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The Meaning of Requirements

Abstract

We use the term requirements to denote what are often called functional requirements.  

Requirements are located in the environment, which is distinguished from the machine 

to be built.  A requirement is a condition over phenomena of the environment.  A specifi-

cation is a restricted form of requirement, providing enough information for the im-

plementer to build the machine (by programming it) without further environment 

knowledge.

To describe requirements appropriately we must fit our descriptions into an appropri-

ate structure.  This structure must respect the distinction between the machine and the 

environment, and the distinction between those environment properties that are given 

(indicative descriptions) and those that must be achieved by the machine (optative descrip-

tions).  

Formalisation is a fundamental problem of requirements engineering.  Since most en-

vironments are parts of the physical world, and therefore informal, the formalisation 

task is inescapable.  Some techniques are discussed for tackling this task.  In particular, 

the use of designations is explained, and the distinction between definition and assertion.  

By using the smallest possible set of designated terms, augmented by appropriate defi-

nitions, the developer can create a narrow bridge between the environment and its de-

scriptions in the requirements.  In this way a sufficiently faithful approximation to the 

informal reality can be obtained.
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1. INTRODUCTION

1.1 The Importance of Requirements

Reliance on computer-based systems, especially in safety-critical applications, involves 

serious risks and dangers.  Some failures result from relatively straightforward pro-

gramming errors, as in the case of the Therac-25 radiotherapy machine [Leveson and 

Turner 1993].  Others result from a mismatch between the designed behaviour of the 

computer part of the system and the effects in the environment that this designed be-

haviour is intended to achieve.  The computer hardware may perform correctly, and 

the software may satisfy its specification; but the results are not what was intended, and 

may be disastrous.  

Many examples of this second kind of failure are reported in Neumann [1995].  Such 

failures are properly attributed to errors in the engineering of the system requirements: 

the true requirements of the system were not correctly identified; or were obscurely or 

imprecisely expressed; or were based on faulty reasoning about the environment or on 

faulty approximations to the reality of the phenomena and properties of the environ-

ment.

The theme of this paper is that significant improvements in requirements engineering 

can be obtained by careful attention to the meaning of requirement statements.  The 

paper explains a distinction between requirements and specifications, and discusses 

techniques of formalising and describing requirements in a way that allows them to be 

more clearly expressed and more easily understood and validated.  The ideas underly-

ing the  techniques can be applied both to the engineering of new requirements docu-
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ments and to the analysis and understanding of existing documents.  The central goal 

of the  paper is to offer useful insight into the problems of requirements description 

and understanding and how they can be successfully addressed.  

1.2 A Concept of Requirements

The term requirements has many meanings.  Arguably, all of the following are require-

ments:

· The computer must not weigh more than 0.25Kg.

· The system must be completed by 1st January 1998.

· The programs must be written in Ada.

· The system specification must be formally accepted by the steering 

committee.  

· The operator interface must be easy to learn.

· The system must produce a monthly report of outstanding debts.

· If passenger in the lift presses the open-doors button while the lift is

stationary at a floor, the doors should begin to open within 0.5 secs. 

This paper is about requirements in a narrow sense, in which we would include at 

most the last three of the examples above, but more probably only the last two.  In ef-

fect, we are concerned with what are often called functional requirements.  However, 

we do also include under this heading such requirements as real-time response [Jack-

son and Zave 1995] and those properties of operational safety that can be precisely 

stated in terms of system behaviour.  Requirements of these kinds are functional; but 

aserqts4.wsd Page 4 of 30
07/10/96



they are often excluded from the corpus of functional requirements for no better rea-

son than the technical difficulty of treating them in a sufficiently formal way.

1.3 The Machine and the Environment

In this paper we are concerned with the description of requirements for systems whose 

construction is primarily a software development task.  That means that our eventual 

goal is the provision and installation of a machine — all or part of one or more com-

puters programmed to behave in a way that ensures satisfaction of the requirements.  

We do not construct the computer hardware; but in effect we construct the machine 

because we construct the software that transforms a general-purpose computer into 

the machine we need.

