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THE MEASURE REPRESENTATION: A CORRECTION 

Uzi Segal 

Abstract 

Wakker [9] and Puppe [2] point out a mistake in Theorem 1 in Segal [6]. This 
theorem deals with representing preference relations over lotteries by the measure of 
their epigraphs. An error in the theorem is that it gives wrong conditions concerning the 
continuity of the measure. This paper corrects the error. Another problem is that the 
axioms do not imply that the measure is bounded, therefore the measure representation 
applies only to subsets of the space of lotteries, although these subsets can become 
arbitrarily close to the whole space of lotteries. Some additional axioms (Segal [6, 7 ]),
implying that the measure is a product measure (and hence anticipated utility), also
guarantee that the measure is bounded. 
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THE MEASURE REPRESENTATION: A CORRECTION 

Uzi.Segal* 

Quiggin's [3] anticipated utility (or rank dependent) model for decision-making under 
uncertainty proved itself to be one of the most successful alternatives to expected utility 
theory. According to this model, the value of a lottery X with a cumulative distribution
function F is given by 

AU(X) = j u(x)df(F(x)) (1) 

where f : [O, l] --> [O, l] is strictly increasing, continuous, and onto.1 One possible inter­
pretation of this model is that the preference relation � over lotteries can be represented 
by a measure of the epigraphs of the lotteries cumulative distribution functions, and 
moreover, that this measure is a product measure. That is, there are two increasing 
functions u (defined on the outcomes axis) and f (defined on the probabilities axis) such 
that the measure of the rectangle [x, y] X [p, q) is [u(y)-u(x)J[f(q) -f(p)). Indeed, let
X = (x1, P1i . . .  ; Xn, Pn) such that x1 :::; · · ·:::; Xn. Then (1) is reduced to

n i i-1 
AU(X) = l::u(x;)[f(LPi)-f(LPill

i=l j=O j=O 
(2) 

where p0 = 0. If we assume u(O) = 0, then the above expression can be viewed as the
sum of the measures of the rectangles [O, xi) X [I:}:,�pj, L�=oP;), each with the measure
[u(x;) -u(O)][J(I:j=oPi) -f(I:}:,�pj)].2 

A natural extension of this model is to represent the preference relation � on lotteries 
by a general (not necessarily product) measure of the lotteries' epigraphs. This functional 
is suggested and axiomatized in Segal [5, 6]. It turns out, however, that there are some 
mistakes in these papers (see Wakker [9] and Puppe [2]), concerning the questions what 
sets have zero -measure, and what sets which have zero Lebesgue measure must also 

'I am grateful to Peter Wakker and to C. Puppe for pointing out to me the mistake in my original
paper and to Larry Epstein and Peter Wakker for helpful discussions. 

1Quiggin's axioms imply/{�) = � . Yaari [!OJ assumes linear utility function u. The above general 
form of the rank dependent model first appeared in Segal [5]. 

2Recently, Tversky and Kahneman [8] suggested a more general form of this functional, where 
decision-makers use tv10 different distribution transformation functions (for positive and negative out­
comes). This too is a special case of the general measure representation. 
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have zero measure according to the representation functional. The aim of this paper is to 
answer these concerns. It turns out that lines that can serve as the lower boundary of the 
epigraph of a lottery (i.e., lines that can be created by connecting up pieces of the graph 
of a cumulative distribution function) are the only sets that must have zero measure. 
This result is quite natural - if such a set has positive measure, then the order does not 
satisfy continuity. However, other lines may have positive measure. In particular, the 
down-slopping line connecting the points (0,1) and (1,0) may have a positive measure 
(see Wakker [9] for examples). 

Another issue is.whether. the-representation measure may go to oo. This leads to the 
conclusion that the measure representation applies only to subsets of the space of lotteries, 
although these subsets can become arbitrarily close to the whole space of lotteries. Some 
additional axioms ( Segal [6, 7]), implying that the measure is a product measure (and 
hence anticipated utility), also guarantee that the measure is bounded. 

l AXIOMS AND THEOREM 

Let L be the family of all the real random variables with outcomes in (0, M] and let 
L = L\{80,.SM}· (.Sx is the degenerate lottery yielding x with probability 1). For every
X E L define the cumulative distribution function Fx by Fx(x) = Pr (X :S x) . For
s > 0, let Ls= {X E L: for x E [O, s), Fx(x) :S 1 - s}. Note that ifs< s' then
Ls'<:;;; Ls. For s >  0, let Qs be the square (0, s) X (1- s, 1). Let D = [O, M] X [O, 1), fJ =
D\ {(O, 1), (M, 1)}, and Ds = D\Qs. For X E  L, let X0 = Cl ( {(x, p) E D: p > Fx(x)} ).

