$$
\text { AD/A-001 } 456
$$

THE MEASUREMENT OF THE MC DONNELLDOUGLAS DC9 TRAILING VORTEX SYSTEM USING THE TOWER FLY-BY TECHNIQUE

Leo J. Garodz, et al
National Aviation Facilities Experimental Center

Prepared for:
Federal Aviation Administration

November 1974

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information oxchange. The United States Government assumes no liability for its contents or use thereof.

Technical Report Documentation Page

Form DOT F 1700.7 (8-72)

TABLE OF CONTENTS

Page
INTRODUCTION 1
Purpose 1
Background 1
DISCUSSION 3
Flight Test Program 3
Instrumentation 7
Data Analysis 8
CONCLL'SIONS 29
REFERENCES 30
APPENDIXES
A. Low-Altitude Meteorological Data
B. Vortex Tangential Velocity Distributions
C. Summary Flight Test Data
D. Development of the Analysis of the Trajectory of a Parallel Pair of Vortices in Ground Effect
E. Vortex Tangential Velocity Distributions. Composite Plots
F. Windspeed and Direction at 140 Feet. Airplane Track
Figure Page1 High-Altitude Contrails, Boeing 707, Showing Wing VortexRollup before Development of Sinusoidal Instability
High-Altitude Contrails, Boeing 727, Showing Relative Rollup before Development of Sinusoidal Instability 2 Absence of Engine Efflix Participation in Wing Vortex Rollup and Subsequent Wake Development
McDonnell-Douglas DC9, Series 10, Three-View General 4 Arrangement
McDonnell-Douglas DC9, Series 10, Three-Quarter Rear View 5
McDonne1:-Douglas DC9, Series 10, Side View 6
Sample Plots of Sensor Velocity Time Histories. Run 24, Landing Configuration, Sensors 110-117, Showing Second Vortex Hit at Sensor 113, $t=13$ Seconds (Two Pages, A and B)9Expanded Plot of Sensor 113 Time History11
McDounell-Douglas DC9, Series 10, Peak Recorded Tangential 12 Velocity vs. Vortex Age. All Data Points (Uncorrected for Wind)
McDonnell-Douglas DC9, Series 10, Peak Recorded Tangential13 Velocity vs. Vortex Age. Takeoff Configuration - Upwind Vortices (Uncorrected for Wind)
McDonnell-Douglas DC9, Series 10, Peak Recorded Tangential14Velocity vs. Vortex Age. Landing Configuration(Uncorrected for Wind)
McDonne11-Douglas DC9, Series 10, Vortex Lateral Transport 16
Velocity vs. Crosswind Velocity Component - Upwind and Downwind Vortices. Takeoff Configuration
McDonnell-Douglas DC9, Series 10, Vortex Lateral Transport 17 Velocity vs. Crosswind Velocity Component. Landing Configuration
Comparison of Theoretical and Measured Vortex Mean 19 Descent Rates

McDonnell-Douglas JC9, Series 10, Vortex Tangential
Velocity vs. Radius. Landing Configuration - Jomposite Plot of Downwind Vortices. Run Nos. 25, 27, ind 28. Age 23-27.2 Seconds
McDonneil-Douglas DC9, Series 10, Peak Recorded Tangential Velocity vs. Ambient Windspeed. Landing Configuration, Upwind and Downwind Vortices

McDonnell-Douglas DC9, Series 10, Peak: Recorded Tangential Velocity vs. Ambient Windspeed. I anding Configuration, Upwind and Downwind Vortices

Examples Showing Fit of Hoffman-Joubert Logarithmic Velocity Distribution to Experimental Data (Three Pages, A through F)

McDonnell-Douglas DC9, Series 10, Vortex Tangential
Velocity vs. Radius. Takeoff Configuration-Composite Plot of Upwind Vortices (Vortex Age 20.5 - 32 Seconds)
-2 McDonne11-Douglas DC9, Series 10, Vortex Tangential
Velocity vs. Radius. Landing Configuration - Composite Plot of Downwind Vortices. Run Nos. 16, 24 , and 56. Age 12 - 18.5 Seconds

McDonnell-Dougias DC9, Series 10, Vortex Tangential
Velocity vs. Radius. Landing Configuration - Composite Plot of Downwind Vort.ces. Run Nos. 11, 17, and 61. Age 18.9-20.5 Seconds

McDonnell-Douglas DC9, Series 10, Vortex Tangential
Velocity vs. Radius. Janding Configuration - Composite Plot of Downwind Vortices. Run Nos. 10, 41, ar،d 60. Age 21.3-21.6 Seconds

McDonnell-Douglas DC9, Series 10, Vortex Tangential
Velocity vs. Radius. Landing Configuration - Composite Plot of Downwind Vortices. Run Nos. 15, 42, 44, and 46. Age 28.5-41 Seconds
-7 McDonnel1-Douglas DC9, Series 10, Vortex Tangential
Velocity vs. Radius. Landing Configuration - Compos:Ite Plot of Upwind Vortices. Run Nos. 24, 56, and 57. Age 14.8-18 Seconds

Logarithmic Velocity Distribution (Hoffman-Joubert), Core E-8 Radius=1, 2, and 3 Feet
$s \quad=\quad$ Semi-distance between members of a vortex pair c.t time of generation, feet.
t = Time elapsed since vortex generation, seconds.
$\mathrm{V}=$ True airspeed, feet per second.
$V_{\theta}=$ Tangential velocity within vortex, eet per second.
$\hat{V}=$ Peak recorded velocity witilin vrtex, uncorrected for wind, feet per second.
$y=$ Lateral distance of vortex from reference plane, feet.
z $=$ Distance of vortex above ground, feet.
$\Gamma=$ Vortex strength (circulation), feet squared per second.
$\Phi=\operatorname{Arcsec} z / s$.

INTRODUCTION

PURPOSE.

The work described in this report was performed to gain information on the wake-vortex characteristics of the McDonnell-Douglas DC9 airplane, and to aid in the development of improved air traffic control procedures in terminal area operations.

BACKGROUND.

It became apparent early in 1970 that there was a need to investigate further the wake characteristics (i.e., peak velocities, velocity distributions, dissipation rates, and transport velocities) of large jet transport airplanes, particularly under conditions representative of terminal area operations. A preliminary investigation was conducted in February 1970 as a joint operation involving the National Aviation Facilities Experimental Center (NAFEC), the National Aeronautics and Space Administration (NASA), the Boeing Company, and the United States Air Force. This work has been reported on in references 1,2 , and 3. NAFEC's part in the investigation included the acquisition of quantitative data on the wakes of the Boeing 707, 727, anu 747; the McDonnell-Douglas DC8 and DC9; and the Lockheed C5A, using the tower fly-by technique. These early tests, while yielding some useful information, were later shown to be incomplete, by reason of the low resolution afforded by the anemometry (25 feet spacing betweer sensors) and the limited number of data rurs made.

