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Preface 

In discussing the question of whether General Relativity Theory really needs 

to be quantized, a simply negative answer cannot be accepted, of course. 

Such an answer is not satisfying because, first, Einstein's gravitational 

equations connect gravity and non-gravitational matter and because, second, 

it can be taken for granted that non-gravitational matter has an atomic or 

quantum structure such that its energy-momentum tensor standing on the 

right-hand side of Einstein's equations is formed out of quantum operators. 

These two facts make it impossible to read the left-hand side of Einstein's 

equations as an ordinary classical function. This does not necessarily mean, 

however, that we must draw the conclusion that General Relativity Theory, 

similar to electrodynamics, could or should be quantized in a rigorous 

manner and that this quantization has similar consequences to quantum 

electrodynamics. 

In other words, when for reasons of consistency quantization is tried, then 

one has to ask whether and where the quantization procedure has a physical 

meaning, i.e., whether there exist measurable effects of quantum gravity. 

IQ accordance with these questions, we are mainly dealing with the discus

sion of the principles of quantized General Relativity Theory and with the 

estimation of quantum effects including the question of their measurability. 

This analysis proves that it is impossible to distinguish between classical and 

quantum General Relativity Theory for the extreme case of Planck's orders 

of magnitude. In other words, there does not exist a physically meaningful 

rigorous quantization conception for Einstein's theory. 

Because the quantized Einstein theory for free gravitational fields contains 

all universal constants known today, namely h, c, and G, it satisfies the 

Einstein-Heisenberg demands on a unitary theory. A unitary theory should, 
therefore, basically imply General Relativity. If this is accepted then, as a 

consequence of the quantum gravity analysis presented here, one has to 

conclude that a super-GUT (i.e., a GUT including gravity) should not 
differentiate between quantum and classical physics. 

August, 1987 

vii 

H.-H. VON BORZESZKOWSKI 

H.-J. TREDER 



Chapter 1 

Quantum Theory and Gravitation 

Einstein's General Relativity Theory (GRT) was originally formulated as a 

classical field theory, and the question if it can or even must be quantized is 

one of the fundamental questions which has not been finally answered until 

now. The consideration of this problem is not so much justified by formal 

analogies between electromagnetic and gravitational theories, and even less 

by metaphysical belief in the quantrum structure of nature, but by the fact 

that matter fields must be quantized. This means that the character of the 

coupling between quantized matter and gravity must be clarified. The main 

aspect of the problem is whether this requires gravity to be quantized too. If 

one refers to Einstein's GRT, the problem is now to understand Einstein's 

equations 

(1.1 ) 

(where 1< = 8JTG/c4) in the case of quantized matter, i.e., in the case where 

the energy-momentum tensor T!Jv describes quantized matter. 

In a discussion with P. A. M. Dirac * following his lecture (1967), one of 

us (H.-J. Treder) asked him if it was possible to interpret Einstein's general 

relativistic equations (1.1) so that the right-hand side of (1.1) represents the 

expectation value (T!JJ of the tensor T!Jv describing quantized matter, while 

the left-hand side of (1.1) is considered as the classical Einstein tensor 

G!Jv = R!Jv - -t g!JvR (1.2) 

of non-quantized gravitational fields, such that one has to read (1.1) as 

G!Jv=-1«T!Jv) (1.3) 

where T!Jv is the energy-momentum density operator. Dirac rejected this 

proposal categorically with the remark that the right-hand side of (1.3) would 

then depend on the choice of the state vector in the Hilbert space (i.e., it 
would not be Hilbert covariant), while the left-hand side of (1.3) would be a 

* Cf., Fluides et Champ Gravitationnel en Relativite Generale, Paris, College de France, 19-
23 juin 1967, pp. 23 etc. 
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2 Chapter 1 

Hilbert-space scalar. Therefore, any interpretation of (1.1) in the sense of 

(1.3) and even any use of (1.3) in the sense of a semiclassical approximation 

must be excluded for mathematical reasons. If (1.3) were to be used, 

paradoxical consequences would result. 

One has therefore to follow an alternative method. Either one has to 

quantize gravitational fields, i.e., to read Einstein's equations (1.1) as 

operator equations 

GI'V = -KTl'v (1.4) 

(this implies, of course, the existence of 'gravitons' as zero rest mass field 

quanta) or one must relate the expectation values of the matter tensor, (T,,), 
to the average values ofthe classical Einstein tensor, ( G"v), 

(1.5) 

If this viewpoint is accepted, quantum investigations have to decide which 

of these possibilities describes the coupling of matter to gravity; or else to 

show their physical equivalence. In doing so, one could determine whether 

the quantized GRT given by (1.4) is really (i.e., in its physical content) 

different from the non-quantized GRT given by (1.5). The term 'in its 

physical content' is used to emphasize that we do not pose a purely 

mathematical question, but ask whether there follow experimentally testable 

effects from quantized GRT which do not result from classical theory. 

For example, in electrodynamics, the operator equations 

(1.6) 

where 

(1.7) 

is Dirac's operator of current density and F"V the field strength operator of 

the Maxwell field, differ physically from the mathematically weaker equations 

(1.8) 

It should be mentioned that Planck, in his lectures 'Vorlesungen iiber 

Elektrodynamik', stressed that Maxwell's field equations cannot be derived 

uniquely from Faraday's integral form of the basic laws of electrodynamics 
(i.e., from the Faraday law of induction and the Ampere law). Maxwell's 

equations contain much more information and hypotheses than Faraday's 

and Ampere's integral laws, implying, for instance, Maxwell's stress tensor 
and the Poynting vector of the momentum current. 

Quantum electrodynamics, i.e., electrodynamics which implies Einstein's 

photon hypothesis, requires the validity of the strong equations (1.6). In 

this case, the matter field (Dirac's spinor field) and the Maxwell field 

are quantized. Accordingly, there exist electrons and photons, and equa-
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tions (1.6) imply energy-momentum conservation in individual elementary 

processes. 

Version (1.8) contains, in contrast to (1.6), only a statement on average 

values, i.e., on a statistical ensemble of elementary particles and processes. 

This concept of quantum electrodynamics was proposed by Bohr et al. 

(1924). It attempts to couple atomistic matter to nonquantized electro

magnetical fields. It results in pure probability laws in the sense of classical 

statistics. In this approach, energy-momentum conservation does not hold 

true for individual processes, but should hold statistically, as an average over 

many such processes. Due to the Compton and Bothe-Geiger experiments 

showing the validity of the energy-momentum conservation in individual 

processes, the Bohr-Kramers-Slater approach was abandoned. The follow

ing development led to quantum electrodynamics in the sense of operator 

equations (1.6). 

The gravitational equation (1.3) implies, of course, the same consequences 

for the energy-momentum laws as in the Bohr-Kramers-Slater proposal. 

Our thesis, which we will justify in the following chapters, is that by virtue of 

the Planck-Rosenfeld uncertainty relation between the measurable values of 

the gravitational field gl'v and the linear distances La over which the field 

measurement is performed, 

2 Gh 
t1.gLa ~ -3-' 

C 

(1.9) 

the exact validity of the energy-momentum conservation cannot be tested 

experimentally in individual processes. More generally, all measurable 

consequences of GRT are described by the average equations 

(1.10) 

in the same manner as by the equations 

(1.11) 

following from the operator equations. There is accordingly no physical 

difference between nonquantized and quantized GRT. 

To verify this thesis we shall, taking the Bohr-Rosenfeld standpoint on 

measurement (Bohr and Rosenfeld, 1933), analyse the measurement process 

in quantum gravity and compare it to some predictions of quantum gravity 
calculations. As far as measurement is concerned, our point of view is 
epistemologically opposite to Wigner's viewpoint (ct. Wigner, 1982). 

Our thesis is that if and only if the strong principle of equivalence is 

satisfied, there is no difference between quantized and non-quantized 
gravitational theory. This also means of course that for each theory using 

more than ten gl'v to describe gravity, i.e., for each theory violating the strong 

equivalence of gravity and inertia, there exists a physical difference between 
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its quantized and non-quantized versions.* Moreover, our thesis does not 

necessarily exclude 'global quantum effects'. Such effects result, however, 

from additional background information, as boundary conditions formulated, 

e.g., by Sommerfeld's Ausstrahlungsbedingung. This coincides with the well 

known fact that there is a cosmological difference between Einstein's GRT 

and Einstein-Rosen bimetric interpretations of GRT or Rosen's bimetric 

generalizations of GRT. 

It must also be stressed that in a unified physical theory describing the 

coupling of matter and gravity in the sense of Faraday, Riemann, Einstein 

and Heisenberg so that the dualism 'gravity and matter' is cancelled, there 

can also be a difference between quantized and nonquantized 'gravity'. (For a 

discussion of such generalized conceptions of gravity, see: Bergmann (1959, 

1979), Ivanenko (1979a, b), Wheeler (1966, 1968).) In general, such a 

theory again violates the strong equivalence principle. This violation should, 

however, show up in a modification of the Newtonian gravitational law 

(Steenbeck and Treder, 1984). 

To make our point quite clear, let us make some further introductory 

comments on the physical content of GRT. Using Einstein's, Fock's, 

Laudau's, or Meller's affine tensor of the energy-momentum of gravitational 

fields, Einstein's vacuum equations can be written as 

1 
W[gl'vl = - + ~ (tI'V + tVI') 

v-g 
(1.12) 

where W [gl'v I is a quasilinear wave operator defined with respect to the 

metric gl'v itself. In the second-limit approximation (i.e., also in the high

frequency approximation used later) Einstein's vacuum equations therefore 

read 

(1.13) 

(We use the harmonic coordinate condition g:-: = 0; D denotes the 

d'Alembert wave operator.) By virtue of the fact that the right-hand side of 

(1.13) represents gravitational self-interaction, there arises a scattering of 

gravitational waves by gravitational waves and similar effects. The main point 

we want to stress here is that, due to nonlinearity of GRT, such effects 

already occur on the level of the claSSIcal (non-quantized) theory. 
In electrodynamics, such effects generally arise as a consequence of the 

quantization of Maxwell's vacuum equations or of the coupled Maxwell

Dirac equations. Photon-photon interaction arising in quantum electro
dynamics can however be modelled in classical electrodynamics (not using 

the photon and electron concepts) by nonlinear modifications which were 

considered by Schrodinger and by Born and Infeld. This was demonstrated 

* For a discussion of the connection existing between generalizations of GRT and the 

quantum problem, see Mercier et al. (1978). 
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by Heisenberg, Euler, and Kockel (1935, 1936). Under this point of view, 

a decisive difference between Maxwell's electrodynamics and Einstein's 

gravitodynamics consists in the fact that the missing nonlinearity of Maxwell's 

equations is compensated by quantization, while Einstein's equations are 

already nonlinear in their classical version. 

To avoid misunderstandings, it should be mentioned here that in the case 

of the coupled Maxwell-Dirac theory the underlying field equations are also 

nonlinear. Indeed, in this case one has to consider the equations 

(-iYl'all - ~)1jJ = eYI'1jJ(x)AI'(x), 

F::(x) = jl'(x) = e1jj(x)yl'1jJ(x). 

(1.14) 

(1.15) 

For A:I' = 0 one can deduce from them the following nonlinear integro

differential equations 

(-iyl'al' - ~ - yI'AA~xt)1jJ(x) 

= e2 yl'1jJ(x) J dyD (x - y)1jj(y)yl' 1jJ(y). (1.16) 

Here A is a parameter of the external field A ~xt and mass frlt) is renormalized 

by the requirement that, for A = 0, the free equations 

(-iyl'al' - mR)1jJ(x) = 0 

must be satisfied. 

(1.17) 

Due to their nonlinearity, those classical equations provide the Thomson 

effect of light scattering by electric charges (electrons). Assuming, however, 

in accordance with the Bohr-Kramers-Slater proposal that one should not 

change equations (1.16) to their quantized (i.e., operator) form, then one 

would obtain neither the Klein-Nishina formula for individual elementary 

Compton scattering effects nor vacuum quantum effects such as the Euler 

scattering of light by light. The latter effects are missing due to the linearity of 

classical vacuum electrodynamics. In quantum electrodynamics one has, in 

contrast to classical theory, virtual Dirac currents (virtual electron twin 

pairs) such that the theory becomes nonlinear. This nonlinearity can be 

modelled macroscopically by the Heisenberg-Euler-Kockel development. 

It is, of course, not a complete model; i.e., the development does not 

describe individual elementary processes but again only the average over 
many processes. 

Returning to gravitodynamics, one can state that Einstein's GRT should 

not require quantization to provide all nonlinear effects, including nonlinear 

vacuum effects. It is without quantization 'sufficiently nonlinear'. If we 

nevertheless think of quantization, then this should be done to arrive at a 

self-consistent coupling of quantized matter and gravity mentioned as an 
introduction. But this 'consistency procedure' is not unlimitedly possible. In 
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particular, high-frequency considerations, proposed by von Borzeszkowski 

(1982, 1984), show that one arrives at a region, where quantization of 

nonlinear GRT loses its physical sense. 

As far as pure vacuum GRT is concerned, in the second-limit approxima

tion, where 

(1.18) 

the quantization of the energy-momentum affine tensor 

(1.19) 

is equivalent to the quantization of the gravitational field gl'v itself. Our 

statement that pure vacuum GRT needs no quantization means accordingly 

that the quantized vacuum equations (1.6), or better, the equations 

(1.20) 

resulting from (1.6) should not be distinguishable from the non-quantized 

equations 

(1.21) 

To our minds, the position briefly outlined above is also corroborated by 

investigations which start with another physical premise. Indeed, starting 

from the Einstein-Hilbert action 

(1.22) 

which corresponds to the field equations (1.1), and investigating whether one 

is led to a renormalizable and unitary quantum theory, it was shown that the 

resulting quantum theory is not renormalizable. This raises the question as to 

whether this result is due to a technical defect of the quantum procedure 

used or if it speaks for the conjecture that gravity is essentially classical. In 

the latter case one should not look for rigorous quantum methods which 

remove this defect but only for methods guaranteeing that such quantum 

procedures work in certain approximations where we know that quantum 

matter in a curved spacetime is physically reasonable, and where we have 

therefore to perform a self-consistent coupling to gravity. However, in
dependently of one's viewpoint, one has to answer this question by attacking 

this problem of renormalizability; and a lot of technical work was and is 

being done to overcome it. 
One way which might lead us out of this dilemma is to look for modifica

tions of the action integral (1.22). The most promising idea, discussed 
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intensively in recent years, is to consider higher-derivative modifications of 

the form cc R 2, 

(1.23) 

where I is a length parameter. Such modifications make the theory perturb a

tively renormalizable. Unfortunately, now the perturbative unitarity is lost 

because the classical theory given by (1.23) allows small fluctuations with 

negative energy. The introduction of an indefinite metric on the space of 

states avoids states of negative energy in the quantum theory, but it produces 

here another problem; it leads to violation of unitarity in the perturbation 

theory. 

Some authors hope that this newly produced defect is only due to the 

perturbative treatment of quantum gravity and that a nonperturbative 

procedure could lead to a renormalizable and unitary quantum theory of 

gravity. The methods considered in this context are sometimes criticized 

because they involve an essential use of expansions around flat space, so that 

they may be relevant only for phenomenological calculations far below 

Planck's energy. This critique is of course only justified if one looks for a 

quantum gravity theory in the sense of quantum electrodynamics; then one 

needs a rigorously working quantum approach. Otherwise, following our 

point of view, one is satisfied by approaches working consistently in some 

approximation, for instance, in the case of an expansion around flat space. 

Let it be said once more that we confine all our considerations to genuine 

Einstein's GRT. Nobody can of course pretend that gravity must or need not 

be quantized, but there are arguments in favour of the conjecture that 

Einstein's GRT must not and need not be quantized rigorously. As long as 

we consider gravity to be described by GRT, the concept of quantum gravity 

(of 'gravitons') is only a formal or an approximative one, being useful to 

harmonize matter and gravitational equations. It should not lead to new 

physical (measurable) effects. As we have already mentioned and as we will 

latter show, this is due to the validity of the strong principle of equivalence 

underlying GRT. 

If one had some reason to modify classical GRT in such a manner that the 

modified gravitational theory does not satisfy this strong principle, then one 

must, of course, re-discuss the total problem. Moreover, there are already a 
great number of gravitational theories formulated for which the concept of 

quantization has the same physical meaning as in electrodynamics. For 

instance, most bimetric theories of gravitation are of such a nature. They 

contain the above-mentioned supplementary 'background information' vio
lating generally the strong principle of equivalence. 

From this circumstance arises a problem which one must remember when 
attempting to quantize genuine (i.e., nonmodified) GRT. One should deter-
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mine if such modifications (SUCQ as the R 2 terms in (1.23)) or external 

structures (such as a second metric) as are necessary or helpful for quantiza

tion are really pure 'quantum modifications', i.e., they do not have any 

consequences for classical theory. If they have such consequences then it is 

difficult to say that one is concerned with quantized GRT. It would be more 

adequate to say one has quantized an alternative gravitational theory. 

Quantum theory says that one cannot distinguish between wave and 

particle pictures. This fact is expressed by the principle of complementarity 

and results in measurable quantum effects. This is true for all (nongravita

tional) matter and also for matter coupled to gravity; or rather, quantum 

theory postulates that this is true. Otherwise, using gravitational fields, one 

could perform experiments proposed by Einstein in his famous discussion 

with Bohr to falsify quantum theory or to demonstrate it as being incomplete. 

However, it is quite another problem when pure vacuum gravity is 

concerned. Then the relation of quantum postulates to classical GRT must be 

discussed anew because gravity as described by GRT differs essentially from 

the usual matter fields by its nonlocalizability which could result in a 

trivialization of the indistinguishability of wave and particle pictures. The two 

pictures could, and this is another version of the thesis formulated above, 

show as different languages which are equivalent and not indistinguishable in 

the sense of complementarity. 

To discuss the problematic relation of quantum theory and classical GRT, 

Rosenfeld (1966) introduced his lecture on the 1965 Einstein Symposium in 

Berlin with the words: 

Die Eingliederung der Gravitation in eine allgemeine Quantentheorie der Felder ist ein 

offenes Problem, weil zur Entscheidung der Frage nach der Quantisierung des Gravita

tionsfeldes die notigen empirischen Anhaltspunkte fehlen. Hier kommt es ja nicht so sehr auf 

das mathematische Problem an, wie man einen Quantenformalismus fur die Gravitation 

entwickeln soil, sondern vielmehr auf die rein empirische Frage, ob das Gravitationsfeld -

und damit auch die Metrik - quantenhafte Ziige aufweist. Beim Fehlen einschlagiger 

Beobachtungen konnen wir eine solehe Frage nur von der erkenntnistheoretischen Seite zu 

beleuchten suchen, und wir diirfen dabei nicht hoffen, irgendwelehe endgiiltigen Schliisse zu 

erreichen, da erkenntnistheoretische Betrachtungen zwar dazu helfen konnen, die logische 

Struktur einer gegebenen Theorie, nicht aber deren Anpassung an die Erscheinungen zu 

untersuchen. * 

As participants of the 1965 Einstein Symposium, we listened to Rosenfeld's 

lecture, and more than 20 years later we attempt here an answer to some of 
Rosenfeld's questions. 

* The incorporation of gravitation into a general quantum theory of fields is an open problem, 

because the necessary empirical clues for deciding the question of the quantization of the 

gravitational fields are missing. It is not so much a matter here of the mathematical problem of 

how one should develop a quantum formalism for gravitation, but rather of the purely 

empirical question, whether the gravitational field - and thus also the metric - evidence 

quantum-like features. In the absence of relevant observations, we can only attempt to shed 

light on such a question from the epistemological side; and we cannot hope thereby to reach 

any sort of final conclusion, since epistemological considerations can indeed help in investi

,ating the logical structure of a given theory, but not its conformity to phenomena. 



Chapter 2 

Quantum Mechanics and 

Classical Gravitation 

In preparation for our study of quantum-gravity problems we shall start with 

a discussion of the relation between wave mechanics and General Relativity 

Theory. This discussion played a great role in the development of modern 

physics and contains, in a nutshell, a lot of the problems which arise later in 

quantum gravity. It refers mainly to the question of the compatibility of the 

quantum principle and the weak principle of equivalence, more specifically, 

to the compatibility of de Broglie's relation A = til Mv and the identity of the 

inertial and passive gravitational masses, M = m (cf., von Borzeszkowski and 

Treder, 1982a, b; Treder, 1982). 

The relation between general relativity and quantum theory is often 

discussed on the basis of gedanken experiments because real possibilities for 

experimenting in this area are lacking. Starting with a consideration of the 

classical Einstein-Bohr box experiment, a detailed discussion of this equa

tion took place at the Einstein Symposium in Berlin in 1965. It was shown 

there that all the supposed contradictions were apparent paradoxes resulting 

from an inconsistent application of classical gravitational theory and quantum 

theory. Analyzing different gedanken experiments in detail, Rosenfeld (1966, 

1979), for one, took this view. 

The 1965 discussion was especially promoted by an example produced by 

Honl, which seemed' to point to a contradiction between the predictions of 

classical gravitational theory and those of quantum theory. Later Honl 

(1981) again discussed this example to reinforce his conjecture that there is 

no room for quantum theory within the framework of relativity theory. 

According to Honl, his example shows that quantum theory contradicts the 

statement of the weak principle of equivalence, according to which all bodies 
experience the same acceleration in an exterior gravitational field. 

Following this line of argument, one is forced either to conclude that 

Einstein's geometrization of gravity, i.e., his own interpretation of general 
relativity theory, is only valid for classical physics, or, in the sense of the 

Einstein-Bohr discussion (Bohr, 1949; Rosenfeld, 1966, 1968) to assume 

that the identity of inertial and gravitational masses requires an abandonment 
of the quantum-mechanical complementarity of waves and particles. (Hohl 

9 
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himself thought that one must reformulate the theory of gravity and that 

wave mechanics provides corrections to the value of perihelion motion 

calculated in GRT.) 

Since there exist experiments * showing the validity of quantum mechanics 

in a (homogeneous) gravitational field, some authors conclude a failure of 

the physical principles of general relativity theory in the domain of quantum 

mechanics (Honl, 1981; Greenberger and Overhauser, 1980). However, this 

conclusion becomes paradoxical if it is further assumed that the general

relativistic covariant writing of the wave equations for matter fields describes 

the influence of gravity mathematically correctly. Indeed, Einstein's argument 

that this writing regards simultaneously inertial and gravitational effects gives 

the basis of the weak principle of equivalence. A consistent theoretical 

discussion should remove all apparent contradictions. 

Let us say that we believe that the arguments given by Rosenfeld are 

generally correct; they demonstrate that, in principle, general relativity and 

quantum theory cannot refute one another. We emphasize that this fact 

results, first of all, from the principle of equivalence, which entails the 

innocuous nature of gravitation with regard to the field of microphysics. 

According to this principle, all scalar conservation laws of the special

relativistic field theory remain valid if gravitational fields are present. Indeed, 

since the acceleration of a physical system (as a continuous procedure) 

cannot change its quantum numbers (particle numbers, charges, etc.), neither 

therefore can a gravitational field, which is, in virtue of the equivalence 

principle, locally equivalent to an acceleration (Treder et al., 1980). 

2.1. Diffraction of Particles by a Grating 

To consider the relation of the equivalence principle and quantum mechanics 

let us first discuss the gedanken experiment proposed for discussion by 

Bohr (1957) and Heisenberg (1930) and revived by Honl. In this experiment, 

the perpendicular passage of neutral particles (neutrons) through a lattice 

with the lattice constant d is considered. 

The velocities of all particles are assumed be equal in this experiment, 
while the masses, and accordingly the linear momenta, of the particles may 

differ from one another. According to the equivalence principle, the paths of 

the particles are then uniquely determined by their initial conditions, such 

that the deflection of the particles is independent of their masses. According 
to quantum theory, however, one obtains, for the deflection of particles, a 

diffraction pattern of the de Broglie wave which depends on the wavelength 

A. = iii Mv and, therefore, on the mass of the particles. If the particles have 

* The first ideas for such experiments stem from Callada, Overhauser, and Werner (1972). 
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different masses (and equal velocities), then the lattice sorts the particles via 

diffraction, with respect to their masses such that a mass spectrum arises. 

Indeed, let us consider two sorts of (noninteracting) particles with velocity 

u and the masses MI and M2 = MI + oM, respectively, which pass through a 

one-dimensional lattice. Then, due to quantum theory (von Laue equation), 

two diffraction patterns, consisting of bands induced by particles 1 and 2, 

will occur on a screen. The particles of type 1 induce bands at a distance 

R - VAl _ VI1 _ VI1 (2.1) 
I -d- Pld - M)ud 

from each other, and the particles of type 2 induce bands with a distance 

R = VA2 = VI1 "" H _ H op (2 2) 
2 d (p) + op)d I I PI ' . 

where D denotes the distance between lattice and screen, d is the lattice 

constant, and A) and A2 are the de Broglie wavelengths of particles 1 and 2, 

respectively. The diffraction pattern of particle 2 is, with regard to the 

pattern of particle 1, shifted by a distance loR I = HI OP/PI' A sorting of the 

particles via their diffraction patterns is possible if the displacement is small 

enough to avoid blurring, i.e., if the inequalities I oH I < HI and, accordingly, 

op/p) < 1 are satisfied. 

The question raised by Hanl is as follows. Does the measurement of such 

a sorting effect contradict the principle of weak equivalence, according to 

which the deflection of particles must not depend on their masses? 

Reviving an argument given earlier to discuss the Einstein-Bohr box 

experiment (Treder, 1971), we shall show however that the measurement of 

such a quantum effect does not refer in a specific manner to the relation of 

gravitational theory to quantum theory. 
To this end, we assume that the particles and the lattice atoms are 

electrically charged and have such small masses that there are no gravita

tional, but only electromagnetic interactions between the lattice and the 

particles. Furthermore, the incoming particles of types 1 and 2 may have, 

notwithstanding their different masses, equal specific charges q/ M) and 

q/ M 2 • If the particles are moving with a sufficiently small velocity such that 

their total energy is essentially given by their rest masses M) and Mz, then an 

equivalence principle holds. Both particle types are influenced in the same 

manner by the lattice; they both 'fall' in the potential of the electrostatic 
lattice with the same acceleration. Otherwise, quantum theory leads, in 

agreement with the above-described diffraction pattern, again to a sorting of 

the particles according to their masses M) and M z. 

Therefore, the Hanl experiment cannot refer to the specific relation 

between quantum theory and classical gravitational theory; accordingly, it 

cannot provide a contradiction between these theories. Since, in the special 

case discussed there, the same arguments are also correct for the relation 
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between quantum theory and classical electrodynamics, the occurrence of a 

genuine contradiction would also signal a contradiction between electro

dynamics and quantum theory. 

This line of argument is completely analogous to the arguments given in 

the discussion ofthe Einstein-Bohr box experiment (cf. Section 2.4). 

In the experiment discussed here one finds a similar situation, and one 

may add that a contradiction between quantum theory and gravitational 

theory (or electrodynamics) cannot occur, because one has to distinguish 

diffraction from scattering effects. The logical independence of diffraction 

phenomena and potential scattering becomes evident from the consideration 

of a light beam traversing a massive body. Due to gravitational scattering, the 

beam is deflected by the angle y = 4n.At' Glre2 (G denotes the Newtonian 

gravitational constant, .At' is the mass of the central deflecting body, and r is 

the distance from the mass centre). This deflection is, in accordance with the 

equivalence principle, independent of the mass (energy) of the light particles.* 

On the other hand, the deflecting body is also a screen for the light such that 

it can generate a diffraction pattern which is independent of the physical 

nature of the screen. (For massive particles, this phenomenon can, of course, 

only be described on the level of quantum theory.) 

2.2. Diffraction of Particles by a Gravitational Grating 

The Galilei-Newtonian particle mechanics asserts that the paths of force

free particles do not depend on their inertial masses, but only on the 

coordinates Xi and the velocities Xi = u i. The weak equivalence principle 

maintains moreover that this independence of mass is also valid if there is an 

exterior gravitational field acting on the particles. Otherwise, wave mechanics 

says that the de Broglie wave length A of a particle possessing inertial mass 

M is inversely proportional to M so that, for the non-relativistic case, where 

u 2 « e2 , one has 

(2.3) 

The compatibility of Galilei's law and de Broglie's wave mechanics is assured 
by Heisenberg's uncertainty relation stating that the velocity u i and the 

position Xi of a particle may only be determined with an accuracy given by 

the inequality relation, 

~x . ~u ;:: hiM. (2.4) 

* Potential scattering can, of course, be treated in both the classical and the quantum pictures. 

Bohr's correspondence principle just guarantees that the quantum formulas for scattering 

provide, for large quantum number, the classical formulas fulfilling the equivalence principle. 
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Accordingly, Galilei's mass-independence of the free-force motion (and of a 

gravitationally accelerated motion, respectively) is only established within a 

domain having a minimal extension determined by relation (2.3). Therefore, 

no contradiction arises between wave mechanics and the equivalence prin

ciple. This principle holds as well in wave mechanics as in classical-particle 

dynamics. Einstein thus could demonstrate the equivalence of a uniformly 

accelerated reference system with a resting system under the influence of a 

homogeneous gravitational field by means of typical wave-optics effects: 

aberration and Doppler shift. Einstein's gedanken experiments may be 

transferred, mutatus mutandi, to quantum mechanics. 

To illustrate the compatibility of equivalence principle and quantum 

mechanics, let us tum to the above-mentioned gedanken experiment. 

Considering this experiment to discuss the validity of the equivalence 

principle, one must of course presuppose a gravitational interaction between 

the particle and lattice, or the existence of an exterior gravitational field. 

Then the velocity of the particles is at least partly caused by the gravitational 

field. It is now essential to consider a point stressed by Rosenfeld (1966). If 

one simply replaces the lattice by a screen with two holes and places a mass 

close to one of the holes, then this mass causes by additional deflection a 

displacement 

OH=DOp/p (2.5) 

(Op is the change in momentum parallel to the screen, say, in the z 
direction). To prevent a complete blurring of the diffraction pattern one must 

require that OH should be smaller than the band interval H, i.e., 

op Dli 
OH=D- ~ H =-. 

P pd 

Regarding now Heisenberg's uncertainty relation 

Op . Oz ~ Ii 

one obtains from (2.4) 

Ii op ~-
d' 

(2.6) 

(2.7) 

(2.8) 

i.e., Oz ~ d. Accordingly, to obtain a pattern, the gravitational field has to 
be considered as homogeneous within the accuracy limits given by. the 

Heisenberg relation. 