Let L0 be the family of all the non-empty closed sets S in D satisfying [(x, p) E S, 0 :S 
y:::; x, p:::; q:::; 1] =} (y,q) E S. Obviously, for every S E  L0 there is a unique lottery
X E L such that X0 = S. The cumulative distribution function of this lottery is given
by Fx(x) = min{p: (x, p) E S}. Denote this lottery X bys+.

Let L • be the set of all the finite lotteries X in L of the form ( X1, Pt; .. .  ; 
Xn,Pn) and let A= {[x,y] X [p, q] C fJ: x < y, p < q}. Obviously, if X E  L*, then
X0 can be represented as a finite union of elements of A.3 Let t be a complete and
transitive preference relation over L. Define the relations >- and � by X >- Y if and only
if X t Y but not Y t X, and X � Y if and only if X t Y and Y t X. Let L <:;;; L. 
We say that the function V : L -> � represents the pre ference relation t on L if for all
X,Y E L, V(X) 2: V(Y) � X t Y. 

Consider the following three axioms: 

(a) Continuity The preference relation t on L is continuous in the topology of weak
convergence. That is, let X, Y, Yi, Y;, ... E L such that at each continuity point

3This representation is of course not unique. For x = (x1 j Pl; , - - ; Xn; Pn) E L * let PO = oj Xo = 0, 
and obtain X = Uf=1 ((0, x;] X [L:�� Pi, L:=D Pi]) = Uf=1 ([x;-1, xi] X [L:�� Pi, !]).
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x of Fy, Fy,(x) --> Fy(x). If, for every i, X '.'.:: Y;, then X '.'.:: Y. If, for every i,
Y; '.'.:: X, then Y '.'.:: X. 

(b) First-Order Stochastic Dominance If, for every x, Fx(x) :::; Fy(x) and there 
exists x such that Fx(x) < Fy(x), then X >-- Y. 

( c) Irrelevance Let X, Y, X', Y' E L and let S be a finite union of segments in [O, M]. 
If on S, Fx(x) = Fy(x) and Fx•(x) = Fy•(x), and on [O,M]\S, Fx(x) = Fx•(x) 
and Fy(x) = Fy•(x), then X '.'.:: Y if and only if X' '.'.:: Y'. 

Definition A curve C CD is the-continuous image of a function f : [O, 1] --> D. The
curve C is increasing if (x,p) E C=? Cn {(y,q): y < x,q > p} = 0}. 

Note that a point in Dis an increasing curve as is the set {(x,p) E X0: y > x,q < 
p =;. (y,q) rf. X0} for all XE L. 

Let {) be a countably additive measure on D such that for every s > 0, Q s n D is a
measurable set. For s > 0, define the measure{), on D as follows: For every {}-measurable 
set S <;;; D, {),(S) = {)(S\Q,). 

Theorem 1 The following three conditions are equivalent:

1. The preference relation '.'.:: on L satisfies the continuity, first-order stochastic dom­
inance, and irrelevance axioms.

2. There is a (countably) additive measure {) on D satisfying

(a) For S = [a,b] x [p,q] C D  such that a< b and p < q, 0 < {)(S) < oo;
( b) If C C D is an increasing curve, then {)( C) = O; and

(c) The preference relation'.'.:: on L, can be represented by V,(X) = {),(X0).

3. There is a measure{) as in condition 2 satisfying (a}, (b), and

(c') For every X, YE L, X '.'.:: Y if and only if{)(X0\Y0) 2': {)(Y0\X0).

Proof (2) ¢? (3): Let X, Y E L By de finition, there exists€ > 0 such that Fx(O), Fy(O) <
1 - €. Since cumulative distribution functions are continuous from the right, there is
c;' > 0 such that for z:::; c;', Fx(z),Fy(z) < 1 - €. De fine s = min{c;,c;'} and obtain
that X, Y E L,, hence Q, <;;; X0 n Y0• It follows that {)(X0\Y0) ::0: {)(Y0\X0) if and
only if {)(X0\Q,) ::0: {)(Y0\Q,) if and only if {),(X0) ::0: {)(Y0). (Note that X0\Q, = 

(X0\Y0) U ([X0 n Y0]\Q,)). 