Of the airplanes in the above group, four (B707, B747, DC8, and C.5A) have four wing-mounted engines, and three (B727, DC9, and C.5A) are T-tail designs. Of the second group, the B727 and DC9 have rear-mounted engines and essentially aerodynamically "clean" wings. The low-wing, T-tail design is believed to provide sufficient vertical separation between the wing and horizontal tail that the trailing vortices generated by the negative lift normally required from the horizontal tail do not greatly interact with the trailing vortices produced by the wing. This is just a result of the design-configuration chosen, not a design objective, and is mentioned here because this type of interaction conceivably plays a part in the downstream development of the wake of airplanes using a different general layout. An essential difference between airplanes with four wing-mounted engines and those having fuselage-mounted engines can be seen when flight conditions lead to the production of condensation trails. In the former case, the four separate contrails rapidly merge into a pair of thicker contrails, which evidently become involved in, and render visible, the far-downstream development of the wing-tip vortices (figure 1). The white condensate remains near the core of each vortex, and within a few thousand feet behind the airplane, a condition arises in which the vortices develop a sinusoidal distortion, and ultimately, "pinch-off" into loops at regular intervals and then finaliy disintegrate. This process, which is well illustrated in reference 4 , is only to be seen when the engines are mounted some

distance out along the wing. When the engines are fuselage-mounted, the separate contrails merge into a single one almost at once, and do not appear to become involved in the wake development in any way. The large single contrail has been observed to remain virtually unchanged for minutes at a time. This is illustrated in figure 2.

The point of these observations is to indicate that airplane design-configuration is as important a variable, affecting the development and eventual disintegration of an airplane wake, as is the flight-configuration (degree of flap deployment, landing gear status, deployment of leading edge devices, etc.). It has been found, for example, that the Boeing 747 trailing vortices (reference 5) are strongly affected as to core size, maximum tangential velocity and velocity distribution by the flight-configuration of the airplane. On the other hand, in the case of the Boeing 727 airplane (reference 6), the trailing vortices appear to be constant in core size and velocity distribution, whatever the flap angle. Another finding concerning these two airplanes was that the $B 727$ vortices produced higher peak tangential velncities than those of the B747, and that the decay envelope of the $B 727$ peak velocities showed a slower rate of decay, despite the much lower gross weight and size of the latter airplane. This has been attributed, in a general way, to the different design-configuration of the B727. Therefore, it was of considerable interest to determine if a second airplane, of a generally similar configuration exhibited similar characteristics. The DC9 is such an airplane, though it obviously differs in several respects - notably, it does not have the third engine, and the wing design, especially the planform, reflects the short-field operational requirement and a lower design cruise Mach number.

In this series of tests, the required improvement in flow resolution was obtained by using a spacing of 1 -foot between sensors on the test tower.

DISCUSSION

FLIGHT TEST PROGRAM.

Detailed discussion of the test procedure, test tower, instrumentation, photographic coverage, and time correlation is given in references 5 and 7 as indicated below.

TEST AIRPLANE. The McDonnell-Douglas DC9, series 10 , airplane is shown in figures 3, 4, and 5. It is a two-engine commercial jet transport, powered by Pratt and Whitney JT8D-1 turbojet engines mounted on either side of the rear fuselage.

In cruising flight, the wing is essentially clean, except for mincr fairings and ϵ erescences. The wing design, which is well described in reference 8, features a fixed leading edge, conventional ailerons, and chord-extending flaps.

FIGURE 3. MCDONNELL-DOUGLAS DC9, SERIES 10, THREE-VIEW GENERAL

FIGURE 4. MCDONNEL-DOUGLAS DC9, SERIES 10, THREE-QUARTER REAR VIEW

74-28-5
FIGURE 5. MCDONNEL-DOUGLAS DC9, SERIES 10, SIDE VIEW

The inboard flap sections, by use of a system of moveable vanes, furstion as single-slotted in the takeoff position and triple-slotted in the landing position. The outer flap sections function as single-slotted for takeoff and double-slotted cor landing. Inboard and outboard sections operate as a single section, witil no gaj between them.

TEST PROCEDURE. See reference 7.
TEST TOWER. See reference 7.
INSTRUMENTATION.
AIRPLANE. The airplane required no special instrumentation. A pilot's log sheet was used to record the following information when the airplane was approximately abreast of the tower:

```
- Time
- Airrlane Configuration
- Gross Weight (Estimated)
- Indicated Airspeed
- Radar Altitude
- Pressure Altitude
- Magnetic Track
- Clearance from Tower (From Ground Markings)
- Engine Performance
- Subjective Evaluation of Atmospheric Turbulence
```

For data reduction purposes, phototheodolite data on airplane altitude, groundspeed, track, and lateral offset of tiack from tower was used whenever available. Groundspeed was corrected to true airspeed using wind velocity data gathered at the top of the tower (140 feet above ground level (AGL)).

Since the test altitude was so low, it was not considered necessary to account for the difference between true airspeed and equivalent airspeed in any data reduction or calculations dependent on these quantities, such as the calculation of lift coefficient or estimation of the strength of the tip vortices.

TOWER VORTEX MEASUREMENT. See reference 5.
TOWER ATMOSPHERIC MEASUREMENTS. See reference 5.
PHOTOGRAPHY. See reference 7.
TIME CORRELATION. See reference 7.
TEST SITE. See reference 5.
DATA PROCESSING. See raference 5.

DATA PRESENTATION. The data output and presentation conoist primarily of :

1. Computer tabular prini:oct of peak recorded vortex tangential velocity and vortex ages, as recorded by the tower sensors.
2. Printout of atmospheric data (air temperature, wind direction and speed, and relative humidity) as recorded by sensors located at the 23-, 45-, 70-, 100-, and the 140-foot ievels (appendix A).
3. Plots of tangential velocity scalar magnitude against time. Sample pJots are shown in figures 6 A and 6B.
4. Plots of tangential velocity scalar magnitude against tim, using an expanded time scale for enhanced data resolution for more detailed analysis. A sample plot is shown in figure 7.
5. Vortex tangential velocity profiles (corrected for wind), as a function of height above the ground (appendix B).

DATA ANALYSIS.
A general discussion of the approach to the problem of analyzing the data is given in reference 7, under the same heading. The limitations and problems of the experimental technique are discussed - that is to say, the low height of the tower in relation to ne airplane wingspan, aerodynamic interference effects, and ambiguities arising from the inability of the anemometry to yield directional information. Since the work in reference 7 was completed, resolution has been increased by mounting sensors at more frequent intervals (every 2 feet, from 8 feet above the base of the tower to 40 feet above the base, and at 1 -foot intervals from 40 feet to the top of the tower), so that the chance of measuring a true peak velocity has been increased. The 1-foot spacing between sensors probably represents the limit of resolution, without introducing serious errors due to aerodynamic interference between the sensors and adjacent mounting hardware.

For the particular airplane under discussion, the tower height is nearly 60 percent greater than the airplane wingspan. When advantage is taken of this, by the vortex striking the tower high up, ground effect is minimized.