The requirements, however, do not directly concern the machine.  They concern the 

environment into which it will be installed.  The environment is the part of the world 

with which the machine will interact, in which the effects of the machine will be ob-

served and evaluated.  For a lift-control system, the environment includes the floors 

served, the lift shaft, the motor and winding gear, the doors,  the lift car, the buttons 

and indicator lights, and the passengers.  For a theatre booking system it includes the 

theatres and their seats, the audiences, credit cards used to buy tickets, the tickets 

themselves, and the performances together with their postponements and cancella-

tions.  For an avionics system it includes the pilot, the airframe and engines, the con-

trol surfaces, the surrounding atmosphere, the landing gear and the airport runways.

The distinction between the environment and the machine is partly a distinction be-

tween what is given and what is to be constructed.  The terms are therefore to be un-
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derstood in a relative sense.  For the developers of an operating system kernel, for ex-

ample, the kernel is to be contructed; with the hardware resources it uses it will 

constitute the machine.  What is given — and is therefore the environment — is the 

rest of the same computer, and the population of programs running in it whose 

executions will be supported and controlled by the kernel.  

1.4 Shared Phenomena

The machine can affect, and be affected by, the environment only because they have 

some shared phenomena in common.  That is, there are some events that are events both 

in the machine and in the environment; and there are states that are states of both.  

In the lift system, for example, the machine is directly connected to the motor switch 

and to the sensors that detect the presence of the lift car at the floors.  A turn-motor-on 

event is an event both in the motor switch and in the machine.  So too is a 

set-motor-polarity-upwards event.  The event will, very likely, be differently named in the 

machine's programming language and in the switch manufacturer's equipment man-

ual; but it is the same event.  Similarly, the state up-sensor-2-on is a state shared by a bit 

in the machine's store and a sensor located in the lift shaft at floor 2.  On the other 

hand, the departure of a disgruntled passenger from a floor lobby after waiting fruit-

lessly for the lift to arrive is a private event of the environment that is not shared with 

the machine; and the position of the read-write heads of the disk drive is a private 

state of the machine that is not shared with the environment.

In considering shared phenomena, it is essential to distinguish between those that are 

controlled by the machine and those that are controlled by the environment.  The 
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turn-motor-on event and the set-motor-polarity-upwards event are controlled by the 

machine.  The value of the state up-sensor-2-on, by contrast, is controlled by the envi-

ronment.

2. REQUIREMENTS AND ENVIRONMENT PROPERTIES

2.1 Requirements Are in the Environment

Requirements, in the sense in which we are using the word, are located in the environ-

ment.  That is to say, they are conditions over the events and states of the environ-

ment.  The customer for the lift control system requires that when a button is pressed 

the lift should come to the floor as requested.  The customer for the theatre reserva-

tions system requires that seats should not be double-booked, and that the best seats at 

each price should be allocated first.  Requirements, in this sense, can be stated entirely 

without reference to the machine.  It may be that some of the events and states that are 

the subject of requirements are shared with the machine, but this is purely accidental: 

what is essential is that they are phenomena of the environment.  

The question immediately arises: how can the machine ensure satisfaction of a require-

ment that concerns private phenomena of the environment, in which it does not par-

ticipate?  The answer lies in the given properties of the environment.  These given 

properties constitute a nexus of constraints and causal chains.  They guarantee that by 

directly affecting shared phenomena the machine can indirectly affect private phe-

nomena of the environment; and that a machine possessing direct sensitivity to shared 

phenomena will have an indirect sensitivity to certain private phenomena.  This gen-

eral relationship between the environment and machine phenomena is pictured in 

Figure 1.  
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In the figure, the requirements are concerned only with private phenomena.  This is 

not necessary: requirements may be concerned also with shared phenomena.  But it is 

typical, because the customer for a system is usually interested in parts of the environ-

ment that are some way from the machine in the causal chain.

Consider the example of the lift control system.  The immediate phenomena of move-

ment of the lift car — its position and velocity — are not shared with the machine.  Yet 

it is a requirement that in certain circumstances the machine should cause the lift car 

to move upwards to a certain floor and stop there.  The environment has these given 

properties (among others):

If the lift motor is switched on while its polarity is set in the upwards sense, the 

car will start to rise within 0.2 seconds.

The lift car is constrained to move vertically in the shaft from one floor to the 

next.

