The Measure Representation: A Correction

Uzi Segal
California Institute of Technology
University of Toronto

SOCIAL SCIENCE WORKING PAPER 781

The Measure Representation: A Correction

Uzi Segal

Abstract

Wakker [9] and Puppe [2] point out a mistake in Theorem 1 in Segal [6]. This theorem deals with representing preference relations over lotteries by the measure of their epigraphs. An error in the theorem is that it gives wrong conditions concerning the continuity of the measure. This paper corrects the error. Another problem is that the axioms do not imply that the measure is bounded, therefore the measure representation applies only to subsets of the space of lotteries, although these subsets can become arbitrarily close to the whole space of lotteries. Some additional axioms (Segal [6, 7]), implying that the measure is a product measure (and hence anticipated utility), also guarantee that the measure is bounded.

Key Words: Anticipated utility, measure representation.

The Measure Representation: A Correction

Uzi.Segal*

Quiggin's [3] anticipated utility (or rank dependent) model for decision-making under uncertainty proved itself to be one of the most successful alternatives to expected utility theory. According to this model, the value of a lottery X with a cumulative distribution function F is given by

$$
\begin{equation*}
A U(X)=\int u(x) d f(F(x)) \tag{1}
\end{equation*}
$$

where $f:[0,1] \rightarrow[0,1]$ is strictly increasing, continuous, and onto. ${ }^{1}$ One possible interpretation of this model is that the preference relation \succeq over lotteries can be represented by a measure of the epigraphs of the lotteries cumulative distribution functions, and moreover, that this measure is a product measure. That is, there are two increasing functions u (defined on the outcomes axis) and f (defined on the probabilities axis) such that the measure of the rectangle $[x, y] \times[p, q]$ is $[u(y)-u(x)][f(q)-f(p)]$. Indeed, let $X=\left(x_{1}, p_{1} ; \ldots ; x_{n}, p_{n}\right)$ such that $x_{1} \leq \cdots \leq x_{n}$. Then (1) is reduced to

$$
\begin{equation*}
A U(X)=\sum_{i=1}^{n} u\left(x_{i}\right)\left[f\left(\sum_{j=0}^{2} p_{j}\right)-f\left(\sum_{j=0}^{i-1} p_{j}\right)\right] \tag{2}
\end{equation*}
$$

where $p_{0}=0$. If we assume $u(0)=0$, then the above expression can be viewed as the sum of the measures of the rectangles $\left[0, x_{i}\right] \times\left[\sum_{j=0}^{i-1} p_{j}, \sum_{j=0}^{i} p_{j}\right]$, each with the measure $\left[u\left(x_{i}\right)-u(0)\right]\left[f\left(\sum_{j=0}^{i} p_{j}\right)-f\left(\sum_{j=0}^{i-1} p_{j}\right)\right] .^{2}$

A natural extension of this model is to represent the preference relation \succeq on lotteries by a general (not necessarily product) measure of the lotteries' epigraphs. This functional is suggested and axiomatized in Segal [5, 6]. It turns out, however, that there are some mistakes in these papers (see Wakker [9] and Puppe [2]), concerning the questions what sets have zero measure, and what sets which have zero Lebesgue measure must also

[^0]have zero measure according to the representation functional. The aim of this paper is to answer these concerns. It turns out that lines that can serve as the lower boundary of the epigraph of a lottery (i.e., lines that can be created by connecting up pieces of the graph of a cumulative distribution function) are the only sets that must have zero measure. This result is quite natural - if such a set has positive measure, then the order does not satisfy continuity. However, other lines may have positive measure. In particular, the down-slopping line connecting the points $(0,1)$ and $(1,0)$ may have a positive measure (see Wakker [9] for examples).

Another issue is whether the-representation measure may go to ∞. This leads to the conclusion that the measure representation applies only to subsets of the space of lotteries, although these subsets can become arbitrarily close to the whole space of lotteries. Some additional axioms (Segal $[6,7]$), implying that the measure is a product measure (and hence anticipated utility), also guarantee that the measure is bounded.

1 Axioms and Theorem

Let L be the family of all the real random variables with outcomes in $[0, M]$ and let $\dot{L}=L \backslash\left\{\delta_{0}, \delta_{M}\right\}$. (δ_{x} is the degenerate lottery yielding x with probability 1). For every $X \in L$ define the cumulative distribution function F_{X} by $F_{X}(x)=\operatorname{Pr}(X \leq x)$. For $s>0$, let $L_{s}=\left\{X \in \dot{L}:\right.$ for $\left.x \in[0, s), F_{X}(x) \leq 1-s\right\}$. Note that if $s<s^{\prime}$ then $L_{s^{\prime}} \subseteq L_{s}$. For $s>0$, let Q_{s} be the square $[0, s) \times(1-s, 1]$. Let $D=[0, M] \times[0,1], \dot{D}=$ $D \backslash\{(0,1),(M, 1)\}$, and $D_{s}=\dot{D} \backslash Q_{s}$. For $X \in L$, let $X^{\circ}=\operatorname{Cl}\left(\left\{(x, p) \in D: p>F_{X}(x)\right\}\right)$.

Let L° be the family of all the non-empty closed sets S in D satisfying $[(x, p) \in S, 0 \leq$ $y \leq x, p \leq q \leq 1] \Rightarrow(y, q) \in S$. Obviously, for every $S \in L^{\circ}$ there is a unique lottery $X \in L$ such that $X^{\circ}=S$. The cumulative distribution function of this lottery is given by $F_{X}(x)=\min \{p:(x, p) \in S\}$. Denote this lottery X by S^{+}.