Figures 8 through 10 present peak recorded tangential velocity as a function of vortex age. A very small number of data runs were made in the takeoff configuration, and each of these only yielded a single vortex hit, the upwind vortex (figure 9). This is because the airplane altitude abreast of the tower was frequently too great, causing the downwind (first) vortex to pass over the top. Airplane altitude at this point in a data run was not entirely a matter of choice, but was determined by the following consideratons, in addition to the requirements of the experiment: location and height of another tower on the field, unconnected with present test series; wind strength and direction; and flight safety. It is significant that this small number of runs yielded a group of velocities that fall in the upper range of the data, despite the great scatter that is evident elsewhere. The complete set of peak velocities is presented in figure 8. This shows that between 30 and 50 seconds, there

FIGURE 6A. SAMPLE PLOTS OF SENSOR VELOCITY TIME HISTORIES. RUN 24, LANDING CONFIGURATION, SENSORS 110-117, SHOWING SECOND VORTEX HIT AT SENSOR 113, T=18 SECONDS (Page 1 of 2)

FICURE 6B. SAMPLE PLOTS OF SENSOR VELOCITY TIME HISTORIES. RUN 24 , LANDING CONFIGURATION, SENSORS 110-117, SHOWING SECOND VORTEX HIT AT SENSOR 113, $\mathrm{T}=18$ SECONDS (Page 2 of 2)
6-30
LANDING CONFIGURATION (50° FLAP)
RUN 024

FIGURE 8. MCDONNELL-DOUGLAS DC9, SERIES 10, PEAK RECORDED TANGENTIAL VELOCITY vS. VORTEX AGE. ALL DATA POINTS (UNCORRECTED FOR WIND)

FIGURE 9. MCDONNELL-DOUGLAS DC9, SERIES 10, PEAK RECORDED TANGENTIAL VELOCITY VS. VORTEX AGE. TAKEOFF CONFIGURATION - UPWIND VORTICES (UNCORRECTED FOR WIND)

is a rapid falloff in the maximum velocity to be expected. An empirical curve fit to the data was made and the exponential equation $V_{\theta_{\max }}=396 \exp (-.0347 t)$, with a half life of 20 seconds, is a fair description of the boundary of peak values over the time period 30 to 100 seconds after vortex generation. The inverse square root of elapsed time, which yielded a good fit to the data on the Boeing 747 and 727 (references 5 and 6) does not fit the present data at all. In the landing configuration data (figure 10), a comparison may be made between peak velocities in upwind and downwind vortices - and it is evident that over comparable times, there is little difference between them. This is in contrast to the findings in the Boeing 727 vortex flight tests, in which it was found, in landing configuration, that the boundary values of the peak tangential velocities were approximately 25 percent higher for upwind vortices as compared with downwind vortices.

Figures 11 and 12 show the variation of vortex lateral transport velocity with the crosswind velocity component. There is insufficient data on the takeoff configuration for comment, but in the landing configuration good correlation has been obtained over a wide range of crosswind values. For both upwind and downwind vortices, the lateral transport velocity is approximately equal to the crosswind velocity, which in this report was determined from the meteorological data at the 140 -foot level. On balance, the downwind vortex lateral transport velocities exceed those of the upwind vortices by a small margin, which is the expected result (individual velocities are contained in appendix C).

In the absence of wind and viscous effects, the theoretical analysis of appena.'x D shows that the vortex lateral transport velocity tends to a limiting value given by

$$
\begin{equation*}
\dot{y}= \pm \frac{\Gamma}{4 \pi 8} \tag{1}
\end{equation*}
$$

where $s=$ seri-distance betwern vortices at time of generation
This value exists when the vortices have descended to the limitin ${ }^{2}$ height which is

$$
z_{x}=s
$$

Before reaching this height, the lateral transport velocity is

$$
\begin{equation*}
\dot{y}=\frac{\Gamma s^{2}}{4 \pi z^{3}} \tag{2}
\end{equation*}
$$

Taking a typical value of $\Gamma=1660$ feet squared per second and taking $\mathrm{s}=.125 \pi \mathrm{~b}$ (that is s 35 feet).

$\frac{\Gamma}{4 \pi 3}=3.8 \mathrm{f} / \mathrm{s}$

FIGURE 11. MCDONNELL-DOJGLAS DC9, SLELES 10, VORTEXZ LATERAL TRANSPORT VFIOCITY VS. CROSSWIND VELOCITY COMPONENT - UPWIND AND DOWNWIND VORTICES. TAKEOFF CONFIGURATION

FIGURE 12. MCDONNELL-DOUGLAS DC9, SERIES 10, VORTEX LATERAL TRANSPORT
FIGURE 12. MCDONNELL-DOUGLAS DC9, SERIES 10, VORTEX LATERAL TRANSSPORT
VELOCITY VS. CROSSWIND VELOCITY COMPONENT. LANDING CONFIGURATION

and for $z=2 s, \quad z=2 s, \frac{\Gamma s^{2}}{4 \pi z^{3}}=.47 \mathrm{ft} / \mathrm{s}$
Thus, when the vortices strike the tower at heights greater than 2 s (that is, 70 feet), the rate of induced drift (away from each other) is less than 1 foot per second (ft / s). Reference to appendix C shows that most vortices struck the tower at a greater height than this, which thus indicates that the vortex drift (that is, lateral transport) shown in figures 11 and 12 is almost entirely due to the wind. This is in agreement with the results presented in these figures, which show little difference between the drift rates of upwind and downwind vortices, and a slope of one-to-one, passing through the origin.

Figure 13 presents the reasured vortex mean descent rates plotted against the theoretical values. Thi latter were determined using, an expression developed from material published in reference 9. The development of the analysis appears in appendix D of this report. It yields the result that the tine taken by a vortex pair to descend from height ${ }_{2}$ down to height z_{2} is given by

$$
\begin{equation*}
T=\frac{8 \pi s^{2}}{\Gamma}\left(\operatorname{Cot} 2 \phi_{2}-\operatorname{Cot} 2 \phi_{1}\right) \tag{3}
\end{equation*}
$$

where

$$
\phi_{1,2}=\operatorname{Arcsec} Z_{1,2 / s}
$$

It is also shown that the descent rate at height z is given by

$$
\begin{equation*}
i=\frac{-\Gamma}{4 \pi s} \frac{\left(z^{2}-s^{2}\right)^{3 / 2}}{z^{3}} \tag{4}
\end{equation*}
$$

When \mathbf{z} is very large compared with s, this reduces to

$$
\begin{equation*}
i=\frac{-\Gamma}{4 \pi s} \tag{5}
\end{equation*}
$$

With z equal to 2 seconds,

$$
\begin{equation*}
i=\frac{-r}{4 \pi s} \frac{\sqrt{27}}{8} \tag{6}
\end{equation*}
$$

and with z equal to 1.5 seconds,

$$
\begin{equation*}
\dot{z}=\frac{-\Gamma}{4 \pi s} \frac{1.25^{3 / 2}}{1.5^{3}} \tag{7}
\end{equation*}
$$

The last two values are: respectively, 65 and 41 percent of the descent rate of out of ground effect. It is clear then that as the ground plane is approached, the rate of vortex descent diminishes very rapidly.

figure 13. COMPARISON OF theoretical and measured vortex mean descent rates

In the subject series of vortex-wake turbulence flight tests, no provision has been made for precise tracking of the vortices, if indeed this is yet possible and consequently transport velocities can only be determined as mean values over the time period between vortex generation and their striking the tower. Good results were obtained with the laceral transport velocities, which correlated quite well with the crosswind, largely because ground effect was very small in the height range over which the vortices were moving. Ground effect on descent velocity, however, is seen to be significant and the instantaneous value can be strongly influenced by small variations in the atmospheric density gradient, convection currents, and self-induced undulating movements developing within the vortex itself. The mean descent rate, even over an altitude range that is quite tightly controlled is, as a result, still subject to wide variations. The theoretical descent rate is a function only of the strength of the trailing vortices, the separation between them and the initial and final heights. Figure 13 serves to show that the calculation of the vertical situation of a vortex pair is not possible by any of the simple considerations that appear to work in detemining the late:al situation.