When the lift car is at any point between -8.25 inches and +0.25 inch of a floor 

position, the up-sensor at that floor is on.
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If the lift motor is switched off while it is raising the car, the car will halt after 

rising a further 8 inches.

By virtue of these properties, the machine can cause the car to rise to a floor by con-

trolling and sensing shared phenomena in the obvious way.  It sets the motor polarity 

upwards and switches the motor on (both of these events are under machine control).  

It waits until the up-sensor at the floor flips on (this state change is under the control 

of the environment), and then switches the motor off.  

2.2 Optative and Indicative

The full description of a requirement therefore consists of at least two parts.  We must 

describe the requirement itself — the desired condition over the phenomena of the en-

vironment.  And we must also describe the given properties of the environment by vir-

tue of which it will be possible for a machine, participating only in the shared 

phenomena, to ensure that the requirement is satisfied.

This distinction between the desired and the given must be reflected in a separation of 

descriptions:

A customer requirement R expresses a condition over the phenomena of the en-

vironment that we wish to make true by installing the machine.

An environment assertion E expresses a condition over the phenomena of the 

environment that we know to be true irrespective of the properties and behav-

iour of the machine.
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A traditional grammarian would say that the requirement R is in the optative mood, 

expressing a wish; the environment assertion E is in the indicative mood, expressing 

what is claimed to be a known truth.  

2.3 The Indicative Context

Almost always, introducing a new system will change the environment in significant 

ways.  The environment assertion E describes the given properties of the environment 

as they will be when the machine has been installed and the system is in operation.  

The distinction between indicative and optative is not therefore a distinction between  

environment properties holding at one time and environment properties holding at a 

later time.  It is, rather, the distinction between two classes of environment properties 

holding at the same time: those that are guaranteed by the environment itself, and 

those that are to be guaranteed by the machine.

In some problems, system operation may bring about environment changes that are 

very hard to predict.  This is notoriously true of traffic patterns and of human habits 

and skills, but less subjective examples can also be found.  The indicative properties of 

interest to the requirements engineer are then the changed, not the original, proper-

ties.  A failure of prediction results in environment assertions that prove eventually to 

be false.

The distinction between indicative and optative is applied here to descriptions of the 

environment.  But it applies also to descriptions of some agents [Feather 1987; Dar-

denne et al 1993].  An agent is an object which is a processor for some actions; exam-
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ples of agents are human beings, physical devices, or programs that exist or are to be 

developed [Dardenne et al 1993].  In all of these examples it is likely, if not certain, 

that an individual agent will have indicative, given, properties, and also that it will be 

required to exhibit some desired, optative, properties.  The need to distinguish the 

two is clear [van Lamsweerde et al 1995].

2.4 Why Environment Assertions Are Necessary 

Although the optative description R and the indicative description E are both relevant 

to requirements, it might seem at first sight that the work of the requirements engi-

neer as such is complete when the customer requirement R has been written.  From a 

narrow point of view this may indeed be true; but there are several reasons why the 

formulation of the accompanying environment assertion E is also an integral part of 

the requirements engineering task.

First, there is a simple human reason.  Making an indicative description of the envi-

ronment and validating it by careful study and by discussion with domain experts is a 

vital way of obtaining and demonstrating the necessary understanding of the environ-

ment in which the customer requirements are located and in which they make sense.  

This is a powerful and important reason, but we will not pursue it further here.

Second, it is necessary to show that the requirement is satisfiable by some machine.  It 

may be that the environment does not embody enough constraints and enough causal 

chains to connect the shared phenomena appropriately to the phenomena that are of 

direct interest to the customer.  In that case, the problem is not properly a software 

development problem: it is a problem of the kind that we may call environment 

aserqts4.wsd Page 11 of 30
07/10/96



engineering.  For example, suppose that the customer for the lift system has the follow-

ing unusual additional requirement:

· If a passenger in the lift requests travel to a floor, but then leaves the lift 

before that floor is reached, the request should be cancelled.

This requirement is easily formalised, but its satisfaction can not be ensured by any 

machine in an environment of conventional lift equipment.  The shared phenomena 

are insufficient to allow the machine, however indirectly, to identify the individual pas-

senger who participates in a departure event or in a request event.  Satisfaction of this 

requirement, therefore, will demand a substantial change or enhancement of the envi-

ronment.  We regard this as taking us outside our chosen realm of requirements engi-

neering for software development.