Let L^{*} be the set of all the finite lotteries X in \dot{L} of the form $\left(x_{1}, p_{1} ; \ldots\right.$; $\left.x_{n}, p_{n}\right)$ and let $\Lambda=\{[x, y] \times[p, q] \subset \dot{D}: x<y, p<q\}$. Obviously, if $X \in L^{*}$, then X° can be represented as a finite union of elements of $\Lambda .^{3}$ Let \succeq be a complete and transitive preference relation over L. Define the relations \succ and \sim by $X \succ Y$ if and only if $X \succeq Y$ but not $Y \succeq X$, and $X \sim Y$ if and only if $X \succeq Y$ and $Y \succeq X$. Let $\tilde{L} \subseteq L$. We say that the function $V: \tilde{L} \rightarrow \Re$ represents the preference relation \succeq on \tilde{L} if for all $X, Y \in \tilde{L}, V(X) \geq V(Y) \Leftrightarrow X \succeq Y$.

Consider the following three axioms:
(a) Continuity The preference relation \succeq on L is continuous in the topology of weak convergence. That is, let $X, Y, Y_{1}, Y_{2}, \ldots \in L$ such that at each continuity point

[^1]x of $F_{Y}, F_{Y_{i}}(x) \rightarrow F_{Y}(x)$. If, for every $i, X \succeq Y_{i}$, then $X \succeq Y$. If, for every i, $Y_{i} \succeq X$, then $Y \succeq X$.
(b) First-Order Stochastic Dominance If, for every $x, F_{X}(x) \leq F_{Y}(x)$ and there exists x such that $F_{X}(x)<F_{Y}(x)$, then $X \succ Y$.
(c) Irrelevance Let $X, Y, X^{\prime}, Y^{\prime} \in L$ and let S be a finite union of segments in $[0, M]$. If on $S, F_{X}(x)=F_{Y}(x)$ and $F_{X^{\prime}}(x)=F_{Y^{\prime}}(x)$, and on $[0, M] \backslash S, F_{X}(x)=F_{X^{\prime}}(x)$ and $F_{Y}(x)=F_{Y^{\prime}}(x)$, then $X \succeq Y$ if and only if $X^{\prime} \succeq Y^{\prime}$.

Definition A curve $C \subset D$ is the continuous image of a function $f:[0,1] \rightarrow D$. The curve C is increasing if $(x, p) \in C \Rightarrow C \cap\{(y, q): y<x, q>p\}=\emptyset\}$.

Note that a point in D is an increasing curve as is the set $\left\{(x, p) \in X^{\circ}: y>x, q<\right.$ $\left.p \Rightarrow(y, q) \notin X^{\circ}\right\}$ for all $X \in L$.

Let ϑ be a countably additive measure on \dot{D} such that for every $s>0, Q_{s} \cap D$ is a measurable set. For $s>0$, define the measure ϑ_{s} on D as follows: For every ϑ-measurable set $S \subseteq D, \vartheta_{s}(S)=\vartheta\left(S \backslash Q_{s}\right)$.

Theorem 1 The following three conditions are equivalent:

1. The preference relation \succeq on \dot{L} satisfies the continuity, first-order stochastic dominance, and irrelevance axioms.
2. There is a (countably) additive measure ϑ on \dot{D} satisfying
(a) For $S=[a, b] \times[p, q] \subset \dot{D}$ such that $a<b$ and $p<q, 0<\vartheta(S)<\infty$;
(b) If $C \subset \dot{D}$ is an increasing curve, then $\vartheta(C)=0$; and
(c) The preference relation \succeq on L_{s} can be represented by $V_{s}(X)=\vartheta_{s}\left(X^{\circ}\right)$.
3. There is a measure ϑ as in condition 2 satisfying (a), (b), and
(c^{\prime}) For every $X, Y \in \dot{L}, X \succeq Y$ if and only if $\vartheta\left(X^{\circ} \backslash Y^{\circ}\right) \geq \vartheta\left(Y^{\circ} \backslash X^{\circ}\right)$.