(2) =? (1) : Let Xn --> X. It follows by the first-order stochastic dominance axiom that
the condition in the continuity assumption is trivially satisfied if X E { 50, DM} (although
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50, {jM rf_ L ) . Assume therefore that there exists s > 0 such that X E Ls. Without
loss of generality, we may assume that for every n, Xn E Ls· To show that the order
:.::: is continuous, one has to prove that V(Xn) -V(X) --> 0. Let Sn be the symmetric
difference between X� and X0, Sn= (X� U X0)\(X� n X0) and let Tn = Uf;;nS;. Note
that i?(Sn) = 1?,(Sn) ::::'. 1?,(X0 U X�) < oo. Since V(X) = 1?,(X0), it follows that
I V(Xn) - V(X) I::::'. 1?,(Sn) = i?(Sn) ::::'. i?(Tn) · Let X be the south-east boundary of
X0, that is, X = {(x,p) E X0 : y > x,q < p =? (y,q) rf_ X0}. As mentioned above,
X is an increasing curve, hence i?(X) = 0. Moreover, n;;"=1Tn C X. Otherwise, let
(x,p) E (n;;"=1Tn)\X. Since (x,p) rf_ X, either p > Fx(x) or p < lim,,-x- Fx(y). We
assumed that (x,p) E n;;"=1Tn = n;;"=1 Uf;;n S; hence there is a subsequence {Xn,} such
that for every j, (x,p) E Sn,- If p > Fx(x), then (x,p) E X0• Therefore by definition,
for every j, (x,p) rf_ X� . Hence, for every j, lim_x_ Fx" (y) > p. Since cumulativeJ --,, J 
distribution functions are continuous from the right and increasing, it follows that there 
exists E: > 0 such that for all y E [x, x + E: ) ,  

p + Fx(x) 
Fxn1(y) > P > 

2 
> Fx(y). 

Since there must be a continuity point of Fx in [x, x + c), it follows that Xn f> X. 
If p < lim,,-x- Fx(y), then (x,p) rf_ X0• Therefore for every j, (x,p) E X� and

J 
limy-x- Fxn, (y) < p. As before it follows that there exists E: > 0 such that for y E
(x -E:,x], 

F ( ) < < p + limy-x- Fx(y) 
< F ( ). Xn1 Y _ P 2 

X Y 
Here too, since there must be a continuity point of Fx in (x -E:, x], it follows that
Xn f> X. Since n;;"=1 Tn c X and i?(X) = o, it follows that lim i?(Tn) = 0 (see Royden (4,
p. 192]). F irst-order stochastic dominance follows by condition 2-(a) and the irrelevance
condition follows by the fact that :.::: on Ls can be represented by a measure.

(1) =? (2): Let \Ji = {(X,>.) E L x A : Int(X0) n Int(>.) = 0 and X0 U >. E L0}. 
The irrelevance axiom implies that if (X, >.), (Y, >.) E lli, then X � Y if and only if
(X0 U >.)+ � (Y0 U >.)+. Indeed, for ), = [x, y] x (p, q] E A, let S = (x, y]. Since
(X, >.), (Y, >.) E \Ji, it follows that for every z ES, Fx(z) = Fv(z) = q. Also, for every
z ES, F(X'u.\)+(z) = F(Y'u.\)+(z) = p. Of course, for z rf_ (x,y], Fx(z) = F(X'u.\j+(z) and
Fy(z) = F(Y'u.\)+(z). 

Define on A a partial order Rx by ,\1 Rx >.2 if and only if (X, >.1), (X, >.2) E l]i and
(X0 U >.1)+ � (X0 U >.2)+. By the irrelevance axiom we obtain:

Fact 1 For every X1 and X2, Rx, and Rx, do not contradict each other. That is, if
A1 and ,\2 can be compared by both Rx, and Rx,, then A1 Rx, >.2 if and only if
>.1 Rx, Az. 

( To see why Fact l follows from the irrelevance axiom, let A; = [x;, y;] x (p;, qi), i = 1, 2

and define S = (x1, Y1] U (x2, Yz]). 
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Let R = Ux Rx. That is, ,\1 R ,\2 if and only if there exists X such that >.1 Rx A2• 
Define A1 I A2 if and only if >.1 R A2 and >-2 R A1. 

