
23
8

(N1 +N2)
1
8

)

(3.7)

Summing over dyadic intervals for M ≤ T 1/2+ε
√

N2

N1
, Ni ≤ N , and d ≤ N, we have that

the contribution to A when |h| ≤ Hd is bounded by T
3
20

+εN
33
20 + T εN

15
8 . Therefore we

take N up to T
17
33

−ε to obtain an eligible error term in Theorem 1.

3.3. A trivial bound for E . Extracting the common divisor d from n1 and n2, applying
Poisson summation formula, and changing variables, we can write (3.5) as

E = 2
∑

d≤N

1

d

∑′

N1,N2≤N

∑′

M≤T 1/2+ε
√

N2
N1

∑

0<|∆|≤D
d

∑

n1,n2

(n1,n2)=1

adn1adn2 FN1(dn1)FN2(dn2)EM,Ni
(n1, n2,∆),

where

EM,Ni
(n1, n2,∆) =

1

n1n2

∑

h∈Z

e

(
−hn1∆

n2

)∫ ∞

0

e

(
− hx

n1n2

)
FM

(
x

n1

)∫

R

e

(
∆t

2πx

)
φ

(
t

T

)
×

×
[
W

(
2πx2

n1n2t

)(
− ∆

2x2
− it∆2

2x3

)
+

2π∆

n1n2t
W ′

(
2πx2

n1n2t

)]
dt dx.
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Integrating by parts, as in Case 2 of the previous section, we see that the contribution
coming from the terms with |h| > Hd is O(1). Thus, estimating trivially the rest of the
terms we have

EM,Ni
(n1, n2,∆) ≪ T ε

n1n2

(
1 +

N2

dM

)
,

whence

E ≪ T−1/2+εN + T−1+εN2 ≪ NT ε

and the proof of Theorem 1 is complete.

3.4. The proof of Theorem 2. The proof of Theorem 2 is the same as Theorem 1
except that we use (1.3) instead of Proposition 1 in (3.7). Notice that (1.3) is applicable,

since A = N1N2

d2T 1−ε ≤
(
N1N2

d2

) 0.5−r
1+2t

+ε
by Ni

d
≤ N ≤ T

1
2
+ 0.5−r

1+2(r+2t) . Thus, we obtain that

A∗
M,N1,N2

≪ T ε

d

∫

x≍ dM
N2

∫

y≍ Td
MN1

√
N1N2A

d

(
(N1 +N2)

1
2
+rAt

d
1
2
+r

)
+
AN1

d
+
AN2

d
dy dx

≪ T
1
2
+ε−t

(
(N1 +N2)

1
2
+r(N1N2)

t

d
3
2
+r+2t

)
+
N1

d2
+
N2

d2
.

Summing over dyadic intervals for M,Ni, we have that the contribution to A from these
terms is T

1
2
+ε−tN

1
2
+r+2t +N1+ε and Theorem 2 follows.

4. Proof of Theorem 3

The proof of Theorem 3 follows the proof of Theorem 1 except the last part when
0 < |h| < Hd. Here we only modify the last part of the proof using the same arguments
by Deshouillers and Iwaniec in [DI84]. By the same change of variables, we have to
consider

A∗
M,N1,N2

=
∑

n1,n2

(n1,n2)=1

∑

0<|∆|≤D
d

∑

0<|h|<Hd

adn1adn2FN1(dn1)FN2(dn2)×

× e

(
−hn1∆

n2

)∫ ∞

0

e(−hx)FM(xn2)

∫

R

e

(
∆y

2π

)
W

(
2πx

y

)
φ
(xyn1n2

T

)
dy dx.

We now write adn1 as αµjβνr, where µ|d∞, (d, j) = 1, n1 = ̺rj, ν = d
(µ,d)

and ̺ = µ
(µ,d)

.

Therefore, we have to bound

∑

d≤T

1

d

∑′

N1,N2,M

∑

µ|d∞

ν=d/(µ,d)

∑

0<|∆|≤D
d

∑

0<|h|<Hd

∑

(n2,̺)=1

adn2

∑

(j,dn2)=1

αµj

∑

(r,n2)=1

βνr e

(
−h∆̺rj

n2

)

× FN1(d̺rj)FN2(dn2)

∫ ∞

0

e(−hx)FM(xn2)