In order to assess the effect of temperature inversion on vortex descent, the data points presented in figure 13 (measured descent rilep are also tabulated in appendix C) were arbitrarily divided into t'oose less t' an $4 \mathrm{ft} / \mathrm{s}$ descent rate and those greater. The low-altitude meteorological data of appendix A shows that a temperature inversion was present on many of the runs. Sixteen downwind vortices descended at less than $4 \mathrm{ft} / \mathrm{s}$ (run numbers 12-14, 19, 29-37, 39, 40, and 44), and of these, eleven (run numbers 12, 13, 29-34, 37, 39, and 40) were associated with a temperature inversion. Similarly, sixteen upwind vortices (run numbers $12,13,25,29,31-37,39,40,43,46$, and 51) descended at less than $4 \mathrm{ft} / \mathrm{s}$, and of these, eleven also (run rumbers $12,13,29,31-34,37,39,40$, and 43) were associated with an inversion.

Figures 14 and 15 present peak tangential velocity versus ambient windspeed, with the data rrouped by vortex age (10-20 seconds, 20-30 seconds 30-40 seconds, and greater than 40 seconds). In the first three groups, the data points are randomly scattered and show no evidence of any correlation with windspeed. The final group merely reflec: what is already show in figure 8 - namely that beyond 40 seconds vorter age, peak velocities diminish very rapidly and are not likely to exceed $50 \mathrm{ft} / \mathrm{s}$.

The possibility of a correlation between peak velocity and windspeed had been considered to exist because of wind shear, shown by the data of appendix A to be present at least to the altitude limit of the instrumentation.

In this series of tests, the range of altitude abreast of the tower was quite restricted, and when the data has been grouped according to age, it was found that in any one "age group," the range of altitude is further restrieted - consequently, it is not possible to determine if any relationship exists between peak velocity in a vortex and the height above ground level at which it was generated. One result that ras noted in previous work (reference 6), was that ground plane interference accelerated the flow a result that is also predicted by potential flow theory.

The main body of the data is presented in appendices B and E, the distribution of tangential velocity for individual vortices. In appendix B, the tangential velocity plots are arranged by airplane flight configuration and by vortex age. Two configurations were tested - takeoff (flar $\mathrm{a}_{5} 30^{\circ}$, landing gear down), and landing (flaps 50°, landing gear down). Of the 61 runs made, the first 9 were in takeoff configuration, the remainder were in landing. Twenty-six of the runs yielded at least one good vortex 'hit' on the tower, the sensor data from which could be analyzed to produce a tangential velocity distribution.

It is evident from these distribution plots, which cover vortex ages between 20 and 40 seconds, that there is no detectable difference between the velocity distributions for vortices gencrated in the takeoff configuration, and those for landing configuration. All exhibit a consistently small core, the diameter of which is of the same order of magnitude as the sensor spacing (1 foot). At vortex ages greater than 40 seconds, figure 8 shows that there is a marked reduction in the maximum tangential velocity to be expected (the exponential decay curve that has been drawn is a very approximate fit to the data, and as figure 10 indicates, a different type of function, with small initial and final slope, and steep intermediate slope would be better), and it has not been possible with that data (that is, at 40 seconds and more) to deduce the velocity distrilutions and associated core diameters. All that could be done was to extract the peak tangential velocities and to note that past 50 seconds, at any rate, there is little structured flow and no region of high velocity remaining. There is no evidence of significant expansion of the vortex core with the passage of time, and this is supported by the findings of reference 6 , from which tests it was possible to develop tangential velocity distributions of vortices up to 80 seconds in age, showing little or no core expansion.

In appendix E, composite plots are presented which illustrate the slowness with which the tangential velocity distributions change with time. Thic is best shown by comparison of figures E-2 and E-6, which cover a time span of 12 seconds vortex age to 41 seconds vortex age. All figures in the group E-2 through E-6 are for landing configuration, downwind vortices, and the airplane altitude abreast of the tower was between 200 and 230 feet. Thus, the variation among the vortices in this group is attributable to age, which in turn is determined by aircraft lateral clearance from the tower and the profile of crosswind velocity component. The solid lines in this group of figures represent an empirical envelope only, and were not mathematically determined.

The general form of the velocity distribution is close to that of the Hoffman-Joubert logarithmic distribution, which was shown to fit much of the data in references 5 and 6 . As was found with the Boeing 727 airplane vortex cores are uniformly small in diameter - too small to measure accurately with the sensor spacing used in these tests. This spacing, namely 1 foot between sensors, probably represents a practical limit on resolution that can be obtained using the present type of anemometry, which necessarily involves heavy mounting hardware, and it is doubtful if any useful purpose would be
served by attempting to obtain more detailed information on the vortex core. The Hoffman-Joubert type of velocity distribution is presented in figure E-8 for three values of core radius - 1,2 , and 3 feet, with a maximum tangential velocity of $140 \mathrm{ft} / \mathrm{s}$.

Figure 16 (A through F) presents six representative tangential velocity distributions, and illustrates clearly the absence of any clear difference between vortices generated in takeoff configuration and those generated in landing configuration (the respective flap angles are 20 and 50 degrees). The curves are calculated according to the Hoffman-Joubert logarithmic type of velocity distribution:

$$
v_{\theta}=v_{\theta}\left(r_{c}\right) \frac{r_{c}}{r}\left(\ell_{n} \frac{r}{r_{c}}+1\right)
$$

The values of core radius r_{C}, and core radius tangentjal velocity $V_{\theta}\left(r_{c}\right)$ are noted separately for each plot.

It was indicated at the beginning of this report that there was some interest in comparing the subject airplane, the DC9, with the Boeing 727 , since the two airplanes have certain design feaiures in common - namely, swept-back wings, aft-mounted engines, and T-tail. The B727 vortex-wake flight tests are described in reference 6 and the principal findings of that report were as follows:

The highest peak reccrded tangential velocities were found to exist in vortices generated in landing configuration, and of these, the upwind produced the higher peaks - up to a maximum value of $260 \mathrm{ft} / \mathrm{s}$ as compared with $210 \mathrm{ft} / \mathrm{s}$ for downwind. The only other flight configuration on which sufficient data was gathered for comment i.e., takeoff, also yielded absolute peak velocities on the order of $200 \mathrm{ft} / \mathrm{s}$. In all three flight configurations in which the B727 was tested, the core diameters were uniformly small - too small in fact to be determined with sensor spacing of 1 foot. It was also found that the envelope defining the absolute peak velocities as a function of time could be approximated by the exponential equation

$$
v_{\theta_{\max }}=341.5 \exp (-.01261)
$$

with a half-life of 55 seconds. This was a surprising result, since the corresponding equation for the much larger and heavier B747 is

$$
v_{\theta_{\text {max }}}=336.4 \exp (-.0173 \uparrow),
$$

with a half-life of 40 seconds. Another surprising result of the comparison between the $B 747$ and $B 727$ vortex flight tests was the fact that while with the former airplane, the vortex tangential velocity distribution as a function of radius was strongly influenced by the amount of flap detection (small deflections generated small-core $\because o r t i c e s ~ w i t h ~ h i g h ~ p e a k ~ v e l o c i t i e s, ~ w h i l e ~ l a r g e ~ d e f l e c t i o n s ~$ generated large-core vortices with much lower peak velocities), the vortices generated by the $B 727$, as has been seen, were insensitive to flap deflection, with regard to both the peak tangential velocity and the vortex-core diameter.