2.5 Requirements and Specifications

To show that the requirements are satisfiable by some machine we derive a specification 

of the machine.  A specification S is an optative description of a condition over the 

shared phenomena at the interface between the machine and the environment.  A ma-

chine satisfying S will ensure satisfaction of the requirement.  That is:

E, S   �  R

If a machine whose behaviour satisfies S is installed in the environment, and the envi-

ronment has the properties described in E, then the environment will exhibit the 

properties described in R.
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The relationship among E, S and R is an entailment, not an implication.  The impli-

cation

E  ∧ S  ⇒  R

(unless it were a tautology) would itself be a further assertion about the environment, 

in addition to the assertion E.  But the essence of the relationship is precisely that R 

can be deduced from E and S with no further knowledge of the environment.

2.6 The Nature of a Specification

A specification forms a bridge between requirements engineering, which is concerned 

with the environment, and software engineering, which is concerned with the ma-

chine.  The distinction is of practical importance, because it clarifies the differing re-

sponsibilities of those whose expertise lies in acquiring and using knowledge of the 

environment — often called application or domain knowledge — and those whose ex-

pertise lies in the invention, design, and construction of computer software.  In princi-

ple, a specification allows requirements engineers to reason about the requirement 

and its satisfaction in the environment, without mentioning the properties of the ma-

chine.  It also allows programmers to reason about the software and its adequacy for 

its purpose without mentioning either the environment properties or the customer's 

requirement.  This is why it has traditionally represented the intermediate product be-

tween requirements and programs.

To serve its purpose, a specification must be subject to a further constraint beyond its 

restriction to shared phenomena.  Its satisfiability must be demonstrable without ap-
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peal to properties of the environment.  That means that by appeal only to logic and to 

the properties of the general-purpose computer a specification must be formally re-

finable to a conjunction of liveness and safety descriptions respectively of the form:

“whenever c is true cause e to occur within time t”

and:

“whenever c is true do not permit e to occur”

in both of which the condition c can be evaluated entirely in terms of the past history 

of shared phenomena, and e is a shared event or state transition that is controlled by 

the machine.  Whether the real-time constraint t can be satisfied will depend on the 

properties — in particular, the speed — of the computer. 

3. DESCRIPTION AND THE ENVIRONMENT

3.1 Formalisation and Informal Environments

For the programmer, the computer can be treated as a formal system.  Although the 

underlying physical reality is inevitably informal, the computer has been carefully con-

structed so that for practical purposes we may rely on the formal description of its be-

haviour given in the programming manual.  When we read: “Execution of the 

instruction 21,1,5 causes register R1 to be set to the value held in register R5”, there is 

no room for doubt about the meanings of the terms used or about the validity of the 

statement.  The task of establishing a reliable phenomenology for the computer has al-

ready been performed.

The environment, by contrast, is usually a part of the physical world that has not been 

formalised.  We normally speak of it in natural language, with all its attendant ambi-
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guities and uncertainties.  Terms such as ‘sale’ or ‘payment’ have different meanings 

for different speakers, and even for one speaker at different times.  Even where there 

is no ambiguity about the intended meaning of a term, there will be many cases in 

which it is hard to decide whether or not the term should be applied.  Furthermore, 

there is an unbounded collection of considerations that may be relevant to any pro-

posed statement; as a result, any general statement about the environment may be sub-

ject to an unlimited number of exceptions and special cases.  

There is, of course, one part of the environment that has been formalised: the phe-

nomena shared with the machine.  We may be unsure whether one car can be said to 

have hit another in a traffic incident, but there is no uncertainty whether a particular 

key was hit on a computer keyboard.  The keyboard circuitry and the associated soft-

ware are engineered precisely to avoid doubt in the question by providing an objective 

criterion.  This is why it is reasonable to demand formality in specifications, and to see 

no fundamental difficulty in meeting that demand.

In requirements, by contrast, the informal nature of the environment does present a 

fundamental difficulty.  The informality must be tamed if we are to describe the re-

quirements intelligibly and to reason reliably about their satisfaction by the interaction 

of the machine and the environment.  