We shall therefore consider the case where a system of particles moves 

perpendicularly to the screen or where there acts a homogeneous gravita
tional field in the same direction. The equivalence principle says that the 

motion of the system with an acceleration g has the same influence on the 

system as the action of the gravitational field strength -g. In the first case, 



14 Chapter 2 

one must, in formula (2.1), simply add the velocity v to u, where v is given, 

for v2 « uz « e2, by 

v""gt=gL. 
u 

(2.9) 

In the second case, one must add to u the velocity v which may be calculated 

from the energy conservation law 

22M 
Me 2 +!Mu -MtjJ =Mc +T(U+V)2 

(M = vf( = m) (2.10) 

with the gravitational potential tjJ = -gy. From (2.10) there follows of course 

the same velocity 

(2.11 ) 

The fact that v does not depend on the mass of the particles results of course 

from our assumption M = vf( = m and is just the statement of the weak 

principle of equiValence. With respect to quantum mechanics, the question 

arises whether there exist effects which contradict this classical independence 

of mass. At first sight, this is not excluded by the aforementioned fact that v 
does not depend on mass. Indeed, there still remains the dependence of A on 

mass which is, in virtue of (2.9) and (2.11), only modified by the homo

geneous gravitational field in the following manner: 

A' = "" A 1 - -2 "" -- 1 - g-4 . Ii (2 tjJ ) -1/2 Ii ( ) 

M (u + v) u Mu, u 
(2.12) 

However, considering the pure gravitational effect, namely the Doppler shift 

LlA tjJ gy 
-,-""-2""--2' 

11. U U 
(2.13) 

it becomes obvious that the gravitational influence on the quantum system 
under consideration is in accordance with the weak principle of equivalence. 

This shift of the de Broglie wavelength corresponds to the Einstein shift of 

the frequency v 

Llv gy tjJ 
--""-2 ""--2 

vee 

resulting from the general-relativistic time-dilatation. 

(2.14) 

Considering now an acceleration in the z direction, i.e., parallel to the 
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lattice, one obtains the aberration already mentioned (d. formula (2.5»: 

w op OA 
oH = D - = D - z -D - (2.15) 

u p A 

(v denotes the velocity in the z direction). This displacement is even 

independent of mass. Calculating w in the same manner as above and 

inserting this into (2.14) one obtains 

oH z 2D ~ (2.16) 
wu 

and 

(2.17) 

Summarizing the conclusions which may be drawn from the discussion of 

this gedanken experiment, one can state that the equivalence principle holds 

as well in classical as in wave mechanics. The relative entities Doppler shift 

and Einstein shift and the aberration do not depend on mass. The quantum

mechanical mass-dependence of the absolute values of the matter-wave

lengths A however results from the fact that, due to Heisenberg's relation, the 

product of the uncertainties !:l.u and !:l.x is inversely proportional to the 

masses of the particles. The complete mass-independence for force-free and 

gravitational motions is accordingly only established within a measurement 

interval whose lower limits are given by Heisenberg's relation. 

We remark finally that a straightforward extension of the above-given 

arguments to relativistic velocities shows that for neutral, spinless particles 

with non-vanishing rest mass, the relativistic Schrodinger equation (Klein

Gordon equation) must be replaced by Fock's general-relativistic wave 

equation. The latter describes correctly the influence of gravitational on the 

matter field. Einstein's covariance principle results, for a spinless matter field, 

directly from the principle of equivalence; it is the mathematical formulation 

of this physical principle. 

2.3. Gravitational Atomic Model 

The fact that gravitational motion, satisfying the principle of equivalence, 

does not contradict quantum mechanics, within a domain of the size /),.p • Ox 

~ fi, also becomes obvious from the discussion of the gravitational 
atomic model. 

The Kepler problem of classical (and approximately also of relativistic) 

gravitodynamics leads to ellipses, whose major axes a do not depend on the 

mass M or m of the planets. Indeed, in the case of a circular motion the 
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energy E is given by 

Mv 2 G.4m 
E=------

2 a 

and the angular momentum is conserved, 

ma 2 ¢ = const. 

Chapter 2 

(2.18) 

(2.19) 

(M is again the inertial, m the passive gravitational mass; v = a¢ denotes the 

velocity, ¢ the angular velocity, a the radius of the circular path, .4 the 

mass of the central body, and G the Newtonian gravitational constant.) From 

(2.18) then one obtains, via the virial theorem 

G.4m 
-2E = Mv 2 = ---

a 
(2.20) 

and the weak principle of equivalence M 

independence of a: 

m, the above-stated mass-

G.4 
a=--2-' 

v 
(2.21) 

It should be stressed that this mass-independence of a is a typical feature 

of gravitational theory. Differently, in electrodynamics one finds, e.g., for the 

motion of a (classical) electron of charge -q and inertial mass M in the 

electrostatic Coulomb potential Qla of a central body: 

qQ 3.2 qQ qQ 
E = - 2a ' a cP = M' a = Mv 2 • (2.22) 

Here q/M is no universal constant, so that one finds a q/M-dependence of 

the major axis a. 

The situation, however, changes drastically if one considers the quantum

mechanical Kepler problem (the gravitational Bohr atomic model), i.e., the 

spherically symmetric solutions of the Schrodinger equation. Here one 

obtains with Newton's potential U = Gm.4 / a for the energy of the 'planets': 

= --tmv~ 

(n denotes the natural numbers ~ 1) or 

E = _ Gmvft 
n 2an 

v = n 

Gmvft 

nh 

1 

2n 2 

Gmvft 2 • nh 
ancp=--, 

m 

(2.23) 

(2.24) 
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where 

(2.25) 

defines the Bohr radii. From (2.18) and (2.25) it is now obvious that the radii 

an and the velocities Vn of the planets depend on their mass m; and it holds 

that 

nVn . an = 'Ii 

(Bohr's quantum condition). However, one must not draw the conclusion that 

this fact contradicts the principle of equivalence: The Bohr principle of 

correspondence, guaranteeing that the quantum-mechanical version of the 

third Kepler law (2.22) corresponds for great quantum number n to the 

classical version of this law, prevents this contradiction. Bohr's principle here 

appears as an expression of the equivalence principle. It states that, within 

the limitations on the accuracy of measurement given by Heisenberg's 

uncertainty relation 

(2.26) 

for the one-body problem of the Schrodinger equation with Newton's 

potential, the major axes an of the 'planets' do not depend on the planetary 

masses m. 

2.4. Equivalence Principle and Heisenberg's Fourth Relation* 

Questioning the general validity of Heisenberg's fourth uncertainty relation 

AE . A T ~ 'Ii, Einstein maintained that it is possible, on the basis of the 

equiValence principles, to determine the energy content E of a box through 

weighing by means of a spring balance; this requires a measurement of the 
corresponding extension q of the spring (which, for purposes of simplicity, is 

assumed to obey Hooke's law with a spring constant a). The box has a hole 
in its side, which Einstein supposed can be opened or closed by a shutter 

that is governed by a clock. At two definite and predetermined times TJ and 

T2 the shutter is automatically opened and then closed. If during the time 

T = T2 - TJ any particle escapes from the box and thereby changes its 

energy content, then, according to Einstein, the precision of the determina
tion of the time of this change is evidently independent of the precision with 
which one weighs the energy content. Hence, this instant in time may be 
determined with an accuracy that is not limited by the Heisenberg uncer
tainty relation. 

To this reasoning Bohr raised the objection that the reading of the length 

* Here we follow Treder (1971). 
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q of the spring is possible only with an uncertainty I1q given by 

11 
I1q ~-

I1p , 

Chapter 2 

(2.27) 

and the minimum uncertainty I1p in the momentum of the box 'must 

obviously . . . be smaller than the total impulse which, during the whole 

interval T of the balancing procedure, can be given by the gravitational field 

to a body of mass 11m.' Hence, 

11 
- - I1p < Tgl1m = Tgc-2I1E, 
I1q 

(2.28) 

wherein g denotes the acceleration due to gravity. Bohr concludes: "The 

greater the accuracy of the reading q of the pointer, the longer must, 

consequently, be the balancing interval T, if a given accuracy 11m of the 

weighing of the box with its content shall be obtained." 

Now, from general relativity theory, a displacement of the box by an 

amount I1q in the direction of the gravitational field causes a change 11 T in 

the clock reading in accordance with Einstein's formula for the red shift in a 

gravitational field: 

(2.29) 

Therefore, from the uncertainty I1q of the position reading, on the one hand, 

and the condition (2.28), on the other, precisely the Heisenberg uncertainty 

relation 

(2.30) 

is obtained. 

The critical element in Bohr's argument is, in our opinion, the relationship 

between the uncertainty in the momentum of the box and the duration T of 

weighing. We shall return to this point later. At present we want to show, 

through a somewhat modified Einstein experiment, that Bohr's assumption, 

namely that the consideration of the time dilatation (2.29) provides the 

explanation of the Einstein box experiment, cannot be correct. We assume 

that the box is, for practical purposes, massless and contains indistinguish

able electrically charged particles, say, protons*, which may be at rest with 
respect to one another and to the observer. Furthermore, the protons may be 

sufficiently far apart so that the total energy E of the box is given by the sum 

of the equilibrium energies of the individua1 protons: Mc 2 = L m pc2 = E. 
Since all protons possess the same specific charge e/mp , an equiValence 
principle holds: in the situation described here, it expresses the 

* One can also replace the protons by suitable macroscopic particles, e.g., by equal-sized 

charged particles or bubbles, where - as in the Millikan experiment - each drop contains 

exactly one elementary charge. In this case, the determination of the mass through 'electrical 

weighing' is feasible not only in the sense of a gedanken experiment. 
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proportionalities between the total charge Q, the total energy E, and the total 

massM: 

e e E 
Q=-M=--2' (2.31) 

mp mp c 

We suspend the box, prepared in this manner, in a homogeneous electro

static field which is produced, for example, by a negatively charged plane 

surface. The field strength of this field is then given by F = (F, 0, 0), and we 

find a proportionality of the spring's elongation q to the total charge Q of the 

box: 

aq=QF (2.32) 

On account of (2.31), this produces also a proportionality between the spring 

elongation and the energy content of the box, 

eF 
q = 2 E. (2.33) 

ampc 

If corresponding application of Bohr's considerations are made here, we 

obtain the relationship between the uncertainties I:::..p, I:::..q, and I:::..E (of the 

box-momentum, -elongation, and -energy), on the one hand, and the duration 

T of the weighing process, on the other: 

h e 
- -I:::..p < TFI:::..Q=--2 TFI:::..E. 
I:::..q mpc 

(2.34) 

Here there is, however, no longer any Einstein time dilatation, that is, the 

uncertainty I:::..q of the elongation causes no uncertainty I:::.. T of the time 

interval T. 

Hence, we are able to imagine that, during the time the box is opened, some 

protons escape from the box (with very small velocities), where for weighing 

in a homogeneous electrostatic field, no relationship exists between the 

uncertainties of the time and energy measurements. Thus, if Bohr's vindica

tion of Heisenberg's fourth uncertainty relation proves to be correct for a 

gravitational field, then the uncertainty relation must be invalid for measure

ments in an electrostatic field. 

In fact, however, Bohr's estimate of the uncertainty of the spring's 

elongation is not understandable, for the uncertainty of the box-momentum is 

brought about by the intervention of the observer in his attempt to read the 

spring length q, and this disturbance by the observer has nothing to do with 

the effect of the gravitational field (or electrostatic field) upon the box. 
Hence, no connection can exist between the duration of the weighing and the 

disturbance of the momentum. It is also, in fact, not understandable why the 

momentum should become more imprecise with increasing weighing time. 

The Einstein question consequently must be pondered anew, since Bohr's 

attempt to push it ad absurdum has not met with success. 
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Einstein's assumption, namely, that it is possible to determine at precise 

points in time the initial as well as the final energy, is of course correct. The 

question is only how close to one another the measurement times can be 

moved. Certainly, as has become evident through the discussions of Bohr 

and Heisenberg, the relation I1E 11 T ~ Ii does not at all assert a connection 

between the uncertainties of energy and time measurements upon stationary 

systems; the relation indicates rather that a time interval 11 T ~ iii I1E must 

separate the first and second measurements in a determination of an energy 

difference E J - E2 with an uncertainty I1E. Consequently, the fourth 

uncertainty relation has direct significance only for nonstationary systems, in 

that it connects the lifetime ( or half-life) 11 T of the nonstationary state with 

its spread in energy (linewidth), such that if the initial condition of the 

nonstationary system is precisely given, then the energy of the final state 

exhibits a linewidth 

I1E - iii 11 T. (2.35) 

Let us consider an ensemble 1: of certain quasi-stationary systems which 

initially possess a sharply defined energy E J• Then, in the final state, the 

energies of the systems constituting the ensemble will be statistically 

distributed with a half-width given by (2.35). The final energy E2 of each 

individual system is precisely measurable; but the systems possess different 

final energies, despite their having the same initial energy. (They have then 

also given off different energy quanta.) 

Such a quasi-stationary state now also leads to the uncertainty relation for 

the Bohr-Einstein box. Let us consider an ensemble of these boxes, all 

possessing at the start the same spring tension and total energy. Before the 

emission of a particle from the box occurs, the system 'box + spring' is in a 

state of stationary equilibrium. At the instant that a particle of mass dm is 

emitted, the system 'box + spring' does not at first achieve a stable condition, 

because the spring tension and the gravitational force no longer balance one 

another. The system begins to vibrate, and indeed with an amplitude dq 

proportional to the change of the force acting upon the spring 

adq=gdm; (2.36) 

and it becomes in this manner a quasi-harmonic oscillator with the vibra

tional energy 

1- a(dq)2 = g dm dq. (2.37) 

As long as the box vibrates up and down, the change dq of the spring 

elongation and, therefore, dm = c-2 dE are not readable. The system is, 

however, not a true harmonic oscillator; rather, the vibrations are damped, 
while in the spring, through the action of internal friction, and the vibrational 

energy (2.37) is converted into heat energy, which finally leaves the system 
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through heat conduction or radiation. This heat transfer is a dissipative 

process in which information is unavoidably lost. The energy carried off is 

not precisely determined; rather, it spreads statistically, so that each system 

of the ensemble suffers a slightly different energy loss. Leaving details aside, 

it follows from the general characteristics of damped vibrations that the 

fluctuation llE of the total amount of dissipated energy of the ensemble 

members are inversely proportional to the median lifetime II T of the 

oscillation state: llE - hill T. 

After complete cessation of the vibrations, it is possible to read off 

accurately the spring elongation and hence the energy content of the system. 

The individual systems of the ensemble have, however, in the final state 

somewhat different energies, as each of them has lost a different amount of 

energy in the damping of its vibrations. Consequently, the different systems 

of this ensemble will not settle down in the steady state with equal elonga

tions; these will spread. Corresponding to the different energy contents of the 

boxes, we have 

allq = gc-2llE = ~ . 

c2llT 
(2.38) 

The spread llq is larger, the shorter the average lifetime of the quasi

stationary vibrational state, and the connection between lifetime and energy 

spread is given by the Heisenberg uncertainty relation. 

Einstein's paradox may thus be resolveo in the following manner. With the 

emission of a particle from the box, the Einstein system 'box + spring' goes 

over into a quasi-vibrational state and through damping of these oscillations 

evolves into the final, steady state. The energy of the final state scatters from 

one experiment to another, and the spread /j.E is larger, the shorter the time 

that the system requires on the average for attaining the final condition. 

Therefore, in the process of measuring the energy content, a time interval of 

at least II T = hi llE must separate the initial and final states if the 

determination of the final state is to result with a reproducible accuracy llE. 

The fulfilment of the fourth uncertainty relation is therefore a consequence 

of the quantum properties of the spring, and has nothing to do with any 

connection between quantum theory and gravitation theory. 

To support Bohr's opinion that the weak principle of equivalence must be 

assumed to guarantee the validity of the fourth Heisenberg uncertainty 

relation, Costa de Beauregard (1985) modified the Einstein gedanken 

experiment for the limit of free fall. 
However, according to the weak principle of equivalence, a freely falling 

body has no weight at all! The question raised by Costa de Beauregard is 

answered by the same arguments which were used with respect to the spatial 

components of Heisenberg's uncertainty relation in Section 2.2. 

With Galileo's fall acceleration g, one has for the momentum p of a freely 
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falling body of mass m (in z direction) 

p = mv = m(gt + va)' va = const, 

where t is the fall time. The fall path amounts to 

z - Zo = t gt 2 + vat, Zo = const. 

Chapter 2 

(2.39) 

(2.40) 

In the same classical approximation, the proper energy of the freely falling 

mass is given by 

m 
E = Eo + 2 (gt)2 + mgtvo, Eo = const. (2.41 ) 

Accordingly, one obtains for the uncertainties !:!.p, !:!.z, !:!.E, and !:!.t of 

p, z, E, and t: 

!:!.p = m!:!.v =!:!.m . g . t, 

!:!.z = gt !:!.t + vo!:!.t, 

!:!.E = mv!:!.v = mg2t!:!.t + mgvo!:!.t. 

The Z component of Heisenberg's uncertainty relation reads 

!:!.p!:!.z = m!:!.v!:!.z = mg2t(!:!.t)2 + mgv(!:!.t)2 ~ fl 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

and this leads really, together with (2.44), to the fourth uncertainty relation 

!:!.E!:!.t = mg2t(!:!.t)2 + mgvo(!:!.t)2 

= !:!.p!:!.z ?; fl. (2.46) 

2.5. Quantum Mechanics and the Weak Principle of Equivalence 

Summarizing our short discussion of the behaviour of quantum-mechanical 

systems in exterior non-quantized gravitational fields, one may state that, 

for two reasons, there arise no contradictions between quantum mechanics 

and classical gravitational theory. First, by virtue of the weak principle of 

equivalence, gravity is physically harmless in microscopic regions. Second, 

Bohr's principle of correspondence guarantees that the transition from 

solutions of the Schrodinger equation (with the Newtonian potential) to 
macroscopic regions must be performed so that the fundamental principle of 

gravitational theory (the equivalence principle) is satisfied. 

The first point is especially interesting because it does not only say that 

contradictions do not arise, but it even implies that both theories support one 

another. Indeed, the fact that ,homogeneous exterior gravitational fields do 

not change the quantum numbers of a quantum system such as a caesium 

atom renders it just possible that atomic clocks being logically independent 
of the gravitational theory, can be used for time measurement in gravitational 
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theory. (This is a condition necessary for a physical interpretation of each 

theory, in particular also of the gravitational theory.) On the other hand, 

gravitational theory with 'gravitation-free' or, in GRT, 'uncurved' microscopic 

regions allows us to formulate the usual quantum mechanics. Only quantum 

mechanics together with GRT can form 'complete physics'. 

The relation between quantum mechanics and Einstein-Newtonian gravi

tational theory is so constituted that the validity of the weak principle of 

equivalence is assured. This implies however that quantum mechanics and 

gravitational theory are not genuinely unified in one theory. They are two 

separate parts of the fundaments of physics, whose compatibility is assured 

by Heisenberg's uncertainty relation. Accordingly, one can here already 

formulate the conjecture that the consideration of full GRT, which satisfies a 

stronger version of the principle of equivalence (Einstein's principle) than 

the one governing the motion of masses in an exterior gravitational field, 

requires the validity of stronger uncertainty relations than Heisenberg's. 

Otherwise, General Relativity and quantum theory should not be compatible. 
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Measurement in Quantum Gravity 

In discussing problems of quantum mechanics and quantum field theory, it 

has been repeatedly mentioned that, following von Neumann's (1955) 

axiomatization and that of other authors, the measuring process is reduced to 

rules which bring about only a formal relationship between certain elements 

of quantum formalism and certain states of the measuring instrument. It is 

sometimes stressed, first, that one should follow Bohr and Heisenberg and 

analyse the interaction between the microscopic object system and the 

measuring instrument and, second, that the macroscopic nature of the 

measuring device should be taken into consideration (ct., e.g., de Muynck, 

1984). 

To our minds, one has however to go a step further. We think that one has 

to follow precisely the Bohr-Rosenfeld paper (Bohr and Rosenfeld, 1933). 

The line of arguments given there does not only show that one has to 

consider the interaction between a microscopic object system and macro

scopic measurement device, but it also specifies the term 'macroscopic 

measurement device'. It seems to us to be a lack of many investigations that 

the Bohr-Rosenfeld definition of this concept is not taken seriously enough. 

It is especially necessary to go back to the Bohr-Rosenfeld analysis if one 

is interested in the foundation of quantum gravity. Discussing quantum 

gravity means dealing with a subject for which neither the physical meaning 

of quantization nor the mathematical tools for quantization are satisfactorily 

clear.* In such a field it would be dangerous to work on the basis of a formal 

relationship founded for other physical cases, e.g., for electromagnetism. 

Such an approach would be reasonable if the fundamental physical problems 
were solved so that one had merely to elaborate the details of the theory. If 

one wants, however, to found quantum gravity or to find out the physical 

status of the approaches to quantum gravity proposed to date, then pne has 

to discuss the measuring process. It is the only guideline to a unification of 

quantum theory and GRT. Indeed, as long as one does not arrive at a 
satisfactory quantum theory of a field, the measurement discussion regarding 

the interaction between the object system and the measuring instrument just 

* For a discussion of the present state of quantum gravity, cf., e.g., Asthekar (1983). 

24 
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provides the rules for transferring quantum mechanical laws of the 'quantum

mechanically handled' apparatus to the field. On the other hand, if one has 

some quantum field formalism, one can investigate its physical significance 

by such a measurement discussion. In both cases the measurement discussion 

is relevant, and it is quite clear that this discussion is strongly dependent on 

the presupposed structure of the measurement body. It is not sufficient to say 

it is macroscopic. For a real interaction discussion it must be specified in 

more detail. 

Therefore, one has to do this measurement discussion for gravitational 

theory. More precisely, for GRT one has to repeat the measurement 

discussion which was done by Bohr and Rosenfeld for the electromagnetic 

field. One cannot simply take over the electromagnetic results, because 

according to Einstein (see Heisenberg, 1969), the physical theory describing 

a system itself tells which entities are measurable. 

The guideline of the necessary measurement discussion was formulated by 

Bohr (1957) as follows: 

Trotz aller Unterschiede in den physikalischen Problemen, die zur Entwicklung der Rela

tivitatstheorie und der Quantentheorie AnlaB gegeben haben, enthiilt ein Vergleich der rein 

logischen Aspekte relativistischer und komplementarer Darstellungsweise weitgehende Ahnlich

keiten hinsichtlich des Verzichtes auf die absolute Bedeutung althergebrachter physikalischer 

Attribute der Objekte. Auch die Vernachlassigung der atomaren Konstitution der MeBgerate 

seiber bei der Beschreibung tatsachlicher Erfahrungen ist gleich charakteristisch flir die 

Relativitats- und Quantentheorie. Die Kleinheit des Wirkungsquantums verglichen mit den 

Wirkungen, urn die es sich bei gewohnlichen Erscheinungen einschlieBlich Aufstellung und 

Bedienung physikalischer Apparate handelt, ist in der Atomphysik genau so wesentlich 

wie die riesige Anzahl von Atomen, aus denen die Welt besteht, in der Allgemeinen 

Relativitatstheorie, welche bekanntlich verlangt, daB die Dimensionen der zur Winkelmessung 

benutzten Gerate klein gegen den Kriimmungsradius des Universums gemacht werden 

konnen.* 

3.1. The Bohr-Rosenfeld Principles of Measurement in Quantum Field 

Theory 

(a) The Landau-Peierls Arguments 

After a long period of resistance, the photon hypothesis was accepted by the 

* "Despite the difference in physical problems, which gave rise to the development of 

relativity theory and quantum theory, a comparison of the purely logical aspects of relativistic 

and complementary kinds of representation shows far-going similarities with respect to a 

renunciation of the absolute meaning of old physical attributes of objects. Also the neglect of 

the atomistic constitution of the measurement apparata themselves in describing real experi

ences is as characteristic of relativity as of quantum theory. The smallness of the quantum of 

action compared with the actions concerning usual phenomena, including the establishment 

and servicing of physical apparata, is in atomic physics as essential as the huge number of 

atoms of which our world consists, is in general relativity theory, requiring - as is well known 

- that the dimension of the measurement equipment used for angle measurement can be 

made small compared to the curvature radius of universe." 
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majority of the physics community in the late 1920s.* At that time, even Max 

Planck was ready to defend this thesis, and he asked for a self-consistent 

quantum-electromagnetic theory (cf. Planck, 1927). 

This theory then was established by Heisenberg, Jordan, and Pauli (Jordan 

and Pauli, 1928; Heisenberg and Pauli, 1929, 1930). Otherwise, one had yet 

to solve a variety of problems, and it was not quite clear in the early thirties, 

to what extent one should consider quantum electrodynamics as a new 

physical theory. The standpoint that it is only a (yet incomplete) mathe

matical formalism without any new physical consequences could not be 

excluded from consideration at that time. That point was especially stressed 

by Landau and Peierls (1931) when they published a paper, wherein they 

attempted to demonstrate that new uncertainty relations arise which impose 

limitations on the measurability of electromagnetical field quantities. 

Landau and Peierls argued as follows. These new limitations imply that 

no predictable measurements exist for quantities which characterize the 

quantized electromagnetic theory. The applicability of this theory should, 

therefore, be restricted to processes where the state of the system varies 

sufficiently slowly. In cases in where the ordinary Schrodinger equation is 

applicable, i.e., in non-relativistic approximation cases, the validity of 

quantum theory is of course always true. For radiation alone, quantum theory 

is however never meaningful, since the limit c = <Xl then has no sense. 

In other words, Landau and Peierls pretended to show that, contrary to 

Einstein's photon hypothesis, electromagnetic fields themselves need not be 

quantized because quantization does not result in measurable effects. More

over, quantization generates a lot of technical difficulties, e.g., divergencies, 

so that it is an unhappy procedure. 

Today one knows of course that these arguments must be wrong 

somewhere, because there exists a physically meaningful quantum electro

dynamics. Nevertheless, for a better understanding of the Bohr-Rosenfeld 

reply to Landau and Peierls, being essential for clearing the status of 

quantum gravity, we shall outline here some of the Landau-Peierls argu

ments. This is especially useful because we shall demonstrate below (cf. 

Sections 3.1b, 3.2) that, in accepting Bohr's and Rosenfeld's objections to the 

Landau-Peierls paper, the conclusion which Landau and Peierls wanted to 

draw for electromagnetism can really be drawn for gravity. 
Landau and Peierls started with a consideration of momentum measure

ment in the relativistic case. Taking into. account that the velocity v of a 

particle cannot exceed vacuum light velocity c, Heisenberg's uncertainty 
relation 

(3.1a) 

* For a detailed representation of the history of the photon hypothesis, ct. A. Pais (1979). 
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provides 

/).Px /).t ~ III e (3.1b) 

(Px is the x component of the momentum p which is measured, /).t denotes 

the time necessary for the momentum measurement). 

It was assumed then that, in measurements with a charged body, in 

addition to the uncertainties (3.1), a further perturbation of the measurement 

arises because the body will emit radiation during the necessary change of 

velocities. 

Presupposing that one realizes an arrangement where the velocity of the 

body before and after the measurement is considerably small compared with 

e, the non-relativistic formula for radiation damping can be used. The energy 

emitted is then 

(3.2) 

where Q is the charge of the measurement body and v' and v" are the 

velocities before and after the measurement. This unknown change of energy 

leads to the additional uncertainty 

Q2 (" ,)2 
A (" ') > v - V up V - V --

x e 3 /).t 
(3.3a) 

or 

(3.3b) 

Landau and Peierls stressed that for electrons, where Q = e, this 

inequality gives no new information since even in the most unfavourable 

case, where v' = v" + e, it gives only /).Px/).t > e2/e 2 and this relation is 

weaker than (3.1b) since e2 < lie. For macroscopic bodies, however, the 

relation (3.3b) is relevant. Using (3.1) in the form 

" 'A Ii 
(v - v)upx > !:J.t (3.4) 

relation (3.3b) can also be written as follows 

Ii /f2 !:J.Px!:J.t > - --. 
e lie 

(3.5) 

Considering now the simple method of measuring the x component F of 

an electric field by observing the acceleration of a charged measurement 

body of large mass and small velocity, Landau and Peierls used the formula 

(3.6) 
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for the !:l.F accuracy of the electric field strength. Using (3.5), one obtains 

from (3.6) finally the uncertainty relation 

!:l.F(c!:l.t)2 ~ Jhc. (3.7) 

This is the decisive inequality relation derived by Landau and Peierls. 

From this relation they deduced that one cannot perform measurements 

which show the physical existence of light quanta, because in a radiation field 

no measurement can be carried out with certainty within such a short time, 

i.e., no measurements for which every possible result gives information about 

the state of the system. 

(b) The Bohr-Rosenfeld Arguments 

Bohr and Rosenfeld (1933) reanalysed electromagnetic field measurements 

to show that, in contrast to the Landau-Peierls result, there arise the same 

limitations on the accuracy of fields (i.e., the same uncertainty relations for 

!:l.F) as postulated in the formalism of quantum electrodynamics. Accord

ingly, calculable quantum effects can be measured, i.e., quantum electro

dynamics has a physical meaning. 

It is important to emphasize that Bohr and Rosenfeld did not oppose the 

conclusion that in the case of the validity of inequality (3.7), quantum field 

effects of electromagnetism were not measurable; they rather showed that 

(3.7) is incorrect and that therefore this conclusion cannot be drawn. 

Furthermore, they stressed that, if the measurability of field quantities is 

subjected to further restrictions which go essentially beyond the presupposi

tions of quantum field theory, these supplementary stronger restrictions 

would deprive this theory of any physical sense. The fundamental postulate 

which they formulated in their paper was to require that the uncertainty 

relations following from the measurement discussion have to be the same as 

the relations established by the theory (e.g., by the commutation rules of 

quantum field theory). Any contradiction would be a serious dilemma. 

By closer consideration of the measurement process, Bohr and Rosenfeld 

aimed to show that in quantum electrodynamics no contradiction arises 

between quantum-field formalism and measurement theory as pretended by 

Landau and Peierls. 