FIGURE 16A/B. EXAMPLES SHOWING FIT OF HOFFMAN-JOUBERT LOGARITHMIC

FIGURE 16C/D.
velocity distribution to experimental data (Page 2 of 3)

tangential velocitr, vo, th./sec.
figure 16E/f. EXAMPLES Showing fit of hoffyan-Joubert logarithmic
VELOCITY DISTRIBUTION TO EXPERIMENTAL DATA (Page 3 of 3)

In one respect, the $D C 9$ results are similar to the $B 727$ results - namely, the vortex-core diameters have been found to be uniformly small (on the order of 1 foot) and the peak velocities and shape of the tangential velocity distribution are apparently independent of flap deflection. This result is possibly subject to revision, however, as the entire series of test runs were made in landing configuration, with the exception of the first nine, made in taiceoff configuration. The magnitude of the peak velocities however, is much smaller ($130 \mathrm{ft} / \mathrm{s}$ versus $250 \mathrm{ft} / \mathrm{s}$), and the half-life is little more than a third of the value found for the $B 727$ (20 seconds versus 55 seconds).

Appendixes A, D, and F contain summaries of low-altitude meteorological data, flight test data, and windspeed/direction at 140 ft , airplane track and date/ time of each run.

1. The peak-velocity envelope uncorrected for wind, for vortex ages between 30 and 100 seconds, decays according to the equation

$$
v_{\theta_{\max }}=396 \exp (-.0347 t),
$$

which has a half-1ife of 20 seconds.
2. Little or no difference due to configuration could be detected between vortices of comparable age.
3. Vortex lateral transport velocities coirelate well with crosswind velocity component measured at 140 feet, indicating the vortices were out of ground effect.
4. Vortex descent velocities varied widely, even though test altitudes were held within close limits. It was found that the lower descent velocities usually occurred in the presence of a temperature inversion.
5. Tangential velocity distributions conform quite well to the HoffmanJoubert logarithmic velocity distribution. No peak velocities greater than $140 \mathrm{ft} / \mathrm{s}$ were found, and all vortex cores were small in diameter, on the order of 1 foot, regardless of age or aimplane flight configuration, a characteristic found also in the Boeing 727 aitplane.

REFERENCES

1. Garodz, Leo J., Measurements of the Vortex Wake Characteristics of the Boeing 747, Lockheed C5A and Other Aircraft, Data Report, Project 177-621-03X (Special Task No. 1), April 1970.
2. Condit, Philip M., Results of the Boeing Wake-Turbulence Test Program, Boeing Document No. D6-30851, April 1970.
3. Andrews, William H., Robinson, Glenn H., Krier, Gary E., and Drinkwater, Fred J., III, Flight-Test Evaluation of the Wing Vortex Wake Generated by Large Jet Transport Aircraft, FWP-18, 1970.
4. Garodz, Leo J., FAA Full-Scale Aircraft Vortex Wake Turbulence Flight Test Investigations: Past, Present, Future, AIAA 9th Aerospace Sciences Meeting, New York, AIAA Paper Number 71-97, January 25 through 27, 1971.
5. Garodz, Leo J., Miller, Nelson J., and Lawrence, David, The Measurement of the Boeing 747 Trailing Vortex System Using the Tower Fly-By Technique, FAA Report No. RD-73-156.
6. Garodz, Leo J., Miller, Nelson J., and Lawrence, David, The Measurement of the Boeing 727 Trailing Vortex System Using the Tower Fly-By Technique, FAA Report No. RD-73-90.
7. Garodz, Leo J., Miller, Nelson J., and Lawrence, David, The Measurement of the Douglas DC7 Trailing Vortex System Using the Tower Fly-By Technique, FAA Report No. RD-73-141.
8. Schaufele, Roger D., and Ebeling, Ann W., Aerodynamic Design of the DC9 Wing and High-Lift System, Society of Automotive Engineers, Paper No. No. 670846.
9. Lamb, Horace, Hydrodynamics. Sixth Edition, Dover Publications, (Article Number 155), New York, 1945.

DC9 VORTEX FLIGHT TESTS

LOW-ALTITUDE METEOROLOGICAL DATA
May 11 through 12, 1972

	Run Numbers 1-5			Run Numbers 6-10			Run Numbers 11-15		
$\begin{aligned} & \text { Level } \\ & \text { ft. } \\ & \hline \end{aligned}$	Temp. ${ }^{\circ} \mathrm{C}$	Vel. ft / s	$\begin{aligned} & \text { Direc. } \\ & { }^{\circ}{ }^{\circ} \mathrm{Mag} . \\ & \hline \end{aligned}$	Temp. ${ }^{\circ} \mathrm{C}$ \qquad	Vel. ft / s	$\begin{aligned} & \text { Direc. } \\ & { }^{\circ} \mathrm{Mag} . \end{aligned}$	Temp. ${ }^{\circ} \mathrm{C}$ \qquad	Vel. ft/s	Direc. ${ }^{\circ} \mathrm{Mag}$.
23	5.1	0.4	323	4.5	0.4	318	-	-	312
45	5.7	5.3	333	7.7	5.6	332	-	-	324
70	8.4	7.1	326	8.6	7.3	332	-	-	308
100	10.2	9.8	-	9.5	9.2	340	-	-	296
140	10.9	12.3	(360)	10.7	13.6	(350)	-	(14.7)	(340)
23	4.5	0.4	323	4.8	0.4	326	7.3	0.5	314
45	7.7	3.5	340	6.0	6.1	338	9.3	4.5	241
70	8.0	6.3	339	8.5	7.7	330	8.9	6.5	337
100	9.5	9.6	-	9.4	9.5	335	9.5	9.1	296
140	10.2	13.5	(350)	10.3	14.2	(340)	9.3	13.7	(350)
23	4.7	0.4	315	-	-	-	7.7	0.5	321
45	6.0	4.9	345	-	-	-	10.2	5.5	265
70	8.5	7.3	340	-	-	-	9.0	7.3	335
100	10.2	10.0	-	-	-	-	9.7	9.1	267
140	11.2	13.4	(350)	-	(14.7)	(340)	10.0	13.8	(350)
23	4.9	0.4	300	6.1	0.5	-	-	-	315
45	6.2	3.8	334	11.2	3.5	336	-	-	265
70	8.6	5.9	330	8.4	6.1	331	-	-	299
100	9.8	8.3	-	9.4	9.0	329	-	-	-
140	10.7	11.5	(350)	10.3	13.8	(340)	-	(16.2)	341
23	4.9	0.4	332	-	-	-	11.4	8.0	308
45	5.6	3.0	328	-	-	-	13.7	8.7	30
70	8.7	5.1	322	-	-	-	11.5	9.4	56
100	9.8	7.7	322	-	-	-	11.5	9.9	15
140	10.7	11.4	(350)	-	(14.7)	(350)	11.3	11.0	345

NOTES: 1. Data points are mean values obtained over a 2-minute period prior to passage of airplane past test tower. Period excludes final 10 seconds prior to passage.
2. Temperature sensor at 45 -foot level suspect on some runs.
3. Numbers in parenthesis are spot readings recorded manually, from backup instrumentation at 140-foot level. Readings were taken approximately 5 seconds prior to passage of aircraft past test tower.