∫

R

e

(
∆y

2π

)
W

(
2πx

y

)
φ

(
xy̺rjn2

T

)
dy dx,

(4.1)

where the sums over N1, N2, M are dyadic sums up to NK, NK, and T 1/2+ǫ
√
N2/N1.
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To bound the above sum, we use Proposition 2. However, first we need to apply
Mellin’s transform to FN1 and φ to separate variables n2, r, j. The technique is standard,
so we skip the details. From Proposition 2, the sum over ℓ is the sum over n2, and
L = N2

d
. The sum over j is the sum over j, and J ≤ N

µ
. The sum over u is the sum over

h∆, and U = N1N2

d2T 1−2ε . Finally the sum over v is the sum over r, and V ≤ K
ν
. Moreover,

we note that JV ≤ N1

d̺
. Applying Proposition 2, we obtain that (4.1) is bounded by

(after summing over dyadic M)

≪ T ε
∑

d≤T

∑

µ|d∞

ν=d/(µ,d)

∑′

N1

∑′

N2

dT

N1N2

(
N1N2

̺1/2d2T 1/2

){(
N2N

dµ

)1/2

+

(
N1N2

d2T
+
K

ν

)1/4

×

×
[
N2N

dµ

(
N1N2

Td2
+
̺K

ν

)(
N2

d
+
̺K2

ν2

)
+
̺N1N2N

2K2

d2Tµ2ν2

]1/4}

≪
∑

d≤T

∑

µ|d∞

ν=d/(µ,d)

T
1
2
+ε

̺1/2d

{(
N2K

dµ

)1/2

+

(
N2K2

d2T
+
K

ν

)1/4

×

×
[
N2K

dµ

(
N2K2

Td2
+
̺K

ν

)(
NK

d
+
̺K2

ν2

)
+

̺N4K4

d2Tµ2ν2

]1/4}

≪ T ε
(
T 1/2N3/4K + T 1/2NK1/2 +N7/4K3/2

)∑

d≤T

∑

µ|d∞

ν=d/(µ,d)

1

d5/4
1

µ1/4

≪ T ε
(
T 1/2N3/4K + T 1/2NK1/2 +N7/4K3/2

)
,

and this completes the proof of Theorem 3.

5. Proof of Theorem 4

The proof of Theorem 4 follows the proof of Theorem 1 except the last part when
0 < |h| < Hd.

We recall that we have ab =
∑

nk=b αnβk, and we assume that αn is supported on

[NT−ξ1 , 2N ], where N ≪ T
1
2
+ε and 0 ≤ ξ1 ≤ 1

5
. Moreover βk is supported on k ∈

[KT−ξ2, 2K], and 0 ≤ ξ1 ≤ 1
16

. Let ξ1 + ξ2 = ξ. We introduce smooth partitions of
unity in the sums over n and k (without indicating it, to save notation). Thus, ni ≈ Ni,
ki ≈ Ki (note that in the notation of Section 3 Ni was the size of b = nk, so NiKi in
the current notation). Thus, dbi ≍ NiKi. Moreover, we assume that αn = ψ(n), where
ψ(x) is a smooth function such that ψ(j)(x) ≪j x

−j for j ≥ 0.
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We have to bound

A′
N,K :=

∑

d≤NK

∑′

N1,N2,K1,K2

∑′

M≤T
1
2+ε

√

N2K2
N1K1

∑

b1,b2
(b1,b2)=1

∑

0<|∆|≤
MN1K1
dT1−ε

∑

0<|h|<
N2K2T

ε

dM

adb1adb2FN1K1(db1)FN2K2(db2)

db1b2
e

(
−hb1∆

b2

)∫ ∞

0

e

(
− hx

b1b2

)FM

(
x
b1

)

x
×

×
∫

R

e

(
∆t

2πx

)
W

(
2πx2

b1b2t

)
φ

(
t

T

)
dt dx.

After the change of variables y = t
2πx

and then z = x
b1b2

, it becomes

A′
N,K = 2π

∑

d≤NK

∑′

N1,N2,K1,K2

∑′

M≤T
1
2+ε

√

N2K2
N1K1

∑

b1,b2
(b1,b2)=1

∑

0<|∆|≤
MN1K1
dT1−ε

∑

0<|h|<
N2K2T

ε

dM

adb1adb2FN1K1(db1)FN2K2(db2)

d
e

(
−hb1∆

b2

)∫ ∞

0

e(−hz)FM(zb2)×

×
∫

R

e(∆y)W

(
z

y

)
φ

(
2πyzb1b2

T

)
dy dz,

Firstly we claim that we can truncate the sum over d at height Y := (N1K1N2K2)
1
2/T