The main points of Bohr and Rosenfeld are the following: Measuring 

physical effects, one has strictly to distinguish between the system whose 

quantities are to be measured, the measurement device (a test body), and 
their mutual interaction. As far as its constitution is concerned, one has to 

consider the measurement body as a classical body. This means that one has 

to neglect its atomic structure and presuppose a rigid body in the sense of 
classical mechanics, carrying a homogeneously distributed charge. In par

ticular, one cannot perform field measurements by an electron showing 

radiative back reaction, as was done by Landau and Peierls. 
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For a measurement arrangement one has to realize classical bodies with 

an arbitrarily high accuracy. The main argument for this standpoint is given 

by the statement that a consideration of the atomic structure of the measure

ment body is not adequate to a measurement of pure fields because it 

transfers the discussion to the level of the amalgamation of quantum

electrodynamics and atomic matter theory. If one wants to measure field 

effects, one has to evade such a mixture. Of course, enormous difficulties 

can arise in constructing such an artificial test body, but one has to try. 

Otherwise, the distinction between the measurement apparatus and the 

physical system whose parameters are to be measured would be destroyed 

and the concept of measurement would lose its sense. Considering, however, 

the interaction between the test body and the electromagnetic field system, 

one has to use the quantum-mechanical laws, in particular, the Heisenberg 

uncertainty relations. They impose an absolute restriction on the displace

ment of test bodies which cannot be 'compensated' by a refined mechanism. 

Following Bohr and Rosenfeld, one has to ·make the following assump

tions: 

(i) In order to have a definite case in mind, one considers the measure

ment of the field average over a spacetime domain of volume V and duration 

T. For this purpose, we use a measurement body, whose electric charge Q is 

uniformly distributed over the volume V with a density p, and determine the 

values p~ and p; of this body's momentum components in the x direction at 

the beginning t' and the end t n of the interval T. 

(ii) The time interval At required for the momentum measurement can 

be regarded as negligibly small compared to T, 

At« tN-t' =T. (3.8) 

(iii) One can neglect the displacements suffered by the measurement body 

due to the momentum measurement in comparison with the linear extension 

Lo of the domain V, 

Ax « Lo. (3.9) 

(iv) By choosing a sufficiently heavy test body, we minimize the accelera

tion given to it during the time interval T by the field so that we can 

disregard any radiation back-reaction. 

(v) To guarantee that the measurement body behaves as a classical one 
during the measurement of the momentum change, we demand 

cT < Lo. (3.10) 

The borders of the measurement body then are separated by space-like 
distances so that no causal relation exists between them. To exclude 

moreover that the measurement body does not behave classically only from 

the viewpoint of relativity theory but also from the viewpoint of the atomistic 
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theory of matter, one must demand 

uT < Lo 

Chapter 3 

(3.11) 

where u = e2/v is the phase velocity. Indeed, considering the measurement 

body as atomistically structured, one has to assume de Broglie's relations 

E = me2 = liv (3.12) 

and 

p = mv = lif}... (3.13) 

Then there result quantum correlations between different regions of this 

body caused by processes propagating with the phase velocity 

e 2 E 
U=-=-=AV. 

v p 
(3.14) 

They are excluded by requiring relation (3.11). By virtue of u ;;::: e, (3.11) is 

a stronger requirement than (3.10). 

Assumptions (i)-(v) concern the structure of the measurement body or, 

more generally, the measurement arrangement. In principle, we can choose 

mass, charge, linear extension of the measurement body and duration of 

measurement so that these requirements are satisfied. The Bohr-Rosenfeld 

requirements imply especially the conditions 

(3.15) 

and 

(3.16) 

which one has to impose on the dimension of the measurement body. 

Let us consider now Lorentz' equations of motion underlying the 

momentum measurement here under consideration: 

(3.17) 

Here F"v denotes the exterior field we want to measure and F~v the self-field 
of the measurement body. Assuming point charges, the second term on the 

right-hand side of (3.17) was studied by various procedures (Dirac, 1938; 

Barut, 1974, 1979). The result is as follows. The self-field term in (3.17) can 

be written as a sum of two terms 

1 r Q 2.. 2 2 ( Z" Zp. 2,2 ) 
- --2 lID -- Zp. + 3" Q -3 + --5 - . 

2c f _ 0 fee 
(3.18) 

In our case of an extended body of finite extension Lo moving under the 

influence of an external electric field F in the x direction, we obtain from 
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(3.18) the following order-of-magnitude relation: 

Mx" - QF+~ .. +!L ... + Q2 .. ·2 
2 X 3 X 5 xx. 

c Lo c c 

From condition (3.16) we see now that 

M .. > Q2 .' 
X -2-X 

C La 
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(3.19) 

(3.20) 

such that this term and, furthermore, the higher-order radiation corrections 

can be neglected. 

W. Pauli was the first who criticized Landau and Peierls' assumption (3.3) 

taking radiative back-reaction into account. In a letter to Heisenberg, Pauli 

(1933) wrote that, in discussions with Peierls, he had formulated the 

following objection to this procedure. A charged test body can be brought 

into a very large opaque box. The repulsion of the box as well as the 

energy absorbed by the walls of the box can be measured arbitrarily exactly. 

Therefore, the back-reaction of radiation should not cause any unknown 

uncertainty. 

Regarding all the assumptions made above, the average field strength F 

can be determined via relation 

bp == p; - p~= pFVF 

and the field uncertainty is 

!l.F = !l.( bp) . 

pVF 

(3.21) 

(3.22) 

In the momentum measurement we also encounter conditions that are 

independent of the structure of the measurement body. Any measurement of 

the momentum component Px is with an uncertainty !l.Px and satisfies 

Heisenberg's uncertainty principle (3.1a). As was emphasized by Bohr and 

Rosenfeld (1933), this relation concerns the handling and not the structure 

of the measurement body which we have to note in our list of requirements 

on quantum measurements: 

(vi) Any measurement of the momentum component Px is accompanied 

by a loss !l.x of one's knowledge of the position of the body in question, 

whose order of magnitude is given by 

!l.Px!l.x - ft. (3.23) 

Combining the two relations (3.22) and (3.23), one obtains 

ft 
!l.F - ----

p~x VT 
(3.24) 
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and, due to (3.10), one finally has 

fj.FL6 ;::: fic/Q 

or 

fi Q 
fj.FL8 ;::: -- -. 

C M 

(3.25) 

(3.26) 

These relations differ essentially from the Landau-Peierls relation (3.7) 

by the fact that they do not imply a restriction on the accuracy to be achieved 

by field measurements because we still have the values of the charge density 

p or charge Q at our disposal. The right-hand side can be made arbitrarily 

small by choosing a sufficiently large value of p or Q. 

As was mentioned above, the main argument against relation (3.7) is that 

it is derived by considering radiative back-reaction. Here we see that relation 

(3.7) also follows from (3.25), if one assumes a measurement body carrying 

electron charge Q = e. Indeed, setting Q = e and using the relation 

( 
e2 ) 112 

1> -
fic 

one finds from (3.25) again 

ftC ftC e 112 .Ie. .Ie. ( 2) 112 
fj. FL5 ;::: Q > Q fic = (fic) . 

Therefore, Bohr and Rosenfeld (1933) and later Rosenfeld (1966) stressed 

the need to use measurement bodies with Q ;::: (fiC)II2. Thus, only relation 

(3.16) together with (3.15) prevents the Landau-Peierls formula. 

Before continuing our discussion, let us make a remark on modern 

measurement analysis (ct. von Borzeszkowski, 1985b). It starts from 

Feynman's path integral 

A(X"X)=f d{X}exp(~s{X}) 
J(x, x') fi 

(3.27) 

giving the total transition amplitude for the transition from the point x to the 

point x'. (s { x} is the action integral calculated along a given path from x to 

x' and the integral over { x} denotes the summation of the amplitudes for the 

different paths between x and x'.) If one performs now a (continuous) 

measurement providing some information about the path of transition 

(measurement value a), then one does not have to integrate over all paths 

lex, x') but only over a set la(x, x'). Assuming that this preference of certain 
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paths can be expressed by a weighing function 

(3.28) 

one may write 

(3.29) 

Here (a} denotes a path determined by the measurement and Ila the 

accuracy of the measurement. Analysing Ajal(x, x') for an oscillator under 
the influence of an external force, the uncertainty ilK of this force was 
estimated. (For a detailed discussion, see Mensky (1983).) For an optimal 

measurement, where 

(3.30) 

it amounts to 

(3.31) 

One sees that this relation is equivalent to the Bohr-Rosenfeld relation 

(3.25). Indeed, multiplying ilK by Ila and considering that 

Ila "'" Lo, 

T = T :$ Lole (3.32) 

and 

ilK "'" QIlE (3.33) 

one obtains 

Ii lie 
IlFlla "'" IlFLo ~ - ~ --. 

TQ QLo 
(3.34) 

The Bohr-Rosenfeld derivation of this relation has the advantage of making 
it obvious that (3.31) results mainly from Heisenberg's uncertainty relation. 

Before using the Bohr-Rosenfeld principles for a discussion of the 
physical status of quantum gravity, we shall make some comments and also 
summarize some points discussed by Bohr and Rosenfeld (1933). They show 
in particular that the inequality relations derived in the previous section are 



34 Chapter 3 

in agreement with the uncertainty relations obtained from the quantum 
formalism of electromagnetic field theory. 

To this end, we consider the average value 

(3.35) 

of the x component of the electric field calculated over two given spacetime 
regions I and II, for which in quantum electrodynamics commutation rules 

exist and lead to uncertainty relations of the type 

A £<1) A£<II) _ 11 (.All, II) _ ;rII, I» 
L.l. x L.l. x xx xx' (3.36) 

where Axx denotes a Green function. Using (3.26), one can now form an 
essential quantity for the physical interpretation of quantum electrodynamics: 
the square root ytJ of the products, given by (3.26), of the complementary 
uncertainties of two field averages over spacetime regions that only partially 

coincide, being displaced relative to each other by spatial and temporal 
distances of order of magnitude Lo and T, respectively. For field strengths 
that are essentially larger than ytJ, we enter the domain of validity of 

classical electromagnetical theory, where all quantum mechanical features of 

the formalism lose their significance. An estimate of ytJ shows that for Lo > 
cT one has 

( 
11 ) 1!2 

ytJ- --

L~T 

and, on the other hand, in the case Lo :$ cT, 

(l1c)l/2 
ytJ - --. 

LocT 

(3.37) 

(3.38) 

Otherwise, one can derive another critical field strength @5,in the sense that 
only when considering field averages essentially larger than @5 are we allowed 

to neglect the corresponding fluctuations. An estimate for La > cT is 

@5 _ (l1c//2 

L~ 

and for La :$ cT, 

(l1ct2 

@5 - -"-------"---
LocT 

(3.39) 

(3.40) 

To investigate the quantum features of the electromagnetic theory, one has 
to assume La » cT. Then the classical field strength ytJ is much larger than 
@5 and, therefore, in testing the characteristic consequences of the formalism, 
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we can, to a large extent, disregard fluctuations. This investigation shows that 

(lic(2 (lic)1I2 
Yf? - €:5- -- - 2 (3.41) 

LocT La 

is a limitation arising only if we assume Lo - cT, as was done by Landau 

and Peierls. 

This result shows that the two universal constants vacuum light velocity c 
and quantum action Ii entering vacuum quantum electrodynamics are not 
sufficient to determine any limitations. This situation changes for each theory 

containing a further universal constant. 

3.2. Measurements in Quantum Gravity 

The discussion on the measurability of quantum effects of gravity was started 
some decades ago in the papers of Rosenfeld (1957, 1966), Wheeler (1957, 

1964), Regge (1958), Peres and Rosen (1960), Treder (1961, 1963), and 
DeWitt (1962, 1964). As was shown, one can transfer the Bohr-Rosenfeld 
considerations to gravitational fields if one replaces the field strength F, the 

passive charge q and the active charge Q by the corresponding gravitational 
quantities. This can be done by the rules 

c2 

F -+-r 
G ' 

Q -+ .[G.4, 

q -+ .[Gm, 

(3.42a) 

(3.42b) 

(3.42c) 

where G is the Newtonian gravitational constant and .4 and m the active 

and passive gravitational masses, respectively. Then one obtains from (3.24), 
for the accuracy ~r of the gravitational field r ~v, the inequality 

Ii 
~r ~ 2 (3.43) 

cLam 

Assuming, following Peres and Rosen (1960) and Rosenfeld (1966), that 
the gravitational radius of the measurement body must be smaller than the 

length of the measurement body, 

G.4 
L a ;;':--2-' 

c 

one has for the Christoffel symbols 

IiG .4 
~rL6 ~ -3---

C m 

(3.44) 

(3.45) 

«3.44) is equivalent to relation (3.16». In the nonrelativistic approximation, 
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the active gravitational mass .,(( is, due to Newton's action-reaction law, 

equal to the passive gravitational mass m. Since, by virtue of the strong 

principle of equivalence, the same is valid in Einstein's GRT, one obtains 

generally 

ArLg 
IiG 

>-- (3.46a) - 3' 
e 

AgL5 
IiG 

>-- (3.46b) - 3· 
e 

Accordingly, one sees that fundamental limitations on measurement occur 

which are associated with Planck's length 

or 

_ ( IiG ) 112 

ip - 7 

The same result arises if, instead of (3.44), one uses the relation 

Q2 
Lo;:: --2 

Me 

G.,((2 

Lo ;:: -M-e--=-2-

(3.47) 

(3.48) 

(3.49) 

meaning that the field energy of the measurement body is smaller than its 

rest energy. This assumption results from the Bohr-Rosenfeld requirement 

that the measurement body is classical. With (3.49) one obtains from (3.43) 

IiG .,(( 2 

Ar Lg ;:: -3 -- (3.50) 
e Mm 

Considering that GRT satisfies the strong principle of equivalence, reading in 

its Newtonian limit, 

m=vK =M, (3.51) 

we have again (3.46a) (see von Borzeszkowski and Treder, 1982b; Treder, 

1975b). 

For our discussion it is now essential to remark that all the measurement 

arguments given until now presuppose a sufficiently flat and rigid spacetime 

background in the domain of order La, so that classical rigid bodies can be 

moved without deformation. This was just one of the Bohr-Rosenfeld 

conditions on the measurement body. Assuming now a curved background 

somehow specified and a field which is to be measured, one must expect that 

the possibility of performing exact measurements is decreased (for a discus

sion of this point, see von Borzeszkowski and Treder, 1982b). 
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To estimate the restrictions on the measurements resulting from back

ground curvature, let us consider the metric g near the point x = 0 in 

Riemannian coordinates. The uncertainties stemming from this then add to 

the uncertainties ~g(O) discussed above. They amount to 

a 2 
~g(x) = ~g(O) + Il!T x (3.52) 

where g(O) is the average value of g over a domain V of order Lo measured 

under the assumption of a flat background, g(x) is the average value of g 

taking the curvature into account, 1/ L is a measure of the Riemannian 

background curvature, and a is a numerical constant greater than zero and 

of the order one. (Lo is assumed to be much smaller than L, Lo « L). From 

this it follows, with the aid of (3.50), that ~g(x) satisfies the relation 

/2 

~g(x) ~ L~ + aiL 1-2L6· (3.53) 

Comparing (3.46) with the flat-background relation (3.50) one sees that, for 

a curved background, there arises a larger uncertainty ~g. For L ¥- 0() , upon 

minimization with respect to Lo, ~g reduces to 

/p 
~g(x) ~ ILl a 112. (3.54) 

This minimal value of ~g is approached for 

(3.55) 

From (3.50) and (3.53) one may conclude that a measurement taking into 

account the action of a curved background leads to stronger and, in 

principle, more limitations on the measurement of fields than the usual 

quasi-Euclidean one. Of course, there arises the question of whether such an 

arrangement is in accordance with the requirements of measurement 

formulated by Bohr and Rosenfeld. Possibly a physical measurement always 

requires a suitable mechanism which compensates curvature effects. Indeed, 

an apparatus measuring curvature effects should be presupposed to be a 

uncurved rigid body according to which non-vanishing curvature is related. It 

is obvious that such a compensation mechanism may only be established if 

the curvature effect is well defined and a priori computable. This should be 

possible for a sufficiently static or even constant-curvature background. If 
we assume, however, that rapidly changing gravitational fields which produce 

a dynamic non-compensatable background are also measurable, then the 

measurements should be associated with the stronger limitations given by 

(3.53) (see Chapter 5). 

The fact that an explicitly invariant approach does not change anything 

becomes especially evident from DeWitt (1964) and from the path integral 
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discussion given above. In both cases our starting point, namely the 

Bohr-Rosenfeld uncertainty formula (3.25), is reproduced. 

Quoting here the DeWitt paper in support of our arguments, a remark 

should be made in order to avoid misunderstandings. In DeWitt (1964) the 

conclusion is drawn from (3.25) that 'a single observable can always, in 

principle, be measured with arbitrary accuracy'. It is added that, if this 

assumption is invalid, the foundations of the quantum theory iteslf must be 

altered. However, the point we stress in this section is that for gravity, where 

(3.25) takes ,the form (3.46), there also exist limitations on the measurability 

of a single observable. Regarding this difference between gravitational and 

other (e.g., electromagnetic) fields, the second part of the DeWitt statement 

shows the consequences which (3.46) will have for the quantum theory of 

gravitation. 

3.3. Ehrenfest's Theorems 

In connection with gravitational wave experiments, limitations were discussed 

on the measurement of gravitational fields resulting from the quantum 

structure of the measurement device. It was, in particular, shown by Caves et 

al. (1980) that, considering a gravitational field detector as a quantum 

oscillator, the quantum dispersion of, for instance, the Weber detector is 

greater than the displacement induced by the gravitational field considered. 

On the other hand, it was mentioned by Dodonov et al. (1983) that, as a 

matter of principle, there cannot arise quantum limitations in measuring 

classical external forces. This was described as an almost trivial consequence 

of the Ehrenfest theorems because these theorems imply that quantum 

mechanics does not impose restrictions on the accuracy of the measurement 

of average values. Therefore, as is argued further, the classical force f(t), i.e., 

the difference f (t N) - f (t) of f at different time points t' and t· should be 

measured with an unlimited accuracy via the Ehrenfest relation 

(3.56) 

where u(q) is a potential, in particular an oscillator potential, and < ) denotes 

the average value. 

The latter argument notes the really trivial fact that, for the measurement 

of classical forces by classical measurement devices, there cannot arise 

quantum restrictions. One has, however, to take into account that all bodies, 

including measurement devices, have an atomistic structure. Considering 

them as classical bodies, one of course meets limits. Some of them could 

have a principle character. At any rate, this is true for the limitations given by 

Heisenberg's uncertainty relations. These relations also restrict the validity of 
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the Ehrenfest theorem. Therefore, the above-given argument based on this 

theorem is nontrivial as far as it presupposes that, despite Heisenberg's 

uncertainty relations, a classical measurement can be realized with an, in 

principle, unlimited accuracy. 

To clarify to what extent this presupposition is justified, we shall discuss 

quantum nondemolition measurements from the viewpoint of principles of 

measurement discussed above (we follow here von Borzeszkowski and 

Treder, 1983a). In our discussion we call the measurement of an observable 

a quantum nondemolition measurement if it is, in principle, possible to find a 

way to measure it, despite the quantum nature of the measuring device and 

do so with an arbitrarily high precision. Problems of such measurements 

were also investigated by Caves et at. (1978), Braginsky et al. (1977, 1978), 

Unruh (1978, 1979), and Gusev and Rudenko (1979). 

To this end let us consider the character of the estimation for the 

minimum discoverable force. Following the authors cited above we assume 

as an 'antenna' a quantum harmonic oscillator described by the Hamiltonian 

operator 

(3.57) 

where f (t) is an external classical force that is to be measured via its 

influence on the oscillator. The average values of the operator of the 

coordinate and the momentum change according to the equations of classical 

mechanics (Ehrenfest theorems) 

d 1 
- (q) = -(p), 
dt m 

d 
- (p) = -mw2(q2) + f(t) 
dt 

(3.58) 

(3.59) 

(m is the mass, w the frequency of the oscillator). The solutions to these 

equations are: 

o 

(q(t» = qO cos wt + ~ sin wt + 
mw 

1 ft + -- fCr) sin[(t - r)w] dr, 
mw 0 

(p(t» = -mwqo sin wt + pO cos wt + 

+ L f(r) cos[w(t - r)] dr, 

(3.60) 

(3.61) 
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where qO == (q(O»),pO == (p(O»). 
Considering the resonance case 

J (t) = Fo sine wt + qJ), qJ = const., (3.62) 

and assuming qO = po = 0 and t ~ w- 1, one obtains for the maximum 

displacement of ( q): 

o=~ 
q 2mw' 

(3.63) 

To measure a classical force J(t) with an oscillator, one has of course to 

identify a displacement of the macroscopic oscillator coordinate (q) as the 

action of the force under consideration. Therefore, Oq must be greater than 

the square root r;;; of the dispersion Oq = « q - (q)2). The equations for 

the time evolution of the dispersion, resulting from the Schrodinger equation, 

and the Heisenberg uncertainty relation for op and Oq give 

Oq(t) ~ -ft-Isin wtl. (3.64) 
2mw 

From (3.63) and (3.64) one obtains finally 

or 

h 
0 2 ~--

q 2mw 

1 
Fo ~ - (2mhwyl2 

t 

(see, e.g., Dodonov et al., 1983). 

(3.65) 

(3.66) 

Considering a force measurement via an energy (or, in general, a quantum 

state) change, one obtains, instead of (3.66), the limits 

1 ( ft ) 112 
Fo~- --

Lo mw 
(3.67) 

(Lo is the linear dimension of the antenna) (see, e.g., Grishchuk and Polnarev, 

1980). 
Accordingly, one obtains limitations on the sensitivity. One sees, however, 

that the above-made considerations do not establish absolute limits. Indeed, 

except for ft, all the parameters occurring on the right-hand sides of (3.66) 

and (3.67) are wave- and antenna-dependent and not absolute constants. 

Therefore, one can overcome or defeat those limits, in principle, and it 

makes sense to look for a 'quantum nondemolition measurement'. 
There is however a suspicious point in the discussion presented above. All 

arguments used have made no mention of the physical difference between 

gravitational and electromagnetic fields. In principle, all the arguments given 
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above are also satisfied for electromagnetic field measurements. They do not 

try to take account of the difference between gravity and electromagnetism 

but work in an approximation where that difference is not effective. 

The above-given measurement discussion based on the principle of 

equivalence makes the following point quite clear. In both classical and 

quantum gravity one has to assume a classical measurement body. The 

absolute limitations nevertheless arising result from Heisenberg's uncertainty 

relation together with some fundamental features of gravitational coupling, 

i.e., from laws on the interaction between field and test body. Therefore, in 

gravity one finds absolute limitations on Lo measurements and, in general, on 

measurements of all entities having the dimension length, time or mass. 

Indeed, due to the occurrence of the three universal constants 11, e, G, one 

may build the Planckian length, time and mass units 

= (!!Q) 112 = (!!Q) 1/2 = (~) \12 
lp 3 ,tp 5 ,mp G 

e e 
(3.68) 

They define the dimension of the smallest classical test body and, simul

taneously, the biggest elementary particle in a Grand Unified Theory 

incorporating general relativity (for details, see Section 6.2). They define 

accordingly the border between a measurement body and the system whose 

properties are measured. This border causes the limitations on measurement 

which one cannot evade in a full (11, e, G) theory (see Chapter 1). It results 

(1) from the limits on action measurements characterized by 11, (2) from the 

limits on synchronous measurements characterized by the velocity of light in 

vacuum e, and (3) from the universal coupling of gravitation and matter 

characterized by G. 

The considerations of the authors cited above aimed at the establishment 

of 'quantum nondemolition measurements' which overcome limitations 

resulting from the quantum structure of gravitational antennas, may be 

interpreted as follows. They discuss physical entities and approximations to 

the full (11, e, G) theory so that absolute limitations do not appear. If one 

considers, e.g., a quantum oscillator in the non-relativistic approximation 

without taking into consideration the universal character of gravity, then 

there do not arise absolute limits of length etc. Then only 11, and not 11, c and 
G, restricts the sensitivity of antennas. 

Furthermore, considering quantum electrodynamics containing the con

stants h and c, one obtains a charge Q = (l1e)1I2 and the corresponding 

limitation on the charge of the test body, Q 2 ~ he. To obtain, however, a 

universal mass or length and corresponding limitations on the test body one 

has yet to introduce a new universal constant relating charge and mass given 

by the universal constants 11, e, G. Without a universal coupling constant 

leading from special relativity to general relativity there is no relation 

between mass and charge; each complete theory contains all three Planck 
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units; otherwise a theory is not physically interpretable. As long as one 

considers gravitational theory only without any explicit incorporation of G, 

one moves again within the frame of an approximation to the full (Ii, c, G) 

theory which epistemologically does not differ from electrodynamics. In 
reality, this means gravitation without gravitation. 

One finds a similar situation in a (Ii, G) approximation considered in 

Chapter 2. Indeed, discussing physical processes describable by quantum 

mechanics and Newton's gravitational theory, one can always find quantities 

on which, in principle, no measurement limitations are imposed. 

Measurements based on (Ii), (Ii, c) or (Ii, G) approximations fail, of 

course, to measure the effects of the full theory. Otherwise, measurements 

referring to the full theory suffer from absolute limitations (see also Chapter 

6.2). 

The Bohr-Rosenfeld proper measurements refer to a local Riemannian 

coordinate system, where the measurement is performed at the center Po of 

this system. In these coordinates, one has 

(&o)po = 1, (Kk)Po = -Oik' (r~v)po = 0, (i, k = 1,2,3) 

so that for an optimal measurement, where 

~x ::5 x 

and 

~&o ~ &0 < 1, 

the relation (3.46b) holds. A measurement made in any other but the proper 

system is of a lower accuracy. Indeed, due to the Lorentz contradiction, one 

has (cf. Appendix B) 

(3.69) 

Accordingly, for &0 < 1 the limit of ~&o (~X)2 increases. Therefore, any 

uncertainty relation resulting from (3.69) does not have a fundamental 
meaning. It is only an expression of the fact that one may measure worse 

than said by (3.46b). This is particularly true for the relation (cf. Unruh, 

1984), 

~Goo~&0(~X)4 ~ IiG/c3 

following, via (3.69), from ~ Goo - &01 ~x. 



Chapter 4 

Mathematical Descriptions of 

Quantum Gravity 

4.1. Heisenberg-Euler-Kockel Approximation 

The physical meaning of the conditions (3.46) imposed on gravitational field 

measurements becomes more obvious if one considers the mathematical 

description of the interaction between the field one intends to measure and 

the measurement body acting otherwise as a source of the field. Such 

considerations generalize our remarks related to formula (3.17) to the 

effective (phenomenological) equations of quantum gravity. 

For this purpose, let us remember the well-known fact that the interaction 

of electromagnetic fields with Dirac's electron-positron vacuum leads to a 

self-interaction of those fields. Indeed, two photons with momenta kJ and k2 , 

whose energy is too small to cause pair creation, will create two virtual pairs 

leading to two new photons with momenta k3 and k4 • This process results in 

the two incident photons, kJ and k2 , scattering each other and gives rise to 

two outgoing photons k3 and k4 . This quantum effect cannot be described, of 

course, by the usual linear Maxwell equations, where the sum of two 

solutions is again a solution. For the nonlinearity resulting from coupling 

electromagnetic fields to Dirac matter, see Chapter 1. To describe the 

quantum effect, one has to discuss nonlinear modifications of the Larmor 

Lagrangian 

(4.1) 

Such a modification was attempted by Heisenberg, Euler and Kockel (Euler 

and Kockel, 1935; Euler, 1936; Heisenberg and Euler, 1936) for the limit of 
low photon energy (fun « me2 ). 

Following this procedure to describe quantum field effects, we consider a 

field F which changes so softly that no real massive particle pairs are 
created. Then we have to discuss the pure field cases, and the corrections to 

the classical Lagrangian Ao, symbolically written as 

Ao = t F2 (4.2) 

43 
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must be formed by a term of fourth order in F: 

(4.3) 

F is assumed to be slowly changing. The correction depends thus only on 
the field F and not on its time and spatial derivatives. Furthermore, we do 
not consider here corrections of higher order than F4. 

Further constants, making (4.3) an equation, are of the order 1 if we put 
Q 2 = he; QIL 2 determines the order of magnitude of the 'Dirac vacuum 
field' causing the nonlinear interaction. 

Because we are discussing perturbations of measurement bodies, we have 

to assume QlL 2 to be the field of those bodies. To guarantee now that the 
correction Al is really resulting from the action of a measurement body (and 

not from a usual source of quantum electrodynamics), one has to add again 
the Bohr-Rosenfeld conditions (3.15) and (3.16) on the source term; i.e., we 
assume 

(4.4a) 

(4.4b) 

In particular, they prevent us from repeating the mistake made by Landau 

and Peierls (see Section 3). 
In the gravitational case, one obtains from (4.4) Rosenfeld's relations 

(Rosenfeld, 1966) 

and 

G.4't 
La > --2-' 

e 

(4.5a) 

(4.5b) 

where G.4't /c2 denotes the gravitational radius of the measurement body. For 

La :$ G.4't /c 2, the body degenerates into a black hole, i.e., to an information 
hole. Relations (4.4) and (4.5) optimize the interaction between the exterior 
field, F, and the measurement body, so that the action of this body perturbs 
the field (and its measurement) minimally. The question is whether this 
coupling is sufficiently weak that the quantum effects of the field F are not 
drowned in the sea of quantum perturbations caused by the measurement 
body. Technically speaking, one has to prove the compatibility of our 
conditions (4.4) or (4.5) with the Heisenberg-Euler-Kockel approximation, 
i.e., especially with the requirement that A I be a second-order correction to 
the first-order Lagrangian Aa. Otherwise, one could not realize any measure-
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ment equipment for measuring quantum effects of F. The condition 

(4.6) 

is thus at least necessary to be satisfied for the measurability of quantum 

effects. 

In quantum electrodynamics, where (4.3) takes a Bom-Infeld form 

(Born, 1934; Born and Infeld, 1934) 

I\. = 1\.0 + 1\.1 = t ptv F"v + 

(4.7) 

(a and f3 are numerical constants of order of magnitude 1). Accordingly the 

following order-of-magnitude relation must hold: 

(4.8) 

This requirement can be satisfied in a large region of field strength values. 

Only for Q = (IiC)I!2, i.e., for the worst measurement, does this approxima

tion break down. 

Turning to the gravitational case, we have to consider the Einstein

Hilbert Lagrangian 

Ao = .;=g g"VR"v, (4.9) 

where R"v is the Ricci tensor formed from the metric g"v and its first and 

second derivatives and g denotes the determinant of g"v. Looking for 

quantum corrections in the spirit of the Heisenberg-Euler-Kockel approxi

mation, one finds formally a similar situation as in electrodynamics. 