3.2 Ground Terms

The first need is to establish an adequate set of ground terms for our descriptions.  

Ground terms for a description are the terms that fix the relationship between the de-

scription and what it describes.  For example, if we wish to describe human biological 
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relationships we may use many terms such as mother, father, uncle, brother, aunt, niece, 

grand-daughter, second cousin, and so on.  But a sufficient set of ground terms is {male, 

female, parent}.  All the other terms can be defined on the basis of these three, and all 

our descriptions can then be understood if these three ground terms are understood.

A requirements description, whether indicative or optative, expresses a relationship 

over environment phenomena.  It will not be understandable unless it is made unam-

biguously clear what phenomena are denoted by each term of the description, and 

how occurrences of those phenomena are to be distinguished from non-occurrences.  

The uncertainties of natural language are not dispelled merely by resolving apparent 

conflicts between competing descriptions or viewpoints [Easterbrook 1993, Easter-

brook and Nuseibeh 1995].  Even when all conflicts have been resolved, it is still neces-

sary to provide an unambiguous mapping between formal terms and informal 

phenomena. 

The fundamental technique in providing this unambiguous mapping is to choose as 

ground terms only those phenomena that admit of sufficiently reliable and unambigu-

ous recognition.  It is  a serious mistake to assume that because a noun or verb or ad-

jective is conveniently used in informal natural language discourse it must necessarily 

denote some phenomenon or class of phenomena that can be treated as a ground term 

in discourse about the environment.  

Consider, for example, the development of a system for managing airline services.  It 

may seem natural to assume that flight may be treated as a ground term, because it is a 

term commonly used in informal discourse about airline services.  But the treatment of 

flights as recognisable and distinct individuals is fraught with difficulty.  Is a flight that 
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is cancelled a flight?  Can one flight be split into two legs flown by different planes?  

Can two flights be combined in one?  Can a heavily used shuttle flight be simultane-

ously flown by two different planes?  The difficulty of answering these questions indi-

cates that we should not attempt in this context to treat flights as ground terms.

3.3 Designations

Each choice of a ground term must be explicitly made and explicitly captured.  The 

appropriate tool for this purpose is a designation [Jackson and Zave 1993, Jackson 

1995].  A designation associates a formal ground term, such as a predicate, with the 

denoted phenomena, such as an event or entity class or a relationship over events or 

entities.  For example, we might write the designation:    

Mother(x,y) Â  x is the genetic mother of y

The left-hand side is the formal term; in this case the predicate Mother(x,y).  The 

right-hand side is a — necessarily — informal recognition rule by which the desig-

nated phenomena may be unambiguously recognised.  Mother(x,y) is true if and only 

if x is the genetic mother of y. 

Because the natural world is informal, the recognition rule in a designation is inevita-

bly imperfect.  However carefully it may be formulated, there may always be hard 

cases in which we are uncertain whether or not the rule applies.  But we must limit this 

uncertainty to an acceptable level.  

First, we must write the recognition rules with great care.  If we had written:

Mother(x,y) Â  x is the mother of y
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we would have left the reader uncertain whether we meant to include stepmothers and 

adoptive mothers.  If we had written:

Mother(x,y) Â  x is the natural mother of y 

we would have failed to clarify our intention in cases of surrogate motherhood.  Of 

course, even writing:

Mother(x,y) Â  x is the genetic mother of y

may be insufficient in some nightmare future in which genetic engineering makes it 

possible to combine in one child the genetic inheritance of more than one mother.

Second, we must recognise that while the recognition rule can not be perfect it must be 

good enough for the world as it is and as it will be during the operational lifetime of 

the system.  Appropriate choice of designated phenomena, therefore, depends heavily 

on the environment and system for which they are chosen.  The designation:

Bird(b) Â  b is a bird

may be appropriate to a system whose environment is a children’s zoo.  But it would 

not do at all for a system concerned with the study of evolution.

3.4 The Narrow Bridge

Appropriately chosen and carefully written designations provide a strong and narrow 

bridge between the environment and its description in requirements.  They define the 

scope of a requirement, in the sense of bounding the parts and aspects of the environ-

ment with which the requirement is concerned.  They clarify the meaning of the de-
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scriptions that use them, and allow those descriptions to be subjected to the test of fal-

sifiability.  For the requirements engineer who has written explicit designations there 

can be no refuge in the rejoinder “Well, it all depends on what you mean by X”.