DC9 VORTEX FLIGHT TESTS
LOW-ALTITUDE METEOROLOGICAL DATA
May 11 through 12, 1972
Run Numbers 16-20

$\begin{gathered} \text { Level } \\ \text { ft. } \\ \hline \end{gathered}$	Temp. \qquad ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Vel. } \\ & \mathrm{ft} / \mathrm{s} \end{aligned}$	Direc. ${ }^{\circ} \mathrm{Mag}$.	$\begin{aligned} & \text { Temp. } \\ & \text { "r } \end{aligned}$	$\begin{array}{r} \text { Vel. } \\ \mathrm{ft} / \mathrm{s} \\ \hline \end{array}$	Direc. ${ }^{\circ} \mathrm{Mag}$.	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{Vel} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$	Direc. ${ }^{\circ} \mathrm{Mag}$.
23	11.5	7.7	306	-	-	-	12.8	10.5	282
45	13.9	8.6	15	-	-	-	13.8	11.1	298
70	11.6	9.0	64	-	-	-	12.8	11.0	296
100	11.6	9.4	15	-	-	-	13.2	12.1	304
140	11.4	10.7	308	-	(13.2)	(360)	10.3	14.9	315
23	11.8	10.5	252	-	-	260	8.8	0.7	28
45	13.7	11.6	5	-	-	302	12.3	5.2	17
70	11.9	12.2	11	-	-	290	11.9	6.2	33
100	12.0	12.5	18	-	-	252	12.5	10.1	56
140	11.7	14.4	288	-	(13.2)	349	12.7	13.5	50
23	11.9	8.5	256	12.7	11.3	303	-	-	-
45	13.9	9.7	68	13.6	12.3	322	-	-	-
70	12.0	10.2	146	12.6	13.1	313	-	-	-
100	12.0	10.3	28	11.8	13.4	322	-	-	-
140	11.8	11.5	273	12.5	16.0	342	-	(7.3)	17.5
23	12.2	7.9	317	12.7	11.8	301	9.3	0.4	-
45	14.7	8.4	238	165	12.5	320	10.8	4.0	17
70	12.1	8.6	242	12.7	13.4	314	11.8	3.4	23
100	12.3	8.7	159	11.0	13.6	327	12.5	4.6	38
140	12.0	10.1	338	12.6	16.1	347	12.7	(7.3)	36
23	-	-	-	12.9	12.1	291	10.0	0.5	-
45	-	-	-	16.1	12.5	307	12.7	3.9	21
70	-	-	-	12.9	12.6	304	12.1	4.0	24
100	-	-	-	12.2	12.5	312	12.5	4.2	41
140	-	(13.2)	(350)	11.2	14.3	335	12.6	6.2	39

DC9 VORTEX FLIGHT TESTS
LOW-ALTITUDE METEUROLOGICAL DATA
May 11 through 12, 1972

	Run y ers 31-35			Run Numbers 36-40			Run Numbers 41-45		
Level ft.	$\begin{aligned} & \text { Temp. } \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \because \mathrm{cl} . \\ & \mathrm{ft} / \mathrm{s} \end{aligned}$	Direc. ${ }^{\circ} \mathrm{Mag}$.	Temp. ${ }^{\circ} \mathrm{C}$	Vel. ft / s	Direc. ${ }^{\circ} \mathrm{Mag}$.	$\begin{aligned} & \text { Temp. } \\ & { }^{\circ} \mathrm{C} . \\ & \hline \end{aligned}$	Vel. ft / s	$\begin{gathered} \text { Direc. } \\ \begin{array}{c} \text { OMag. } \end{array} \\ \hline \end{gathered}$
23	6.7	0.5	316	-	-	-	8.9	0.5	328
45	10.8	4.5	294	-	-	-	8.6	5.3	318
70	11.3	4.9	-	-	-	-	11.7	6.0	335
100	12.2	5.6	31	-	-	-	12.2	7.3	7
140	12.6	5.4	27	-	(5.9)	(30)	12.4	(5.9)	(20)
23	6.9	0.5	312	9.3	2.2	307	10.0	0.4	278
45	13.3	5.1	4	12.9	5.2	286	12.1	3.7	308
70	11.8	5.0	8	12.9	6.5	299	11.8	3.3	320
100	12.3	6.0	32	13.4	7.4	48	12.3	3.9	319
140	12,5	6.6	33	13.7	8.3	31	13.4	3.2	(20)
23	8.0	0.6	348	-	-	-	9.8	1.0	280
45	12.5	5.7	5	-	-	-	12.0	5.8	321
70	12.0	6.2	15	-	-	-	12.1	5.9	322
100	12.4	6.8	36	-	-	-	12.7	7.0	270
140	12.6	6.0	26	-	(7.3)	(30)	12.9	7.5	338
23	9.2	4.3	345	6.2	0.5	207	12.6	0.8	299
45	13.1	6.6	5	3.7	3.4	274	14.6	5.4	318
70	11.9	6.6	15	11.4	4.4	288	12.7	4.5	320
100	12.3	7.6	34	12.2	5.5	21	11.9	4.5	326
140	12.5	7.8	24	12.5	5.9	25	12.9	6.1	338
23	-	-	-	8.4	0.5	337	12.8	0.9	290
45	-	-	-	18.4	4.7	329	15.0	4.9	304
70	-	-	-	11.9	5.6	-	13.1	5.0	299
100	-	-	-	12.4	6.0	17	13.1	5.6	303
140	-	(7.3)	(30)	12.6	6.2	10	13.3	6.7	325

DC9 VORTEX FLIGHT TESTS
LOW-Altitude meteorological data
May 11 through 12, 1972
Run Numbers 46-50 Run Numbers 51-55 Run Numbers 56-60

Level $\mathrm{ft} .$ \qquad	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Vel. } \\ & \mathrm{ft} / \mathrm{s} \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Direc. } \\ \text { ○ }{ }^{\mathrm{Mag} .} . \\ \hline \end{array}$	Temp . ${ }^{\circ} \mathrm{C}$	Vel. ft/s	$\begin{aligned} & \text { Direc. } \\ & { }^{\circ} \mathrm{Mag} . \end{aligned}$	Temp. ${ }^{\circ} \mathrm{C}$	Vel. ft / s	Direc. ${ }^{\circ} \mathrm{Mag}$.
23	13.3	2.1	295	14.0	6.4	300	14.6	7.1	302
45	15.7	6.0	314	10.3	7.2	320	15.7	8.5	64
70	13.4	6.1	315	14.1	7.1	313	14.7	8.5	112
100	13.5	6.5	320	14.1	7.3	319	14.6	8.9	44
140	13.6	7.6	339	14.2	8.8	340	14.4	10.2	298
23	13.5	0.8	301	-	-	-	14.6	5.4	88
45	15.9	6.2	319	-	-	-	16.8	6.5	76
70	13.6	5.9	316	-	-	-	14.7	6.7	148
100	13.6	6.3	321	-	-	-	14.8	7.2	151
140	13.8	7.6	343	-	(8.8)	(310)	14.7	8.7	270
23	13.1	3.9	271	14.5	3.3	294	14.9	5.4	313
45	15.3	6.5	293	16.5	6.4	310	17.8	6.8	263
70	13.3	6.1	292	-	6.4	306	15.0	6.8	267
100	13.2	6.4	298	14.5	6.8	3 i 2	15.0	7.1	201
140	13.4	7.8	311	14.7	7.8	334	14.8	8.7	311
23	-	-	-	14.7	5.9	305	14.9	8.8	-
45	-	-	-	16.3	7.4	322	17.5	1.0.2	-
70	-	-	-	14.7	8.3	313	15.0	10.8	-
100	-	-	-	14.7	8.6	325	14.3	11.5	-
140	-	(8.8)	(310)	14.7	9.8	348	14.7	13.1	(350)
23	13.8	5.5	281	14.5	9.0	330	14.9	10.4	-
45	16.0	6.6	296	15.6	10.2	35	17.3	11.8	-
70	13.9	0.4	294	14.6	10.4	-	15.0	12.3	-
100	13.8	6.7	301	14.6	10.2	34	15.0	12.5	-
140	14.0	8.1	325	14.5	11.5	326	14.7	14.3	(350)