Proof: (2) $\Leftrightarrow(3)$: Let $X, Y \in \dot{L}$. By definition, there exists $\varepsilon>0$ such that $F_{X}(0), F_{Y}(0)<$ $1-\varepsilon$. Since cumulative distribution functions are continuous from the right, there is $\varepsilon^{\prime}>0$ such that for $z \leq \varepsilon^{\prime}, F_{X}(z), F_{Y}(z)<1-\varepsilon$. Define $s=\min \left\{\varepsilon, \varepsilon^{\prime}\right\}$ and obtain that $X, Y \in L_{s}$, hence $Q_{s} \subseteq X^{\circ} \cap Y^{\circ}$. It follows that $\vartheta\left(X^{\circ} \backslash Y^{\circ}\right) \geq \vartheta\left(Y^{\circ} \backslash X^{\circ}\right)$ if and only if $\vartheta\left(X^{\circ} \backslash Q_{s}\right) \geq \vartheta\left(Y^{\circ} \backslash Q_{s}\right)$ if and only if $\vartheta_{s}\left(X^{\circ}\right) \geq \vartheta\left(Y^{\circ}\right)$. (Note that $X^{\circ} \backslash Q_{s}=$ $\left.\left(X^{\circ} \backslash Y^{\circ}\right) \cup\left(\left[X^{\circ} \cap Y^{\circ}\right] \backslash Q_{s}\right)\right)$.
(2) \Rightarrow (1): Let $X_{n} \rightarrow X$. It follows by the first-order stochastic dominance axiom that the condition in the continuity assumption is trivially satisfied if $X \in\left\{\delta_{0}, \delta_{M}\right\}$ (although
$\left.\delta_{0}, \delta_{M} \notin \dot{L}\right)$. Assume therefore that there exists $s>0$ such that $X \in L_{s}$. Without loss of generality, we may assume that for every $n, X_{n} \in L_{s}$. To show that the order \succeq is continuous, one has to prove that $V\left(X_{n}\right)-V(X) \rightarrow 0$. Let S_{n} be the symmetric difference between X_{n}° and $X^{\circ}, S_{n}=\left(X_{n}^{\circ} \cup X^{\circ}\right) \backslash\left(X_{n}^{\circ} \cap X^{\circ}\right)$ and let $T_{n}=\cup_{i=n}^{\infty} S_{i}$. Note that $\vartheta\left(S_{n}\right)=\vartheta_{s}\left(S_{n}\right) \leq \vartheta_{s}\left(X^{\circ} \cup X_{n}^{\circ}\right)<\infty$. Since $V(X)=\vartheta_{s}\left(X^{\circ}\right)$, it follows that $\left|V\left(X_{n}\right)-V(X)\right| \leq \vartheta_{s}\left(S_{n}\right)=\vartheta\left(S_{n}\right) \leq \vartheta\left(T_{n}\right)$. Let \hat{X} be the south-east boundary of X°, that is, $\hat{X}=\left\{(x, p) \in X^{\circ}: y>x, q<p \Rightarrow(y, q) \notin X^{\circ}\right\}$. As mentioned above, \hat{X} is an increasing curve, hence $\vartheta(\hat{X})=0$. Moreover, $\cap_{n=1}^{\infty} T_{n} \subset \hat{X}$. Otherwise, let $(x, p) \in\left(\cap_{n=1}^{\infty} T_{n}\right) \backslash \hat{X}$. Since $(x, p) \notin \hat{X}$, either $p>F_{X}(x)$ or $p<\lim _{y \rightarrow x}-F_{X}(y)$. We assumed that $(x, p) \in \cap_{n=1}^{\infty} T_{n}=\cap_{n=1}^{\infty} \cup_{i=n}^{\infty} S_{i}$ hence there is a subsequence $\left\{X_{n}\right\}$ such that for every $j,(x, p) \in S_{n}$. If $p>F_{X}(x)$, then $(x, p) \in X^{\circ}$. Therefore by definition, for every $j,(x, p) \notin X_{n_{j}}^{\circ}$. Hence, for every $j, \lim _{y \rightarrow x^{-}} F_{X_{n_{j}}}(y)>p$. Since cumulative distribution functions are continuous from the right and increasing, it follows that there exists $\varepsilon>0$ such that for all $y \in[x, x+\varepsilon)$,

$$
F_{X_{n_{j}}}(y)>p>\frac{p+F_{X}(x)}{2}>F_{X}(y) .
$$

Since there must be a continuity point of F_{X} in $[x, x+\varepsilon)$, it follows that $X_{n} \nrightarrow X$. If $p<\lim _{y \rightarrow x^{-}} F_{X}(y)$, then $(x, p) \notin X^{\circ}$. Therefore for every $j,(x, p) \in X_{n}^{\circ}$, and $\lim _{y \rightarrow x^{-}} F_{X_{n_{j}}}(y) \leq p$. As before it follows that there exists $\varepsilon>0$ such that for $y \in$ $(x-\varepsilon, x]$,

$$
F_{X_{n_{j}}}(y) \leq p<\frac{p+\lim _{y \rightarrow x^{-}} F_{X}(y)}{2}<F_{X}(y)
$$

Here too, since there must be a continuity point of F_{X} in $(x-\varepsilon, x]$, it follows that $X_{n} \nrightarrow X$. Since $\cap_{n=1}^{\infty} T_{n} \subset \hat{X}$ and $\vartheta(\hat{X})=0$, it follows that $\lim \vartheta\left(T_{n}\right)=0$ (see Royden [4, p. 192]). First-order stochastic dominance follows by condition 2-(a) and the irrelevance condition follows by the fact that \succeq on L_{s} can be represented by a measure.
(1) $\Rightarrow(2):$ Let $\Psi=\left\{(X, \lambda) \in \dot{L} \times \Lambda: \operatorname{Int}\left(X^{\circ}\right) \cap \operatorname{Int}(\lambda)=\emptyset\right.$ and $\left.X^{\circ} \cup \lambda \in L^{\circ}\right\}$. The irrelevance axiom implies that if $(X, \lambda),(Y, \lambda) \in \Psi$, then $X \succeq Y$ if and only if $\left(X^{\circ} \cup \lambda\right)^{+} \succeq\left(Y^{\circ} \cup \lambda\right)^{+}$. Indeed, for $\lambda=[x, y] \times[p, q] \in \Lambda$, let $S=(x, y]$. Since $(X, \lambda),(Y, \lambda) \in \Psi$, it follows that for every $z \in S, F_{X}(z)=F_{Y}(z)=q$. Also, for every $z \in S, F_{(X \circ \cup \lambda)+}(z)=F_{\left(Y^{\circ} \cup \lambda\right)+}(z)=p$. Of course, for $z \notin(x, y], F_{X}(z)=F_{\left(X^{\circ} \cup \mathcal{\lambda}\right)^{+}}(z)$ and $F_{Y}(z)=F_{(Y \circ \cup \lambda)+}(z)$.