Designations also allow us to reason more reliably about the environment — as we 

must if we are to convince ourselves that satisfaction of our specification will guarantee 

satisfaction of the requirements.  However good our designations, the informality of 

the world introduces an inevitable error factor into the mapping between the informal 

reality and its formal description.  The accuracy of our claim that the system will satisfy 

its requirements can not be better than this error factor.  By confining ourselves to 

ground terms with the most reliable possible recognition rules, we minimise the error 

factor, and consequently minimise also the error in the results of our formal reasoning 

based on that mapping.

3.5 The Use of Definition

Limiting our designations in this way may at first sight appear to be inconveniently re-

strictive.  The convenience of natural language locutions is not accidental, and we 

need to be able to extend the terminology of our descriptions beyond the narrow con-

fines of reliable designations.  The appropriate tool here is formal definition.  We define 

new terms on the basis of terms previously designated or previously formally defined.

These formal definitions add nothing to the bridge between the reality and its descrip-

tion; nor do they constitute fresh assertions about the reality.  They merely provide 

more convenient terminology for saying what we could have said less conveniently 

without them.  They may be thought of as abbreviations [Woodcock and Davies 1996]: 
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descriptions using the formally defined terms can always be rewritten to use only the 

designated ground terms on which they are ultimately based.  It follows [Woodcock 

and Davies 1996] that these formal definitions may not be recursive. 

The difference between designation and definition can be clearly seen from a simple 

example.  Suppose that for an inventory system we have designated an event class:

WidgetMvmt(t,e,m)  Â In event e a stock movement of m widgets occurs at time t

WidgetMvmt(t,e,m) is an observable phenomenon, recognisable if and only if an event 

e occurs at time t and involves the receipt (m≥ 0) or issue (m<0) of |m| widgets into or 

out of the warehouse.  In an inventory system we will surely be interested in the ques-

tion: How many widgets should we have in stock?  We may write a definition:

ExpectedWidgetStock(t,s)  Ó  s = (Σ  tm,e,m | WidgetMvmt(tm,e,m) ∧ tm<t · m ) 

ExpectedWidgetStock(t,s) is defined to mean that s is the cumulative sum of (positive 

and negative) movement quantities m, the sum being taken over all possible choices of 

tm, e, and m for which WidgetMvmt(tm,e,m) is true and tm<t.  That is, s is the sum of 

the movement quantities in all WidgetMvmt events occuring before t.  

ExpectedWidgetStock(t,s) is not designated; it is not a directly observable phenomenon 

at all.  It is simply defined in terms of WidgetMvmt events, which are the only observ-

able phenomena mentioned so far.  Any assertion about ExpectedWidgetStock is im-

mediately translatable into an assertion about WidgetMvmt events.  The definition 

adds nothing to our capacity to describe the environment — merely to the conven-

ience of our descriptions.
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Now suppose that we want to be able to answer the question: How many widgets do we 

actually have in stock?  We need to designate a fresh phenomenon:

WidgetStock(t,s)  Â  At time t the number of widgets in the warehouse is s

WidgetStock(t,s) is an independently observable phenomenon, recognisable as the 

presence of s widgets in the warehouse at time t.  The designation adds significantly to 

our capacity to describe the environment: using WidgetStock(t,s), we can make asser-

tions that can not be made without it.  For example, we can assert that the actual stock 

of widgets changes only by stock movement events — there is no theft or evaporation, 

and no spontaneous creation of widgets:

∀ t,s · WidgetStock(t,s)  ⇔  ExpectedWidgetStock(t,s)

For any choice of t and s, the actual stock at time t is s if and only if the expected stock 

at time t is s.  This assertion is equivalent to the less convenient:

∀ t,s · WidgetStock(t,s)  ⇔  s = (Σ  tm,e,m | WidgetMvmt(tm,e,m) ∧ tm<t · m ) 

3.6 Defining Individuals

The definition of ExpectedWidgetStock(t,s) increases the convenience of our descrip-

tions by adding a new predicate symbol.  Often, we want to add terminology that 

seems to involve new individuals.  