Let A; = [x;, y;] x [p;, q;], i = 1, 2. Obviously, ,\1 and ,\2 can be compared by R if and
only if either y1 :s; x2 and q1 :s; p2, or Y2 :s; X1 and q2 :s; p1. It thus follows that for every
,\1, A2, ,\3 such that any two of them can be compared by R there is a lottery X such that
( X, >.;) E 1Ji, i = 1, 2, 3. Therefore we obtain:

Fact 2 if ,\1 I A2, ,\2 I A3, and ,\1 and A3 can be compared by R, then A1 I A3. 

Let x1 = 0, x4 = M, and Pk = 
k;1, k = 1, . . .  , 4. By the continuity and first­

order stochastic dominance axioms there are 0 < x2 < x3 < M such that ([xk, Xk+i] x 
[pk,Pk+1]) I ([xe, X£+1] X [pe,Pe+1]), k,R E {1, 2, 3}. Define the strictly increasing sequences
yJ", j = 0, ... , 2'; i = 0, . . .  , oo; k = 1, 2, 3, such that

1 k,i - k,i - . - 0 . k -1 2 3 · Yo - Xk, Yzi -xk+1, z - , ... ,oo, - , , 

2 k,i - k,i-1 . - 0 2•-1. . - 1 . k -1 2 3 · Y2j -YJ , J - , . . .  , , z - , . . . , oo, - , , 

3. ([yJ",yJ�1] x [pk,Pk+i])I([yJ:',yJ:�1] x [pe,Pe+i]), j,j' = 0, . . .  ,2' -1; i = 0, .. . ,oo;
k # R; k,I! E {1,2,3}. 

The only non-trivial requirement is condition 3. By the choice of x2 and x3, this condition
is satisfied for the case i = 0. Suppose yJ,i, j = 0, ... , 2'; i = 0, ... , i0; k = 1, 2, 3, satisfy
the above three conditions, and construct yJ,io+i, j = 0, .. .  , 2•0+1; k = 1, 2, 3, as follows:
For j = 2m, let yJ.io+l = y�io, m = 0, . . .  , 2'0; k = 1, 2, 3. By the continuity and first­

order stochastic dominance assumptions, there are y;.io+l E (xk, y;•i0 ), k = 1, 2, 3, such
that Am I··· I Am+i, m = 1, . . .  , 4 , where

k = 1,2,3 l [xk, y;"0+1] X [pk,Pk+1]

>,k =

[ k-3,io+l k-3"o] [p ] k 4 5Y1 , Yi X k-3,Pk-2 = , 

By Fact 2 it follows that >-1 I >.3, >.3 I >.5, >-1 I >-s, and >.2 I >-4. Also, >-s I >-6 = [y�.io+i, y�"0J x 
[p3, p4]. This follows by
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Of ,\ I,\ 1 2 4 0 ,\ t d fi k,io+l E ( k,io k,io) · course, m 6, m = , , . ne can now use 1 o e ne YJ yl.=l, Y.i±.!. , J =
2 2 

3 5 2io+1 l· k - 2 3 d ,\ t d fi l,io+l E ( l,io l,io) · - 3 5 2'0+1 1 , , ...  , - , - , , an 3 o e ne y i y i=!, y l.±.!. , J - , , . .. , - .
2 2 

Condition 3 is clearly satisfied. Moreover, by the definition of I and by the first-order
stochastic dominance axiom, for a given i, 

1·1 2·1 3·1 1·1 2·1 3 · 1 ( ·" -· ·" -· · " -) >- ( " -· " -· " -) ¢} y Jl ' 3' y 12 ' 3 ' y J3 ' 3 - y j� ' 3 ' y j� ' 3 ' y j� ' 3 
Ji + j2 + j3 :::::: j; + j� + j� (3) 

The next step in the proof is to show that the sequen�e {yJ·'}, j = 0, . .. , 2'; i =
0, ... , oo is dense in [xk, Xk+1J, k = 1, 2, 3. Suppose, for example, that there are no
values of {y}'} in (a, (3) and assume that (a, (3) is maximal in that sense. There

is a sequence {j;}�0 such that jo = 0,  j; E {2j;_1, 2j;-1 + 1} and yJ/�1 --: yJ;' ::;

(x3 - x2) · 2-'. By Cantor's Lemma {y},"}�0 and {y};�i}�0 have a common limit,
denote it y2. Let m; satisfy y;,;: ::; a and f3 ::; y;,;;+1, i = 1, ... , oo. By construction,

( 1, 1 . 2,; 1. 1) ( 1,i 1. 2,i 1. 1) B I tt· 
· 

h bt · y,,;,,i, 3, YJi+11 3, X3, 3 r-v Ym;+1, 3, YJi , 3, x3, 3 . y e 1ng i approac oo one o a1ns
(a, �; y2, �; x3, �) � ((3, �; y2, �; x3, �), a violation of the first-order stochastic dominance
axiom. 