1
2
+η

for some small η > 0, up to an error term with a power saving. This is because for
larger values of d we are essentially left with the contribution coming from a Dirichlet
polynomial of length T

1
2
+η, which we can bound using the method used to prove The-

orem 1. More precisely, by (3.7), we have that the contribution from the terms with
d ≥ Y is bounded by

≪
∑′

N1,N2,K1,K2

∑

Y≤d≤NK

(
T

3
20

+ε(N1K1 +N2K2)
1
4 (N1K1N2K2)

7
10

d
53
20

+

+ T ε (N1K1 +N2K2)
1
8 (N1K1N2K2)

7
8

d
23
8

)

≪
∑′

N1,N2,K1,K2

(
T

39
40

+ 33
20

η+ε

(
N1K1

N2K2
+
N2K2

N1K1

) 1
8

+ T
15
16

+ 15
8
η+ε

(
N1K1

N2K2
+
N2K2

N1K1

) 1
16
)

≪ T
39
40

+ 33
20

η+ 1
8
ξ+ε + T

15
16

+ 15
8
η+ 1

16
ξ+ε,

(5.1)

since T−ξ ≪ N1K1

N2K2
≪ T ξ.

For the remaining part of the proof we use Watt’s arguments in [Wat95]. We write

adbi =
∑

hiki=dbi

αhi
βki =

∑

figi=bi, µiνi=d,
(gi,

d
νi

)=1

αfiµi
βgiνi,
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so that fi ≍ Ni/µi and gi ≍ Ki/νi. We will apply Proposition 3 to bound

∑′

M≤T
1
2+ε

√

N2K2
N1K1

∑

d≤Y

1

d

∑

µ1,ν1,µ2,ν2,
µ1ν1=µ2ν2=d

∫

z≍ dM
N2K2

∫

y≍ dT
MN1K1

∣∣∣∣W
(
z

y

)
×

(5.2)

×
∑

g1,g2
(

gi,
d
νi

)

=1

∑

f1,f2
(f1g1,f2g2)=1

∑

0<|∆|≤
MN1K1
dT1−ε

∑

0<|h|<
N2K2T

ε

dM

αf1µ1βg1ν1αf2µ2βg2ν2 e

(
h∆f1g1
f2g2

)

× FN1K1(f1g1µ1ν1)FN2K2(f2g2µ2ν2) e(−hz) e(∆y)FM (zf2g2)φ

(
2πyzf1f2g1g2

T

)∣∣∣∣ dy dz.

Before using Proposition 3 (with H = MN1K1

dT 1−ε , C = N2K2T ε

dM
, r = g1, s = g2, v = f1, p =

f2 in the proposition respectively), we verify that X2 = N1N2K1K2

HCd2
= T 1−ε ≫ T ε, which

is clearly satisfied if ε is small enough, and that
(
K1K2

ν1ν2

)2

≥ N2
1K

2
1N2K2M

d3T 2−ε
,

(
K1K2

ν1ν2

)2

≥ N2K2µ1

N1µ2ν2
T ε =

K2N2µ1

dN1

T ε =
K2N2

ν1N1

T ε.

Since M ≤ T
1
2
+ε(N2K2/N1K1)

1
2 , and d ≤ (N1K1N2K2)

1
2

T
1
2+η

, the first condition is implied

by T 2−ε ≥ N2
1N

2
2T

ε−η, which is true if 2ε < η. The second condition is equivalent
to K2

1K2 ≥ ν1ν
2
2T

ε N2

N1
. This is true as long as η > 1

6
ξ2 + 4

3
ε, since Ni ≤ T 1/2+ε,

K2/K1 ≪ T ξ2 , and

ν1ν
2
2

N2

N1

T ε ≤ d3
N2

N1

T ε ≤ N
1
2
1 N

5
2
2 K

3
2
1 K

3
2
2 T

ε−3η

T 3/2
≤ K2

1K2
K

1
2
2

K
1
2
1

T 4ε−3η ≤ K2
1K2T

4ε−3η+
ξ2
2 .