Run Number 61

$\begin{aligned} & \text { Level } \\ & \text { ft. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Vel. ft / s	$\begin{aligned} & \text { Direc. } \\ & \text { omag. } \end{aligned}$
23	14.1	11.3	253
45	-	11.8	255
70	11.6	11.2	273
100	18.1	12.6	-
140	13.5	14.6	253

APPENDIX B

VORTEX TANGENTIAL VELOCITY DISTRIBUTIONS

$$
6-i
$$

B-1

B-2

B-9

B-11

B-13

B-14

$$
\text { B. } 16
$$

B-17

B-18

B-20

B-21

B-2.4

B-31

[^0]Explanation of superscripts and other notes for tables of appendix C.

1. Airplane centerline offset (feet) abreast of tower.
2. Airplane height (feet above ground level (AGL)) abreast of tower.
$1_{\text {and }}{ }^{2}$ by phototheodolite where available. When phototheodolite not available, offset estimated visually from ground markings (concentric. circles centered on tower base) and height determined from airplane radar altimeter.
3. Configuration: TO $=$ Takeoff \quad flap angle $=20^{\circ}$. $\mathrm{L}=$ Landing flap angle $=30^{\circ}$
$0 / \mathrm{T}$ - Indicates that the vortex passed over the top of the test tower. Particularly in the first nine runs, consideration of safety resulted in test runs being made at a greater altitude than would otherwise have been used.

It will be noted that in several instances, the second vortex struck the tower at a greater height than did the first (runs 23, 25, 33-37, 43, 51, and 59). This is an experimental fact that has been noted in other test series, and is apparently attributable to atmospheric and buoyancy effects which, as has been noted, have a strong influence on vortex descent rates.

$$
\begin{aligned}
& \text { ○三 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { の }
\end{aligned}
$$

$$
\begin{aligned}
& \text { § }
\end{aligned}
$$

APPENDIX D
 DEVELOPMENT OF THE ANALYSIS OF THE TRAJECTORY OF A PARALLEL PAIR OF VORTICES IN GROUND EFFECT

The horizontal and vertical velocity components induced on the vortex " A " OGE = OUT OF GROUND EFFECT by the other member of the pair and by the two image vortices are given by:

$$
\begin{aligned}
& \dot{y}=\frac{\Gamma y^{2}}{4 \pi z\left(y^{2}+z^{2}\right)} \\
& \dot{z}=\frac{-\Gamma z^{2}}{4 \pi y\left(y^{2}+z^{2}\right)} \\
& \therefore \frac{d z}{d y}+\frac{z^{3}}{y^{3}}=0
\end{aligned}
$$

$$
\text { so } \quad \frac{1}{y^{2}}+\frac{1}{z^{2}}=K, \text { a constant. }
$$

This may be written

$$
\begin{equation*}
a^{2}\left(y^{2}+z^{2}\right)=4 y^{2} z^{2} \tag{1}
\end{equation*}
$$

where " a " is to be determined.

Transforming to polar coordinates,

```
    y=r Cos}
and
    z=r Sin}
then a=r Sin 20
```

Since we know "a" to be a constant, we may postulate a value of θ and determine the corresponding value of r. Let $\theta=\frac{\pi}{4} \quad\left(45^{\circ}\right)$.

$$
\begin{equation*}
\text { Then } \quad a=r_{45} \tag{3}
\end{equation*}
$$

Determine value of \boldsymbol{r}_{4}
The distance between the members of the vortex pair before they descend into ground effect is defined as 2 s . For finite z (i.e., in ground effect) the semi-distance between them is

$$
y=s+\Delta s
$$

From equation (1),

$$
r_{45}^{2}\left[(s+\Delta s)^{2}+z^{2}\right]=4(s+\Delta s)^{2} z^{2}
$$

$$
r_{45}^{2}\left[\frac{(s+\Delta s)^{2}}{z^{2}}+1\right]=4(s+\Delta s)^{2}
$$

As z approaches infinity, $\boldsymbol{\Delta}$ s approaches zero,

$$
\begin{equation*}
r_{45}=2 s \tag{4}
\end{equation*}
$$

Equation (1) then becomes

$$
\begin{equation*}
s^{2}\left(y^{2}+z^{2}\right)=y^{2} z^{2} \tag{5}
\end{equation*}
$$

Summarizing the results obtained so far,

$$
\begin{equation*}
\dot{y}= \pm \frac{\Gamma y^{2}}{4 \pi z\left(y^{2}+z^{2}\right)} \tag{6a}
\end{equation*}
$$

$$
\begin{align*}
& \dot{z}=\frac{-\Gamma z^{2}}{4 r y\left(y^{2}+z^{2}\right)} \tag{6b}\\
& s^{2}\left(y^{2}+z^{2}\right)=y^{2} z^{2} \tag{6c}
\end{align*}
$$

From (6c), $\quad y^{3}=\frac{s^{3} z^{3}}{\left(z^{2}-s^{2}\right)^{3 / 2}}$
and $\quad y^{2}+z^{2}=\frac{z^{4}}{z^{2}-s^{2}}$
and equations (6a) and (6b) become

$$
\begin{equation*}
\dot{y}= \pm \frac{\Gamma s^{2}}{4 \pi z^{3}} \tag{8a}
\end{equation*}
$$

and $\quad \quad \quad=\frac{-\Gamma s^{2}}{4 \pi y^{3}}$
or $\quad i=\frac{-\Gamma}{4 \pi s} \frac{\left(z^{2}-s^{2}\right)^{3 / 2}}{z^{3}}$

$$
\begin{equation*}
\therefore \frac{d i}{d z}=\frac{-4 \pi s}{\Gamma} \frac{z^{3}}{\left(z^{2}-s^{2}\right)^{3 / 2}} \tag{9}
\end{equation*}
$$

The integration of equation (9) to determine the time taken for the vortex to descend from height z_{1} down to height z_{2} is best accomplished by making the substitution
$z=s \operatorname{Sec} \phi$,
where $\phi=\operatorname{Arcsec} z / s$.

When this is done, the time is given by

$$
\left.T=\frac{8 \pi s^{2}}{\Gamma} \cot 2 \phi \right\rvert\, \begin{aligned}
& \phi_{2} \\
& \phi_{1}
\end{aligned}
$$

This result presupposes an established vortex pair of strength Γ, whose initial separation distance, out of ground effect, is 2 s .