Define on Λ a partial order R_{X} by $\lambda_{1} R_{X} \lambda_{2}$ if and only if $\left(X, \lambda_{1}\right),\left(X, \lambda_{2}\right) \in \Psi$ and $\left(X^{\circ} \cup \lambda_{1}\right)^{+} \succeq\left(X^{\circ} \cup \lambda_{2}\right)^{+}$. By the irrelevance axiom we obtain:

Fact 1 For every X_{1} and $X_{2}, R_{X_{1}}$ and $R_{X_{2}}$ do not contradict each other. That is, if λ_{1} and λ_{2} can be compared by both $R_{X_{1}}$ and $R_{X_{2}}$, then $\lambda_{1} R_{X_{1}} \lambda_{2}$ if and only if $\lambda_{1} R_{X_{2}} \lambda_{2}$.
(To see why Fact i follows from the irrelevance axiom, let $\lambda_{i}=\left[x_{i}, y_{i}\right] \times\left[p_{i}, q_{i}\right], i=1, \hat{2}$ and define $\left.S=\left(x_{1}, y_{1}\right] \cup\left(x_{2}, y_{2}\right]\right)$.

Let $R=\cup_{X} R_{X}$. That is, $\lambda_{1} R . \lambda_{2}$ if and only if there exists X such that $\lambda_{1} R_{X} \lambda_{2}$. Define $\lambda_{1} I \lambda_{2}$ if and only if $\lambda_{1} R \lambda_{2}$ and $\lambda_{2} R \lambda_{1}$.

Let $\lambda_{i}=\left[x_{i}, y_{i}\right] \times\left[p_{i}, q_{i}\right], i=1,2$. Obviously, λ_{1} and λ_{2} can be compared by R if and only if either $y_{1} \leq x_{2}$ and $q_{1} \leq p_{2}$, or $y_{2} \leq x_{1}$ and $q_{2} \leq p_{1}$. It thus follows that for every $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that any two of them can be compared by R there is a lottery X such that $\left(X, \lambda_{i}\right) \in \Psi, i=1,2,3$. Therefore we obtain:

Fact 2 if $\lambda_{1} I \lambda_{2}, \lambda_{2} I \lambda_{3}$, and λ_{1} and λ_{3} can be compared by R, then $\lambda_{1} I \lambda_{3}$.
Let $x_{1}=0, x_{4}=M$, and $p_{k}=\frac{k-1}{3}, k=1, \ldots, 4$. By the continuity and firstorder stochastic dominance axioms there are $0<x_{2}<x_{3}<M$ such that ($\left[x_{k}, x_{k+1}\right] \times$ $\left.\left[p_{k}, p_{k+1}\right]\right) I\left(\left[x_{\ell}, x_{\ell+1}\right] \times\left[p_{\ell}, p_{\ell+1}\right]\right), k, \ell \in\{1,2,3\}$. Define the strictly increasing sequences $y_{j}^{k, i}, j=0, \ldots, 2^{i} ; i=0, \ldots, \infty ; k=1,2,3$, such that

1. $y_{0}^{k, i}=x_{k}, y_{2}^{k, i}=x_{k+1}, i=0, \ldots, \infty ; k=1,2,3$
2. $y_{2 j}^{k, i}=y_{j}^{k, i-1}, j=0, \ldots, 2^{i-1} ; i=1, \ldots, \infty ; k=1,2,3$
3. $\left(\left[y_{j}^{k, i}, y_{j+1}^{k, i}\right] \times\left[p_{k}, p_{k+1}\right]\right) I\left(\left[y_{j^{\prime}}^{\ell, i}, y_{j^{\prime}+1}^{\ell, i}\right] \times\left[p_{\ell}, p_{\ell+1}\right]\right), j, j^{\prime}=0, \ldots, 2^{i}-1 ; i=0, \ldots, \infty ;$ $k \neq \ell ; k, \ell \in\{1,2,3\}$.

The only non-trivial requirement is condition 3 . By the choice of x_{2} and x_{3}, this condition is satisfied for the case $i=0$. Suppose $y_{j}^{k, i}, j=0, \ldots, 2^{i} ; i=0, \ldots, i_{0} ; k=1,2,3$, satisfy the above three conditions, and construct $y_{j}^{k, i_{0}+1}, j=0, \ldots, 2^{i_{0}+1} ; k=1,2,3$, as follows: For $j=2 m$, let $y_{j}^{k, i_{0}+1}=y_{m}^{k, i_{0}}, m=0, \ldots, 2^{i_{0}} ; k=1,2,3$. By the continuity and firstorder stochastic dominance assumptions, there are $y_{1}^{k, i_{0}+1} \in\left(x_{k}, y_{1}^{k, i_{0}}\right), k=1,2,3$, such that $\lambda_{m} I \cdots I \lambda_{m+1}, m=1, \ldots, 4$, where

$$
\lambda_{k}= \begin{cases}{\left[x_{k}, y_{1}^{k, i_{0}+1}\right] \times\left[p_{k}, p_{k+1}\right]} & k=1,2,3 \\ {\left[y_{1}^{k-3, i_{0}+1}, y_{1}^{k-3, i_{0}}\right] \times\left[p_{k-3}, p_{k-2}\right]} & k=4,5\end{cases}
$$

By Fact 2 it follows that $\lambda_{1} I \lambda_{3}, \lambda_{3} I \lambda_{5}, \lambda_{1} I \lambda_{5}$, and $\lambda_{2} I \lambda_{4}$. Also, $\lambda_{5} I \lambda_{6}=\left[y_{1}^{3, i_{0}+1}, y_{1}^{3, i_{0}}\right] \times$ [p_{3}, p_{4}]. This follows by

$$
\begin{aligned}
& \left(y_{1}^{1, i_{0}+1}, \frac{1}{3} ; y_{1}^{2, i_{0}+1}, \frac{1}{3} ; y_{1}^{3, i_{0}}, \frac{1}{3}\right) \sim \\
& \left(y_{1}^{1, i_{0}}, \frac{1}{3} ; x_{2}, \frac{1}{3} ; y_{1}^{3, i_{0}}, \frac{1}{3}\right) \sim \\
& \left(y_{1}^{1, i_{0}}, \frac{1}{3} ; y_{1}^{2, i_{0}}, \frac{1}{3} ; x_{3}, \frac{1}{3}\right) \sim \\
& \left(y_{1}^{1, i_{0}}, \frac{1}{3} ; y_{1}^{2, i_{0}+1}, \frac{1}{3} ; y_{1}^{3, i_{0}+1}, \frac{1}{3}\right) \sim \\
& \left(y_{1}^{1, i_{0}+1}, \frac{1}{3} ; y_{1}^{2, i_{0}}, \frac{1}{3} ; y_{1}^{3, i_{0}+1}, \frac{1}{3}\right)
\end{aligned}
$$