Applying Proposition 3 with δ−1 = max(zC, yH) + 1 ≪ T ε and using that µi, νi ≤
d ≤ (N1K1N2K2)

1
2

T
1
2+η

, we obtain that (5.2) is bounded by

∑′

M≤T
1
2+ε

√

N2K2
N1K1

∑

d≤Y

T ε

d

∑

µ1,ν1,µ2,ν2,
µ1ν1=µ2ν2=d

dM

N2K2

dT

MN1K1

N1N2K1K2

Td2
K1

ν1

(
N1

µ1

+
K2

ν2
T

1
2

)
×

×
(

1 +
N1N2ν1ν2
Td2

) 1
2
(

1 +
dN2

µ2K1N1

) 1
2
(

1 +
MN1N

2
2 ν

3
1ν

2
2

(K1K2)2dTµ
2
2

) 1
4

≪
∑′

M≤T
1
2+ε

√

N2K2
N1K1

∑

d≤Y

T ε

d

∑

µ1,ν1,µ2,ν2,
µ1ν1=µ2ν2=d

K1

ν1

(
N1

µ1
+
K2

ν2
T

1
2

)(
1 +

dN2

µ2K1N1

) 1
2
(

1 +
MN1N

2
2 ν

3
1ν

2
2

(K1K2)2dTµ2
2

) 1
4

≪
∑

d≤Y

T ε

d

∑

µ1,ν1,µ2,ν2,
µ1ν1=µ2ν2=d

(
K1K2T

1
2

ν1ν2
+
K1N1

d
+

K
3
8
1 N

9
8
1 N

5
8
2

µ
3
4
1 µ2K

3
8
2 T

1
8

+
K

3
8
1 K

5
8
2 T

3
8N

1
8
1 N

5
8
2

ν
1
4
1 d

3
4

+
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+
K

1
2
1 K2T

1
2N

1
2
2

ν1ν
1
2
2 N

1
2
1

+
K

1
2
1 N

1
2
1 N

1
2
2

d
1
2µ

1
2
2

+
N

5
8
1 N

9
8
2 d

1
2

µ
3
4
1 µ

3
2
2K

3
8
2 K

1
8
1 T

1
8

+
T

3
8N

9
8
2 K

5
8
2

N
3
8
1 K

1
8
1 d

1
4 ν

1
4
1 µ

1
2
2

)

≪ K1K2T
1
2
+ε +K1N1T

ε +
K

3
8
1 N

9
8
1 N

5
8
2

K
3
8
2 T

1
8
−ε

+K
3
8
1 K

5
8
2 T

3
8
+εN

1
8
1 N

5
8
2 +

K
1
2
1 K2T

1
2
+εN

1
2
2

N
1
2
1

+

+K
1
2
1 N

1
2
1 N

1
2
2 T

ε +
N

7
8
1 N

11
8

2 K
1
8
1

K
1
8
2 T

3
8
+ η

2
−ε

+
T

3
8
+εN

9
8
2 K

5
8
2

N
3
8
1 K

1
8
1

.

Summing over Ki and Ni, we obtain that (5.2) is bounded by

K2T
1
2
+ε + T

3
4
+

3ξ2
8

+ε +KN
3
4T

3
8
+ε +K

3
2T

1
2
+ε+

ξ1
2 + T

3
4
+

ξ2
8
− η

2
+ε +K

1
2N

3
4T

3
8
+

3ξ1
8

+
ξ2
8 .

Theorem 4 then follows by taking η = ξ2
6

+ 3ε and collecting the error term (5.1).

6. Proof of Corollary 2

The proof of Corollary 2 requires the following two lemmas.

Lemma 2. Let G be a compactly supported function. If F = −G′ for x > 0 and F is
three times continuously differentiable and compactly supported, then,

∑

n

G
(

logn
log x

)

ns
=

1

2πi

∫

(c)

ζ(s+ w) · F̂
(
−iw log x

2π

)
dw

w
,

for c > max(1 −ℜ(s), 0) and x > 1, where F̂ denotes the Fourier transform of F ,

F̂ (x) :=

∫ ∞

−∞

F (u)e−2πiux du.

Proof. First of all F̂ (x) is entire because F is compactly supported. We expand the
function ζ(s+ w) into its Dirichlet series and compute

(6.1)
1

2πi

∫

(c)

n−w · F̂
(
−iw log x

2π

)
dw

w
.

Notice that

F̂

(
− iw log x

2π

)
=

∫ ∞

−∞

F (u)xuwdu.

Inserting this representation into (6.1) and inter-changing integrals, we obtain
∫ ∞

−∞

F (u) · 1

2πi

∫

(c)

(
xu

n

)w

· dw
w
du =

∫ ∞

log n
log x

F (u)du = G

(
logn

log x

)
.

In order to justify the interchange of the two integrations we truncate the integral
in (6.1) at a large height X , committing an error which goes to zero as X → ∞ (since

the Fourier transform F̂ will decay sufficiently fast), and interchange. Then, we use
a Perron formula with error term in order to compute the conditionally convergent
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Perron integral appearing above. Taking the height X → ∞ returns the desired result,
as stated. �

Lemma 3. Let A ≥ 0 and let 0 < η < 1
66

be fixed constants. Let v ∈ R and x < T 1/2+η.