Suppose that in describing airline operations we have designated:

Plane(p)  Â  p is a plane

Land(e,p,t)  Â  In event e the plane p lands at time t
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TakeOff(e,p,t)  Â  In event e the plane p takes off at time t

These designations involve individuals that are planes, individuals that are points in 

time, and individuals that are events.  These are distinct individuals, in the sense that 

we can reliably and unambiguously distinguish one plane from another, one event 

from another, and one point in time from another.  Now we wish to deal with some of 

the considerations that make flight a useful term in talking about airline operations.  

We rejected flight earlier, on the grounds that there are no clear criteria for distin-

guishing one flight from another, and that it is therefore impossible to designate the 

term.  That rejection still holds.  But we can use definition to build up a set of identifi-

ers and defined predicates that will serve at least some of our purposes.

For example, we can define the notion of a trip as it applies to air travel.  An 

appropriate definition is:

( i · Trip(i) ∧ TripPlane(p,i) ∧ StartsTrip(e,i) ∧ FinishesTrip(f,i) )

   Ó  ( p,e,f,t1,t2 | Plane(p) ∧ TakeOff(e,p,t1) ∧ Land(f,p,t2) ∧ t1<t2 

 ∧ (¬ ∃ g,t3 · ( Land(g,p,t3) ∧ t1<t3<t2 ) )

The definition defines both the individual i and the four predicates — Trip, Trip-

Plane, StartsTrip and FinishesTrip — in which i may appear as an argument.  There is 

a defined individual i for each distinct choice of p, e, f, t1 and t2 such that Plane(p) and 

TakeOff(e,p,t1) and Land(f,p,t2) are all true, and t1 is earlier than t2, and no Land 

event of the same plane intervenes between e and f.  

The four predicates Trip, TripPlane, StartsTrip and FinishesTrip are defined to have 

their obvious meanings.  i is a trip; p is the plane involved in the trip; e and f are the 
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events that start and end the trip.  Intuitively, any matching pair of take-off and land 

events of the same plane defines a unique trip started by the take-off event and fin-

ished by the land event.  

The values of the identifier i for which Trip(i) is true by this definition do not denote 

independently observable individuals in the environment.  They can not, therefore, 

appear as arguments in designated terms.  But they can be used both in descriptions 

and in further definitions.  For example:

TripStartTime(i,t) Ó Trip(i) ∧ ∃ e,p · ( StartsTrip(e,i) ∧ TakeOff(e,p,t) )

The trip start time is defined to be the time of its starting take-off event.  

3.7 Using Definition to Classify Phenomena 

Introduction of a general term, whether by designation or by definition, implies a clas-

sification of phenomena.  Some events are take-off events of planes, and the others are 

not.  It is only because we can classify that we can describe anything at all.

But we may reasonably expect that different purposes will demand different classifica-

tions.  For example, in describing the environment of a PABX (Private Automatic 

Branch Exchange) for a telephone system, we may designate these phenomena 

(among others):

Ringing(p,t) Â  Telephone p is ringing at time t

OffHook(e,p,t) Â  In event e telephone p goes offhook at time t

SpeakerOn(e,p,t) Â  In event e the speaker button of telephone p is

aserqts4.wsd Page 23 of 30
07/10/96



pressed at time t

But in describing the requirements for a telephone system we may well want to form 

other, different, classifications of the same environment phenomena.  We can do so by 

making suitable definitions, such as:

Answer(e,p,t) Ó ( Ringing(p,t) ∧ ( OffHook(e,p,t) ∨ SpeakerOn(e,p,t) ) )

An answer event is defined to be a telephone event that occurs at a time when the 

phone is ringing and is either an offhook event or an event in which the speaker but-

ton is pressed.  

In principle there is no limit to the number of classes to which an individual may be-

long, and no reason to try to force the classes into a hierarchical structure.  Not all an-

swer events are offhook events; and not all offhook events are answer events.

3.8 The Discipline of Designation and Definition

The two tools, designation and definition, underpin an essential discipline in descrip-

tion.  Every term used in every description must be either designated or defined, and 

its meaning must therefore be directly or indirectly grounded in reliable observation 

of the environment.