Of course, $\lambda_{m} I \lambda_{6}, m=1,2,4$. One can now use λ_{1} to define $y_{j}^{k, i_{0}+1} \in\left(y_{\frac{2-1}{2}}^{k, i_{0}}, y_{\frac{1+1}{2}}^{k, i_{0}}\right), j=$ $3,5, \ldots, 2^{i_{0}+1}-1 ; k=2,3$, and λ_{3} to define $y_{j}^{1, i_{0}+1} \in\left(y_{\frac{,-1}{2}}^{1, i_{0}}, y_{\frac{1+}{2}}^{1, i_{0}}\right), j=3,5, \ldots, 2^{i_{0}+1}-1$. Condition 3 is clearly satisfied. Moreover, by the definition of I and by the first-order stochastic dominance axiom, for a given i,

$$
\begin{align*}
& \left(y_{j_{1}}^{1, i}, \frac{1}{3} ; y_{j_{2}}^{2, i}, \frac{1}{3} ; y_{j_{3}}^{3, i}, \frac{1}{3}\right) \succeq\left(y_{j_{1}^{\prime}, i}^{1, i}, \frac{1}{3} ; y_{j_{2}^{\prime}}^{2, i}, \frac{1}{3} ; y_{j_{3}^{\prime}}^{3, i}, \frac{1}{3}\right) \Leftrightarrow \\
& j_{1}+j_{2}+j_{3} \geq j_{1}^{\prime}+j_{2}^{\prime}+j_{3}^{\prime} \tag{3}
\end{align*}
$$

The next step in the proof is to show that the sequence $\left\{y_{j}^{k, i}\right\}, j=0, \ldots, 2^{i} ; i=$ $0, \ldots, \infty$ is dense in $\left[x_{k}, x_{k+1}\right], k=1,2,3$. Suppose, for example, that there are no values of $\left\{y_{j}^{1, i}\right\}$ in (α, β) and assume that (α, β) is maximal in that sense. There is a sequence $\left\{j_{i}\right\}_{i=0}^{\infty}$ such that $j_{0}=0, j_{i} \in\left\{2 j_{i-1}, 2 j_{i-1}+1\right\}$ and $y_{j_{i}+1}^{2, i}-y_{j_{i}}^{2, i} \leq$ $\left(x_{3}-x_{2}\right) \cdot 2^{-i}$. By Cantor's Lemma $\left\{y_{j_{i}}^{2, i}\right\}_{i=0}^{\infty}$ and $\left\{y_{j_{i}+1}^{2, i}\right\}_{i=0}^{\infty}$ have a common limit, denote it y^{2}. Let m_{i} satisfy $y_{m_{i}}^{1, i} \leq \alpha$ and $\beta \leq y_{m_{i+1}}^{1, i}, i=1, \ldots, \infty$. By construction, $\left(y_{m_{i}}^{1, i}, \frac{1}{3} ; y_{j_{i}+1}^{2, i}, \frac{1}{3} ; x_{3}, \frac{1}{3}\right) \sim\left(y_{m_{i}+1}^{1, i}, \frac{1}{3} ; y_{j_{i}}^{2, i}, \frac{1}{3} ; x_{3}, \frac{1}{3}\right)$. By letting i approach ∞ one obtains $\left(\alpha, \frac{1}{3} ; y^{2}, \frac{1}{3} ; x_{3}, \frac{1}{3}\right) \sim\left(\beta, \frac{1}{3} ; y^{2}, \frac{1}{3} ; x_{3}, \frac{1}{3}\right)$, a violation of the first-order stochastic dominance axiom.

Define $\vartheta\left(\left[y_{j}^{k, i}, y_{j+1}^{k, i}\right] \times\left[p_{k}, p_{k+1}\right]\right)=2^{-i}, j=0, \ldots, 2^{i}-1 ; i=0, \ldots, \infty ; k=1,2,3$. For $x \in\left[x_{k}, x_{k+1}\right)$, let $j_{i}(x)$ be such that $y_{j_{i}(x)}^{k, i} \leq x<y_{j_{i}(x)+1}^{k, i}$. Define $\varphi^{k}:\left[x_{k}, x_{k+1}\right] \rightarrow \Re$ by $\varphi^{k}(x)=\lim _{i \rightarrow \infty} j_{i}(x) \cdot 2^{-i}, k=1,2,3$. By the above argument φ^{k} is strictly increasing. It is also continuous. Let z_{n} go down to $z \in\left[x_{k}, x_{k+1}\right]$. For every i there exists n such that $z_{n}<y_{j_{i}(z)+1}^{k, i}$ hence

$$
\begin{aligned}
\varphi^{k}(z) \leq & \lim _{n \rightarrow \infty} \varphi^{k}\left(z_{n}\right) \leq \\
& \lim _{i \rightarrow \infty} \varphi^{k}\left(y_{j_{1}(z)+1}^{k, i}\right)= \\
& \lim _{i \rightarrow \infty}\left[\varphi^{k}\left(y_{j_{i}(z)}^{k, i}\right)+2^{-i}\right]=\varphi^{k}(z) .
\end{aligned}
$$