Let s = σ + it, where σ = 1
2

+ A
log T

and T ≤ t ≤ 2T. Then

∫ 2T

T

|ζ(s)|2 ·
∣∣∣∣∣
∑

n≤x

d1/2(n)

ns+iv

∣∣∣∣∣

2

dt≪ T (log T )9/4,

where d1/2(n) are the coefficients of the Dirichlet series expansion

ζ(s)
1
2 =

∑

n≥1

d1/2(n)

ns
, ℜ(s) > 1.

Proof. Let

Φx,v(s) := ζ(s) ·
∑

n≤x

d1/2(n)

ns+iv

and

ft(s) =
s− 1

s− 3
exp

(
(s− it)2

)
.

Then, by Gabriel’s convexity theorem (see [HB81], Lemma 3)

∫

R

|Φx,v(σ + iu)ft(σ + iu)|2du ≤
(∫

R

|Φx,v(
1
2

+ iu)ft(
1
2

+ iu)|2du
)5/2−σ

2

×
(∫

R

|Φx,v(
5
2

+ iu)ft(
5
2

+ iu)|2du
)σ−1/2

2

We now integrate both sides over T ≤ t ≤ 2T and use Hölder’s inequality to get

∫

R

|Φx,v(σ + iu)|2f̃T (σ + iu)du ≤
(∫

R

|Φx,v(
1
2

+ iu)|2f̃T (1
2

+ iu)du

)5/2−σ
2

×
(∫

R

|Φx,v(
5
2

+ iu)|2f̃T (5
2

+ iu)du

)σ−1/2
2

where

f̃T (σ + iu) :=

∫ 2T

T

|ft(σ + iu)|2dt.

Clearly f̃T (σ + iu) ≍ 1 if T ≤ u ≤ 2T . In addition

f̃T (σ + iu) ≪
{

1 if T/2 ≤ u ≤ 3T

e−|u| otherwise.
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We also note that Φx,v(s) ≪ (1 + |s|)1/4+ε ·
√
T . Therefore the previous inequality

becomes

∫ 2T

T

|Φx,v(σ + it)|2dt≪
(∫ 3T

T/2

|Φx,v(
1
2

+ it)|2dt+O(T )

) 5/2−σ
2

×
(∫ 3T

T/2

|Φx,v(5/2 + it)|2dt+O(T )

)σ−1/2
2

.

According to Theorem 1 the first integral on the right-hand side is O
(
T (log T )9/4

)
while

the second integral on the right hand side is O(T ).
�

Let δ > 0 be a small positive real number to be chosen later. We pick a parameter θ
close to 1, with δ < θ < 1, and define

F̂ (z) = e2πi(θ−δ)z ·
(
e2πi(1−θ)z − 1

2πi(1 − θ)z

)N

with some bounded N > 10. We see that F is compactly supported on [θ − δ, θ − δ +
(1 − θ)N ]. Define for x > 0,

G(x) = 1 −
∫ x

0

F (u)du,

and G(x) = 0 for x ≤ −1. Moreover, we let G(x) decay smoothly until 0 on the interval
[−1, 0]. This way F = −G′ for x > 0. We notice that G(x) = 1 for 0 < x < θ − δ and

that G(x) = 1− F̂ (0) = 0 for x > θ− δ+ (1− θ)N . Finally we notice that G is N times

differentiable, and consequently that Ĝ(x) ≪ (1 + |x|)−N .
Now we make a choice for θ and δ. Let θ = log y/ logx with y = T 1/2+2δ and x chosen

so that θ−δ+(1−θ)N < 1. We pick 1−θ = (δ/2)/(N−1) so that x = y1/(1−(δ/2)/(N−1)) .
Then, we choose δ small enough but positive so as to ensure that x < T 1/2+0.01.