This discipline is a safeguard against some of the more insidious difficulties of require-

ments description.  It inhibits the unthinking introduction of undefined terms that can 

be used with different intended meanings in different descriptions, or with meanings 

that subsequently prove hard to define unambiguously.  In this way it contributes to 

the prevention of ontological drift [Robinson and Bannon 1991], in which as abstrac-
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tions pass through the different subgroups of an organisation they are interpreted in 

terms of that particular community's set of meanings [Easterbrook 1993].

More generally, the benefit of the discipline is simply that with it we can know what 

our descriptions mean, and without it we can not.  Readers of descriptions that lack 

explicit designations are compelled to treat the descriptions themselves as if they were 

designations.  A rough initial idea of the meaning of a term, suggested by its natural 

language interpretation, is fleshed out by testing it against the assertions contained in 

the descriptions that have been read so far.  If the description fits the putative mean-

ing, that is a partial confirmation; if not, it is the meaning that must be adjusted.  As 

the reading of the descriptions proceeds, this process of testing and adjusting 

interpretations must be carried out, more or less simultaneously, for every term that 

should have been designated.  

Evidently, such a process precludes any critical check of the truth of the assertions en-

countered.  An assertion that seems false leads merely to adjusting the reader's inter-

pretation of the terms used, rather than to challenging the assertion itself.  Only when 

the possibilities of interpretation are exhausted can the assertion be challenged.  This 

will not occur until either a formal contradiction is discovered or the interpretation of 

a term is strained to a point that is no longer credible. 

The misunderstanding of requirements that can arise from a lack of explicit designa-

tions can have serious consequences.  For example, a contributory cause to the 1979 

accident at the Three Mile Island nuclear power plant was a control panel indication 

that a certain valve was shut when in fact it was open [Ferguson 1992].  The require-

ment formally expressible as:
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 IndicateValveShut(v,t)  ⇔ ValveShut(v,t)

— at time t the indicator for valve v must show that it is shut if and only if the valve is 

shut at that time — was wrongly implemented.  The indicator in fact showed whether 

the current was on or off in the electromagnet that actuated the valve, not whether the 

valve itself was open or shut.  The absence of a clear and explicit designation for the 

term ValveShut(v,t) allowed the mistake to be easily made.  

3.9 Support for the Discipline

To support this discipline, the notations and formalisms used must distinguish clearly 

between designated and defined terms, and between definitions and assertions.  The 

meaning of the definition:

ExpectedWidgetStock(t,s)  Ó  s = (Σ  tm,e,m | WidgetMvmt(tm,e,m) ∧ tm<t · m ) 

is quite different from that of the assertion:

WidgetStock(t,s)  ⇔  s = (Σ  tm,e,m | WidgetMvmt(tm,e,m) ∧ tm<t · m ) 

The difference is clearly indicated by the different symbols ( Ó and ⇔  ), and by the 

fact that the predicate WidgetStock is designated, while ExpectedWidgetStock is not.

By contrast, the distinction between definition and assertion is less clear in a language 

such as Z.  In a commonly adopted style of using the language [Wordsworth 1992] 

there is no easy and convenient way to distinguish these two schemas:  
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The schema on the left, we may reasonably suppose, is intended as a definition.  It de-

fines the term lent on the basis of the (implicitly designated) terms Book, Person, and 

lent_to.  A book is lent is defined to mean that there is some person it has been lent to.  

But the description on the right is intended as an environment assertion.  The terms 

Child, Desk, enrolled and assigned are all implicitly designated.  The assertion is that no 

enrolled child is without an assigned desk.  

3.10 Conclusion

Requirements engineering is not a branch of pure mathematics or logic: the meaning 

and applicability of an environment description depends crucially on its reliable inter-

pretation in the environment.  In requirements engineering we may not postpone in-

terpretation until description is complete: without its interpretation a description at 

any level is literally meaningless. 

The techniques discussed in this paper have been presented in terms of descriptions, 

but their underlying ideas are concerned with the phenomena of the system environ-

ment and how causal and constraint relationships among those phenomena may be re-

liably approximated and formalised.  These ideas appear capable of application in 

many domains, especially those in which safety-critical systems are deployed.
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