Define t9([yJ'',yJ�1] x [pk,Pk+1]) = 2-', j = 0, . . . , 2' -1; i = 0, . .. ,oo; k = 1,2,3. For
x E [xk, Xk+J), let j;(x) be such that yJ;(x) ::; x < yJ;(x)+t' Define 'Pk : [xk, Xk+1] ---> �by

r.pk(x) = lim ,_00 j;(x) · 2-', k = 1,2, 3 . By the above argument 'Pk is strictly increasing.
It is also continuous. Let Zn go down to z E [xk, Xk+i)· For every i there exists n such
that Zn < y�'(z)+l hence

lim r.pk(zn) ::;n-oo 
I. k ( k ,i ) . 1m 'P Y1·(x)+i =

1-00 I 

I. [ k( k,i ) + 2-'l k( ) ,2.� 'P Yj,(z) = 'P z . 

A similar proof holds for the case where Zn goes up to z E (xk, Xk+J]. It follows by
continuity from (3) that for yk, zk E [xk, xk+1J, k = 1, 2, 3,

1 1 2 1 3 1 1 1 2 1 3 1) (y ' 3 ;y ' 3 ;y '3) t (z '3;z '3;z '3 ¢? 
'f!1(y1) + r.p2(y2) + r.p3(y3) 2: 'f!1(z1) + 'f!2(z2) + r.p3(z3) (4) 

Let o-(1) = 2, o-(2) = 3, and o-(3) = 1. By continuity and first-order stochastic domi­
nance it follows that for every,\ C .\k = [xk, Xk+1] X [pk,Pk+1] there is y E (xu(k)• Xu(k)+i] 
such that ,\I ([xu (k), y] X [pu (kj, Pu(k)+l]). Define

t9(,\) = 'f!u(k)(y) > 0.

]\.TO;� +1..-t 1..y "'"C' 2 \ T trX -1 X r- - l\ -··'- e-- lDu(k\ty \ 'I 1.rc lr.LJ.a u La u 1 /\.1 \L a-l(k)14J LJ-'u-1(k),Jla-1(k)+IJ]1 w11 lt r ' '\ )
The set-function t9 satisfies the following condition:
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Proof Let X = (xa(k)' �; Xa-'(k), �; Zi, q1; ... ; Zn, qn) E L such that Zi, ... , Zn E [xk, Xk+1] 
and (X, A1), (X, .\1 U .\2) E l]i (assume, without loss of generality, that .\1 is either above
or to the left of .\2). It follows by ( 4) and Fact 1 that

(X0 u A1 u A2)+ � 

(X0 U A1 U ([x0-1{k)> [<p0-'(k)i-1(?9(.\2))] X [p0�'(k)>Pa-'(k)+1Jl)+ � 

(X0 U ([Xa(k)> [<pa{k)i-1(?9(.\1))] X [po(k),Po(k)+IJ) U
([xa-'(k)' [<p0-1{k)i-l(i9(.\2))] X [pa-1(k),Pa-1(k)+1JlJ+ � 

(X0 U ([Xo(k), [<po(k)i-1(?9(,\1) + ?9(.\2))] X [pa(k),Po(k)+1]))+,

hence the claim. Ill 

Define 1/Jk : [xk, XH1] X [pk, Pk+1] ---> 3? by 1/Jk(x,p) = ?J([xk, x] X [p,pk+I]). The function
1/Jk satisfies the following condition:

Claim 2 For every Xk :S x < y :S Xk+I and Pk :S q < p :S Pk+1,

1/Jk(x,p) + 1/Jk(y,q)-1/Jk(x,q) -1/Jk(y,p) :'.". 0

Proof It follows by Claim 1 that 1/Jk(x,p) + 1/Jk(y, q) -1/Jk(x, q) -1/Jk(y,p) = ?J([x, y] x 
[p, q]) > 0. II

By the continuity of t it follows that 1/Jk is continuous. Therefore, i9 can be uniquely
extended to a countable additive measure on ,\k (see Billingsley [1, Section 12]). More­
over, it follows by (4) that the order ton D' = {X = (x1,P1i ... ; Xn,Pn) E L: for x E
[xk, Xk+I ), Pk :S Fx(x) :S Pk+1, k = 1, 2, 3} can be represented by ?9(X0\(x1, �; x2, �; x3, �)0). 
Also, by the continuity of t, if C C  D' is an increasing curve, then ?J(C) = 0.