Indeed, in Maxwell's electrodynamics there exists only the one Lorentz 

scalar (4.1) leading to linear field equations. Supplementarily, there are the 
two quadratic Lorentz invariants, 

(4.10) 

(The term ptv F,wF*a{3 F~f3 does not provide anything new.) One finds a 
similar situation in Einstein's GRT. The Ricci scalar R is the only invariant 

establishing second-order derivative equations for g"v. The corrections which 
describe the quantum-physical influence of the measurement body on 
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gravitational fields here are as follows 

___ c_ aR R!"v ( L22)2 
G.4 !"V 

(4.11) 

and 

(4.12) 

(The term - RafJyo R afJ)'o may be neglected because, in the four-dimensional 

case, it can be expressed by a linear combination of (4.11) and (4.12).) 

Accordingly, we have to consider, instead of the Einstein-Hilbert 

Lagrangian (4.9), the Einstein-Eddington-Lanczos Lagrangian 

A = Fi [ R + ( ~;; r (aR#vR#v + PR 2) l, (4.13) 

where a and P are again numerical constants of the order of magnitude 1 

if JG.4 is measured in units of Jhc. 
To satisfy (4.6) one has then to demand the order-of-magnitude relation 

(4.14) 

In view of (4.5) and the principle of equiValence (3.51), one finds from (4.14) 

4 4 ( )2 I:. L C 2 G.4 2 "G 2 
1 > 2 2 r ~ --2- r ~ -3- r . 

G.4 C C 
(4.15) 

It says that the Heisenberg-Euler-Kockel approach, describing together 

with (4.5) the interaction between measurement body and field r, works only 

for curvatures that are weaker than 

1 
Rp - n -l'[' (4.16) 

where lp = (hG/c3)1!2 again denotes Planck's length. This reproduces our 

result derived in Chapter 3 that there arise principle limitations on r (and 

accordingly on R) measurements. Below the length lp, quantum effects of the 

measurement body destroy the measurability of the r field. 

In quantum electrodynamics the constants L 2 / Q, a and P in the Bom
Infeld-type Lagrangian (4.7) depend on the structure of the measurement 

body. This is evident (i) from the calculations of Euler (1936) for Dirac 

matter, considering terms corresponding to the diagram shown in Figure 4.1. 
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(the internal line is that of spin-+ fermions) and (ii) from the calculations of 

Schwinger (1951) for scalar matter shown in Figure 4.2 (the internal line is 

that of spin-O bosons). 

Fig. 4.1. Fig. 4.2. 

In GRT, the constants U/G4, a and f3 in (4.13) have, in contrast to 

quantum electrodynamics, a universal character. a and f3 can be calculated 

so that 

G4 c4 2n 

~ = G (IiC)ll2 
(4.17) 

is a universal constant. 

Maxwell's equations are linear field equations of first order in the 

derivatives of F"v and, accordingly, of second order in the derivatives of the 

vector potential A". The electromagnetic equations of the Born-Infeld type 

resulting from (4.7) are again of the same order but nonlinear. According to 

the structure of the invariants R 2 and R"vR "V, the Einstein-Eddington

Lanczos field equations stemming from (4.13) are however nonlinear 

equations of fourth order. The influence of the measurement body is 

therefore to be taken into account already for 'weak fields' r. 
The gravitational fourth-order equations are reminiscent of the 'electro

dynamical higher-derivative equations' proposed by Bopp (1940) and 

Podolsky (1941). Those equations result from the Lagrangian 

T =.1 F"V F + ~ F F"V' a 
~p 4 "V /2 "V, a 

(4.18) 

(ao is a dimensionless constant of order of magnitude 1 and / is a length 

parameter). As is well known, the Bopp-Podolsky equations describe an 
electromagnetic field to which not only restmassless photons but also heavy 

particles (a second sort of photons or W bosons) are attributed (see, e.g., 
Treder, 1974). The rest mass of the heavy particles is given by their 

Compton wavelength / appearing in (4.18), 

/ = MMe. (4.19) 

Bopp and Podolsky specified / as the classical electron radius such that M is 
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given by 

lie 
M=7 m 

(e is the charge and m the mass of electrons). 

Chapter 4 

(4.20) 

Considering the corresponding gravitational equations in the Eddington 
case, where 

a =-2{3 (4.21) 

then one finds, in the linear approximation, equations for a symmetric 

second-rank tensor in a Minkowski background space to which, beside the 

zero rest mass gravitons, heavy gravitons with mass 

(4.22) 

are attributed (for details see Section 6.1). The appearance of massive 

gravitons is an expression of the influence of the measurement body on 

gravitational fields. It would vanish when GM/c2 became infinitely large. Due 

to (4.22), this means that the rest mass of heavy gravitons had to be infinitely 

large to suppress the perturbation of the measurement body. 

Now it is quite clear that it makes no sense to aim at really infinitely heavy 

particles. Infinitely heavy gravitons providing a negligible influence of the 

measurement body are, for instance, equivalent to a vanishing coupling 

between gravity and nongravitational matter, and this excludes, of course, 

any possibility of measurement. The problem arising in quantum gravity is, 

however, that the rest mass of heavy gravitons is universally given by the 

mass of planckions. Therefore, the accuracy of measurements cannot be 

unlimitedly improved. Planckions are optimal measurement bodies. 

In other words, in GRT gravitodynamics the description of quantum 

coupling between matter and gravity, performed in the sense of the 

Heisenberg-Euler-Kockel approximation by Born-Infeld type corrections 

to 1\0 = Fi R, is - due to the strong equivalence principle - equivalent to 

fourth-order corrections providing heavy gravitons. Just this equivalence 

causes limitations on measurement. In Chapters 5 and 6 we shall discuss the 

meaning of these limitations for an experimental verification of quantum 

gravity. 
Before going into particulars, let us consider here a general argument 

signalling the problems which arise from the limitations on measurements. 

For this purpose, we follow Einstein (1911), who formulated the following 

essential test for the profundity of physical relations (i.e., of physical theories 

and their relations). The dimension-analytical expressions which can be 

formed of the constants arising in a theory under consideration should only 
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differ by a factor of order of magnitude 1 from the actually measurable 

quantities of the same dimension. 
Considering quantum gravity with its three universal constants Ii, c, G 

and accepting Einstein's criterion (under the presupposition that quantum 

gravity is a profound theQry), one finds that all measurable quantities of 

quantum gravity have the order of Planck's units (see Chapter 3.3). Other

wise the limitations on measurements are of this order, as we have men

tioned repeatedly. The conclusion one must draw from this is, of course, that 

one has to expect difficulties in measuring quantum effects of Einstein's 

GRT. 

4.2. On Gauge Fixing in Quantum Gravity 

Whether quantum effects of gravity are measurable or not, quantization of 

gravitational fields is, as stressed repeatedly above, unavoidable for a 

consistent description of the interaction of gravitational and quantized matter 

fields. There arise, however, problems in the application of the usual 

quantization schemes to gravity, because such procedures have to evade 

modifications which destroy the classical GRT one wants to quantize (see 

our remarks in Chapter 1). Before continuing the measurement discussion, 

we shall consider here one aspect of this problem by discussing gauge 

invariance and its breaking in the covariant quantization approach (see 

BIeyer and Borzeszkowski, 1984). 

The covariant quantization of the gravitational field uses the functional 

integral formulation of quantum field theory (DeWitt, 1964; Faddeev and 

Popov, 1973). This formalism starts from the action integral for the gravita

tional field 

(4.23) 

and calculates the transition amplitudes from the functional integral 

(4.24) 

where g#v denotes the Riemannian metric of the spacetime manifold. The 
Lagrangian density is given by the Ricci scalar Lgrav = R. Following the 

Faddeev-Popov formalism of quantized gauge fields (Faddeev and Slavnov, 

1978), the functional integral is to be carried out over all nongauge equivalent 
classical field configurations. This is realized by choosing a section of the 

gauge group which intersects all orbits of the group one times. The orbits of 

the gauge group are parametrized by a gauge fixing term which is added to 
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the classical action together with a compensating Faddeev-Popov deter

minant. For the application of this formalism to the gravitational field a 

suitable gauge fixing term is given by (Duff, 1975) 

Lgf= r]pv (HgPA),A(HgVf),n (4.25) 
g 

where 1] pv denotes the metric of the Minkowski spacetime. This gives 

Einstein's GRT in the de Donder gauge. Generalizations of this gauge fixing 

introduce an arbitrary fixed reference metric g~v replacing the flat metric so 

that Lgf is a scalar with respect to coordinate transformations constructed 

from both metrics g~v and gpv' This procedure is based on the following 

understanding of gauge invariance and gauge fixing in gravitation. 

Due to the validity of the strong principle of equivalence in GRT, the 

gravitational field is described by the Riemannian metric gpv alone. The 

Einstein group of coordinate transformations plays, therefore, a double role. 

As the group of coordinate transformations it ensures the free choice of 

coordinate systems required by the covariance principle. Otherwise it is the 

gauge group of the tensor gpv' If a reference metric g~v, globally fixed, is 

incorporated, the two actions of the Einstein group can be separated. The 

reference metric g~v and the metric gpv transform both as tensors with 

respect to coordinate transformations. This means that, in order to ensure 

coordinate covariance, action integrals have to be scalars constructed from 

g~v and gpv' 
As a gauge group the Einstein group acts on gpv alone, g~v remains fixed. 

Therefore, a gauge transformation changes gpv with respect to g~v' Gauge 

invariance in gravitation consists in the free relative orientation of the two 

metrics gpv and g~v' According to this statement, gauge fixing is realized by 

the addition to the action integral of an arbitrary gauge-fixing term of the 

structure * 

(4.26) 

specifying gpv with respect to g~v' Examples of this kind are given by Adler 

(1982). The scheme must be completed by the proof that the chosen gauge is 

an allowed one (Faddeev and Slavnov, 1978). 

Usually the background field method (DeWitt, 1964) is used, according 

to which the metric is decomposed into a classical part and quantum 

fluctuations 

gpv = g~v + hpv · (4.27) 

In this case the reference metric g~v can be identified with the background 

metric g~v' This avoids the appearance of external structures artificial to the 
framework of GRT. Without the identification of the two metrices g~v and 

* This means that L has a Rosen-Kohler-type structure. 
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g~v we have, instead of gauged GRT, a bimetric theory showing classical 
consequences apart from GRT. 

However, the identification of g~v and g~v is not allowed for arbitrary L pj, 

contrary to the Faddeev-Popov formalism, where arbitrary gauge fixing 

terms of the structure (4.26) are possible. This means that not all L pj are 

gauge-fixing terms for GRT, but terms producing bimetric modifications of 

GRT. 

In Einstein field equations, the addition of L pj leads to an additional term 

(4.28) 

If the reference metric is treated as an additional matter field, we have the 

field equations 

oLgf = 0 (4.29) 
og:v 

and from the invariance property of Lgf with respect to coordinate trans

formations, we have 

oLgf oLpj R_ 
-.1;- ogl'v + ~ ogl'v - O. 
ugl'v ugl'v 

With the help of (4.29), this gives the conservation law 

T Rv -0 
1'; v • 

(4.30) 

(4.31) 

The same condition follows from the gravitational field equation using 

Bianchi identities (see below). Equation (4.31) leads to four conditions fixing 

the relative orientation of the two metrics gl'v and g~v' We really need four 

equations for the metric in order to fix the gauge, because the gauge 

transformation law contains four arbitrary functions. 

As a special example we consider a L pj which contains the reference 

metric g~v only in the combination of the Ricci tensor R~v' From the great 
variety of possible terms, we use 

L = _gI'VRR 
pj I'V' (4.32) 

The combination of this L pj with the Einstein-Hilbert Lagrangian leads to 

Rosen's bimetric theory with arbitrary background (Rosen, 1979). In order 
to show this we start for lei from the expression 

= f yK J-gR dQ. ( 4.33) 
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Here we use the notations 

K = K g"'V = g"'V(R - R R ) ",v ",v ",v (4.34) 

and 

y = (glgR)1I2. (4.35) 

Equation (4.34) can be written in the form 

K = g",V(A!vIA - A!Alv + A!vAIT - A!TA~A)' (4.36) 

where A!v denotes the difference between the Christoffel symbols gv} 

constructed from g",v and the Christoffel symbols f!v constructed from g~v' 

"I" means the covariant differentiation with respect to the reference metric 

g~v' In the presence of matter field, we have the classical action 

From this action we derive the field equations 

_ 8nk M 

G",v - --4- T ",v + SjiV 

c 

with 

S - RR - 1 g gA<RR - TR ",v - ",v ., ",v AT - ",v' 

(4.37) 

(4.38) 

(4.39) 

Indeed, we arrived at Einstein's equations with an additional source term. 

Just this property of Lgf leads to difficulties in the interpretation of Lgf as a 

gauge breaking term. From the field equations we derive the following 

covariant divergency 

G;; v = K'P;!;vv + T~~v = O. 

If we demand that the dynamical equations 

TMv =0 
",;v 

(4.40) 

(4.41 ) 

of nongravitational matter be fulfilled and use the Bianchi identities, we get 

the conditions (4.31 ) 

T~~v = 0 (4.42) 

fixing the relation between the two metrics g",v and g~v' Only in the case of a 

flat reference metric g~v are the conditions (4.42) fulfilled identically. This is, 
therefore, the only gauge invariant bimetric theory because the orientation of 

the metric g",v with respect to the background is arbitrary. This theory is 

known as the Einstein-Rosen theory. 
In the model considered here, different special gauge conditions of the 

Riemannian metric g",v can be realized. Using the conditions (4.42), we 



Mathematical Descriptions of Quantum Gravity 53 

calculate which reference metrics have to be chosen in order to fix this 

special gauge. 

Let us consider the following choice. In order to have spin-2 gravitons, 

small perturbations hl'v have to fulfil the Hilbert condition in flat space 

(h;-+o;hb=O. (4.43) 

There are different possibilities for writing these conditions covariantly with 

respect to the reference metric g~v' For example we can use 

(gl'V - + gRl'vg~Tgh)1 v = 0 (4.44) 

or the covariant version of the de Donder condition 

(J-g gl'V) v = o. (4.45) 

We ask now for the possible reference metrics, for which the equation (4.42) 

for the g~v leads to condition (4.45) for the metric gl'v' Equation (4.42) can 

be written in the form 

R R gVA_-l.·'uRR gVT=O 
I'v; A ' U I' VT; A 

and the conditions (4.45) read 

(gf': - + g~:gATgI'V)g~a = O. 

The calculation of the covariant derivatives gives 

( ~V 1 h I'V) R 
(5 v - "2 gl vghg gl'a 

_ gR gl'A _ 1 ~AgR gl'V - a!'; A "2 u a I'V;A , 

Therefore (4.45) is equivalent to 

g~l'; Agl'A - + o~g~v; Agl'V = O. 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

Then the coincidence of (4.42) and (4.45) is given for reference metrics with 
constant curvature 

R~v = const X g~v' (4.50) 

These are the metrics considered by Rosen (1979) as global cosmic 
background metrics. 

In order to determine whether (4.28) can be used as a gauge-fixing term, 

we return to the background-field method and separate, according to (4:.27), 

the classical background metric g~v from gl'v and discuss the possibility of an 
identification of g~v and g~v'* 

* Since small perturbations of the gravitational field propagate along the bicharacteristic 

defined by g~V' for gravitational perturbations (gravitational waves) as well as for nongravita

tional matter, the spacetime background is the physical metric. Therefore, the reference metric 

can be given a physical meaning of the background only if the reference metric can be 

identified with the spacetime background. 
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We consider this problem for the vacuum field equations of Rosen's 

model 

(4.51) 

using the so-called high-frequency approximation, which allows us to study 

back-reaction (Brill and Hartle, 1964; Isaacson, 1967). 

To this end, we assume the metric g!'v to be represented by the ansatz 

g!'v = g~v + fh!'v, 

where 

f « 1, A « L. 

(4.52) 

( 4.53) 

(4.54) 

(4.55) 

The background metric g~v for gravitational perturbations is a slowly varying 

function of x!' and is generated by some averaging procedure over the high

frequency perturbations h!'v' L and A are characteristic lengths over which 

the background and the short-wave field h!,v change significantly; f is a 

smallness parameter. To complete this scheme, we assume furthermore that 

the characteristic length over which the fix background g~v changes is 

denoted by I: 

ag~v - g~v/ I. (4.56) 

Inserting the ansatz (4.52) into the Ricci tensor R!'v, we obtain 

R - R(O) + R(!) + 2R(2) + 
!'V - !'v f!,v f !'v ••• , (4.57) 

where the terms R~;, fR~~, f2R~~ are of the following orders of magnitude 
2 

R(O) __ 1_ fR(!) - ~ fR(2) - ~ 
!'v L 2' I'V A 2' I'V A 2 • 

(4.58) 

R~v is of the order of magnitude 1-2 • In this expansion the only linear term 

in f is R~v' We therefore put 

<'R(!) = 0 
c!'v . (4.59) 

The next approximation divides R!'v in a part averaged over some wave

length A and small nonlinear perturbations describing self-interaction effects 

of the wave. We have at this stage 

_ (0) ( (2») 
R!'v - R!'v + R!'v • 

If we assume I - L we get the field equations 

R(O) + (R(2») = RR 
!'V !'V !'v' 

(4.60) 

(4.61) 
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According to Brill and Hartle (1964), the expression 

_(R(2) _ .lgB gBAUR(2» 
/lV 2 /lv AU (4.62) 

is (up to some factor) the averaged effective energy momentum tensor of the 

gravitational waves determined by (4.59). Now it is easy to see that the 

identification of the reference metric and the background metric leading to 

(4.63) 

excludes gravitational waves described by (4.59), because their energy

momentum tensor is equal to zero. * Therefore, 1// 2 must be much smaller 

than 1/ L 2 and the two metrics can never be identified. 

In summary, we may state that Rosen's Lgf can be used for gauge fixing in 

quantum field theory only in the approximation where the back-reaction of 

gravitational perturbations on the gravitational background can be neglected. 

If we consider a higher-order approximation (back-reaction) or even the full 

Einstein-Hilbert action, Rosen's model cannot be used as a gauge breaking 

model. Accordingly, there are two ways out of this dilemma. 

(i) One revives the standpoint that arbitrary generalizations of the Hilbert 

gauge condition leading to Lgf terms, which preserve coordinate covariance 

with respect to a reference metric g~v, are suitable gauging terms. Therefore, 

one has to prove for each Lgf separately if it allows an identification of g~v 

and g~v' This must, of course, not only be done in the linear approximation 

but, at least, in an approximation regarding back-reaction. However, there 

are indications (see von Borzeszkowski, 1984; von Borzeszkowski and 

Treder, 1982b) that back-reaction leads to trouble for all background 

quantization schemes. 

(ii) One takes the notion of gauge invariance and gauge breaking seriously 

and therefore the Lgf (4.28) can be looked at as a gauge-fixing term. Because 

in this case the Einstein-Hilbert action leads to the problems discussed 

above, one should start with a Lagrangian quadratic in the curvature. This 

can be considered as a further argument in favour of Adler's approach of 

induced action for GRT. 

* We exclude contributions from ghost fields because of the interpretation of (4.62) as the 

energy-momentum tensor of gravitons. 



Chapter 5 

Quantum Postulates and the 

Strong Principle of Equivalence 

Einstein's equations of GRT connect quantized non-gravitational matter 

described by its energy-momentum tensor T"v and gravitational fields 

described by the metric tensor g"v of a Riemannian spacetime. In order to 

avoid physical and mathematical inconsistencies resulting otherwise from 

Einstein's equations, one has to consider quantization of gravitational fields 

(see Chapter 1). The quantum procedure should unify or at least harmonize 

classical and quantum theory.* On the other hand, GRT is not genuine field 

theory. This is due to (i) the identification of gravitational field and spacetime 

metric (statement of the weak principle of equivalence) and (ii) the universal 

gravitational coupling making gravity itself a source of gravitational field (this 

is, together with (i), a formulation of the strong principle of equivalence). As 

a consequence of this strong principle, Einstein's equations show a typical 

nonlinearity producing back-reaction effects. It makes all quantization rules 

problematical which transform a usual classical field theory into a quantum 

field theory. In particular, one has to decide whether this quantization shows 

the existence of gravitons in the same sense as the physical existence of 

photons is considered to be verified. To discuss this problem, one must 

consider both quantized vacuum fields (together with the measurement of 

vacuum quantum effects) and the effects resulting from the coupling of 

gravitational fields to quantized non-gravitational matter. 

5.1. Gravitons and the Linear Approximation of General Relativity Theory 

First, let us look briefly at one of the usual quantum approaches (cf. von 

* Harmonization requires that, according to the Bohr principle of correspondence, quantum 

field theory goes over into a classical theory for vanishing Planck's constant h. One finds here 

the same situation as for physical systems in the exterior gravitational field (d. Chapter 1). 

Otherwise one would be led to Equation (1.3) implying the physically and mathematically 

senseless result that Newtonian gravitation depends on the Hilbert states. 

56 
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Borzeszkowski, 1985). We start from the action integral 

1= J2 J RH d4x + J 2'M(lP) d4x, (5.1) 

where iZ is the square root of the gravitational constant, 2'0 = R H is the 

Lagrange density of Einstein and Hilbert, and 2' M( lP) is the Lagrange density 

describing the interaction of gravitation and matter fields lP. Using for 

conveniency the tensor densities 

i llv = J -g gllV, 

_ 1 

gllv = ~ gllv 
...;-g 

as basic fields, 2' G takes the simple Goldberg form 

2'0 = [2iP"iA/liTV - iP"i/lTiJ.v -

- 40"OPv jg-IlTg-AV. 
T A 0/lv , P ," 

(5.2) 

(5.3) 

Just as in quantum electrodynamics, one can now make a perturbation 

theory by adding an appropriate gauge-breaking term and by assuming the 

ansatz 

i llV --+ 0IlV + iZ¢/lv (5.4) 

which leads to an infinite series for i/lv: 

i/lv = 0/lV - iZ¢/lv + iZ 2¢lla¢av + 0(iZ 3). (5.5) 

Substituting (5.4) and (5.5) into (5.1 ), one obtains the series (written 

symbolically) 

I = f "A. A. "+ J "m m "+ r,/J-Y', v """,ji"Y, v 

(5.6) 

One can now proceed by discussing the different terms in (5.6). The parts 
proportional to iZo determine the Lagrangian of free gravitational and matter 

fields. The term proportional to iZ 1 contains a part with one ¢ and two lP'S, 

providing the diagram drawn in Fig. 5.1b, and a part like "¢¢~/l" implying a 
definite formula for the interaction of three gravitons, Fig. 5.1a. In the 
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----< 
(a) (b) 

Fig. 5.1. Feynman diagrams of the ,cl-order approximation. 

higher-order approximation, one obtains diagrams describing the gravita

tional Compton effect and so on; there arise also radiative corrections 

(closed loops) and hard renormalisation problems related to them. 

Following this approach, one is nearly automatically led to the language 

of particle physics. We want however to rediscuss in this paper the question 

raised by Meller and Rosen, when Feynman (1963) asked at the Jablonna 

Conference on Relativistic Theories of Gravitation: is this theory really 

Einstein's theory of gravitation in the sense that, if you would have many 

gravitons, the equations would go over into the usual field equations of 

Einstein? 

The answer to this question should not be trivial because the ansatz (5.4) 

implies more than the usual weak-field assumption. It confines all considera

tions to a region of dimension Lo, where one has a fixed flat background. In 

other words, one forces Einstein's GRT, as far as possible, into a special

relativistic field theory for a field ~I'v' How strongly does GRT differ from 

usual special-relativistic theories if one forces GRT to behave similarly to 

special-relativistic theories? The field equations arising by this procedure are 

nonlinear, so, speaking in particle language, there arise graviton-graviton 

interactions against of a fixed background. This is, however, not the full 

nonlinearity of Einstein's equations which causes a back-reaction of the 

~I'V field on the background and which realize the strong principle of 

equivalence. 

To make the problem of linear approximation of GRT more evident, let 

us consider it in more detail (see von Borzeszkowski, 1982). We assume 

again that 

(5.7) 

where YI'V represents the background field, say YI'V = 0(1), hl'v is a field of 

the same order of magnitude as YI'V' and E is a small parameter: 

YI'V = 0(1), hl'v = 0(1), 

E « 1. 

(5.8a) 

(5.8b) 

Let us now introduce estimates of how fast the metric components vary by 

saying that typically their derivatives are of order 

ay - ylL, ah - hi)" (5.9) 

where Land ). are characteristic lengths over which the background y and 

the h part of the field change significantly, without assuming any order-of-
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magnitude relation between L and A from the very beginning. Then one may 

expand the Ricci tensor for the total metric in powers of E to obtain (see 

Brill and Hartle, 1964; Isaacson, 1967; Misner et aI., 1973) 

Rap(Yl'v + Ehl'v) = RaP (Yl'v) + ER~~(hl'v) + 

+ E2R(2)(h )+E3R(3)(h )+ ... ap I'V ap I'V , (5.10) 

where (the upright line denotes the covariant differentiation with respect to 

the background metric): 

etc. 

RaP (y I'V ) = the Ricci tensor of the background, 

R~~(hl'v) = ypr(hprlap + haPlpr - hmlpp - hrPiap), 

R~~(hl'v) = -l- [-l- hiphpTla + 

+ hpr(hprlaP + hap :rp - hml !3P - hrPlap) + 

+ h'plp(hra1p - hpa1r )-

-(hi; - -l-hIT)(hmIP + hrPla - hap1r )] 

These terms have the following orders of magnitude: 

etc. 

Rap (Yl'v) = O(L -2), 

ER(1)(hl'v) = O(EA -2), 

E2R(2)(h )=0(E2A-2) ap I'v , 

E3 R~~(hl'v) = O( E3 ,1-2) 

From this it becomes evident that only for 

A~L 

(5.12) 

(5.13) 

the powers in E estimate completely the different terms, so that Rap ( Yl'v) is 

dominant in magnitude. Accordingly, only for low-frequency fields hl'v, the 

background metric Yl'v is governed by the equation 

Rap (Yl'v) = O. 

The requirement 
I 

RaP( Yl'v) == 0 for all A 

(5.14) 

(5.15) 

is thus a strong supplementary condition providing the new field equations 

D h = R(l) h 2 (2) h ap( I'V) - E ap( I'v)+ E Rap( I'v)+ 

(5.16) 

which differ, due to the nonlinearity of Rap(Yl'v + Ehl'v), from Einstein's field 
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equations. Therefore, the supplementary condition (5.15) does, in general, 

not lead to a description of gravitational perturbations but defines the new 

field determined by the field equations (5.16). This hl'v field runs through the 

curved YI'Y background, without showing any back-reaction effect on YI'Y' 

Accordingly, there exists in general only one possibility to interpret the 

results which one obtains via the ansatze given by (5.7), (5.8a, b) and (5.14): 

They must be considered as a weak-field and low-frequency approximation 

to the results which one expects for the exact field equations. An extrapola

tion to distances at which the field is strong and changes rapidly has to be 

viewed with caution. Of course, in the case of linear field equations such an 

extrapolation may also provide information about special types of strong and 

rapidly changing fields, because the linear equations corresponding to (5.14) 

and (5.16) have the same structure; in the linear case all depends on whether 

or not the expansion series in f converges. But, in the case of nonlinear 

equations, an extrapolation of a solution obtained via the ansatze (5.7), (5.8a, 

b) and (5.14) to the whole A scale is equivalent to the requirement (5.15) 

producing new, nongravitational equations. 

It is now striking that the so-called background field method of quantizing 

gravity pioneered by DeWitt (1967) starts with the very ansatz (5.15). 

According to this method, the field gl'v is decomposed as written in formula 

(5.7), where fhl'v is now a quantum field and YI'V the classical background 

field relative to which the quantum perturbations take place. Then the action 

I (gI'Y) = 1(-4 f Fi R (gI'Y) d4 X (1(2 is the Einsteinian gravitational constant) 

is expanded in a functional series about the background field. Later on, using 

the argument that the background field equations (5.15) are true when the 

external gravitons are physical, the validity of (5.15) is required as a basic 

constraint in this quantization procedure. (Under this assumption, all 

obtained formulas remain sensible of course if one sets YI'V = rJI'V; rJl'V == 

Minkowski metric.) 

The arguments given above at the level of the classical (nonquantized) 

field equations show however that such an approach reflects the properties of 

gravitation only for low frequencies, i.e., at comparatively large distances 

A - L. Therefore, the results one obtains in this manner should not be 

extrapolated to small distances A « L. Above all, the difficulties (as 

divergencies) which one obtains by extrapolating the usual background 

quantization conclusions to very small distances need not be physically 

disastrous. 

It should be stressed here that, in the case of quantum gravity, the usage of 

the ansatz (5.7), (5.8a, b) and (5.14) is even more suspect than in purely 

classical considerations, at any rate if one has in view the quantum approach 

initiated by Feynman (1963) and Gupta (1968). Indeed, in the Feynman

Gupta approach, the operator gl'v is separated into the classical Minkowski 

space background rJl'V plus a quantum correction fhl'Y' such that the 

Lorentz-Poincare group allows us to perform the usual particle orientated 
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quantum procedure. This procedure changes Einstein's general coordinate

covariant theory into a theory with new symmetries. It means therefore 

possibly a modification of the original physical content of Einstein's General 

Relativity Theory. Assuming (5.7) etc. within the framework of classical 

consideration, there arises of· course an analogous problem. But then this 

method is used in order to calculate and to measure weak-field and low

frequency effects of a given theory. In quantum theory, the ansatz (5.7) etc. 

with Yllv = 'fJllv represents more than a method. By virtue of the fundamental 

meaning of the Lorentz-Poincare group for quantum theory, it makes it only 

possible to formulate a quantum theory of gravity. Analogous arguments 

were true in the case of another fixed background if its symmetries were 

fundamentals of the quantization procedure. However, returning to the above 

given arguments, it is in general, at the classical as well as at the quantum 

levels, incorrect to extrapolate the results obtained by means of the ansatze 

(5.7), (5.8a, b) and (5.14) to arbitrarily small dist~ces. 

The above-described approach says therefore only that there are approxi

mations for which one may use the concept of gravitons.* It remains to be 

determined whether this concept also has a physical sense for regions where 

the full nonlinearity of GRT has to be considered. To see what happens in 

this case, one should of course consider the full gravitational equations. 