A similar proof holds for the case where z_{n} goes up to $z \in\left(x_{k}, x_{k+1}\right]$. It follows by continuity from (3) that for $y^{k}, z^{k} \in\left[x_{k}, x_{k+1}\right], k=1,2,3$,

$$
\begin{align*}
& \left(y^{1}, \frac{1}{3} ; y^{2}, \frac{1}{3} ; y^{3}, \frac{1}{3}\right) \succeq\left(z^{1}, \frac{1}{3} ; z^{2}, \frac{1}{3} ; z^{3}, \frac{1}{3}\right) \Leftrightarrow \\
& \varphi^{1}\left(y^{1}\right)+\varphi^{2}\left(y^{2}\right)+\varphi^{3}\left(y^{3}\right) \geq \varphi^{1}\left(z^{1}\right)+\varphi^{2}\left(z^{2}\right)+\varphi^{3}\left(z^{3}\right) \tag{4}
\end{align*}
$$

Let $\sigma(1)=2, \sigma(2)=3$, and $\sigma(3)=1$. By continuity and first-order stochastic dominance it follows that for every $\lambda \subset \bar{\lambda}^{k}=\left[x_{k}, x_{k+1}\right] \times\left[p_{k}, p_{k+1}\right]$ there is $y \in\left(x_{\sigma(k)}, x_{\sigma(k)+1}\right]$ such that $\lambda I\left(\left[x_{\sigma(k)}, y\right] \times\left[p_{\sigma(k)}, p_{\sigma(k)+1}\right]\right)$. Define

$$
\vartheta(\lambda)=\varphi^{\sigma(k)}(y)>0 .
$$

Note that by Fact $2, \lambda I\left(\left[x_{\sigma^{-1}(k)}, z\right] \times\left[p_{\sigma^{-1}(k)}, \tilde{p}_{\sigma^{-1}}(k)+1\right]\right)$, where $\varphi^{\sigma(k)}(y)=\varphi^{\sigma^{-1}(k)}(z)$. The set-function ϑ satisfies the following condition:

Claim 1 Let $\lambda_{1}, \lambda_{2} \subset \bar{\lambda}^{k}$. If $\lambda_{1} \cup \lambda_{2} \in \Lambda$ and $\operatorname{Int}\left(\lambda_{1}\right) \cap \operatorname{Int}\left(\lambda_{2}\right)=\emptyset$, then $\vartheta\left(\lambda_{1} \cup \lambda_{2}\right)=$

$$
\vartheta\left(\lambda_{1}\right)+\vartheta\left(\lambda_{2}\right)
$$

Proof: Let $X=\left(x_{\sigma(k)}, \frac{1}{3} ; x_{\sigma^{-1}(k)}, \frac{1}{3} ; z_{1}, q_{1} ; \ldots ; z_{n}, q_{n}\right) \in L$ such that $z_{1}, \ldots, z_{n} \in\left[x_{k}, x_{k+1}\right]$ and $\left(X, \lambda_{1}\right),\left(X, \lambda_{1} \cup \lambda_{2}\right) \in \Psi$ (assume, without loss of generality, that λ_{1} is either above or to the left of λ_{2}). It follows by (4) and Fact 1 that

$$
\begin{aligned}
& \left(X^{\circ} \cup \lambda_{1} \cup \lambda_{2}\right)^{+} \sim \\
& \left(X^{\circ} \cup \lambda_{1} \cup\left(\left[x_{\sigma^{-1}(k)},\left[\varphi^{\sigma^{-1}(k)}\right]^{-1}\left(\vartheta\left(\lambda_{2}\right)\right)\right] \times\left[p_{\sigma^{-1}(k)}, p_{\sigma^{-1}(k)+1}\right]\right)\right)^{+} \sim \\
& \left(X^{\circ} \cup\left(\left[x_{\sigma(k)},\left[\varphi^{\sigma(k)}\right]^{-1}\left(\vartheta\left(\lambda_{1}\right)\right)\right] \times\left[p_{\sigma(k)}, p_{\sigma(k)+1}\right]\right) \cup\right. \\
& \left.\quad\left(\left[x_{\sigma^{-1}(k)},\left[\varphi^{\sigma^{-1}(k)}\right]^{-1}\left(\vartheta\left(\lambda_{2}\right)\right)\right] \times\left[p_{\sigma^{-1}(k)}, p_{\sigma^{-1}(k)+1}\right]\right)\right)^{+} \sim \\
& \left(X^{\circ} \cup\left(\left[x_{\sigma(k)},\left[\varphi^{\sigma(k)}\right]^{-1}\left(\vartheta\left(\lambda_{1}\right)+\vartheta\left(\lambda_{2}\right)\right)\right] \times\left[p_{\sigma(k)}, p_{\sigma(k)+1}\right]\right)\right)^{+},
\end{aligned}
$$

hence the claim.

Define $\psi^{k}:\left[x_{k}, x_{k+1}\right] \times\left[p_{k}, p_{k+1}\right] \rightarrow \Re$ by $\psi^{k}(x, p)=\vartheta\left(\left[x_{k}, x\right] \times\left[p, p_{k+1}\right]\right)$. The function ψ^{k} satisfies the following condition:

Claim 2 For every $x_{k} \leq x<y \leq x_{k+1}$ and $p_{k} \leq q<p \leq p_{k+1}$,

$$
\psi^{k}(x, p)+\psi^{k}(y, q)-\psi^{k}(x, q)-\psi^{k}(y, p) \geq 0
$$

Proof: It follows by Claim 1 that $\psi^{k}(x, p)+\psi^{k}(y, q)-\psi^{k}(x, q)-\psi^{k}(y, p)=\vartheta([x, y] \times$ $[p, q])>0$.