The next step in the proof is to extend i9 to D. It follows by continuity and first-order
stochastic dominance that for every X3 :S Y1 < Y2 < M and � :S q1 < q2 < 1 such that
,\ = ([y1, y2] x [q1, q2]) I ([y2, M] x [q2, 1]) there is a finite sequence of probabilities � = 

r1 < .. · < rn :S q1 such that ,\I ([O, x3] X [r;, r;+1JJ R ([O, x3] X [rn, q1]), i = 1, . . . , n - 1.4
Suppose instead that the sequence {r;} is not finite and let Jim r; = r :S q1. For every i,

(0, 1 - r;; x3, q1 -r;; Yi, q2 - q1; Y2, 1 -q2) � 

(0, 1 -r;+1i X3, q1 -r;; Y2, 1 -q1) � 

(0, 1 -r;+2; X3, q1 -r;; Y2, q2 - q1; M, 1 -q2) 
4Note that ([y1,Y2] x [qi,q2]), ([y2,M] x (q2,l]) C A3. 
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As i approaches infinity we obtain that 

(O, l-r; x3,q1 -r;; y2, l-q1) � 

(0, 1 -r; X3, q1 - r;; y2, q2 -q1; M, 1 -q2), 

a contradiction. The measure{) can thus be extended to ([O, x2] X [�, �]) U ([O, x3] x [i, q1]). 
Since q1 can be taken arbitrarily close to 1, we obtain that the measure{) can be extended 
to ([O,x2] x [�, �]) U ([O,x3] x [�, 1)). 

In a similar way the measure{) can be extended also to ((0, x2] x [�, 1]) U ([x2, x3] x 
[�, 1 ]). For this, we use as benchmark the sets ([O, y3] X [O, q3]) I ([y3, y4] X [q3, q4]) where
0 < y3 < Y4 < x2 and 0 < q3 < q4 < �- (Both these sets are therefore in :\1 ). In
a similar way we can extend the measure to ([x2,x3] x [O, �]) U ([x3, 1) x [O, �]) and to
([x2, 1] x (0, �]) U ([x3, 1 ] x [�, �]). The measure{) is thus extended to fJ. It may happen
that the measure {) does not represent the order t in L * because it may be unbounded 
(see Wakker [9] for an example). Nevertheless, by its construction, {), and hence {),, is 
bounded on Ds. The proof that {)s represents the order on L; (the set of finite lotteries
in Ls) is similar to the proof that{) represents the order for lotteries X such that X C D' 
and so is the proof that if C C fJ is an increasing curve then {) ( C) = 0. The extension
for Ls follows by continuity. I 

The rank dependent (or anticipated utility) functional is a product measure. Theorem 
2 in [6] and Theorem 9 in [7] prove that under some further conditions, the measure{) is 
a product measure. These proofs implicitly assume that {) on D is bounded. Although
this is no longer true, the theorems still hold. To see this, observe that {) is bounded on 
[t:, M - c:] X [O, 1] and on [O, M] X [c:, 1 -c:] for all c:. Let Le= {X E L: limx-e Fx(x) =
0, Fx(M - c:) = 1} and let L; = {X E L : Fx(O) = c:, limx-MFx(x) = 1 - c:}. 
The above mentioned theorems thus imply the existence of functions fe : [O, 1] --> 11?, 
Ue : [c, M -c:] --> 11?, J; : [c:, 1 -c:] --> 11?, and u; : [O, M] --> 11?, each of them unique up
to positive linear transformations, such that the order t on Le can be represented by 
feM-

e u,dfe(Fx(x)) and the order ton L; can be represented by f0M u;dJ;(Fx(x)), For
every t > 0 and for every c: E (0, t], all these representations cardinally coincide on L,nL�. 
Hence, without loss of generality, for every p E [O, 1] and c:, c:' > 0, fe(P) = fe'(P) := f(p). 
Similarly, for every x E [O,M] and c:,c:' > 0, u;(x) = u;,(x) := u(x). Also, Vp E (t,1-t) 
and Ve: E (O, t], J;(p) = f(p) and Vx E (t,M-t) and Ve: E (O, t], ue(x) = u(x). It follows
by the continuity axiom that the order ton L can be represented by f0M u(x)df(Fx(x)). 
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