Because of their complexity, we shall however start again with an approxi

mate ansatz, namely the high-frequency 'approximation (Brill and Hartle, 

1964; Wheeler, 1962; Isaacson, 1967; Choquet-Bruhat, 1969). This approxi

mation considers the nonlinear effects of GRT in a more essential manner 

than the usual weak-field (low-frequency) methods. Accordingly, it should 

show at least some features of the nonlinearity of GRT. 

Following this method and assuming accordingly that the effective energy 

density contained in a wave, ( c4/ G) ( £ / A )2, is of the same order of 

magnitude as (c4/G)L -2, the equation (5.14) must be replaced by 

Rap( Yllv) = £2 R~J( hI' v ). 

Of course, it will be difficult to obtain rigorous results if one includes the 

back-reaction at the high-frequency quantum level. In subsequent sections 

some qualitative conclusions will be drawn about "high-frequency quantum 
gravity". 

5.2. Gravitons and the Nonlinear High-Frequency Approximation· of 
General Relativity Theory 

From the high-frequency point of view one has to assume that the back-

* As long as one assumes a fixed background, this situation does not change essentially if one 

supposes, instead of a flat Minkowski background, some curved background. 
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ground curvature is equal to or greater than G/c4 times the total energy 

density 

e4 E2 

p""O}? (5.17) 

curving the background 

L -2 ~ e E G 4 ( )2 
70 ;: , (5.18) 

i.e., 

(5.19) 

(When no other sources of energy besides gravitational waves are present, 

the equality sign must be used.) According to condition (5.8), the following 

relation holds 

E :$ UL « 1, (5.20) 

so that this concept describes the propagation of a small-scale ripple in a 

background of a large-scale curvature. Here the case YI'V = rJl'V is of course 
physically trivial because this assumption would lead to L = 00 and, via 

(5.19), to the E = 0 case. The back-reaction of the Ehl'v field curving the YI'V 

background requires a vanishing Ehl'v field for an uncurved background. 
Let us now assume, in analogy to quantized electrodynamics, that the 

energy density contained in a gravitational wave of length;" is equal to * 

liv lie 
P = ;.,3 = y. (5.21) 

(Equation (5.21) results if one assumes that one graviton is contained in the 
volume -;., 3. For a generalization of this assumption, see below.) Together 

with equation (5.17) this quantization rule provides 

(Ii G/c 3) 112 

E = ;., . (5.22) 

Consequently, looking from the viewpoint of the background quantization at 
the ansatz (5.7), 

(5.23) 

one must demand that Ehl'v satisfies equation (5.22), while YI'V fulfils the 

* Maybe, this assumption is not appropriate in order to quantize gravity. But without any 

assumption from quantum electrodynamics it is hardly possible to say what is meant by 
quantization. At any rate, it seems to be a minimal reference to quantum electrodynamics 

since it is used only to estimate the order of magnitude of p. 
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condition 

(IiG/c 3(2 
L « Iyl· 
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(5.24) 

The latter is the well-known correspondence condition which guarantees that 

the Yl'v field may be considered as classical. For Yl'v = 0(1), it says 

(IiG/c3)1!2 « L, (5.25) 

i.e., that L has to be much greater than Planck's elementary length 

lp == (IiG/c3)1I2. 

The comparison of (5.19) and (5.22) provides finally 

(5.26) 

From this inequality it is evident that the high-frequency and the quantum 

assumptions are only compatible for sufficiently large wavelengths ,1,.* In 

other words, our 'high-frequency background quantization' of gravity is only 

possible at distances much greater than Planck's elementary length lp. For 

L -+ lp the wavelength A would become of the order of lp, but this case is 

excluded by the classical background condition (5.25). 

If one assumes now that the system to be quantized has the characteristic 

length Lo ~ A, then one obtains (for an arbitrary particle number n ~ 1), 

instead of equation (5.21 ), the relation 

C 2C 4 liv 

P "" GA 2 "" n L~ 

leading to the quantization rule 

to = r;; (AI L6)1I2 1p 

(5.27) 

(5.28) 

(for n » 1, equation (5.28) may be written as E "" r l/2 A 112, where r is the 

particle density). The comparison of the high-frequency condition (5.19) and 

of the quantization rule (5.28) provides then (see von Borzeszkowski, 1982, 

1984; von Borzeszkowski and Treder 1982b) 

[ ( A) 312 ]112 
A ~ - IpL 

Lo 
(5.29) 

or 

(5.30) 

* This corresponds to the relations of the electric field case, fP = fPo + E with E = (lic)1!2/A, 

(lic) 1/2/ A « fPo. However, in quantum electrodynamics there do not result such limitations 

for A because it contains only the two universal constants Ii and c. 
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(with the dimensionless factors L = Vip and La = Lollp). From (5.29) it 

becomes obvious that, in comparison to a system of the linear dimension 

- A, there arises the factor (AI Lo)3/4. Accordingly, an increasing linear 

extension of the quantized system implies a decrease of the minimal A value. 

The inequality relation (5.30) shows that, for a given background charac

terised by L, the quantized system must at least be of the linear dimension 

Lo - (lpL2)1I3 or La - L2!3, in order to allow a quantization of gravity also 

at distances of the order of magnitude - [p. 

The conditions (5.26) and (5.30) result from starting, on the one hand, 

with a classical background plus quantum fluctuation and requiring, on the 

other hand, that the classical background be influenced by back-reaction (via 

some average procedure). Now one could argue that the restricted com

patibility of these two assumptions demonstrated by (5.26) and (5.30) shows 

that one should not simultaneously impose these requirements on gravity. 

Otherwise, there exist good physical arguments in favour of them. The first 

requirement rests on the fact that, for reason of measurement and physical 

interpretation, there should always exist a classical background; the latter is 

appropriate for including the back-reaction which it is necessary to consider 

for high-frequency fluctuations. 

The same arguments are true for Einstein's equations modified at a 

distance Ip by terms resulting from the Lagrangian containing, beside the 

Einstein-Hilbert part R, the quadratic invariants R 2 and Rl1v R l1v (cf. von 

Borzeszkowski, 1982, 1984): 

Raf3 -1 gaf3 R + 1M aORaf3 + 

+ (1- a + 2j3)gaf30R + 

-( a + 2j3) R; af3 + 2aRal1vf3Rl1v + 

-1 agaf3Rl1vRI1V + 2j3RRaf3 + 

-1j3gaf3R2] = ~ Taf3 · 
e 

(5.31) 

(a and j3 are numerical constants). Indeed, substituting (5.7) into the 

expressions for Raf3; paC Y I1V + ehl1v ), one obtains the series 

Raf3;pa(Yl1v + ehl1v ) = Raf3lpa(Yl1v) + 

+ eR ~~pa( hl1v ) + e2 R ~~pa( hl1v ) + ... , 

where the right-hand terms have the following order of magnitude 

Raf3lpa(Yl1v) = O(L -4), 

eR~~pa(hl1v) = O( eA -4), 

e2 R(2) (h ) = 0(e2./1.-4 ) af3pa I1V 

(5.32) 

(5.33) 
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etc. The terms 

ORa,B, ga,BDR, R;a,B (5.34) 

provide expansion series in f with terms of the same order of magnitude as 

in (5.32), while the quadratic terms Rapa,BRpa, ga,BRpaRpa, RRa,B and ga,BR 2 

give expressions of the following type 

(5.35) 

Considering now (5.10) and (5.12), one obtains on the left-hand side of 

(5.31) terms of the following orders 

- L-2 + - fA -2 + ... + 

+ Ip[ - L -4 + - d -4 + - fA -4 + .. -]. 

By virtue of the conditions (5.26) this may finally be written as 

- L -2 + - IpA -3 + ... + 

+IM-L-4+ -/p A-5 + -1~A-6+ .. . J. 

(5.36) 

(5.37) 

Assuming again, according to the above-described procedure, that in the 

vacuum case this expression is proportional to the energy density of the 

waves times GIc4, f2A -2 - I~A -4, we have 

i.e., 

L-2 - I~A-4, 

Ip - A2L -1, 

The high-frequency condition L » A leads then to 

1 1 ;., ;.,2 ;.,4 
-»~»-»~»~ 
;"L L 2 L 3 L 4 L 6 • 

(5.38) 

(5.39) 

(5.40) 

Thus, the term of the nonmodified Einstein equations are dominant and we 
find essentially the same situation as before. 

Considering now the measurement of gravitational fields against a curved 
background, one finds the same limitation (5.26) and (5.30) which followed 
from quantum field formalism (cf. von Borzeszkowski and Treder, 1982b). 

Indeed, if one wants to measure h/,v field effects, then one has to consider 
perturbations d r of r - 1/ L over a characteristic length A 

ar 1 
dr - -;., - ~;.,. 

L e (5.41) 
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The possibility of measuring such effects requires that b r be greater than the 

uncertainty ~r of the measurement, 

~r ~ br (5.42) 

where ~r satisfies the relation (3.46a) of Chapter 3. Therefore, one has 

br(Lo)3 - -\- (Lo)3 ~ ~r(Lo)3 ~ l~ (5.43) 
L 

and 

1 
A ~ -3 (lpL? 

Lo 

and, for optimal measurement, 

A ~ (lpLy12. 

(5.44) 

(5.45) 

Therefore, we find that the limitations (5.26) and (5.30) following from the 

quantum formalism are in accordance with the limitations resulting from 

Heisenberg's uncertainty relation for the measurement procedure (d. relation 

(3.55». In accordance with Pauli's argument (Pauli, 1933), such limitations 

on wavelength cannot occur in quantum electrodynamics, because wave

length depends on permeability. In gravitodynamics, this is excluded by the 

principle of equivalence, leaving no room for a changing gravitational 

permeability. 

5.3. Compton Effect 

As was shown above, there arise principle limitations in quantum gravity 

resulting from the problem of compatibility of the quantum principle and the 

fundamental principle of GRT, namely the principle of equivalence. This was 

shown by considering the quantum field formalism and the theory of 

measurement, respectively. In the quantum formalism, this problem of 

compatibility appears for high frequencies because of a contradiction 

between the quantum requirement (5.28) and the back-reaction implied by 

the equivalence principle and is brought into the calculation by the assump
tion e :$ AIL. The same was shown by the measurement discussion (see 

Chapter 3). There a contradiction shows up in the incompatibility of the 

Heisenberg uncertainty relation and the relation M = m also being a 
consequence of the equivalence principle. According to Bohr and Rosenfeld, 
coincidence of the uncertainty relations derived from both formalism and 

measurement is necessary to prove the correctness of the quantum field 

formalism. 

Do the relations (5.26) and (5.30), however, mean that such quantum 

effects as gravitational Compton effect, Bremsstrahlung, pair creation, and 
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Lamb shift should not exist? To answer this question (see von Borzeszkowski, 

1985), let us return the expression (5.6) of the action functional I. 

The term oc 1(2 in (5.6) (its gravitational part corresponds to the R~; term 

in (5.10» provides Feynman diagrams of the form shown in Fig. 5.2. And the 

term oc 1(3 in (5.6) (its gravitational part corresponds to the R~~ term in 

(5.19» leads to diagrams of the type drawn in Fig. 5.3. One can see that the 
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Fig. 5.2. Feynman diagrams of the i 2-order approximation. 
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Fig. 5.3. Feynman diagrams ofthe i 3-order approximation. 

cut-off length 

A ;;:: (lpL)l!2 (5.46) 

does not exclude all these effects. It only cuts off the high-frequency part of 

'graviton-matter' interaction and pure 'graviton-graviton' interactions. 

Indeed, the Compton effect is, e.g., given by the formula 

1 1 Ii 
-, = - + --2 (1 - cos 8). (5.47) 
v v me 

As was shown by Heisenberg (1938) in quantum electrodynamics, the 

introduction of a cut-off length '0 restricts the validity of formula (5.47) to 

regions satisfying the relation 

(5.48) 

where A is the wavelength of the field and A = iii me the Compton 

wavelength of the scattering particle. Assuming now, in accordance with 
(5.46), that '0 = (lpL )112, one obtains for A = L: 

A » fp • (5.49) 

This means the 'graviton-matter' Compton effect occurs for a matter

dominated background, where the selfinteraction of the gravitational field 

can be neglected. Assuming however 'graviton-graviton' interaction as the 

dominating process, i.e., assuming A = A, then the relation (5.48) is not 
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satisfied generally. Then ro = (lpL) 112 cuts off such effects. The same can be 

shown for the higher-order diagrams. 

In a theory with permeability fl, the Heisenberg condition (5.48) on the 

measurability of Compton effect is changed, because then A ..... A' = flti/ me. 

From this point of view, Einstein's principle of equivalence can be con

sidered as a principle excluding gravitational permeability, such that limita

tion (5.48) cannot be undermined. 

The fact that effects of quantized GRT are only cut off for high 

frequencies is due to the method used here. An exact treatment of the theory 

should show that, when strong nonlinearity comes into the calculations, it is 

not sensible to speak of gravitons and to look for corresponding effects (see 

Section 4.4). 

Concluding this section, let us make here a remark on cosmological 

effects. For this purpose, let the length characterizing the background be of a 

cosmological order of magnitude 

lie Ii 40 Ii 27 
L - eT - --2 - - 10 - - 10 cm, (5.50) 

Gm me me 

where w = IiclGm 2 = Nl/2 "" 1040 is the square root of Eddington's 

number N of heavy particles in the Einstein cosmos. Then it follows that 

only for Lo ~ 107 cm may A become equal to ip , i.e., the system must 

have a dimension for which quantum effects are negligible. (For L * = 
eT* - (liclGm2) 112 (lilme) ",. 107 cm, i.e., T* "" 10-3 sec, one obtains 

Lo ~ 10-6 cm.) 

However, A ..... lp should not be required here to determine Lo, since we 

want to find whether A may become lp. Accordingly, one should determine 

Lo by other physical arguments (e.g., by the linear dimension of the physical 

system which is considered from the quantum point of view) and ask what 

value the length A may take. If we consider, e.g., strong interactions, La is 

given by the nuclear radius Lo ",. 10-13 cm. Then only for L - 10-3 cm (this 

value corresponds to the age of the world T ;$ 10-13 sec) may A become [p. 

This means that in the so-called hadronic phase of the hot-world model the 

quantization of gravity is not possible at such distances. 

Therefore, the conditions (5.26) and (5.30) say that quantum effects of 

gravity are irrelevant for cosmological considerations. In the case of pure 
gravitons this becomes even more evident. Indeed, then (5.30) reduces to 

(5.26) because A is the only characteristic length which can be put equal to 

Lo; then (5.25) states that A has to be always much greater than lp. 

5.4. Lamb Shift 

As was mentioned in the previous section, an investigation of the full general 

relativity theory should show that it does not make any difference if one 
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considers the gravitational field as a quantized or a non-quantized field. To 

give further arguments corroborating this point of view, we shall discuss here 

the gravitational Lamb shift and, in the next section, the problem of the 

gravitational Hohlraumstrahlung (see Treder, 1979). 

According to Einstein's principles of general relativity and equivalence, 

the general-relativistic value 0 of an observable is obtained from its special

relativistic value 0'1 by multiplication of 0'1 by corresponding concomitants 

of the metric tensor gl'v. If HTJ is the special relativistic energy operator, then 

the general relativistic operator taking into consideration the influence of 

gravity reads 

H = i&oH". (5.51) 

Since the eigenvalues of energy are Einstein-shifted, the uncertainty ~g of 

the metric gl'v leads to an uncertainty 

(5.52) 

of the energy value caused by gravity; according to (5.52), originally sharp 

spectrum lines are 'smeared over'. The line broadening is given by 

~H 1 
- "" ! t<J.g "" -2 t<J.~. (5.53) 

H e 

On the other hand, the contributions oH of the quantum effects of the 

gravitational field to the energy spectrum (following from quantum field 

theory) are, e.g., in the case of two particles of the same relativistic masses 

m = E 1 e2, determined by natural powers n ~ 1 of the 'Sommerfeld 

numbers' 

a = GES2 "" (~)2 Gtr/;). (5.54) 
lie Eo lie 

Therefore, the Lamb shift is given by 

00 "" anHTJ "" anH. (5.55) 

Of course, the greatest effects arise for ultrarelativistic particles because 

for these particles the rest masses rna are multiplied by great Lorentz factors 

EIEo. Considering that the Compton wavelength reads Ao = lie! Eo, we obtain 

the following value of the de Broglie wavelength, 

L "" lie "" Eo _li_ "" Eo A 
E E tr/;)e E o· 

From this we obtain the gravitational Lamb shift: 

( E) 2n Gli Gli 

oH "" Eo e3L~ H "" e3e H. (5.56) 
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The relative energy E of particles can be determined by measuring the de 
Broglie wavelength A. Then, the error of length measurement ilA must not be 
greater than A itself to define E reasonably, i.e., the position of the body of 

measurement must be fixed to an indeterminacy ilA = ilLo satisfying the 
inequality 

ilA "'" Lo ~ A "'" fie/E. (5.57) 

This leads to an estimation of the perturbation of the metric by the body of 
measurement: 

Gfi 
-3-2 ~ 
cL 

where ilg satisfies the relation 

(ilgt ~ ilg ~ l. 

(5.58) 

Therefore, (5.58) says that the uncertainty ilg caused by the fluctuations 

il~ of the gravitational potential of the measurement body (i.e., by the 
fluctuations of the absolute value of the gravitational potential) is greater 
than the Lamb-shift-type quantum effects of the gravitational field: 

oH ~ ilH "'" + ilg . H (5.59) 

If one wants to determine the masses m of the particles directly from the 
gravitational accelerations caused by the gravitational potential ~ of a test 

body, then one must know its position with an accuracy greater than fie/E: 

fie 
ilLo :$ A "'" E (5.60) 

However, if the masses m of particles are not defined reasonably (in a 

measure-technical manner) then the assertion on the Lamb shift cannot be 
checked. 

The term broadening ilHIH caused by the undetermined perturbation 
potentials il~ of the test bodies necessary to measure particle energies is 
always greater than the Lamb-shift-like term broadening oHIH resulting 

from possible quantization of the gravitational field. 
We find thus, in concordance with our results in Chapter 4, that there is 

always a prevailing (predominance) of test body quantum effects, and not 
only in the case of vacuum fluctuations and Lamb shift. But then there exists 
no difference empirically provable between the classical and quantum field 
theories of gravitation (at the very least as long as we do not consider free 
gravitons). 

Thus the contents of the classical and the quantized theories of gravitation, 
as far as they can be checked physically, were not different with respect to 
their application to quantized matter fields. Therefore, one does not need 
more information about the gravitational field g!'v than one obtains from the 
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average-valued Einstein equations and the equations for the expectation 

values of the Einstein tensor, respectively. 

The consistent application of Einstein's principles of equivalence and 

relativity together with Heisenberg's quantum-mechanical uncertainty rela

tion leads to the result that it does not make any difference if one considers 

the metric g/Jv as a c-number or a q-number. 

This agrees with the general expectations one has for 'nonlocal field 

theories' (according to Heisenberg). To prove our conjecture, it is neces

sary to research, in addition to gravitodynamical effects of the Lamb-shift 

type, also effects that are connected with gravitational radiation and the 

existence of free gravitons (in the sense of Dirac and others) (see Section 

5.5). 

5.5. Black-body Radiation 

Let us consider now the problem of gravitational Hohlraumstrahlung in 

more detail (see Treder, 1979). 

The algebraic properties of free gravitons corresponding to Dirac's 

quantization of the exact Einstein equations of gravitation are in principle the 

same as those which were formerly derived by Pauli and de Broglie for the 

linearized Einstein equations (see Tonnelat, 1965); their properties are 

evident from Einstein's theory (1918) of the linearized gravitational waves. 

The gravitational quanta, the 'gravitons' of Pauli and Dirac, are particles with 

vanishing rest mass and spin 2, which are completely transversely polarized, 

i.e., only the maximal spin values +2 and -2 are realized (Pauli, 1958) (see 

also Treder, 1963). 

In quantum field theory, the spontaneous emission of radiation is 

governed by other laws as in the classical theory of radiation. For field 

quanta with vanishing rest mass there is an equilibrium of radiation in a 

closed cavity that, because of the great number of excited modes, is 

determined by Planck's radiation law both in quantum electrodynamics and 

in the linearized quantum gravitodynarnics. According to the classical theory 

of radiation, the energy radiation is divergent due to its dependence on the 

number of oscillators - v 2 - 1I.F. Both for electrodynamics and for gravi

tational radiation the Rayleigh-Jeans law (with its ultraviolet catastrophe) 

would be valid in this case (see Planck, 1906). 
Jeans (1911) proposed to understand the real energy-frequency distribu

tion u(v) of the black-body radiation described empirically by Planck's law 

as a quasi-stationary state in the sense of the classical theory of radiation 

(with Hertz' instead of Planck's oscillators), "in welchem die Erzeugung 

hochfrequenter Strahlung noch nicht bemerkt wurde, weil man es bei den 

gegebenen Versuchs-Bedingungen nicht mit einem wirklichen Gleichgewicht 

zu tun habe" (Bohr, 1966). 
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Therefore, according to J. Jeans, one could not empirically distinguish 

between classical and quantum black-body radiation because it did not form 

an equilibrium of radiation, but radiation maintains quasistationarily the 

insulated spectrum of energy LIv( v). 

The formation of an equilibrium occurs by means of a 'dust particle' as a 

catalyst (Planck, 1906). Planck, Poincare, Einstein, and Bohr have shown 

that Jeans' argument (which was supported by Rayleigh) is not correct. The 

laws of the classical theory of radiation cannot be maintained in electro

dynamics because, via this 'dust particle', there arises very quickly an 

equilibrium radiation in the cavity. 

In gravitodynamics, the cross section a for the radiation of gravitational 

radiation by particles is considerably smaller than the electrodynamical cross 

section ao "'" ( e2 / me a2)2 "'" /2 of light scattered by electrons with mass 

me and 'classical radius' / (of the order of Heisenberg's elementary length 

/ "'" IiC/Eo, i.e., the Compton wavelength of baryons). The gravitational cross 

section of a particle of mass m is given by 

(5.61) 

i.e., it is proportional to the square of its gravitational radius 

GE Gm E Gmo 
a =-4-=-2-=- --2-· 

C c Eo c 
(5.61a) 

Now, the distances r must always be greater than a to prevent the scattering 

particle from destroying the measurable spacetime structure by its own 

gravitational potential ~ - uc2/ r (i.e., it must be guaranteed that &0 > 0). 
Furthermore, the gravitational radius a must be smaller than the matter 

wavelength A of the scattering particle (/\ defines the radius of an ultra

relativistic particle): 

(5.62) 

From this one obtains 

(5.63) 

Thus, the cross section a of the scattering of gravitational radiation by a 

particle is always given by 

(5.64) 



Quantum Postulates 73 

where 

hc e2 

<:$ 102 - <:$ I 
Eo E~ 

(5.64a) 

is the Compton wavelength of a hadron and 

(5.64b) 

is its electrodynamical cross section. Therefore, the gravitational cross 
section a is at least 1040 times smaller than the electrodynamical cross 

section and the time elapsing until an equilibrium distribution of gravitational 
radiation will be formed by means of scattering by dust particles is at least 
1040 times greater than in the electro dynamical case. 

This means the 'gravitational radiation in a cavity' is, indeed, never in 
equilibrium, and the arguments given by Jeans are correct in this case. The 
gravitational radiation, being in a cavity, is in a quasistationary state; both 

according to the classical and the quantum theory of gravitational radiation, 
it remains in the spectral distribution Uo(v), insulated in the beginning and 

not becoming 'black'. Therefore, there exists no measurable difference 

between classical and quantum behaviour. If the cavity has the microphysical 
dimension 

(5.65a) 

then the time interval 

(5.65b) 

will elapse up to the formation of an equilibrium of radiation, * i.e., until the 
gravitational radiation is 'blackened' through its scattering by dust particles. 

This means at least a time of the order of the age of the world must elapse; 
therefore, the expansion of the universe also prevents the formation of the 
equilibrium of radiation in microscopic ranges. 

This quasistationarity of the insulated spectrum of gravitational radiation 
corresponds to the nonlocalizability of the Einsteinian energy-momentum 

complex. The Kirchhoff and Planck laws of the thermal radiation use the 
conception of a local density of radiation and energy, which does not exist 
for gravitational radiation. The above-given estimations are a measure for 
this nonlocalizability of gravitational radiation. 

The impossibility of distinguishing empirically, on the strength of the laws 

* In electrodynamics this elapsing time would be (I/c) (he! p2). 
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of radiation, between quantized and classical gravitational radiation becomes 
plausible if one recalls the following (epistemological) arguments. The 

nonlocalizable Einsteinian energy-momentum t; is identical with the 

canonical energy-momentum density 

t; = 1! 0; $' - 0 [ J~:gPU); v [F8 gPU); i" I (5.66) 

which belongs to Einstein's Lagrangian 

$' = F8 gi"V(r~llr~v - r~pr~v) (5.67) 

where Rllv = 0 describes the free gravitational field (Einstein, 1916; Einstein 

et al., 1922). 

The only tensors of second rank that could be identified with a (local) 

tensor of gravitational energy in the theory of general relativity are the Ricci 

tensor Rllv and the Einstein tensor GIlV = Rllv - t gllvR. Indeed, GIlV could 
be interpreted as the 'metric energy-momentum tensor' of the gravitational 

field, as was proposed by Lorentz in 1916 and Levi-Civita in 1917 (see 

Pauli, 1958). Then, one has (according to Hilbert and Lorentz) 

o$' 
- = F8 GIlV (5.68) 
ogllv 

this is the definition of the metric energy-momentum tensor Tilv • But, for 

free gravitational fields, GIlV vanishes due to Einstein's gravitation equations 

GIlV = Rllv - + gllvR = 0 

(5.69) 

such that, following Lorentz' proposal, the energy density F8 Goo of a free 

gravitational field is identical with zero. For that reason, Einstein (1918) 
answered Lorentz and Levi-Civita that, using the tensor (5.8) as metric 
energy-momentum tensor of the gravitational field, it would not be possible 

to ascribe energy to the free gravitational waves. 
Quantum-mechanically speaking, according to Lorentz' definition of 

energy, there do not exist free gravitons. 
If the question of quantization of free gravitational fields (i.e., of the 

existence of free gravitons) could be decided empirically and could be found 
to be true (this would be conceivable), then one would have the paradoxical 
situation that one could decide empirically between Einstein's 'canonical' 
definition (5.6) and Lorentz' 'metrical' definition (5.8) of the energy
momentum complex of free gravitational fields, namely, in favour of the 
canonical one. However, this is excluded by the impossibility in principle of 
distinguishing between the classical and quantum theories of general relativity 
and of detecting free gravitons. 

According to our arguments, the question of quantization of the gravita-
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tional fields may be not a physically meaningful question. This statement may 

be in concordance with Einstein's point in his discussion with Bohr and Born 

and in his Autobiographical Notes. The general theory of relativity is a much 

more fundamental conception than the contrast between classical physics and 

quantum physics. 

5.6. Historical Remarks: Black-body Radiation and Compton Effect 

To finish this chapter, let us take a short look at the relation of black-body 

radiation to Compton's effect (see von Borzeszkowski, 1986). 

Discussing today the graviton idea, many authors presuppose unreflectedly 

that there should exist gravitons simply because the particle concept was 

shown to be successful in physics. One should not forget however that 

already the photon, i.e., the analogue by which physicists are mainly guided 

when they are talking about gravitons, played a singular role in particle 

physics. Landau and Peierls attempted in 1931 (i.e., after the foundation of 

quantum electrodynamics) to show that the photon is a mathematical and not 

a physical concept. For many years, Planck and Bohr have rejected the 

photon hypothesis, and Einstein himself had always a critical attitude 

towards his own photon hypothesis. From 1905 to 1925, he was almost the 

only one who took the light-quantum hypothesis seriously, without however 

speaking of the photon as a particle until its existence was proved by the 

Bothe-Geiger experiment. And from 1925 until the end of his life he had a 

sceptical attitude towards quantum mechanics and quantum field theory as a 

fundamental unification of particles and fields. For a discussion of the history 

of the photon hypothesis, see Pais (1979). 

Even if one accepts now the viewpoint that the existence of photons is 

theoretically predicted and experimentically discovered (not all authors share 

ths point of view), it is useful to rediscuss the history of the photon idea in 

order to show that all the arguments which speak for the corpuscular theory 

ofthe electromagnetic radiation are untenable for gravitational theory. 

Kirchhoff's formula 

(5.70) 

for the radiation within "a space enclosed by bodies of equal temperature T, 

through which no radiation can penetrate" (Hohlraumstrahlung) represents 
the starting point of the electromagnetic (classical and quantum) radiation 

theory. All further developments leading to the Stefan-Boltzmann law, to 

Wien's and to Planck's radiation laws are nothing but steps to find 

Kirchhoff's function F. Remembering this fact, one sees at once that great 

difficulties stand in the way of a gravitational radiation theory. Indeed, as was 

argued in Section 5.4, the fundamental principles of Einstein's General 

Relativity Theory prevent the definition of a 'Hohlraum' (cavity) and of 
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Hohlraumstrahlung. Therefore, it should not be possible to establish a 

gravitational 'Wien law' or 'Planck law'. 

Now one could make objections to the argument that this already shows 

that there should not be attributed gravitons to the gravitational field in the 

same sense as there are attributed photons to the electromagnetic field. One 

could say that there exists no necessary coupling between Planck's law of 

black-body radiation and Einstein's photon hypothesis, according to which 

parcels of energy and momentum can be attributed to free electromagnetic 

fields. Indeed, the first step in the direction of the photon hypothesis, namely 

Einstein's light-quantum hypothesis, according to which electromagnetic 

radiation sometimes behaves as if it consisted of parcels of energy, was 

formulated without using Planck's law. And, further, the existence of photons 

was finally verified by the proof that there occur individual Compton 

scattering events, i.e., without regard to a photon gas. Accordingly, it is useful 

to have a closer look at Einstein's derivation of his hypothesis and its 

gravitational analogue. 