By the continuity of \succeq it follows that ψ^{k} is continuous. Therefore, ϑ can be uniquely extended to a countable additive measure on $\bar{\lambda}^{k}$ (see Billingsley [1, Section 12]). Moreover, it follows by (4) that the order \succeq on $D^{\prime}=\left\{X=\left(x_{1}, p_{1} ; \ldots ; x_{n}, p_{n}\right) \in L\right.$: for $x \in$ $\left.\left[x_{k}, x_{k+1}\right), p_{k} \leq F_{X}(x) \leq p_{k+1}, k=1,2,3\right\}$ can be represented by $\vartheta\left(X^{\circ} \backslash\left(x_{1}, \frac{1}{3} ; x_{2}, \frac{1}{3} ; x_{3}, \frac{1}{3}\right)^{\circ}\right)$. Also, by the continuity of \succeq, if $C \subset D^{\prime}$ is an increasing curve, then $\vartheta(C)=0$.

The next step in the proof is to extend ϑ to \dot{D}. It follows by continuity and first-order stochastic dominance that for every $x_{3} \leq y_{1}<y_{2}<M$ and $\frac{2}{3} \leq q_{1}<q_{2}<1$ such that $\lambda=\left(\left[y_{1}, y_{2}\right] \times\left[q_{1}, q_{2}\right]\right) I\left(\left[y_{2}, M\right] \times\left[q_{2}, 1\right]\right)$ there is a finite sequence of probabilities $\frac{1}{3}=$ $r_{1}<\cdots<r_{n} \leq q_{1}$ such that $\lambda I\left(\left[0, x_{3}\right] \times\left[r_{i}, r_{i+1}\right]\right) R\left(\left[0, x_{3}\right] \times\left[r_{n}, q_{1}\right]\right), i=1, \ldots, n-1 .{ }^{4}$ Suppose instead that the sequence $\left\{r_{i}\right\}$ is not finite and let $\lim r_{i}=r \leq q_{1}$. For every i,

$$
\begin{aligned}
& \left(0,1-r_{i} ; x_{3}, q_{1}-r_{i} ; y_{1}, q_{2}-q_{1} ; y_{2}, 1-q_{2}\right) \sim \\
& \left(0,1-r_{i+1} ; x_{3}, q_{1}-r_{i} ; y_{2}, 1-q_{1}\right) \sim \\
& \left(0,1-r_{i+2} ; x_{3}, q_{1}-r_{i} ; y_{2}, q_{2}-q_{1} ; M, 1-q_{2}\right)
\end{aligned}
$$

[^2]As i approaches infinity we obtain that

$$
\begin{aligned}
& \left(0,1-r ; x_{3}, q_{1}-r_{i} ; y_{2}, 1-q_{1}\right) \sim \\
& \left(0,1-r ; x_{3}, q_{1}-r_{i} ; y_{2}, q_{2}-q_{1} ; M, 1-q_{2}\right),
\end{aligned}
$$

a contradiction. The measure ϑ can thus be extended to $\left(\left[0, x_{2}\right] \times\left[\frac{1}{3}, \frac{2}{3}\right]\right) \cup\left(\left[0, x_{3}\right] \times\left[\frac{2}{3}, q_{1}\right]\right)$. Since q_{1} can be taken arbitrarily close to 1 , we obtain that the measure ϑ can be extended to $\left(\left[0, x_{2}\right] \times\left[\frac{1}{3}, \frac{2}{3}\right]\right) \cup\left(\left[0, x_{3}\right] \times\left[\frac{2}{3}, 1\right)\right)$.

In a similar way the measure ϑ can be extended also to $\left(\left(0, x_{2}\right] \times\left[\frac{1}{3}, 1\right]\right) \cup\left(\left[x_{2}, x_{3}\right] \times\right.$ $\left.\left[\frac{2}{3}, 1\right]\right)$. For this, we use as benchmark the sets $\left(\left[0, y_{3}\right] \times\left[0, q_{3}\right]\right) I\left(\left[y_{3}, y_{4}\right] \times\left[q_{3}, q_{4}\right]\right)$ where $0<y_{3}<y_{4}<x_{2}$ and $0<q_{3}<q_{4}<\frac{1}{3}$. (Both these sets are therefore in $\bar{\lambda}^{1}$). In a similar way we can extend the measure to $\left(\left[x_{2}, x_{3}\right] \times\left[0, \frac{1}{3}\right]\right) \cup\left(\left[x_{3}, 1\right) \times\left[0, \frac{2}{3}\right]\right)$ and to $\left(\left[x_{2}, 1\right] \times\left(0, \frac{1}{3}\right]\right) \cup\left(\left[x_{3}, 1\right] \times\left[\frac{1}{3}, \frac{2}{3}\right]\right)$. The measure ϑ is thus extended to \dot{D}. It may happen that the measure ϑ does not represent the order \succeq in L^{*} because it may be unbounded (see Wakker [9] for an example). Nevertheless, by its construction, ϑ, and hence ϑ_{s}, is bounded on D_{s}. The proof that ϑ_{s} represents the order on L_{s}^{*} (the set of finite lotteries in L_{s}) is similar to the proof that ϑ represents the order for lotteries X such that $\hat{X} \subset D^{\prime}$ and so is the proof that if $C \subset \dot{D}$ is an increasing curve then $\vartheta(C)=0$. The extension for L_{s} follows by continuity.