The following results may be readily deduced from the above analysis:
Equation (5) shows that when y is very large, $z=s$,
and

$$
\therefore \dot{y}= \pm \frac{\Gamma}{4 \pi s} ; i=0
$$

When z is very large, equation (5) shows that $y=\mathbf{s}$
and

$$
\therefore \dot{y}=0 ; i=\frac{-\Gamma}{4 \pi s}
$$

APPENDIX E

VORTEX TANGENTIAL VELOCITY DISTRIBUTIONS . COMPOSITE PLOTS

$E-$

FIGURE E-1. MCDONNELL-DOUGLAS DC9, SERIES 10, VORTEX TANGENTIAL VELOCITY VS. RADIUS. TAKEOFF CONFIGURATION - COMPOSITE PLOT OF UPWIND VORTICES (VORTEX AGE 20.5-32 SECONDS)

FIGURE E-2. MCDONNELL-DOUGLAS DC9, SERIES 10, VORTEX TANGENTIAL VELOCITY VS. RAJIUS. LANDING CONFIGURATION - COMPOSITE PLOT OF DOWNWIND VORTICES. RUN NOS. 16, 24, AND 56. AGE 12 - 18.5 SECONDS

$$
\mathrm{E}-2
$$

74-28-E-3

FIGURE E-3. MCDONNELL-DOUGLAS DC9, SERIES 10, VORTEX TANGENTIAL VELOCITY VS. RADIUS. LANDING CONFIGURATION - COMPOSITE PLOT OF DOWNWIND VORTICES. RUN NOS. 11, 17, AND 61. AGE 18.9-20.5 SECONDS

FIGURE E-4. MCDONNELL-DOUGLAS DC9, SERIES 10, VORTEX TANGENTIAL velocity vs. radius. landing configuration - composite PLOT OF DOWNWIND VORTICES. RUN NOS. 10, 41, AND 60. AGE 21.3-21.6 SECONDS
E-4

FIGURE E-5. MCDONNELL-DOUGLAS DC9, SERIES 10, VORTEX TANGENTIAL VELOCITY VS. RADIUS. LANDING CONFIGURATION - COMPOSITE PLOT OF DOWNWIND VORTICES. RUN NOS. 25, 27, AND 28. AGE 23 - 27.2 SECONDS

FIGURE E-6. MCDONNELL.-DOUGLAS DC9, SERIES 10, VORTEX TANGENTIAL VELOCITY VS. RADIUS. LANDING CONFIGURATION - COMPOSITE PLOT OF DOWNWIND VORTICES. RUN NOS. 15, 42, 44, AND 46. AGE 28.5-41 SECONDS

FIGURE E-7. MCDONNELL-DOUGLAS DC9, SERIES 10, VORTEX TANGENTIAL VELOCITY VS. RADIUS. LANDING CONFIGURATION - COMPOSITE PLOT OF UPWIND VORTICES. RUN NOS. 24, 56, AND 57. AGE 14.8-18 SECONDS

FIGURE E-8. LOGARITHMIC VELOCITY DISTRIBUTION (HOFFMAN-JOUBERT), CORE RADIUS=1, 2, AND 3 FEET

APPENDIX F

WINDSPEED AND DIRECTION AT 140 FEET. AIRPLANE TRACK

$$
F-i
$$

DC9 VORTEX FLIGHT TESTS

Run No.	Winuspeed at $140 \mathrm{ft}-\mathrm{ft} / \mathrm{s}$	$\begin{aligned} & \text { Wind Direction } \\ & \text { at } 140 \mathrm{ft}-{ }^{\circ} \mathrm{Mag} . \end{aligned}$	$\begin{gathered} \text { Airplane Track } \\ { }^{\text {o}} \mathrm{Mag} . \end{gathered}$	Date	Time
1	12.3	(360)	277	5-11-72	0620
2	13.5	(350)	271	5-11-72	0626
3	13.4	(350)	270	5-11-72	0631
4	11.5	(350)	269	5-11-72	0634
5	11.4	(350)	277	5-11-72	0639
6	13.6	(350)	266	5-11-72	0648
7	14.2	(340)	263	5-11-72	0652
8	(14.7)	(340)	260	5-11-72	0657
9	13.8	(340)	252	5-11-72	0702
10	(14.7)	(350)	257	5-11-72	0707
11	(14.7)	(340)	255	5-11-72	0713
12	13.7	(350)	255	5-11-72	0718
13	13.8	(350)	253	5-11-72	0724
14	(16.2)	341	255	5-11-72	0727
15	11.0	345	249	5-11-72	0823
16	10.7	308	244	5-11-72	0827
17	14.4	288	245	5-11-72	0834
18	11.5	2.73	244	5-11-72	0840
19	10.1	330	243	5-11-72	0844
20	(13.2)	(350)	244	5-11-72	0848
21	(13.2)	(360)	248	5-11-72	0852
22	(13.2)	349	253	5-11-72	0855
23	16.0	342	249	5-11-72	0858
24	16.1	347	255	5-11-72	0902
25	14.3	335	255	5-11-72	0906
26	14.9	315	(255)	5-11-72	0909
27	13.5	50	311	5-12-72	0547
28	(7.3)	17	310	5-12-72	0551
29	(7.3)	36	312	5-12-72	0554
30	6.2	39	311	5-12-72	0558
31	5.4	27	308	5-12-72	0601
32	6.6	33	312	5-7.2-72	0605
33	6.0	26	309	5-12-72	0608
34	7.8	24	308	5-12-72	0612
35	(7.3)	(30)	304	5-12-72	0615
36	(5.9)	(30)	308	5-12-72	0618
37	8.3	31	308	5-12-72	0622
38	(7.3)	(30)	(310)	5-12-72	0625
39	5.9	25	311	5-12-72	0629
40	6.2	10	311	5-12-72	0634
41	(5.9)	(20)	310	5-12-72	0638
42	3.2	(20)	306	5-12-72	0642
43	7.5	338	310	5-12-72	0645
44	6.1	338	240	5-12-72	0743
45	6.7	325	232	5-12-72	0747

Run No.	Windspeed at 140 ft - ft / s	Wind Direction at $140 \mathrm{ft}-{ }^{\circ} \mathrm{Mag}$.	Airplane Track ${ }^{\circ} \mathrm{Mag}$.	Date	Time
46	7.6	339	235	5-12-72	0751
47	7.6	343	235	5-12-72	0755
48	7.8	311	235	5-12-72	0758
49	(8.8)	(310)	235	5-12-72	0801
50	8.1	325	2.36	5-12-72	0805
51	8.8	340	238	5-12-72	0808
52	(8.8)	(310)	233	5-12-72	0811
53	7.8	334	235	5-12-72	0815
54	9.8	348	237	5-12-72	0823
55	11.5	326	233	5-12-72	0827
56	10.2	298	236	5-12-72	0830
57	8.7	270	236	5-12-72	C834
58	8.7	311	238	5-12-72	0837
59	13.1	(350)	242	5-12-72	0841
60	14.3	(350)	244	5-1.2-72	0844
61	14.6	263	238	5-12-72	0847

NOTE: Numbers in parenthesis are spot readings recorded manually, from backup insturmentation at 140 -foot level. Readings were taken approximately 5 seconds prior to passage of aircraft past test tower.

[^0]: B- 36