Einstein (1905) was led to his postulate by an analogy between electro

magnetic radiation in the Wien regime, where the spectral energy density p 

of radiation of temperature T is given by Wien's ansatz 

p(v, T) = av3 exp(-{3v/T) (5.71) 

(Wien, 1896) and a classical ideal gas of n particles, where the entropy S 

obeys the volume-dependence law: 

s(v, T)-s(vo, T)=~ln (~)n (5.72) 
N VO 

(R is the gas constant and N Avogadro's number). If one attempts now to 

use similar arguments to establish a gravity-quantum postulate, one fails here 

again at the beginning because, due to the strong principle of equivalence 

(universal coupling principle), one finds no operational definition of a black 

body. It is impossible to construct a cavity or another physical system which 

acts as a black body and allows us to define an equilibrium radiation density 

p( v, T). Moreover, the light-quantum postulate results from a high-frequency 

consideration. Wien's law is the high-frequency approximation of Planck's 

law, since Planck's density function (Planck 1900a, b) 

8nhv3 1 

p(v, T) = c3 exp(hv/kT) _ 1 (5.73) 

contains Wien's law for 

hv/kT » 1. (5.74) 

As was shown in Section 5.2, just this approximation is however not 

unlimitedly valid for quantized GRT. This fact results for the same reason 
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that a gravitational Hohlraumstrahlung cannot be defined, namely because of 

the universal nature of gravity. 
In discussing now not only the light-quantum and the gravity-quantum 

hypothesis, attributing energy parcels to the fields, but also the full photon 

and graviton postulates, one is led to the Compton effect as a crucial 

experiment of the particle idea. 

The photon postulate ascribes to the electromagnetic field particles 

carrying energy E = hv and momentum p = hv / e. From this result the 

following relations governing the kinematics for the scattering of a photon off 

an electron at rest (Compton, 1922; Debye, 1923) 

Ilk = P + Ilk', 

Ile I k 1+ me2 = Ile I k' 1+ (e2p2 + m 2e4)1!2 

(5.75) 

(5.76) 

(k and k' are the momenta of the photon before and after scattering 

respectively and, p is the momentum of the electron after scattering). These 

equations imply that the wavelength difference ~A between the final and the 

initial photon is given by 

Il 
~A = - (1-cos 0) 

me 
(5.77) 

(0 is the photon scattering angle). Because this relation was found to be 

satisfied, the photon postulate was finally accepted by the physics community. 

Here now arises the question: what does the gravitational Compton effect 

mean for the acceptance of the graviton concept? (Let us assume here that 

one is able to make such experiments.) To answer this question one must 

make some more remarks about the controversies surrounding the electro

magnetic Compton effect. 

After Compton's discovery, Bohr, Kramers and Slater (1924) made 

theoretical proposals concerning the interaction of radiation and matter 

which were to avoid the need to draw the photon conclusion from 

Compton's measurements. Bohr et al. wanted to protect the free electro

magnetic field from quantization. All peculiarities of the radiation theory 

should not be due to the particle nature of free fields but to peculiarities of 

the interaction between the virtual field of radiation and the illuminated 

atoms. According to the Bohr-Kramers-Slater proposal, the energy of the 

field should change continuously and the energy of the atoms di~con

tinuously. This proposal contradicts of course a general law of energy 
conservation. Consequently, the Bohr-Kramers-Slater answer was to 

abandon the conservation of energy and momentum for radiation transitions. 

The conservation law should not hold for individual elementary processes 
but only statistically, i.e., as an average over many processes. Accordingly, 

Compton's measurements on ~A should only refer to the average change of 
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the wavelength, so that the conservation laws (5.75) and (5.76) are not 

tested for individual processes. 

As is known, the Bohr-Kramers-Slater approach was refuted by the 

experiments of Bothe and Geiger (1924) and Compton and Simon (1925). 

Our discussion shows however that it should be difficult to use a gravitational 

Compton-effect measurement as an experimental verification of the existence 

of gravitons. In general relativity one has in general no exact laws of energy

momentum conservation; the situation described by the Bohr-Kramers

Slater proposal is here realized to some extent. A discussion of the gravita

tional Compton effect is thus only possible in an approximation, where 

relations of the form (5.75) and (5.76) are satisfied (k, k' are then the 

energy-momenta of 'gravitons' and p that of a scattering mass). The 

Compton effect can accordingly not be used for a strong test of the graviton 

concept (see Section 5.3). 

To summarize, both the gravitational analogues of electromagnetic 

Hohlraumstrahlung and Compton effect show that one cannot draw a 

conclusion about the existence of gravitons. 
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Planckions 

6.1. Heavy Gravitons 

The electromagnetic field, as described by Maxwell and Faraday, and the 

gravitational field, as described by Newton and Einstein, are uniquely deter

mined by some fundamental postulates showing simultaneously analogies and 

differences of both these macroscopic fields. 

In the electromagnetic case these postulates are as follows: 

(i) The field sources are charges and currents. 

(ii) Photons possess no charge and, according to the lIr-dependence of 

static electric fields, no rest mass. 

(iii) There exist no neutral currents. 

(iv) There exist no magnetic monopoles. 

The postulates (i), (iii) and (iv) are formulated in Ampere's and Faraday's 

laws. (ii) says that fields move with light velocity, and (i) and (iv) lead 

together with (ii) to a wave equation for the vector potential being Lorentz 

and gauge invariant. 

In the gravitational case, more precisely, in GRT, one requires corre

spondingly: 

(i ') The field sources are energy, momentum, pressure, and stress (not 

angular momentum and spin). 

(ii ') Gravitons possess no energy-momentum. 

(iii ') Gravity and inertia are locally equivalent. 

The principle of equivalence (iii ') says that there is a universal influence of 

'wattless' gravitational fields on all physical processes; it determines the 

coupling between gravity and matter in a unique manner. Together with (i ') 
and (ii '), it provides GRT. Requirement (i') establishes the metrical (and not 

the canonical) energy-momentum tensor as a source term for gravity, and 

(ii ') and (iii ') specify the gravitational potential to be the metric g!'v = gv!, of 

a Riemannian spacetime satisfying a general covariant wave equation 

(namely, Einstein's equations without cosmological term). 

On the one hand, the postulates (ii ') and (ii) are equivalent. They demand 

in both cases that one should not attribute those properties to field quanta 

79 
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which characterize the matter sources of fields given by (i) and (i '). On the 

other hand, (ii ') corresponds to (iii) postulating the nonexistence of neutral 

currents. 

Unified theory of electroweak interaction modifies Maxwell's electro

dynamics so that (ii) as well as (iii) is replaced by the new postulate: There 

occur 'as many' massive as restmassless photons. Thus the current of massive 

photons is the source of the field with restmassless photons, and vice versa.* 

This physical feature of the electroweak interaction may be modelled by the 

Bopp-Podolsky fourth-order equations (see Section 4.1). 

As was demonstrated in Chapter 4, quantum gravity theory with matter 

source terms leads, via the Heisenberg-Euler-Kockel approximation, 

automatically to GRT with fourth-order derivative corrections containing 

heavy gravitons, the latter figure as neutral currents. In this section we 

discuss some properties of those fourth-order equations (see Borzeszkowski 

et at., 1978). 

The Einstein equations with higher derivative corrections have recently 

received great attention, because several authors, especially Stelle (1977), 

have proved that these equations are one-loop renormalizable. Such equa

tions revive early suggestions by Bach, Weyl, Einstein, and Eddington. More 

recently, Lanczos, Buchdahl, and Sexl et al. have treated those equations in 

order to unify gravitational and electromagnetic fields and/or to remove 

singularities from the classical vacuum solutions. The latter aspect has been 

strongly stressed (Treder, 197 Sa, 1977; Yourgrau et at., 1979). It was shown 

there that the Hilbert-Einstein Lagrangian, R, supplemented by terms 

proportional to R)iv R)iV and R 2, leads - in the linear approximations - to 

static spherical-symmetric solutions which are a sum of the Newtonian and 

the Yukawa potentials. They tend to a finite value at the origin r = 0 and 

represent the static analogues of the short-range as well the long-range parts 

ofthe gravitational potential g)iv. 

Such equations may only be considered as gravitational field equations if 

they furnish, approximately at least, the Newton-Einstein vacuum for large 

distances. To this end, it is generally not sufficient to demand that the static 

spherical-symmetric solutions contain the Schwarzschild solution or the 

Newtonian potential in the linear approximation. It is necessary that the 

Schwarzschild solution corresponds to an interior solution for physically 
significant equations of state. In the case of the linearized field equations, this 

reduces to the requirement that there exist solutions with suitable boundary 

conditions which - for point-like particles - satisfy a generalized potential 

equation possessing a b-like source. All disussions of higher-derivative field 

equations, the so-called gauge field equations of gravitation (Yang, 1974) as 

well as the fourth-order equations, must therefore be evaluated under the 
aspect of the coupling with non-gravitational matter and of their con

sequences at large distances. 

* These massive photons are the W bosons. 
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The most general Lagrangian, containing the Hilbert-Einstein invariant as 

well as the quadratic scalars, reads as follows: 

$ = $4[2+$2+ '1($ 

=H [( aRl'v R I'V + {3R 2) [2 + R + '1($ Ml, (6.1) 

where a and {3 are numerical constants; / is a constant having the dimension 
of length. We use the signature (+---) for the metric tensor gl'v' The 

Riemann tensor is defined by R !av = f!a, v + ... and the Ricci tensor by 
Rl'v = R!v).· Variation of the action integral I = J $ d4x results in the field 
equations of the fourth order, viz., 

[2[aD Rl'v + (t a + 2{3)gl'vD R - (a + 2{3)R;l'v + 

+ 2aRl'a{JvRa{J - t agl'vRa{JRa{J + 2{3RRl'v + 

- t {3gl'vR 2] + (Rl'v - t gl'vR) = 'l(Tllv' (6.2) 

These equations consist of 2 parts, namely, the fourth-order terms ex: [2 

stemming from the above quadratic scalars and the usual Einstein tensor, 

where 

1 O$M . 
Tl'v = H ogl'V (WIth T~; v = 0). (6.3) 

A well known example of pure field equations of fourth order are the 
Bach-Weyl equations, derived from the Lagrangian (Weyl, 1919, 1923; 

Bach, 1921; Einstein, 1921; Lanczos, 1938) 

(6.4) 

proposed as a unified field theory of electromagnetism and gravitation with 
the property of conform-in variance in addition to Einstein's general covari

ance (see below). 

In the framework of the Einstein-Bach-Weyl theory, with the Lagrangian 

$ = H (Rl'vRl'v - t R 2)[2 + H R, (6.5) 

the conform-invariant Bach-W eyl tensor 

/2 O$~ 
Bl'v= ~ ~ 

..;-g ug 
(6.6) 

is proportional to the energy-momentum tensor of gravitons without the 
trace rest mass, because the trace B ~ of Bl'v vanishes, while the Einstein 
tensor 

(6.7) 

is the energy-momentum tensor of heavy gravitons. Thus, Einstein's vacuum 
equations Rl'v = 0 state the vanishing of the energy-momentum of gravitons 
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with rest mass: Einstein's theory does not allow the existence of heavy 

gravitons. On the other hand, the Bach-Weyl equations imply the vanishing 

of the energy-momentum tensor of the gravitons without rest mass. They 

must therefore not be considered as gravitational equations by reason of the 

fact that they do not describe long-range interactions. 

In contrast, the Einstein-Bach equations 

[2Bl'y=-(RI'Y - tgl'vR) (6.8) 

assert that, roughly speaking, there always exist as many gravitons with rest 

mass as without. The energy-momentum tensor with rest mass, i.e., the 

Einstein tensor, is the 'source' of gravitons without rest mass; and, from 

Rl'v = 0, one gets Bl'v = 0, since Bl'v is a homogeneous function of Rl'v. We 

have discussed the possibility of such an interpretation for the field equations 

(6.2) with arbitrary constants a and {3. 

To discuss these equations in more detail and to compare pure field 

equations of fourth order, e.g., the Bach-Weyl equations, with equations 

containing the Einstein tensor, we choose to consider the general static 

spherical-symmetric vacuum solutions of equations (6.8) in the linear 

approximation, especially the Green functions. Furthermore, we shall treat 

gravitational shock waves in order to make more manifest the dynamic 

content of such equations. 

In the linear approximation for static fields with the Hilbert coordinate 

condition 

avg; = 1-al'g~ 

the pure and the mixed field equations of fourth order produce simple 

potential equations for all components of the metric tensor if a = -3{3 or 

a = -2{3. The pure and the mixed equations with point-like distribution of 

matter can then be written, respectively, as: 

ddcp = -4.71a() (r), 

d(d - k 2)cp = -4.71ak2()(r). 

(6.9) 

(6.10) 

These equations replace the Poisson equation deduced from GRT. d is here 

the Laplace operator and D = a2/ c 2 at 2 - d. The constant a denotes the 

mass of a point-like particle, the distribution of which is given by the Dirac 
delta-function (); k is a reciprocal length oc 1/ t. Correspondingly, the Green 

functions read cp = 1- ar and cp = air - (air) e-kr• 

On the other hand, the general spherical-symmetric solutions are given by 

and 

c 
cp = 1- ar + b + - + dr 2 

r 

A e- kr ekr 

cp=-+B+C-+D-. 
r r r 

(6.11) 

(6.12) 



Planckions 83 

a, b, c, d, and A, B, C, D are arbitrary constants of different dimensions. 

The solutions (6.11) and (6.12) differ from the Green functions, since they 

are solutions of operator equations which presuppose more general sources 

for point-particles than the monopole sources in equations (6.9) and (6.10). 

Indeed, insertion of the potentials (6.11) and (6.12) into the left-hand side of 

(6.9) and (6.10), yields 

t1t1cp = -4nao(r) - 4nct1o(r) (6.13) 

and 

(6.14) 

One immediately sees that there exists a greater manifold for field equations 

of fourth order than in the case of field equations of second order. In order 

to select the physically meaningful solutions from that manifold, we have to 

impose an additional condition upon the structure of sources: The point

particle is to be described by Dirac's delta function. That is, the distribution 

of mass must be expressed by a monopole density, as in the exterior 

Schwarzschild solution. 

From (6.11) and (6.13) it is evident that - in the case of pure field 

equations of fourth order - this condition will reduce the manifold of 

solutions to the Green function ex: r. But this solution does not satisfy the 

correct boundary conditions at large distances, i.e., those field equations do 

not mirror the long-range Newtonian interactions. They are consequently at 

most field equations describing free fields, in other words, equations of a 

unified field theory in the sense of Weyl's (1919) or Eddington's (1953) 

ansatz. 

However, if one starts from the mixed field equations, then (6.12) and 

(6.14) indicate that the aforementioned condition fixes the constants A, B, C, 

D such that the manifold of solutions (6.12) reduces to the Green function 

a a 
cp = - - - e-kr 

r r 

(A = -C =a, B = D = 0). The potential cp contains the long-range 

Newtonian interaction. The coupling of the gravitational field with non

gravitational matter thus requires the mixed field equations in order to 

express gravitation adequately. 

In the quantum-theoretical interpretation, virtual field quanta without rest 

mass belong to the Green function 11r; field quanta with the rest mass 
m = kf1/C correspond to the Yukawa potential, that is, k- 1 becomes a 

Compton wavelength. Hence, the Green function (lIr) (1 - e- kr ) reflects a 

'mixture of the same number of quanta with and without rest mass'. The 
short-range as well as the long-range terms -(e-kr)lr and lIr have different 

signs. We thus attain renormalization of the potential cp at r = 0 « cp(O) and 

(dcpldr) I r~O) are finite) and thereby achieve stabilization of classical particle 
models. 
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Quantum geometrodynamics leads to the assumption that the heavy 

graviton is a 'Planckion', i.e., that its mass is equal to Planck's fundamental 

mass mp = (fic/G)1!2. This mass results from the condition that such a purely 

gravitational particle obeys (Gm2)/ lp = me2, where lp is again Planck's 

fundamental length (fiG/c3)1!2. For the 'Planckion', the gravitational radius 

(Schwarzschild radius) Gmle2, the Compton wavelength filme and the 

'classical particle radius', are the same quantities. 

We have hitherto dealt with the Green functions in the especially simple 

(generalized) potential equations (6.10). They occur for a = -3/3 = 1 and 

a = -2/3 = 1, the reason being that the linearized vacuum equations reduce 

to 

and 

[20 GI'V + GI'V = O. 

Both cases are characterized in that they possess only one kind of particle 

with non-vanishing rest mass. 

More generally, for arbitrary a/ /3, the Green function reads: 

a 4 a -k r 1 a -k" r 
f{J =--- -e 2 +- -e I. (6.15) 

r 3 r 3 r 

~ = a-1!21-1 and ko = (-2(a + 3/3)r1!21-1 are the masses of two types of 

heavy gravitons. Here must be a ~ -3/3; for a = - 3 /3 one has kv = ~. 
The arguments regarding Green functions clarify a point discussed by 

Eddington (1953) and other authors: The general pure fourth-order equation 

Hl'v = 0 contains the Einstein spaces Rl'v = Agl'v (where A is an arbitrary 

cosmological constant) as special solutions (Pauli, 1958). However, the 

Schwarzschild metrics are here not the exterior gravitational fields of 

spherical sources. The quasi-Newtonian potential ex 1/r in the general 

spherical-symmetric solution of the bipotential equation (6.9) is not the 

exterior potential of a spherical distribution of mass ex oCr). 
The Einstein tensor GI'V is characterized by the fact that it is the only 

tensor containing gl'v and its first and second derivatives, and satisfying 

identically the equation 

(6.16) 

GRT thus selects the simplest expression of the field equations without 
requiring further conditions of symmetry. The physical argument enabling us 

to establish those field equations is the analogy with the Poisson equation of 

Newton's theory of gravitation. It defines the source of the gravitational field, 

namely, the active gravitational mass, by 

1 1 . 
M(= m) = 4nG r V';f{J dS '. 
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The pure field equations of fourth order H"v = 0 with arbitrary a and {3 
are constructed according to the same scheme as Einstein's second-order 

equations. They are determined by the requirement that they are not to 

contain derivatives higher than fourth order and must fulfil the differential 

identity 

= [aDR~+(+a+2{3)O~DR

- (a + 2{3)R ;v" + 2aR~a{3R a{3_ 

- + aO~Ra{3Ra{3 + 2{3RR~ - + {30~R 2tv = o. (6.17) 

By reason of the differential identities (6.16) and (6.17) following from the 

general coordinate covariance, we get - as in,the case of Einstein's equations 

- the dynamic equation 

T~;v = 0, (6.18) 

for the pure field equations of fourth order 

12H"v = KT"v (6.19) 

as well as for the mixed field equations 

12 H"v + G"v = KT"v (6.20) 

Consequently, the principle of equivalence is also satisfied for those 

equations. 

The requirement of general coordinate covariance furnishes in the case of 

fourth-order equations a variety of field equations depending upon the 

parameters a, {3, whereas the Einstein equations are determined by this 

symmetry group up to the cosmological term Ag"v. If one postulates that the 

field equations are invariant with respect to the conform transformation 

g;v = A (x<)g"v , one obtains 

a = 1, {3 =-1. (6.21) 

The Bach-Weyl equations are moreover not only the sole equations of 

fourth order with conform invariance but also the sole conform-invariant 

general-relativistic equations that are at all conceivable. 
GRT selects the simplest equations from the manifold of general covariant 

field equations, while the demand of conform invariance specifies the 

structure of those equations uniquely. 

One can argue against invoking the conform-invariant equations that the 

trace of H"v (= B"v) vanishes identically. Accordingly, the trace T = T~ of 

the matter tensor must also vanish such that the Bach-Weyl theory can 

merely describe matter without rest mass. This circumstance is closely 
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connected with Einstein's argument against Weyl's theory, namely, that the 

actual physical measurement operations require calibrated rods and clocks 

because the metric cannot be related only to isotropic hypersurfaces. 

That means that in the case a = 1, {J = -t, there are supportive reasons 

for the replacement of the pure by the mixed field equations. These 

supportive arguments pass beyond those which derived from the discussion 

of the spherical-symmetric solutions of the linear theory for arbitrary a and 

{J. 
Of course, the mixed Einstein-Bach-Weyl vacuum equations are not 

conform-invariant, since the invariance is violated by the term GJ.lV being the 

source of the gravitons without rest mass. In other words, the 'super

symmetry', i.e., the additional invariance with respect to conform transforma

tions, is broken down by GJ.lV such that heavy besides light gravitons appear. 

The thus arising 'supergravitation' leads to the above-mentioned regulariza

tion of the selfinteraction of point-like particles. 

One could perhaps expect such a regularization of quantized GRT, 

because it leads to a barrier of length measurements. The 'supergravitation' 

described by 

FBJ.lv + GJ.lV = 1<TJ.lv (6.22) 

is tantamount to a phenomenological description of some aspects of the 

quantum structure of gravitation. Of course, such an interpretation is only 

possible ifthe fundamental length I is equivalent to Planck's length (G/'i/c3)1I2. 

Only in this case [ is not a new and ad hoc fundamental constant but 

derived from constants occurring in quantized gravitation. 

The trace of the field equations (6.2) is as follows: 

[2(2a + 6{J)D R - R = 1<T. (6.23) 

For the Einstein-Bach-Weyl vacuum equations (a = 1, (J = -t, T = 0), 

equation (6.23) yields 

R = O. (6.24) 

The vacuum field equations possess then the especially simple form 

(6.25) 

which supply, for static spherical-symmetric fields, the above-discussed 

bipotential equations in the linear approximation. Those equations are 

characterized by one kind of particles with nonvanishing rest mass. 

In order to discuss some aspects of the dynamic content of the fourth

order field equations in more detail, we now turn to the problem of shock 

waves. They enable us to arrive at conclusions regarding gravitons without 
quantizing the gravitational field. For a detailed discussion of massive shell 

models and shock waves, see Appendix A. 

For the case of Einstein's vacuum field equations, the term containing 
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linearly the second derivative of g,.v, viz., 

! gaP(g,.v,aP + gap,,.v - gap,pv - g,.p,av) (6.26) 

produces the result that the characteristic surfaces of those equations are 

isotropic hypersurfaces 

Z(XA) = 0 

with 

z,,.z,vg"v = 0 

and that the bicharacteristic 

Z;,.az,pgaP = 0 

are null-geodesics. The perturbations of the gravitational field and the fronts 

of gravitational waves propagate accordingly with the local velocity of light. 

The field equations are only linear with respect to the second derivatives, and 

the term (6.26) contains the contravariant g"v (being a nonlinear function of 

the g,.v)' Hence, the assertion that the gravitational waves possess the same 

velocity of propagation as light, holds only for infinitesimal perturbations and 

gravitational shock waves. 

Contrary to Einstein's equations, the pure fourth-order field equations do 

not determine the shock waves uniquely. They contain such a great manifold 

of solutions that - interpreted as gravitational equations - they are, 

from a physical point of view, too vague. In consequence, one has to 

impose additional conditions upon the sources of gravitation (as was already 

demonstrated in the case of the static solutions of the linearized theory). 

In order to determine shock waves describing discontinuity of second 

derivatives of g,.v, one has - in the case of any fourth-order field equations, 

A,.v = 0 - to postulate additionally the integral conditions 

L L A,.v d4x d 4x = 0 

and 

(6.27) 

D is here an arbitrary four-dimensional domain of integration. Choosing a 
very flat cylinder as the domain of integration such that it contains any 

arbitrary finite part of the wavefront z = 0, one obtains from (6.27) 

(6.28) 
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f is an arbitrary small quantity. For f -+ 0, (6.28) is a necessary and 

sufficient condition in the sense that the vacuum equations correspond to a 

theory containing only sources described in (6.13) and (6.14). It excludes in 

particular sources ex: V O. The integral equation 

J J J
'-+f 

,--f A.u y dz dz dz = 0 (6.29) 

would, moreover, exclude sources aV 2o. Equation (6.29) is tantamount to a 

refinement of the conditions imposed upon (6.14) and to an equation 

specifying the discontinuities of the first derivatives of g"y. 
To deduce from (6.28) the conditions for the discontinuities of the second 

derivatives of g"y, we invoke the method developed by Treder (1962). Let us 

assume that the hypersurface, where the second derivatives are discon

tinuous, is given by 

z(X") = 0 

and that 

PA == Z,A 

is the normal vector of this hypersurface. The hypersurface z = 0 divides the 

four-dimensional spacetime ~ into Vi (z < 0) and vt (z > 0). All 

derivatives lying in this surface are continuous such that only the derivatives 

of g"y pointing to Vi or vt are discontinuous. For sufficiently small Z, the 

g"y in the neighbourhood of Z are therefore given by the series 

(6.30) 

The discontinuities of the second derivatives of g"v are then equal to the 

difference of g~V,Ar and g;v,Ar constructed for Z -+ 0 and read 

[g 1 = lim (g+ - g- ) = y P P "V, AT - "y, AT "V, Ar "V A r' 
,-0 2 

(6.31) 

Application of the series (6.30) results in the corresponding development 

of 

for the domain vt. The integral condition 

(6.32) 
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gives thus for Y iJV the relation 
2 

a AiJvpPpp + (t a + 2{J) A~pppPgiJV -
4 4 

where 

89 

(6.33) 

(6.34) 

The condition (6.33) for the second-order discontinuities contains neither 

terms stemming from the nonlinear parts of HiJv, nor terms resulting from 

GiJv. These terms affect only the higher-order discontinuities. For a = -3{J, 

equation (6.33) lead, by reason of (6.24), to 

(6.35) 

and for a = -2{J, to 

(6.36) 

Equations (6.35) and (6.36) differ - as in the case of Green functions - in 

that (6.35) represents an equation for the first approximation of the Ricci 

tensor and in that (6.36) is a relation for the first approximation of the 

Einstein tensor. 

The trace of equation (6.33) is 

(6.37) 

together with complete system of equation (6.33) it yields 

(6.38) 

Equation (6.38) satisfy the relations (6.33) identically so that all discon

tinuities propagating with the velocity of light and fulfilling A~ = Yu pUp' = 

4 2 ' 
0, are compatible with the field equations offourth order (a ~ -3{J). 

Because Einstein's vacuum equations R)J.v = ° are always solutions of the 
fourth order equations (6.2) with T)J.v = 0, one can add them to the integrated 

field equation (6.32) as follows: 

!i~ f f:~:: [(/2H)J.v + G)J.v) dz dz + G)J.v = 0. 
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In this manner, G",v is introduced explicitly as a source of the light gravitons 

so that the second-order discontinuities satisfy the same relations as in GRT. 

A different situation prevails in the case of the Einstein-Bach-Weyl 

equations. The influence of the Einstein tensor can already be noted in the 

second-order discontinuities. As a matter of fact, one obtains more solutions 

of equation (6.33) in the pure Bach-Weyl theory, since (6.37) is satisfied 

identically by a = -3{3. Equation (6.33) furnish accordingly two solutions: 

1. pppP = 0, Y",v is merely restricted by A",y = O. 
2 4 

2. pppP = 1, A: 'f 0, where Y",y is determined by 
4 2 

(6.39) 

Equation (6.39) possesses non-trivial solutions. The conform invariant 

Bach-Weyl equations lead therefore to a greater manifold of discontinuities 

than for the equations a 'f -3{3. Apart from the discontinuities propa

gating with the local velocity of light c, there exist shock waves with a 
velocity v < c. . 

The latter are only excluded by the Einstein tensor breaking down the 

conform invariance. Due to the Einstein tensor, an additional relation follows 

now from the trace equation R = 0 affecting the second-order discon

tinuities, namely, 2A~ = R = O. Inserting the latter into (6.39), we get 
4 

A",v = 0, i.e., an equation which has no genuine solutions: The addition of the 
4 

Einstein tensor breaking down the conform invariance (supersymmetry) of 

the Bach-Weyl equations becomes therefore the source of the gravitons 

propagating with the velocity of light. 

The fact that the Einstein-Bach-Weyl equations possess only one kind 

of particle with non-vanishing rest mass, reflects the physical fundamentals of 

the mixed fourth-order equations. We are now able to construct one mass 

from the elementary constants, Ii, c, and G. Hence, the Einstein-Bach

Weyl equations (a = -3{3) enjoy a privileged position among the mixed 

fourth-order equations and may be conceived to be field equations of a 

theory of some kind of ' super gravitation'. 

The investigation of shock-waves provides only the behaviour of 
dynamical perturbations either near graviton fronts moving with light 

velo~ity or near graviton fronts moving with velocity smaller than light 

velocity. To discuss some physical consequences of the mixture of massless 

and massive gravitons resulting from (6.2), in the remainder of this section 

we consider once more some aspects of high-frequency waves (see von 

Borzeszkowski, 1981). For this purpose, the method described in the 
previous chapter is used. 

In GRT the effective energy density contained in the wave, (c4 / G) (E! A )2, 
is, by virtue of Einstein's equations, related to the curvature of the 
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background, L -2, in the following manner: 

(6.40) 

. (The other terms on the left-hand side describing the detailed structure of 

waves and starting with eA -2 are suppressed here since, according to the 

high-frequency method, the energy of waves is to determine the background 

curvature, while these waves themselves result from the equations in the eA-2 

limit.) Then the most interesting case, that the background curvature is due 

entirely to the waves, i.e., L -2 = (e!;'Y, establishes a relation between e and 

A such that one is only concerned with one smallness parameter. If one 

regards L as a constant of order unity, then O(e) = O(A). 

Considering the fourth-order equations, the ineqUality (6.40) can be 

replaced by 

d-2+L-2+ .. . + 

(6.41) 

Before repeating now the order-of-magnitude arguments given above, we 

have to compare the Einstein term and the terms oc [2 on the left-hand side.* 

To this end let us consider the three cases: I » A (A = In, n ~ 2), I « A 
(I = An, n ~ 2), and A = I. Then we see that the leading terms of the fourth
order part are of the order of magnitude d 2!n-4, d 2n-4, and eA -2, while the 

Einstein tensor starts with d -2. Accordingly, the fourth-order terms are only 

for A = I of the same orders of magnitude as the Einstein tensor. If I « A, 
i.e., if the high-frequency field has a wavelength considerably larger than the 

universal length I, then the 12 modification of GRT has no physically 

significant effect. In turn, if the wavelength A is smaller than I (A « I), then 

the fourth-order terms are the decisive ones. 

In analogy to the discussion in GRT, a comparison of both sides of the 

fourth-order equations shows the following features: 

(a) I » A. From (6.41) it is obvious that, requiring e = Al + 1In, e can be 

specified such that e2 A -2 is of the same order as [2 L -4 (- A Un L -4). 

However, then both these terms are of higher order in A than L -2. Therefore, 

high-frequency waves with I » A cannot determine the 'gross coarse' 
background; this background can only be established via the long-range 

Einstein term. If, for I » A, distances smaller than I are considered, the 12 

part of the field equations is dominant and describes short-range fluctuations 

(possibly quantum fluctuations). 