Note that

F̂

(
− iw log x

2π

)
= (yx−δ)w ·

(
(x/y)w − 1

w(1 − θ) log x

)N

Let s = σ + it with t ≍ T and σ = 1
2

+ A
log T

, with A > 0. Using Lemma 2 and shifting

contours to ℜ(w) = 1
2
− σ we get

ζ(s) =
∑

n

G
(

logn
log x

)

ns
+ κ(4N)N

(yx−δ)1/2−σ

(δ log x)N

∫ ∞

−∞

∣∣ζ
(
1
2

+ it+ iv
)∣∣dv

((
σ − 1

2

)2
+ v2

)(N+1)/2
+O(T−1)

where O(1/T ) is the contribution from the pole at w = 1 − s and with |κ| ≤ 1. Let
c(m) =

∑
m=fe,f,e≤x d1/2(e)d1/2(f). Importantly, notice that c(m) = 1 for m ≤ x. Since
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in addition G(v) = 0 for v > 1 we get

∑

n

G
(

logn
log x

)

ns
=
∑

n

c(n)
G
(

logn
logx

)

ns

=
log x

2π

∫

R

∑

n

c(n)

ns+iv
· Ĝ
(
v log x

2π

)
dv

=
log x

2π

∫

R

(∑

n≤x

d1/2(n)

ns+iv

)2

Ĝ

(
v log x

2π

)
dv.

Combining the above two equations, we have obtained the following inequality

|ζ(s)| ≤ log x

∫

R

∣∣∣∣
∑

n≤x

d1/2(n)

ns+iv

∣∣∣∣
2

·
∣∣∣∣Ĝ
(
v log x

2π

)∣∣∣∣dv

+ (4N)N
(yx−δ)1/2−σ

(δ log x)N

∫ ∞

−∞

|ζ(1
2

+ it + iv)|dv
((
σ − 1

2

)2
+ v2

)(N+1)/2
+O(1/T ).

Therefore we have obtained
∫ 2T

T

|ζ(s)|3dt 6 log x

∫

R

∣∣∣∣Ĝ
(
v log x

2π

)∣∣∣∣
∫ 2T

T

|ζ(s)|2 ·
∣∣∣∣∣
∑

n≤x

d1/2(n)

ns+iv

∣∣∣∣∣

2

dtdv + E +O(T ε),

where

E 6 (4N)N · (yx−δ)1/2−σ

(δ log x)N

∫ ∞

−∞

(∫ 2T

T

|ζ(s)|2 ·
∣∣ζ
(
1
2

+ it + iv
)∣∣dt

)
· dv
((
σ − 1

2

)2
+ v2

)(N+1)/2
.

(6.2)

By Hölder’s inequality and the bound |ζ(1
2

+ it)| ≪ (1 + |t|)1/6+ε, for |v| < T 1/100 we
have
∫ 2T

T

|ζ(s)|2
∣∣ζ
(
1
2

+ it + iv
)∣∣dt 6

(∫ 2T

T

|ζ(s)|3dt
)2/3(∫ 2T

T

|ζ(1/2 + it+ iv)|3 dt
)1/3

6M3(σ, T )2/3 ·
(
M3

(
1
2
, T
)

+O(|v|T 1/2+ε)
)1/3

,

where

M3(σ, T ) :=

∫ 2T

T

|ζ(σ + it)|3dt.

By a minor modification of Lemma 4 in Heath-Brown’s paper [HB81] we have

M3

(
1
2
, T
)
6 C · T (3/2)(σ−1/2)M3(σ, T ).

Therefore,
∫ 2T

T

|ζ(s)|2|ζ(1
2

+ it + iv)| dt ≤M3(σ, T )2/3 ·
(
CT (3/2)(σ−

1
2
)M3(σ, T ) +O(|v|T 1/2+ε)

)1/3
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≤ CT (1/2)(σ−
1
2
) ·
(
M3(σ, T ) +O(T 1−ε)

)
.

The contribution of |v| > T 1/100 to (6.2) is negligible, provided that N is chosen to be
large enough. We conclude that

E 6
C(4N)N

δN

(
T 1/2xδ

y

)σ−
1
2

· M3(σ, T )

(log x(σ − 1
2
))N

+OA(T 1−ε).

Using Lemma 3, we find that

log x

∫

R

∣∣∣∣Ĝ
(
v log x

2π

)∣∣∣∣
∫ 2T

T

|ζ(s)|2 ·
∣∣∣∣∣
∑

n≤x

d1/2(n)

ns+iv

∣∣∣∣∣

2

dtdv ≪ T (log T )9/4.

We have obtained the inequality

M3(σ, T ) ≪ T (log T )9/4 +OA(T 1−ε) +
C(4N)N

δN
·
(
T 1/2xδ

y

)σ−
1
2

· M3(σ, T )

((σ − 1
2
) log x)N

.