The rank dependent (or anticipated utility) functional is a product measure. Theorem 2 in [6] and Theorem 9 in [7] prove that under some further conditions, the measure ϑ is a product measure. These proofs implicitly assume that ϑ on D is bounded. Although this is no longer true, the theorems still hold. To see this, observe that ϑ is bounded on $[\varepsilon, M-\varepsilon] \times[0,1]$ and on $[0, M] \times[\varepsilon, 1-\varepsilon]$ for all ε. Let $L_{\varepsilon}=\left\{X \in L: \lim _{x \rightarrow \varepsilon} F_{X}(x)=\right.$ $\left.0, F_{X}(M-\varepsilon)=1\right\}$ and let $L_{\varepsilon}^{*}=\left\{X \in L: F_{X}(0)=\varepsilon, \lim _{x \rightarrow M} F_{X}(x)=1-\varepsilon\right\}$. The above mentioned theorems thus imply the existence of functions $f_{\varepsilon}:[0,1] \rightarrow \Re$, $u_{\varepsilon}:[\varepsilon, M-\varepsilon] \rightarrow \Re, f_{\varepsilon}^{*}:[\varepsilon, 1-\varepsilon] \rightarrow \Re$, and $u_{\varepsilon}^{*}:[0, M] \rightarrow \Re$, each of them unique up to positive linear transformations, such that the order \succeq on L_{ε} can be represented by $\int_{\varepsilon}^{M-\varepsilon} u_{\varepsilon} d f_{\varepsilon}\left(F_{X}(x)\right)$ and the order \succeq on L_{ε}^{*} can be represented by $\int_{0}^{M} u_{\varepsilon}^{*} d f_{\varepsilon}^{*}\left(F_{X}(x)\right)$. For every $\bar{\varepsilon}>0$ and for every $\varepsilon \in(0, \bar{\varepsilon}]$, all these representations cardinally coincide on $L_{\bar{\varepsilon}} \cap L_{\bar{\varepsilon}}^{*}$. Hence, without loss of generality, for every $p \in[0,1]$ and $\varepsilon, \varepsilon^{\prime}>0, f_{\varepsilon}(p)=f_{\varepsilon^{\prime}}(p):=f(p)$. Similarly, for every $x \in[0, M]$ and $\varepsilon, \varepsilon^{\prime}>0, u_{\varepsilon}^{*}(x)=u_{\varepsilon^{\prime}}^{*}(x):=u(x)$. Also, $\forall p \in(\bar{\varepsilon}, 1-\bar{\varepsilon})$ and $\forall \varepsilon \in(0, \bar{\varepsilon}], f_{\varepsilon}^{*}(p)=f(p)$ and $\forall x \in(\bar{\varepsilon}, M-\bar{\varepsilon})$ and $\forall \varepsilon \in(0, \bar{\varepsilon}], u_{\varepsilon}(x)=u(x)$. It follows by the continuity axiom that the order \succeq on L can be represented by $\int_{0}^{M} u(x) d f\left(F_{X}(x)\right)$.

References

[1] Billingsley, P. (1979). Probability and Measure. New York: John Wiley \& Sons.
[2] Puppe, C. (1990). "The irrelevance axiom, relative utility and choice under risk," University of Karlsruhe, Department of Statistics and Mathematical Economics, Karlsruhe, Germany.
[3] Quiggin, J. (1982). "A Theory of Anticipated Utility," Journal of Economic Behavior and Organization 3, 225-243.
[4] Royden, H.L. (1963). Real Analysis. New York: MacMillan.
[5] Segal, U. (1984). "Nonlinear Decision Weights with the Independence Axiom," UCLA Working Paper \#353.
[6] Segal, U. (1989). "Anticipated utility: A measure representation approach," Annals of Operation Research 19, 359-373.
[7] Segal, U. (1990). "Two-stage lotteries without the reduction axiom," Econometrica 58, 349-377.
[8] Tversky, A. and Kahneman D. (1991). "Cumulative Prospect Theory: An Analysis of Decision Under Uncertainty," mimeo.
[9] Wakker, P. (1991). "Counterexamples to Segal's Measure Representation Theorem," Journal of Risk and Uncertainty, forthcoming.
[10] Yaari, M.E. (1987): "The Dual Theory of Choice Under Risk," Econometrica 55, 95-115.

[^0]: *I am grateful to Peter Wakker and to C. Puppe for pointing out to me the mistake in my original paper and to Larry Epstein and Peter Wakker for helpful discussions.
 ${ }^{1}$ Quiggin's axioms imply $f\left(\frac{1}{2}\right)=\frac{1}{2}$. Yaari [10] assumes linear utility function u. The above general form of the rank dependent model first appeared in Segal [5].
 ${ }^{2}$ Recently, Tversky and Kahneman [8] suggested a more general form of this functional, where decision-makers use two different distribution transformation functions (for positive and negative outcomes). This too is a special case of the general measure representation.

[^1]: ${ }^{3}$ This representation is of course not unique. For $X=\left(x_{1}, p_{1} ; \ldots ; x_{n,}, p_{n i}\right) \in \underline{L}^{*}$ let $p_{0}=0, x_{0}=0$, and obtain $X=\cup_{i=1}^{n}\left(\left[0, x_{i}\right] \times\left[\sum_{j=0}^{i-1} p_{j}, \sum_{j=0}^{i} p_{j}\right]\right)=\cup_{i=1}^{n}\left(\left[x_{i-1}, x_{i}\right] \times\left[\sum_{j=0}^{i-1} p_{j}, 1\right]\right)$.

[^2]: ${ }^{4}$ Note that $\left(\left[y_{1}, y_{2}\right] \times\left[q_{1}, q_{2}\right]\right),\left(\left[y_{2}, M\right] \times\left[q_{2}, 1\right]\right) \subset \bar{\lambda}^{3}$.