* We assume L - 0(1) and use, instead of t and A., in the following the dimensionless 

parameters A.' = AIL and L' = tiL. For simplicity we omit the prime and write simply A. and t. 
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(b) I « A. Here the results do not strongly differ from GRT. The waves 

with I « A mirror the large-distance behaviour of the fourth-order 

equations which is mainly determined by the Einstein tensor. 

(c) I = A. Then one obtains from (6.41) the relation 

eA -2 + L -2 + ... + 

+ (eA -2 + ... + A 2 L -2 + ... ) = e2 A -2. (6.42) 

In order to guarantee that the right-hand term - e2 A -2 is of the same order 

of magnitude as L -2, one has, as in GRT, to require Le = A. Just for 'e-short' 

waves the full content of the fourth-order equations becomes relevant. 

Accordingly we shall consider this case in more detail. 

We assume now that the metric may be represented by the ansatz 

g/w(x) = Yl'v(x) + ehl'v(x, e), 

where 

Le = I = A « 1, 

L = 0(1), Yl'v = 0(1), hl'v = 0(1), 

YI'V, a = 0(1), YI'V, afJ = 0(1), 

hl'v,a = O(e- I ), hl'v,afJ = 0(e-2). 

The inverse metrics is then given by the expression 

(6.43) 

(6.44a) 

(6.44b) 

(6.44c) 

(6.44d) 

gl'V = yl'V - eyl'pyvahpa + e2 yI'Pyv).yaah).a hpa' (6.45) 

Then one obtains from fourth-order gravitational equations, in vacuo to 

lowest order O( e -I), 

[2[ayafJR~~lafJ + U a + 2{3)Yl'vyafJyarR~;lafJ
- (a + 2 R)yaT R(l) 1+ R(I) -1- Y R (1) = 0 

P aT II'V I'V I'V , 

and, defining 

2K = 2(R(2) - SP R(I) - sP R(I)-
e I'V I afJ - e I'V I afJ I'a fJ pv va 'fJ I'P 

- sP R(I) - sP R(l) - S T R(l) - S T R(l) -
I'a pv fJ va I'P! fJ I'fJ rv i a vfJ I'r i a 

S r R(l) ) 
- ap I'vlr 

and 

S%y == 1- gl'a(ehaPlr - ehfJrla + ehyalfJ ) 

we have in the next order 

e2[2[ ayafJ Kl'v I ap + U a + 2{3)yl'v yafJyar KaT I afJ -

-(a+2 R)yaTK l+e2(R(2)-1-Y R(2) 
P aT lap I'V I'v 

= _(R(O) - 1. Y R (0) 
I'v 2 I'v . 

(6.46) 

(6.47) 
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The equation (6.46) replace the equations R~~ = 0 of GRT. They are again 

equations for the propagation of the gravitational waves h"v' Equation (6.4 7) 
show how the waves create the background curvature. 

To analyse equation (6.46), we shall try to obtain, as for GRT, a solution 

to (6.46) ofthe form 

.1. = h - 1 Y h -A eir/> 
'Y"v - "V "2 "V - "V , (6.48) 

where A"v is a slowly changing real function of position and ~ is a real 

function with a large first derivative but no larger derivatives beyond this to 

correspond to a slowly changing k", 

R~~yo = 0(1), A~: = 0(1), 

(6.49) 

(These assumptions are compatible with the conditions (6.44b)-(6.44d).) 

As was shown by Isaacson (1967), one can impose on the equations 

R~~ = 0 the gauge conditions 

.Ir~v = 0 .Ir = yap•Ir = 0 
'Y , v , 'Y 'YaP' (6.50) 

(The upright line denotes the covariant derivative with respect to Y"v.) This 

can be done although these equations change their form under an arbitrary 

gauge transformation because this alters only higher-order corrections in f. 

Imposing here the same gauge condition * and considering the relations 

which follow from (6.50), we obtain from (6.46), 

[aI 2A"vkpkP -A"v]kpkP + 

+ i[at2(4A"vl a k a kp kP + 2A"v(kp kP)1 aka] + 

P 'p 
+2A"vlpk +A"vkp + .. '=0, 

(6.51) 

(6.52) 

where the terms in the first and second brackets are of order O( C 2) and 
O( f-1). 

To lowest order, it follows from (6.52) that 

kpkP = 0 

and, respectively, 

k k p = 1//2a p . 

In both cases, the second-order terms in (6.52) provide 

2AI'vlpkP + A"v k~ = O. 

(6.53a) 

(6.53b) 

(6.54) 

We see that one obtains, in the case of the gauge (6.50), two particles, 

* This confines us to the a = -3/3 case. 
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Einstein gravitons with vanishing rest mass and gravitons with non-vanishing 

rest mass m of O. Both particles move, according to (6.54), as gravitons in 

GRT and photons in electrodynamics. Assuming A,uv = Ae,uv (A is the 

amplitude, e,uv the polarization tensor) one has 

(In A ).P kP + t kip = 0 (6.55a) 

and 

(6.55b) 

The manner in which the relations (6.53) follow from the field equations 

makes evident that the gravitons with m = 0 (Einstein gravitons) do not 

result from the pure Einstein tensor appearing as an item in the fourth-order 

equations. They are due to the fact that the fourth-order terms have such a 

form that the vacuum solutions of Einstein's equations are solutions of the 

fourth-order equations, too. 

To discuss (6.47) we assume, following the procedure of the high

frequency approximation, that the averaged approximate field determines the 

background curvature. Then (6.47) can be rewritten in the form 

R(O) - + y R (0) = -8.7l «G/c4) T + L ) ,uv ,uv ,uv ,uv , (6.56) 

where 
2 

« G/c4)T )=_G_(R(2)_ty R(2» 
,uv 8.7l ,uv ,uv , (6.57a) 

G2[2 

(L,uV> = ~ (ayap K,uvl ap + (t a + 2{3)y,uv yaPyGr X 

X KOT.aP+(a+2{3)yGrKoTlaP)' (6.57b) 

(The symbol ( ... ) denotes the average values of tensors.) Due to the 

relations 

(S,uv ... Ipp) = 0 

(h: 1p hp,u I T) = -( h: 1p hp,u) + O( G), 

h,uvllprl - 0(£2) (6.58) 

proved by Isaacson (1967), the term (L,uJ may be neglected; it serves as a 

source of higher-order corrections to the metric. (This is in accordance with 
our introductory remarks which have already shown that the [2 L -4 term 

does not contribute to the background curvature.) From (L,uJ "" 0 it follows 

that formally the background curvature is here determined as in GRT, 

namely by the averaged effective stress tensor (R ~~ - + y,uv R (2». Of course, 

the gravitational fields from which this tensor is constructed differ from 

GRT; they result from (6.46) and correspond to a mixture of different 

particles. 
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6.2. Planckions as Biggest Elementary Particles and as Smallest Test 

Bodies 

Planckions were shown in the previous section as elementary particles arising 

in quantum gravity. More generally, one can characterize the situation as 

follows (see Treder, 1985, for Planck's units, d. also Appendix B.): Max 

Planck introduced 'natural units' for mass (or energy), length (or time), 

charge, and temperature, which are defined by the universal constants of 

relativity (velocity of light c), quantum physics (Planck's constant fi), gravita

tion (Newton's gravitational constant G), and atomic theory (Boltzmann's 

constant k). Planck's quantities 

(
fie ) 112 

mp = G ' /p = ctp = 
rt 112 ( 
1<G ) 112 

7 ' qp = (fic) , (6.59) 

and 

_ 1 ( fic 5 
) liZ 

() -- -

p k G 
(6.60) 

are interpreted in theoretical physics as the resulting limits for extreme 

ultrarelativistic energies in connection with the GUT (grand unification 

theory with special relativity) and super GUT (grand unification with general 

relativity). Planck's mass mp corrresponds to the maximum energy E of a 

point-like elementary particle according to super GUT: 

( 
fi 5 ) liZ 

E = mpCZ = ~ , 

and Planck's length lp is the corresponding de Broglie wavelength 

A "" fidE = lp. 

(6.61) 

(6.62) 

We can also define lp by the condition that it equals the gravitational radius 

Gm/cz of the same ultrarelativistic particle: 

A fi Gm 2 fie 
"" -=-Z- --+ m =- (6.63) 

mc c G 

The Planckian charge qp is of the same order of magnitude as the charges of 

strong interactions. The hypothesis of GUT is that, in the domain of 

Planckian particle energies, all interactions become unified interactions with 

Planckian charges qp as coupling constants. (Of course, these limits only give 
orders of magnitude.) 

The suggestion that the Planckian mass mp is the rest mass of a point-like 

particle implies the existence of 'Planckions'. This means the existence of 
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elementary particles whose Compton wavelength lil1110C equals their gravita

tional radius G111o/ c2 and with charge q equal to their gravitational mass 

JG 1110: 

(6.64) 

Gm~ = Gm~ = q2 -+ q2 = lic. (6.65) 

The Planckian temperature Op corresponds to an average particle energy of 

the Planckian order E : 

(6.66) 

Beyond this limit the conception of 'particles' becomes meaningless. 

When discussing in Chapter 3 the measurement process in quantum field 

theory and especially in quantum gravity, Planckions were shown to be the 

smallest measurement bodies (see also Treder, 1985). To make this point 

more evident, let us add some further remarks. 

In the special relativistic quantum theory we have the two constants Ii and 

c. Such theories (and accordingly also GUT) provide only the Planckian 

charge qp and not 'natural units' for lengths and energies. The uncertainty 

relations (3.25) and (3.26) between field F and length Ln, 

lic Ii q 
I!..F • L~ ~ - and I!..F . L5 ~ - -

q c m 
(6.67) 

say that there are no problems for the determination of a field because we 

are able to make q/m small and q large simultaneously. Here all uncertainties 

are consequences of the quantum-mechanical Heisenberg relation. 

In GRT taken together with quantum theory (and accordingly in super 

GUT) we have however (3.46b), 

2 2 _ liG 
I!..gLo ~ I p - -3-. 

C 

(6.68) 

Assuming now that the relation 

/).g :S 1 (6.69) 

is satisfied for geometrical reasons, we obtain from (6.68) 

Lo ~ lp, (6.70) 

i.e., lp is the minimal length of a measurement body. 

Multiplying (6.70) by c2/G, one obtains furthermore 

m ~ mp, (6.71) 
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i.e., 11lp is the smallest mass of a measurement body. We now tum to the 

quantity qp = (hC)1I2 (see von Borzeszkowski and Treder, 1983b). The fact 

that qp is formed from the universal constants fi and c signals that it has, 

similar to Planck's units lp, mp and (Jp, a fundamental physical meaning going 

beyond the borders of vacuum electrodynamics. This is, however, a non

trivial assertion. Indeed, in the case of charged mesons, for instance, further 

constants enter the theory which could decrease the value of the minimum 

charge of the measurement body. By a modification of the Bohr-Rosenfeld 

arguments, one sees however that (fiC)I!2 is also in this case the minimum 

charge. This becomes obvious if one discusses the consequences of (3.24) for 

the case of a meson field. 

Since the meson field F is characterized by the following relations where 

v is the frequency, A the wavelength, v the group velocity, u the phase 

velocity of the de Broglie's matter waves and M is the inertial mass of the 

corresponding mesons: 

E =Mc 2 = fiv, 

p =Mv = filA 

where 

A v = u = c2/ v, v :5 c, u :5 c, 

and the field strength is given by 

F - (EIV)1I2 - (fiulA 4)112. 

Assuming now Lo - A and requiring 

F ~ !IF 

one obtains, by virtue of (3.24) and (6.75), 

1 1 ( ) 112 J\. J\. U 112 
PA 3 ~ - - - (fic). 

!lx uT c 

(6.72) 

(6.73) 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

This is the Bohr-Rosenfeld formula modified by a factor (u/C)1I2. The 

relation uT :5 A guarantees that T :5 r, where r = V-I. By this one remains 

within the period of oscillation, and so the average procedure does not 

cancel all time changes of the field strength. If one repeats our arguments for 
the case of a measurement body of dimension Lo > A, this relation must be 
replaced by uT :5 Lo. Referring to the measurement body, the requirement 

u T :5 Lo is in accordance with the fact that this body is a classical one 
showing no quantum or field relations between its ends. 

Because of the relations 

A ~ !lx, A ~ uT, u ~ c (6.78) 
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one has again 

pLg ~ p,P ~ (lie)1I2, (6.79) 

i.e., the charge pL3 of the measurement body is necessarily greater than 
Planck's charge (lie)1Iz. In quantum gravity, this leads - as was mentioned 
already - to the requirement (4.5a). 

Accordingly, Planck's units lp, 1np and qp characterize the minimal 
measurement body. As far as Planck's temperature Op is concerned, the 

Boltzmann constant k is connected with the gas constant.9t via 

.9t=$k 

where $ is Loschmidt's number. Without presupposing the atomistic 

structure of matter, the number $ is infinite and Boltzmann's constant 

becomes zero. Planck's temperature Op implies that each classical test body 

must have a temperature less than Op. 

The 'Planckions' thus have two complementary meanings. Firstly, a 

Planckion may be an elementary particle with rest mass m. In this case the 

Planckions are the quanta of an ultrashort interaction (ultrastrong super
gravity); the Planckions are big 'gravitons' which can only exist as free 

particles for Planckian energies Ep. Secondly, the Planckion is the smallest 
classical body which can serve as a standard for measurements. Ultra
Planckian elementary particles with masses m > mp are 'black holes' with 

Ii Gm 
- < -Z-. (6.80) 
me e 

However, for classical bodies with m > mp we have linear dimensions x ~ 
Gmle2 ~ iii me, and the gravitational radii Gmle2 have no physical meaning. 

This role of the 'Planckions' as the smallest test bodies is a Lorentz invariant 

property (see Appendix B). 
These two meanings of Planckions result in the fact that one cannot 

distinguish between quantum and classical gravitational fields (see Chapters 4 

and 5). We are not able to prove experimentally any quantum effect of 
gravitation by measurements with test bodies larger than Planckions because 

we then measure in regions in which theory does not provide significant 

quantum effects. On the other hand, Planckions are the smallest test bodies 
and the effects one can measure by means of them are of the same order of 
magnitude as the perturbations caused by the measurement body. The 
meaning of GRT is therefore - as Einstein pointed out - beyond the 
contrast between classical and quantum physics. In contrast to quantum 
electrodynamics, the region between ;9 and .YP discussed in Section 3.2 
vanishes in GRT. 

As was argued by Markov (1980, 1981), this limit may be compared with 
the role of the vacuum light velocity in SRT. In special relativity one cannot 
overcome this e-border. Relativistic effects can be calculated from SRT 
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mechanics corrections to classical mechanics signaling the existence of the 

border c. But one cannot arrive at a physically sensible theory by considering 

the transition of relativistic mechanics to velocities v = c. 

In quantum gravity with matter coupling, one can also calculate quantum 

effects in certain approximate cases. One cannot however go over to the 

domain characterized by the dimensions of a Planckion. Moreover, the full 

theory of quantum gravity lies in this region characterized by the Planck 

units, which is seen for vacuum quantum gravity, because in this case the 

action of the nonlinearity is not suppressed by the matter action. 

From this point of view, in GRT the particle language can only be used 

within the framework of certain approximations describing the interaction of 

gravitation and matter or, more generally, for some low-frequency approxi

mations to GRT. 

According to Heisenberg (1967), nonlocal field theories, i.e., quantum 

field theories with a 'smallest length' (elementary length I), should be 

equivalent to local field theories to which belongs quantum mechanically a 

space of state vectors (Dirac-Hilbert-Fock space) with an indefinite metric. 

However, negative expectation values do not have a physical meaning. 

Therefore, such a nonlocal field theory has, according to Heisenberg, a 

mathematical redundance with respect to its physical contents. In the theory 

of general relativity, Planck's elementary length now shows up as Heisen

berg's restriction on length measurements. Thus, in this sense, the theory of 

general relativity is a nonlocal field theory where this nonlocality corre

sponds quantum mechanically to the existence of vacuum fluctuations ~g,Uv 

of the metric g,Uv. Therefore, the quantum theory of gravity contains, as a 

necessity, less physics than the classical theory of general relativity, and this 

just means that there is no distinction between classical and quantum 

gravitational fields. 

To summarise, the cut-off length arising in quantum gravity restricts its 

validity and, accordingly, the concept of gravitons to the range of weak

field and low-frequency approximation. There are some similarities between 

the situation in quantum gravity and in a theory realizing Heisenberg's 

programme formulated in his 1938 paper for quantum electrodynamics. 

Heisenberg introduced there a fundamental length ro ad hoc. This length was 

to cut off higher-order approximations of quantum electrodynamics to evade 

the problem of divergencies. There are, however, two differences with 

quantum gravity. First, such a length need not be introduced ad hoc but 

arises automatically in quantum gravity (this was already repeatedly noticed 
in the literature). Second, the limitations arising here automatically do not 

signal, as assumed for quantum electrodynamics by Heisenberg, the transi

tion to a new type of interaction connected with particles of mass Ii/roc. In 

quantum gravity these particles are Planckions which show up a principle 
limit ofthe (Ii, c, G) theory. 

From this point of view, effects such as the gravitational Casimir effect 
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(see Birrell and Davies, 1982) and gravitational particle creation (see 

Zel'dovich and Starobinsky, 1971; Hawking, 1975) result from assuming 

very special boundary conditions and/or from the fact that one is calculating 

within the framework of quantum field theory in given curved spacetime, i.e., 

within an approximation neglecting back-reaction. Such effects can therefore 

only test the existence of 'linear gravitons'. They cannot answer any funda

mental question of genuine quantum gravity. 

6.3. Foam and Block Spaces 

The limitations on measurement of gravitational fields are, due to the 

geometrical character of gravity, necessarily limitations on the size of 

spacetime regions over which the Bohr-Rosenfeld quantum field measure

ment procedure is, in principle, feasible. One way of expressing this fact is to 

say that supplementary to the well-known nonlocalizability of classical, i.e., 

non-quantized gravitational fields (making the Lo -+ 0 limit for lengths Lo 

physically senseless), there exists a finite limit lp on the localizability of 

quantized gravitational fields. This is owed to the fact that localizability is 

inconsistent with Heisenberg's uncertainty principle taken in conjunction 

with the basic tents of general relativity. 

In accordance with this reading, there were early attempts to account for 

these measurement limitations in the fundamentals of gravitational theory, 

either by introducing a foam-like structure (Wheeler, 1962) or a pico-Iattice 

structure (Gitter- Welt, according to Heisenberg) of spacetime (Lanczos, 

1966, 1979). Within the context of such programmes, some authors speak 

nowadays of solving the localizability problem in a consistent manner. This is 

also done, e.g., in the framework of the 'stochastic quantum mechanics'. To 

make our point quite clear we want to make some comments. 

One may of course attempt to anchor the Planck limitation on spacetime 

measurements in the basic structure of spacetime by introducing a lattice, 

foam or stochastic geometry. One must however not argue that it is necessary 

to regard the limitation resulting from measurement considerations in 

spacetime structure dynamics. Our short qualitative remarks on the high
frequency quantization of GRT have shown that quantum gravity provides 
the same limitations as the measurement discussion. Therefore, there is no 

need to change the whole quantum gravity theory so drastically as is done by 
the schemes just mentioned, except (i) if there are physical grounds to 

mistrust this occurrence of the lp limit, which says that gravity is essentially 

classical, and/or (ii) if one may hope that a quantum field theory formulated 

on lattice, foam-like or stochastic spacetime evades the divergencies that 

plague the conventional approach of relativistic field theories. The first 

reason concerns gravitodynamics itself, the latter the theories of matter fields. 
As for reason (i), one must state however once more that, as long as one 
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considers a quantized gravitational theory containing 11, c and G as 

fundamental constants, the lp limitation is an unavoidable result of the 

dynamical laws. It expresses a condition for the consistency of the different 

physical principles connected with 11, c, and G. If one wants to avoid this 

conclusion, one has only one possibility, namely to consider a theory where 

one of the constants is dropped. This may be done, e.g., by considering 

bimetric theories of gravitation violating the strong principle of equivalence 

(here G is 'less universal', because there is no universal action of gravity on 

the spacetime background) or by theories with 'induced constant G' (see, 

e.g., Adler, 1982). (It should not be possible to drop the constant 11, because 

one cannot find a method to harmonize quantum matter fields and gravita

tional theory without quantizing gravity.) However, as far as the consistency 

problem is concerned, a scheme which replaces G or 11 by a fundamental 

length (and considers G or 11 as derived) does not change the situation in 

principle. On the contrary, it establishes the appearance of lp as a funda

mental axiom of the theory. 

The reason (ii) for introducing modified geometrical conceptions goes 

back to Klein, Hjelmslev and Menger. Their ideas on experience geometry 

(Erfahrungsgeometrie) or natural geometry (naturliche Geometrie) were later 

revived by March, Heisenberg, Ivanenko and others, also in order to solve 

the divergency problems of quantum electrodynamics. Any new attempt 

needs therefore only one thing, namely 'success in resolving the divergence 

problem. 

Menger (1949) proposed to replace the Riemannian geometry by a 

geometry representing a combination of a geometry of pieces (Geometrie der 

Stucke und Klumpen) and a probability geometry (Wahrscheinlichkeits

geometrie). Regarding the finite extension of measurement bodies and the 

stochasticity of measurement, he proposed to attribute a distribution function 

to any two points of space which we call the distance of the points, and he 

asserted that we must work with this stochastic geometry to interpret the 

quantum uncertainties in relativistic regimes consistently. However there 

arises a question asked by Einstein (1949). What is the meaning of the 

stochastic structure of the spacetime? 

To our mind, there are no arguments in favour of such structures. The fact 

that the measurement device (in particular, a test body) has to show some 

classical physical features and that measurement theory and quantum 

dynamics should give results which do not contradict one another (this. was 
just demonstrated to be the justification for field quantization procedures) 
does not at all support Menger-type approaches. As a matter of fact, Bohr's 

and Rosenfeld's arguments did not pretend that the limitations on measure

ment arise from the classical apparatus. On the contrary, they could just 

show that the apparent new limitations on quantized electromagnetic field 

measurements result if one forgets about the classical features of the 

apparatus. In quantum electrodynamics the classical apparatus prevents 
limitations. The Bohr-Rosenfeld result for quantum gravitodynamics rather 



102 Chapter 6 

is that limitations result from the classical apparatus plus quantum inter

action between apparatus and field system plus the strong equivalence 
principle. 

Finally we mention an argument given by Heisenberg (1938). Let us 

consider, for this purpose, a particle of mass m, whose Compton wavelength 

is accordingly given by 

A = Ii/me. (6.81) 

Then one has in the ultra-relativistic approximation, where the velocity v of 

the particle is comparable to light velocity in vacuo e, 

A - lilp - IidE (6.82) 

(p denotes momentum and E the energy of the particle). Heisenberg's 

uncertainty relation provides thus the relation 

~x~p - ~x~E/C ~ Ii 

such that, in the ultra-relativistic approximation, ~x obeys the inequality 

lie 
~x ~ --. 

~E 

(6.83) 

(6.84) 

From this one sees - and this is the conclusion drawn by Heisenberg - that, 

for ~x - A, the uncertainty ~E is greater than E, 

~E ~ E (6.85) 

so that the concept of rest energy of the particle, and thus the concept of the 

particle becomes dubious. 

This is however just the situation one meets in the case of Planckions. Our 

uncertainty relation (6.70) says indeed nothing else but that the uncertainty 

of length measurements is of the order of the Compton wavelength of 

Planckions. The Planckion is therefore not a usual particle, but it confines (or 

cuts off) the spectrum of elementary particles. 

This cut-off is the same as this one we found by extending quantum 

gravity to high frequencies. The arising limitations are due to the fact that the 

role of gravity as a spacetime background, on which the measurement 

devices are established, contradicts the unlimited interpretation of gravity as 
a usual physical field. The principle of equivalence brings about limitations 

on the physical meaning of quantum procedures applied to gravity. This 

guarantees the compatibility of gravity as a protophysical measurement

founded background and as a physical field. This compromise can only be 

reached up to a certain boundary; below this boundary quantized GRT does 

not exist and above this boundary quantum effects should be physically 
insignificant. 
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Massive Shell Models and Shock Waves 

in the Gravitational Theories with 

Higher Derivatives * 

Gravitational equations contammg higher than second derivatives of the 

metric have exercised the minds of a number of authors for different reasons. 

In this Appendix we shall be concerned with field equations which stem from 

the variational principle 

(A. 1) 

where a and {3 are numerical constants and I is a constant having the 

dimension of length. We use the signature (+ - - -) for the metric tensor 

gflV' The Riemann tensor is defined by R~va = r~v,a + ... , and the Ricci 

tensor by RflV = R ~v).. Variation of the gflv results in the field equations 

f2[ aD RflV + U a + 2(3)gflvD R - (a + 2(3)R;flV + 

+ 2aRfla{3vRa{3 - 1- a gflv Ra{3 R a{3 + 2{3RRflv -1- {3gflvR 2] + 

+ (RflV -1- gflVR ) = 1CTflV' (A. 2) 

In the early days of GRT, equations which derive only from the quadratic 

invariants oc R 2 were considered in order to attempt a unification of 

gravitational and electromagnetic fields. In particular, Bach (1921) and Weyl 

(1919, 1923) have discussed the conformally invariant fourth-order equa

tions (a = -3(3) and Eddington (1953) the a = -2{3 cases. 

Later such equations were reconsidered from the viewpoint of a gravita
tional theory with phenomenological matter modifying the Einsteinian 

gravitation at small distances (Buchdahl, 1962; Pechlaner and Sexl, 1966). 

It was shown (Treder, 1975a) that in this case the Einstein-Hilbert part 

f R Fi d4 x must be necessarily included and that one has to impose 

* For this, see Borzeszkowski and Frolov (1980). 
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supplementary conditions on the sources Tl'v being more restrictive than in 

GRT in order to restrict the manifold of solutions in a physically reasonable 

manner. The consequences for singularities of massive body and cosmo

logical collapse were analysed in several papers. 

The interest in the equations (A. 1 ) was greatly increased by the fact that 

such higher-derivative terms naturally appear in the quantum effective action 

describing the influence of the vacuum polarisation of the gravitational field 

by gravitons and other particles (DeWitt, 1965, 1975; 't Hooft, 1974; Deser 

et aI., 1974; Cooper, 1974). The leading terms with the maximal number of 

derivatives at the one-loop level are of the following structure: R ... (In D)R "', 

and the theory (A. 1 ) may also be considered as a good approximation for 

this effective theory of quantum gravity. We assume in the following that I is 

equal to Planck's length Ip. The corresponding effective equations contain the 

highest derivatives in a linear way, and this renders it possible to use 

distribution theory to describe the possible jumps of metric derivatives 

associated with the matter source. 

Using this method, free gravitational shock waves of the equations (A.2) 

were discussed (see Borzeszkowski et al., 1978), and it was shown that 

quantum effects remove classical singularities resulting in GRT from gravita

tional collapse (Frolov and Vilkovisky, 1979). Generalizing those considera

tions, we perform here an analysis of the behaviour of massive shell models 

in the theory given by (A. 1 ). This will show typical features of the coupling 

between matter and gravitation in theories with fourth-order derivatives. 

The simplest way to take into consideration the source of a field is to use 

the thin massive shell model, i.e., to consider the case where matter of finite 

mass is distributed in a thin layer near some surface L. As the highest 

derivatives come always linearly into our equations, and as the coefficient 

functions before this term contain only second derivatives of the metric, the 

coefficient functions remain smooth when the thickness of the layer tends 

to zero. This means that the components of the curvature and energy

momentum tensors considered as a distribution, have well defined limits. The 

corresponding energy-momentum tensor may be written in the form 

(A. 3) 

Here L is a three-dimensional surface formed by world lines of the points of 
the thin massive shell. 

If the shell is non-null and PI' is a normal vector satisfying the condition 

(AA) 

then 0 (L) is a distribution defined by the equation 

(A.5) 
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where 

O(x' ~) = { 1 for x > ~ . 
, o for x < ~ 

The notation x > ~ (x <"~) is used for points x lying in the direction of pI" 

(in the opposite direction) with respect to the ~ surface. The Q(~) function 

may be defined in an equivalent way by the relation 

(A6) 

which is to be satisfied for any test function f(x). Here y is the metric 

induced on ~ by g. 

In the case when the shell is null, 15 (~) can be defined as follows. Let 

xl'(u) be the generators of ~; u is an affine parameter along xl" and the 

coordinates x A (A = 2, 3) are taken to be constant on a given generator. The 
arbitrariness of this coordinate choice on ~ is 

iA =iA(XA), 

Ii = a(xA)u + {3(xA). (A7) 

Let Su be the two-dimensional section u = const. of ~ and f u be a null 

surface generated by null rays orthogonal to Su and lying out of ~. The affine 

parameter along the null generators of f u can be taken so that the conditions 

(A8) 

are satisfied. The coordinates (u, x 2, x 3) we choose out of ~ to be constant 

along null generators of f. In the so-defined coordinate system ('N 

coordinates') one has 

1 &A) (0 o 0 ,gl'V = 1 

o gAB 0 

We define the 15 (~) distribution as follows 

Q(~) = dl'al"0(x;~). 

In the coordinates (u, Z, x 2, x 3) the equation for ~ is z = 0 and 

(A9) 
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The arbitrariness of the N coordinate choice (A7) results in the following 

transformations 

so that T"v ~ i "V = a-I T"v in the equation (A3). This arbitrariness reflects 
the usual Doppler shift effects and can be excluded if one chooses a special 

observer system t" to put t"p" = 1. 