Recall that y = T 1/2+2δ < x < T . Since σ = 1
2

+ A
log T

, the third term on the right-hand

side in the above equation is less than

≤ C(8N/A)Nδ−Ne−δAM3(σ, T )

with C an absolute constant. Thus, if A is large enough (but bounded) then the third
term on the right-hand side in the above equation is absorbed into the left-hand side,
and we conclude that

M3(σ, T ) ≪ T (log T )9/4.

Since M3(
1
2
, T ) ≪ T (3/2)·(σ−

1
2
)M3(σ, T ) by Lemma 4 of Heath-Brown [HB81] and since

σ = 1
2

+ A
log T

, we obtain that

M3(
1
2
, T ) ≪ T (log T )9/4.

6.1. Moments of the form k = 1+1/n. Since we do not claim the result for moments
with k = 1 + 1/n we only sketch the necessary modifications of the previous argument,
for the convenience of the interested reader. In order to adapt our argument above to
moments of the form 1 + 1/n, it suffices to prove the inequality

|ζ(s)|2/n ≪ log T

∫ σ+

σ−

∫

R

∣∣∣Ĝ
( v

2π

)∣∣∣
2/n

·
∣∣∣∣∣
∑

m6x

d1/n(m)

ms+σ+iv/ log x

∣∣∣∣∣

2

dvdσ

+
(yx−δ)2(1/2−σ)/n

(δ log x)2N/n
· log T

∫ σ+

σ−

∫ ∞

−∞

|ζ(σ + it + iv)|2/n · dvdσ
((
σ − 1

2

)2
+ v2

)(N+1)/n
,

where σ− = 1
2
− 1

log T
, σ+ = 1

2
+ 1

log T
and with the implicit constant depending at most on

n,N and the same choice of parameters θ, x, y, δ. This is sufficient because the previous
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argument does not depend on some specific quantification of the dependence on N .
First we note that

∑

n

G
(

logn
log x

)

ns
=

1

2π

∫

R

(
∑

m6x

d1/n(m)

ms+iv/ log x

)n

· Ĝ
( v

2π

)
dv.

Combining this with Lemma 2, and using the same choice of parameters θ, x, y, δ as
before, it follows that

|ζ(s)| ≪
∫

R

∣∣∣Ĝ
( v

2π

)∣∣∣ ·
∣∣∣∣∣
∑

m6x

d1/n(m)

ms+σ+iv/ log x

∣∣∣∣∣

n

dv +
(yx−δ)1/2−σ

(δ log x)N

∫

R

∣∣ζ
(
1
2

+ it+ iv
)∣∣dv

((
σ − 1

2

)2
+ v2

)(N+1)/2
.

Taking the 2/n power on both sides, it remains to show that
(∫

R

∣∣∣Ĝ
( v

2π

)∣∣∣ ·
∣∣∣∣∣
∑

m6x

d1/n(m)

ms+iv/ log x

∣∣∣∣∣

n

dv

) 2
n

≪ log T

∫ σ+

σ−

∫

R

∣∣∣Ĝ
( v

2π

)∣∣∣
2
n ·
∣∣∣∣∣
∑

m6x

d1/n(m)

ms+σ+iv/ log x

∣∣∣∣∣

2

dvdσ,

and that

(6.3)

(∫ ∞

−∞

|ζ(1
2

+ it+ iv)|dv
((
σ − 1

2

)2
+ v2

)(N+1)/2

)2/n

≪ log T

∫ σ+

σ−

∫ ∞

−∞

|ζ(σ + it + iv)|2/ndv
((
σ − 1

2

)2
+ v2

)(N+1)/n
dσ.

We will only show how to prove the second inequality since the proof of the first is very
similar. We bound the integral

∫ ∞

−∞

|ζ(1
2

+ it + iv)|dv
((
σ − 1

2

)2
+ v2

)(N+1)/2
≤ (σ − 1

2
)−N−1

∑

k

Mk

(1 + |k|)N+1
,

where Mk is the maximum of ζ(1
2

+ it+ iv) over the interval |v− k(σ− 1
2
)| < (σ− 1

2
)/2.

Therefore

(6.4)

(∫ ∞

−∞

|ζ(1
2

+ it+ iv)|dv
((
σ − 1

2

)2
+ v2

)(N+1)/2

)2/n

≤ (σ − 1
2
)−2(N+1)/n

∑

k

M
2/n
k

(1 + |k|)2(N+1)/n
.

By sub-harmonicity,

M
2/n
k ≪ log T

∫ σ+

σ−

∫ (k+1)(σ−
1
2
)

(k−1)(σ−
1
2
)

|ζ(σ + it+ ix)|2/n dx dσ.