In order to analyse the structure of discontinuities of the derivatives of g"v 
induced by a thin massive shell which are compatible with the equations 

(A1), we invoke the method developed by Papapetrou (1962) and Treder 

(1962). We assume a "" 0 and {3 "" 0 and discuss jumps of the order with 
n > O. The a = 0 case may be obtained in general by specialising the 

a + 3{3 "" 0 case considered below. 
Accordingly, we assume that the hypersurface L: Z(XA) = 0, where the 

derivatives of the metric are discontinuous, divides the four-dimensional 

space-time ~ into V; (z < 0) and vt (z > 0). All derivatives lying in this 

surface are continuous such, that only derivatives pointing to V; or vt are 

discontinuous. For sufficiently small z, the g"v in the neighbourhood of z = 0 
are therefore given by the series 

(A10) 

Here g;v is the metric in V; and its continuation in vt is four times 

differentiable. The Y"v are functions which are n times differentiable, and the 
i 

distribution +zn is defined by 

... , +Z-I == O(z), +zo == O(z), +z == zO(z), ... , 

1 
+zn == - znO(z) for n ~ O. 

n! 
(All) 

The jumps of the derivatives of g"v are thus reduced to discontinuities of the 

+zn. 
From (A10) and (All) it follows that the jumps of the derivatives of g"v 

may be expressed by the functions Y "v. For instance, if jumps of the first 

derivatives of g"v occur, they read n 

(A 12) 

Using the differentiation rules 
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we obtain from (AlO) for Rl'v, R, DR,uv, DR, and R;l'v the corresponding 

series: 

R -R- + A n-2+ A n-l+ ,uv -,uv ,uv +z ,uvz - - -, 
n-2 n-l 

R=R-+ A +zn-2+ A +zn-l+ ___ , 
n-2 n-1 

DR = (DR) + A p2+zn-4 + 
n-2 

+ [ A PI'; v + A _,uPv + 
n-2 n-2 

(A 13) 

where 

p2 == PPPP' A == A ~,y == y~ 
n-2 n-2 n n 

and 

From now on the operation B,u --+ B,u and the covariant differentiation are 

formed by the (g,uvt and the (r!vt in the negative domain V 4- Inserting 

(A 13) into (At), we obtain 

IH[a A ,uvp2+(ta+2{3)g,uv A p 2-(a+2{3) A p,uPvl+zn-4+ 
n-2 n-2 n-2 

+---}+---=1<T zn-l ,uv + (A.14) 

To discuss the structure of the jumps which are compatible with (A14) we 

shall now distinguish the two cases p2 = 1 and p2 = 0 and investigate the 

equations for a == a + 3{3 ¥- 0 and a = 0 separately_ 
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A.1. Timelike Thin Massive Shells (p2 = 1) 

(a) a ~ 0 

Because of the general covariance of the field equations (A2) and the 

Bianchi identity resulting from this, the left-hand sides of (A14) are not 

algebraically independent. They satisfy the identity 

- YvrPVpTp" - Y~P" - YvrPVpTp,,) = O. (A15) 
n n n 

Accordingly, the field equations provide only six independent conditions for 

the jump coefficients Y"v such that, as in GRT, there exist four solutions of 
n 

the homogeneous equations which may be produced by the choice of 

coordinates x v ---- xv: 

XV = XV - aV+z l + 1 Y- = a P + a P 
'''v "V V" . { ({ I 

(A16) 

On the other hand, the Bianchi identity provides also four conditions on the 

inhomogeneity, 

(A17) 

such that only six of the ten components of the surface layer of density are 

algebraically independent. Equation (A17) corresponds to the dynamical 

equation of GRT and says that the jump surface must be a 'free surface'. 

From the trace of (A14) 

2 A 1~(a+3~)+zn-4+···=Kl'+Z-1, 
n-2 

(A18) 

it is seen that, for A ~ 0, one has 
n-2 

n= 3, 

ICl' 
A = --;0-----

n-2 21~(a + 3f3) 
(A19) 

and, using (A14), one obtains 

K A 

a A !'v = -2 l'!'v, 
n-2 I p 

(A20) 
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where 

T [(! a + 2f3)gltv - (a + 2f3)PIt Pv J. 
2(a+3f3) 

For A = 0, there exist only n = 3 jumps, too, which follow from 
n-2 

(A20) by assuming T = O. Indeed, if one puts A = 0 in (A18), then the 
n-2 

next term - +zn-3 must be compensated by 1<T+Z- 1, i.e., one obtains n = 2. 

However, then (A14) provides 

A ltV = O. 
n-2 

This system of linear homogeneous equations does not provide non-trivial 

solutions for Y ltv if p 2 ~ O. 
n 

In GRT one obtains similar equations for the jumps of the first derivatives 

of gltv generated by 1<T+Z-1, namely 

Their solution reads (Lanczos, 1922, 1924; Synge, 1960) 

Y ltV = altPv + avPIt - 21« Tltv - ! gltv T), 
1 

(A21a) 

(A21b) 

where alt is an arbitrary vector, which can be removed by coordinate 

transformations which are discontinuous in the second derivatives on z = O. 

In analogy to (A21), we can immediately write down the solution of 

(A20): 

(A22) 

Here the coordinate-produced jump altPv + avPIt can be removed by 

coordinate transformations which are discontinuous in the fourth derivatives 

on Z = O. For Eddington's case a = -2f3 the solution (A22) fulfils the same 

coordinate conditions as in GRT, namely 

(A23) 

It is a typical feature of the jumps given by (A22), and similar forpmlae 

appearing in the following, that the small gravitational constant is compen

sated by the small Planck length 4, such that, in contrast to GRT, the first 
derivatives of the metric are continuous and the jumps of the third deriva

tives are large. In the quantum case these jumps are connected with the 

vacuum polarization near the shell. This polarization is essential in the region 

with a size comparable to or less than the Planckian length fp. If we take 

z "'" fp , then the change of the metric on this length will be given by 
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In this sense, when we are interested in the behaviour of the metric in the 

spacetime regions larger than lp, then we can consider it as obeying the usual 

Einstein jump conditions on the mass shell. 

(b) a = 0 

For a + 3{3 = 0 we obtain from (AI) the trace equations 

R =-KTJI-
JI-

that is 

A +zn-Z + A +zn-i + ... = -KT+Z-i . 
n-2 n-i 

(A24) 

(A25) 

Accordingly, in the case of the Bach-Weyl equations where only the part 

ex: l~ of the left-hand terms in (A2) is considered, the trace is identical to 

zero such that it follows T~ = O. The pure Bach-Weyl equations are 

therefore equivalent to nine algebraically independent equations and provide 

together with the Bianchi identity only five conditions on the gJl-v. If one 

includes the Einstein-Hilbert part GJl-V in the field equations, the trace 

equation (A24) is supplemented and there are again six conditions imposed 

on the gJl-v. Consequently now T~ need not automatically vanish. 

However, it is easily seen that for the case of surface layers of density 

considered here, the condition T = 0 must be satisfied. Of course, to show 

this one has to consider that the arguments referring to the number of 

functions gJl-v and the number of field equations cannot be translated directly 

to the jump coefficients and the conditions to be fulfilled because (All) and 

(AI4) are differential equations of different order. It depends on the order n 

of Y Jl-V whether the matter term T Jl-V plays a role for Y Jl-V in (AI4) or in 
n n 

(A25). 
Let us again distinguish the two cases T t 0 and T = O. For T tOone 

obtains from (A.25), n = 1 and, as in the case of the pure Bach-Weyl 

equations, from (AI4), the homogeneous jump condition 

(A26) 

However, this equation does not provide a non-trivial solution. Indeed, its 

solution may be written formally as 

(A2?) 
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This solution is trivial because it can be removed by coordinate transforma

tion together with a conformal transformation. (The situation changes 

however if the conformal invariance is destroyed by adding the Einstein 

tensor Gp.v; d. Section 6.1.) 

For 'T = 0 one obtains from (A25) 

A = A = .. ,=0 
n-2 n-l 

and we find, via (A14) 

n=3 

K 

a A p.v = -2 'Tp.v· 
n-2 I p 

(A28) 

(A29) 

The solution of (A29) results from (A22) if we replace i",v by 'Tp.v' 

Additionally, one has from (A26) the condition y = 0 on y p.v' 
3 3 

A.2. Null Thin Massive Shells (p2 = 0) 

(a) a oF 0 

The trace of (A14) 

2(a + 3{3) ( A p':' + 2 A pa) zn-3 + ... = K'T Z-l 
n-2 ,a n-2· a + + (A30) 

shows that one has to distinguish again the cases A = 0 and A oF O. 
n-2 n-2 

If A = 0, then, by virtue of (A30), one obtains n = lorn ~ 2 (with 
n-2 

'T = 0). It is seen from (A14), firstly, that n > 2 must be excluded because 

'Tp.v oF 0 is assumed and, secondly that the following conditions have to be 

satisfied: 

n= 1, 

(A31a) 

or 

(A31b) 

Assuming A oF 0, (A30) leads to n = 1, n = 2, or n ~ 3 (with 'T = 0), 
n-2 

and (A14) demonstrates that n > 3 and n = 1, 2 are not compatible with 

the field equations because of 'Tp.v oF 0 and A oF 0, respectively. For n = 3, 
n-2 
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(A14) furnishes 

a + 2{3 
".uv = - l~ A P.u Pv . 

1( n-2 
(A32) 

(b) a = 0 

Regarding the equation (A25) one must again exclude the case " ~ 0 from 

consideration, since (A25) leads in this case to the requirements n = 1 and 

A =" ~ 0, which contradict (A14). Consequently, one has to assume 
n-2 

"= 0 and, because of (A21), A = A = ... = o. 
n-2 n-l 

Repeating the considerations given above for a ~ 0 regarding the 

constraint A = 0, we obtain the two jumps (A31a) and (A31b), where A 
n-2 n-2 

must be now assumed to be zero. 

Massive shell models described by surface layers of density are of course 

connected with jumps of the derivatives of the metric. Shells moving with a 

velocity smaller than the velocity of light always cause, independent of the a 

and {3 values, discontinuities in the third derivatives (n = 3). Their structure 

is determined by the matter density ".u v via (A22). This corresponds 

completely to GRT, where the same applies to n = 1 discontinuities. The 

two cases a = 0 and a ~ 0 differ only in that for a = 0 the trace " has to be 

equal to zero. 

For shells moving with the velocity of light, there exists a greater variety of 

possible jumps because the shell motion can be accompanied by free gravita

tional shock waves of different order. Here one finds typical differences 

between the a = 0 and a ~ 0 cases. 

The discontinuities on null surfaces induced by ".u v are, for a == (a + 3{3) 

~ 0, in general (i.e., if A ~ 0) of third order and, for a = 0, of second 
n-2 

order. Only in the a ~ 0 case is Tllv necessarily of the form ".uv ex:: P.u Pv . It is 

interesting to note that for a = -2{3 the formulae for a ~ 0 reduce to the 

a = 0 relations if pppP = O. The a = -2{3 case considered by Eddington 

long ago is to a certain extent analogous to the a = -3{3 case. The similarity 

has already been observed in the case of free gravitational shock waves with 

n = 2 discussed in von Borzeszkowski et al., 1978. 

Besides the jumps of second and third order generated by "IlV on null 
surfaces, there can also appear jumps of the first and second derivatives, 

corresponding to free gravitational shock waves, while the n = 3 jumps are 
determined by ".u v via (A.32). There are no free n = 3 shock waves 
accompanying the motion of the matter shell. For free gravitational shock 

waves the algebraic structure of the coefficients Y.uv and y IlV is not deter-
1 2 

mined by the field equations. Equations of the type (A.31a) provide only 

conditions on the propagation along the bicharacteristics z = O. 
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Finally it should be mentioned that our considerations demonstrate that, 

for a = -3P (i.e., if the higher-order part of the field equations is conform

invariant), the trace 'l" of the matter density has necessarily to be equal to 

zero. One finds the same result for a = -2p. 
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On the Physical Meaning of 

Planck's 'Natural Units'* 

Max Planck (1899) 

Es durfte nicht ohne Interesse sein zu bemerken, daB mit Zuhulfenahme der 

beiden in dem Ausdruck der Strahlungsentropie auftretenden Constanten die 

Moglichkeit gegeben ist, Einheiten fur Uinge, Masse, Zeit und Temperatur 

aufzustellen, welche unabhfulgig von speciellen Korpern oder Substanzen, 

ihre Bedeutung fur alle Zeiten und fur alle, auch ausserirdische und ausser

menschliche Culturen notwendig behalten und welche daher als "naturliche 

Maasseinheiten" bezeichnet werden. 

Diese GraBen behalten ihre naturliche Bedeutung so lange bei, als die 

Gesetze der Gravitation, der Lichtfortpflanzung im Vacuum und die beiden 

Hauptsatze der Warmetheorie in Gultigkeit bleiben, sie mussen also, von den 

verschiedensten Intelligenzen nach den verschiedensten Methoden gemessen, 

sich immer wieder als die namlichen ergeben. 

I. Already before the final formulation of quantum theory, Planck (1899) 

had derived the existence of a new universal constant from Wien's law, 

namely, the action quantum Ii Planck remarked that, using Ii and the two 

other universal constants, the gravitational constant G and the velocity of 

light in vacuo c, it was possible to define natural units for mass, length, and 

time; he said that these units had a meaning always and everywhere in the 

universe.** 

Speaking in the language of modern physics, Planck's system of natural 
units is based on the fundamental constant of quantum theory (Planck's 

action quantum Ii), the fundamental constant of the theory of special 

relativity (the velocity of light c), and the fundamental constant of the theory 

* Cf. for this Appendix, Treder (1979). See also the discussion between Kallen (1965) and 

Treder (1965). 

** Planck took over the section on the natural units from his 1899 paper in his review article 

Uber irreversible Strahlungsvorgiinge (1900b). There is a section on natural units in the first 

three editions and also in Planck's famous book Theorie der Wiirmestrahlung (1906). In the 

fourth edition Planck omitted this section as 'dispensible'. 

114 
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of general relativity (the gravitational constant G). Therefore, Planck's ideas 

concerning the physical meaning of his elementary units imply the concep

tion that all physics may be reduced to quantum theory and the theories of 

special and general relativity. This means that Planck's ideas imply the 

conception that gravity is not only a universal but also a fundamental 

interaction and that the gravitational field also constitutes elementary 

particles. 

In this sense, Planck's units involve Einstein's particle scheme (Einstein, 

1919, 1936; Einstein and Rosen, 1935), namely, a representation of elemen

tary particles as self-consistent solutions of the relativistic equations of 

gravity. According to Planck and Einstein, the masses of the elementary 

particles were then given by their gravitational interaction, i.e., the energy of 

their own gravitational fields. Thus, Planck's units lead from the Abraham

Lorentz conception, according to which the masses of particles are attributed 

to their electromagnetic field energies, to Einstein's general-relativistic 

particle problem. Planck's idea of introducing the action quantum Ii as one of 

the fundamental constants implies also the idea that Einstein's particle 

problem cannot be solved on the level of the classical theory but only within 

the framework of a quantum theory of the gravitational field, i.e., of a 

quantum geometrodynamics. 

Probably Eddington (1918) considered Planck's natural units as an ansatz 

for unifying physics on the basis of a relativistic theory of gravity, too. On the 

other hand, in a" review of Planck's and Eddington's conceptions, Bridgman 

(1922) criticized the physical meaning of Planck's units because Planck could 

not show any essential connection between the theories leading to the 

constants Ii, c, and G. 

To our minds, quantum geometrodynamics and the quantum theory for 

gravitational fields just show the connection required by Bridgman. The 

revival of quantum geometrodynamics and of a quantum theory of the 

spacetime metrics also renewed interest in Planck's natural units (Wheeler, 

1962, 1968). 

If physics is to reduce to Planck's constants Ii, c, and G, then this means 

that the elementary charge referred to these fundamental constants must be 

of order 'one'. Thus, Planck's elementary charge is given by 

[qF=p~=lic "" 1O-16 gcm3 s-2, 

[q 1 = PI> = (lic)1!2 "" 10-8 cgs. (B.1) 

According to Planck's ansatz, gravity is the fundamental interaction; there
fore, it follows from the gravitational law that 

q~= Gm~, 

(B.2) 
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and hence we obtain Planck's elementary mass: 

(
lie ) 112 

[m] = mp = G ,.. 10-5 g. (B.3) 

The field energy of a mass mp defined by Einstein has a positive sign in 

the theory of general relativity; this renders it possible to formulate Einstein's 

particle problem (Einstein, 1919). According to the Einsteinian principles of 

the equivalence of inertia and gravity, and the equivalence of mass and 

energy, the gravitational self-energy of a particle belonging to the mass (B.3) 

must be equal to its relative energy mpe2 if the particle energy is essentially of 

gravitational origin. This leads to the condition (up to a factor of order one, 

which characterizes the special 'model of the particle') 

2 
Gm p 
--=me2 

Ip p (B.4) 

from which, on using relation (B.3), the effective radius of the particle 

follows: 

[I] = Ip = Ge7P = ( ~~ ) 112 ",. 10-33 cm. (B.5) 

The elementary time 

[t] = tp = : = ( lie~ ) 1/2 ,.. 10-43 s (B.6) 

corresponds to the elementary length (B.5). 

It is essential for the following that the inertial and thus the gravitational 

masses of a particle are not invariants but proportional to the fourth, timelike 

component Po of the relativistic energy-momentum vector P. Relations 

(B.2) and (B.3) hold in a special-relativistic system of reference not being the 

rest system of the particle. 

II. To understand the physical meaning of Planck's units, one must recall the 

fact that relations (B.l) and (B.2) say that, in Planck's system of reference, 

gravity is a strong interaction; for a particle that rests in the laboratory (e.g., 

nucleons) gravity is an ultraweak force. The conception of quantum field 

theory about the nature of elementary particles leads to unitary field theories 

of the type of Heisenberg, Pauli, and Ivanenko. 
Like Planck, Heisenberg starts with three fundamental constants, too. But, 

these are the three fundamental constants Ii, e, and the rest mass of a 

nucleon. The coupling constant of a unitary field theory of the Heisenberg-
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Ivanenko type is also determined by Planck's elementary charge, 

[ql=g=(lie)1!2"" lO-8 cgs. (B.7) 

In (B.3) g is the coupling constant of the strong interaction and plays a role 

that justifies the notation 'strong nucleon charge' (Ivanenko and Sokolov, 

1953); as the electric charge e (the coupling constant of the electromagnetic 

interaction) g is a Lorentz-invariant scalar too (Heisenberg, 1967). 

The idea that, in the sense of Abraham's particle problem, the rest energy 

me2 of a nucleon is determined by the self-energy of its strong interaction, 

defines Heisenberg's elementary length I in the rest system as an effective 

radius of the nucleon (assuming the numerical factor for the 'particle model' 

and the special type of coupling to be equal to (B.l )): 

2 

L = me2 "" 10-3 g cm2 S-2 
I . (B.8) 

Inserting (B.7), the nucleon radius becomes equal to the Compton wave

length of nucleons: 

l lie Ii 
[II = I = --2 = --2 = - ." 10-13 cm. (B.9) 

me me me 

Equation (B.9) is the elementary length of March, Heisenberg, and Ivanenko. 

III. Let now the nucleon be moving ultrarelativistically (i.e., with a velocity 

v ." e) with reference to the system of the laboratory. Denoting the 

corresponding Lorentz factor by 

(B.lO) 

one obtains the de Broglie wavelengths in the form of the Lorentz-contracted 

Compton wavelength 

L' = lie = l..- I = _li_ 
E' Y yme 

and the inertial mass of the ultrarelativistic nucleon is given by 

E' 
m'= ym=-2. 

e 

Simultaneously the effective radius of the nucleon is contracted, 

1'=~=L'. 
Y 

(B.ll) 

(B.12) 

(B. 13) 

Let us assume now that the velocity of the ultrarelativistic nucleon is, with 

reference to the laboratory, so high that the contracted radius of the nucleon 
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(B.13) corresponds to the gravitational radius 

Gm' Gh 

~= L'e 3 
(B.14) 

of the inertial mass (B.12). Therefore, it reads 

yGm Gm' h h 
-e-2-=~= m'e = yme (B.IS) 

Equation (B.IS) determines the Lorentz factor 

( h) \12 I 
Y = y* = ~ ---;;; "" 1Ozo. (B.16) 

Using this relation to transform Heisenberg's quantities and m from the 

rest system of the particle to the reference system of the laboratory, one 

obtains Planck's quantities Ip and mp. Simultaneously the gravitational 

coupling becomes strong (Treder, 1975b): 

h 2 G 
Y*zGmz= Gmz = --- = he 

p L*zez . 

Thus, Planck's elementary quantities follow from Heisenberg's quantities 

by a Lorentz transformation with the Lorentz factor (B.16). By this 

Heisenberg's elementary length, i.e., the Compton wavelength hlme of the 

nucleons, contracts to de Broglie's wavelength L * = hC/E* of ultrarelativistic 

particles with the inertial mass mp = ym = m*. 

IV. For scalar charges tel the Lorentz contraction of the radii of particles [I] 

and the increase of its self-energies - [e]Z[/r' resulting from this just give the 

relativistic increase of the mass, e.g., 

2 2 

L = yg = m'eZ = ymez. 
I' I 

(B.17) 

As one knows, according to Lorentz this is the content of the special

relativistic theory of field masses. 
However, in the theory of general relativity there is quite another relation 

between the gravitational field mass - Gm'z / l' eZ and the inertial mass m' of 

a moving particle because the 'gravitational charge' itself has to be Lorentz

transformed: 

[q'] = JG m' = yJG m. (B.18) 

Hence it follows that the gravitational self-energy increases more rapidly than 

the inertial mass (the relative energy) of particles, which is determined by the 
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Lorentz-Einsein formula: 

G ,2 G 3 2 
~= ym 

I' I 
(B.19) 

Therefore, energy and momentum of the stationary field of a mass cannot 

form a stable particle; for stable particles the energy-momentum must form 

a special-relativistic 4-vector PI' (Ivanenko and Solokov, 1953). Equation 

(B.19) says that there are rapidly increasing pressures and tensions in the 

interior of particles. According to Einstein's original idea, these pressures 

and tensions are of an electromagnetic nature. 

The Lorentz relation (B.17) connecting field and inertial masses is 

satisfied for gravitational fields in a system of reference where the Lorentz 

factor has the value y = y* and the inertial mass m' = yE/c2 = E' / c2 and 

the particle radius I' = y-l/, respectively, are just equal to Planck's quantities 

mp and Ip , respectively: 

2 
2 Ie 

y2 = y* =_ 

Gm 

lie 1 

G 
2 • 

m 
(B.20) 

The gravitational potential f/J = Gm/r is itself transformed as the time

time component of the metric tensor gl'v' According to the theory of 

general relativity, the gravitational field of a point particle is given by the 

Schwarzschild metric.* In the rest system of the particle, this solution reads 

in the linear approximation: 

&0 - 1 = hvo = -2¢/e2, 

gik = -Oik + hik = -Oik(1 + 2¢/e2), 

i, k = 1,2,3, Xl = X, x 2 = y, x 3 = Z. (B.21) 

If now the particle is moving with velocity v in the X direction, the 

corresponding Lorentz transformation gives the time-time component 

h~0=agaghvo+a6a6hl1=y2(hoo+ ;: hll) 

(1 + v2/e2) 2¢ _ 2¢'(y2) 

(1 - v2/e 2) 7 - c2 
(B.22) 

* The one-particle vacuum solution (the gravitational potential of a mass point) of Einstein's 

gravitation equations, i.e., the Schwarzschild metric (Einstein, 1969), is no more able to describe 

a self-consistent particle than the Coulomb field to describe a self-consistent electron in 

Maxwell's theory. Therefore, the Einstein energy-momentum complex f F8 (T~ + t~) d3x 
of a mass point does not form an energy-momentum vector PI' and the gravitational field 

must be renormalized (e.g., by a cut-off formalism with an elementary length and by 'com

pensating fields'). 
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Hence it follows for the gravitational potential of an 

moving particle, the approximate expression (with v "" e) 

AppendixB 

ultrarelativistically 

f = G;' "'" [(1 _ v2/e2)X2 + :2~m Z2(2(1 _ v2/e2)112 

(B.23) 

Indeed, going to a moving system of reference, the gravitational mass m 

becomes m' = ym, while the distances are Lorentz-contracted in the 

direction of motion X' = Y -I X. 

A particle having effective radius I and producing the maximal gravita

tional potential ~(l) = Gm/I in the rest system, accordingly has the maximal 

gravitational potential 

,(,' l' _ 2Gm' _ 2y 2Gm 
y()- I' - I (B.24) 

in the moving system of reference (in the direction of motion). If the Lorentz 

factor runs to (B.20), then the maximal potential is just of the order of 2e2: 

2Gm 2G(lic/G)1!2 
~'(l') = ~*(/*) = Ip p = (MJ'/c3)1!2 = 2e 2 (B.25) 

and, for a Lorentz factor y = ji > y*, i.e., if the effective particle radius 

contracts below Planck's length Ip , the maximal gravitational potential ?i(l) is 

greater than 2e2 , such that we obtain 

- -I 21>(/) Gm -2 
g ()""'1---"'" 1-4-y <0 

00 e 2 e2/· (B.26) 

Then there exists a region in the vicinity of the particle where goo < 0, i.e., 

where the timelike world quantities change their signature (cf. Treder, 

1975b). Therefore, the often-discussed anomalies of causality that are 

connected with the Schwarzschild surface &0 = 0 appear near the particle. * 
Now the particle lies within a black hole, whose linear dimension is of the 

order of the Einsteinian gravitational radius 

iii _ Gm - Ii Ii 
G -2 = y-2- > 1= ---=- = -_--

e e me yme 

* The Schwarzschild surface &0 = 0 implies, as a consequence of the change of signature in 

the region enclosed by the Schwarzschild surface, the destruction of the causal connection 

between the interior &0 < 0 and the exterior &0 > 0 of the space. In 1935 Einstein had 

already mentioned the meaning of these signature anomalies for the solution of the particle 

problem (Einstein and Rosen, 1935). 



Planck's Natural Units 

of the ultrarelativistic particle. Assuming m' = mp, one obtains 

G":p = _fi_ = /p 
c mpc 
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and the Einsteinian gravitational radius (i.e., the Schwarzschild radius of the 

black hole), the classical radius of particles, and the de Broglie wavelength 

are of equal order. 

v. At the boundary of the black hole a total Einstein shift of frequencies 

occurs; all processes slow down infinitely with reference to the time of the 

laboratory: 

.J'&ot -
'C = -- -+ 0, &0 -+ o. (B.27) 

y 

It is impossible to obtain information from the black hole, i.e., from regions 

where 

(B.28) 

Since now measurements of differences of lengths !1L must be done with 

particles as standards whose effective radius and de Broglie wavelength L' = 

fidE' are less than !1L, Planck's length lp (for which the de Broglie 

wavelength is equal to Einstein's gravitational radius) is actually the shortest 

measurable length, according to the unified quantum and relativity theories. 

It is true, for E > E*, that the matter wavelength r is smaller than lp: r = 

fidE < lp. But the gravitational radius GE / c4 and, therefore, the effective 

radius of particles is greater than lp. Being the equivalence mass of an 

elementary particle that has the ultrarelativistic energy E * = y* mc 2, Planck's 

mass I11p determines the maximal energy of an elementary particle too. Then, 

for E > E *, the particle is not connected causally with its vicinity (with the 

laboratory). The strong gravity of the particle eliminates it from physical 

space. This is the physical meaning of the new uncertainty relation discussed 

above. 

Evidently here this property is relative. Looking at the laboratory (and the 

whole cosmos) from the rest system of the nucleon, they form black holes. 

The decisive point is that, for a Lorentz factor y > y* = (fidG)1I2(I/m), 

the laboratory and the nucleons are not connected causally. Indeed, the 

laboratory (or the cosmos) is formed from the same nucleons with the rest 
mass m as the particle in its interior. We can model our problem by two 
nucleons whose relative velocity is given by the Lorentz factor y > y* = 
m*/m. Evidently here there exists complete symmetry between the asser

tions. Nucleon I is moving with y in the rest system of nucleon II, and 
nucleon II is moving with y in the rest system of nucleon I. In both cases the 

causal connection between both the particles is destroyed. 
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VI. In general, the occurrence of Schwarz schild horizon, being here only the 

result of a Lorentz transformation of the metric according to (B.27), depends 

on the relative velocity v of the nucleon with regard to the reference system. 

Let two (ultrarelativistic) particles I and II have velocities 11 and 111 with 

reference to the laboratory and, therefore, the Lorentz factors 

( 2 )-112 ( 2 )-112 VI Vn 
YI = 1 - -2 Yn = 1 - -2 

e e 

respectively, in the system of the laboratory. Then their relative velocity l1n is 

given by Einstein's theorem for the combination of two boosts in the same 

direction 

11 + lij, 
l1n = 1 + (1111r1e 2) • 

Their relative Lorentz factor YIIl = [1 - vlll / e2r1l2 reads 

( 
lijlij, ) 

YIll = 1 + 7 YIYW (B.29) 

For 11 "" 111 "" ± e it is bilinear in YI and Yn: 

(B.29a) 

while, for 11 "" -111' the relative velocity of the particles is approximately 

vanishing and YIll --+ 1. Expression (B.29a) gives the transformation formula 

for the time component Po of the energy-momentum vector PIt of an 

ultrarelativistic particle with p"p" "" 0: 

(B.30) 

(with 11 "" lijl "" ± e).* If YIlI ~ y*, then there exists no causal connection 
between particles I and II; the particles behave toward each other as if they 

were black holes. 

Thus, the Planckian Lorentz factor Y* leads to an effective maximum 

velocity for a system of particles with a rest mass m that is less than the light 
velocity e. Relative velocities between two particles lijn for which the Lorentz 
factor is greater than the square of fi y*, 

*2 _ lie 1 
YIll> 2y - 2 - --2 

G m 

* Equation (B.30) is the relation between energies in the rest and the laboratory systems, 

which is well known from high-energy physics. 
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cannot occur at all. * Indeed, this could only occur if at least one of the 

particles had a relative velocity v with reference to the laboratory corre

sponding to y > y*. But in laboratories such particles cannot be produced 

or detected because they are outside all causal and information connections 

between particles and the laboratory. 

The role of y* as a Lorentz factor for a maximal velocity of a particle of 

rest mass m with reference to the laboratory system means the dependence 

of the laboratory velocities really attainable on the kind of particles. Of 

course, the photons, which have vanishing rest mass (m .... 0), always have a 

Lorentz factor y .... 00 with reference to all particles and, therefore, in all 

laboratories. But physical laboratories consist of particles with a non

vanishing rest mass m, and the attainable maximum velocity is given by y* = 

(lic/G)1I2(l/m), as a reciprocal function of m. On the other hand, the 

attainable relative maximum mass mp and the corresponding effective radius 

of the particle, i.e., the gravitational radius Gmp/ c2, are equal to Planck's 
universal quantities (lic/G )112 and (IiG/c 3)112, respectively, independent of the 

kind of particles. 

* lbis means that there are no relative velocities qll between two particles for which the 

effective radii of particles T are contracted to the Einstein gravitational radius Gm/e 2 of the 

particles in the rest system, because then the Lorentz factor YIIl had to be so great that 

- Gm 1 Ii 
I"" ----;;> "" yl "" me y 

This leads to 

- lie 1 2 

Y "" G -;;;z "" y* . 
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