We conclude that

(σ − 1
2
)−2(N+1)/n

∑

k

M
2/n
k

(1 + |k|)2(N+1)/n

≪ log T

∫ σ+

σ−

∑

k

∫ (k+1)(σ−
1
2
)

(k−1)(σ−
1
2
)

|ζ(σ + it+ ix)|2/n dx dσ
((σ − 1

2
)2 + (k(σ − 1

2
))2)2(N+1)/n

≪ log T

∫ σ+

σ−

∫ ∞

−∞

|ζ(σ + it + iv)|2/ndv
((
σ − 1

2

)2
+ v2

)(N+1)/n
dσ.
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Combining these equations together, we obtain the desired inequality (6.3).

Appendix A. On Conjecture 1

Proposition 4. Let A,M,N ≥ 1 and let A≪ (MN)
1
2
+ε. Then

max
α,β,ν

|SA,M,N | ≫ (AMN)
1
2
−ε(M +N)

1
2 + A(M +N)1−ε,

for all ε > 0, where the maximum is taken over all choices of coefficients αm, βn, νa ≪ 1.

Proof. By the reciprocity relation m
n

≡ − n
m

+ 1
mn

(mod 1) we can assume M ≥ N .
Moreover, we can assume N,A≫Mε for some small ε > 0 and M arbitrary large, since
otherwise the result is easy.

First, we consider the case M1−δ ≫ N for some δ > 0 and we take αm = f(m) for
some smooth function f : [M, 2M ] → [0, 1] which is such that f (j)(x) ≪j x

−j for all
j ≥ 0 and

∫
R
f(x) = KM, for some K > 0. Also, let βn = −γn, where γn is the indicator

function of the primes congruent to 1 (mod 4) in [N, 2N ], and let νa be the indicator
function of the primes congruent to 3 (mod 4) in [A, 2A].

By Poisson summation, we have

∑

m

f(m) e

(
am

n

)
= K

M

N
(cn(a) +O(M−100)),

where

cn(a) =
n∑

b=1,
(b,n)=1

e

(
ba

n

)
= µ

(
n

(n, a)

)
ϕ(n)

ϕ
(

n
(n,a)

)

is the Ramanujan sum. It follows that

SA,M,N = K
M

N

∑

a

∑

n

βnνa(cn(a) +O(M−100))

= K
M

N

∑

a

∑

n

γnνa(1 +O(M−100)) ≫ (MA)1−ε.

We now prove

max
α,β,ν

|SA,M,N | ≫M(AN)
1
2
−ε,

which then implies the Proposition even in the case M1−δ ≪ N for all δ > 0.
By choosing αm appropriately, we have

max
α,β,ν

|SA,M,N | ≫ max
β,ν

∑

m

Fm;β,ν ,

where

Fm;β,ν :=

∣∣∣∣∣∣

∑

a

∑

(n,m)=1

νaβn e

(
am

n

)∣∣∣∣∣∣
.
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First, notice that we have

max
β,ν

∑

m

Fm;β,ν ≥ 1

ϕ(q)2

∑

χ1,χ2 (mod q)

∑

m

Fm;β(χ1),ν(χ2)

with q any prime greater than 4(A4 + N4) and where β(χ1), ν(χ2) denotes sequences
defined by β(χ1)n = χ1(n) and ν(χ2)a = χ2(a) respectively. Moreover, by Hölder’s
inequality,

1

ϕ(q)2

∑

χ1,χ2 (mod q)

∑

m

F 2
m;β(χ1),ν(χ2) ≤

(
1

ϕ(q)2

∑

χ1,χ2 (mod q)

∑

m

Fm;β(χ1),ν(χ2)

) 2
3

×

×
(

1

ϕ(q)2

∑

χ1,χ2 (mod q)

∑

m

F 4
m;β(χ1),ν(χ2)

) 1
3

.

The left hand side is

1

ϕ(q)2

∑

χ1,χ2 (mod q)

∑

m

F 2
m;β(χ1),ν(χ2)

=
∑

m

∑

a

∑

(n,m)=1

1 ≫MAN,

and we also have

1

ϕ(q)2

∑

χ1,χ2 (mod q)

∑

m

F 4
m;β(χ1),ν(χ2) =

∑

m

∑

a1a2=a3a4

∑

n1n2=n3n4,
(m,n1n2)=1

1 ≪M(AN)2+ε.

Thus,

1

ϕ(q)2

∑

χ1,χ2 (mod q)

Fm;β(χ1),ν(χ2) ≫ M(AN)
1
2
−ε

and the proposition follows. �
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