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126 C. TRUESDELL

Chapter I. PRELIMINARY DISCOURSE

1. The classical linear theories of elasticity and fluid dynamics. The classical
linear theory of isotropic elastic solids is based upon the Hooke-Cauchy law?

t = e 8% + 2uxd’;, (1.1)

where t*; is the stress tensor’, &'; is the infinitesimal strain tensor, and g and ug
are moduli of elasticity. The classical theory of isotropic viscous fluids is based
upon the Newton-Cauchy-Poisson law®

th = —pd'; + A d8’; + 2uv d', (1.2)

where p is a pressure, d*; is the rate of deformation tensor, and Ay and uv are coeffi-
cients of viscostty. Classical linear elasticity describes the slight deformations of
media which are perfectly springy, so that when released from deforming forces
they revert to their initial shapes; it is a linear theory, in which a uniformly
doubled load necessarily produces a doubled displacement. Classical fluid
dynamics describes the flow of media altogether without springiness of form,
so that when released from all deforming forces except a hydrostatic pressure,
they retain their present shapes; it is a partially linear theory, in which a uni-
formly doubled rate of deformation if dynamically possible would lead to
doubled viscous forces.

1 HookEe’s hypothesis of 1660 was published in [1676, 1, Postscript, No. 3] as an anagram
which when deciphered reads ‘‘ut tensio sic vis’’ [1678, 1]. The general form (1.1) is due to
CavucHy [1823,1] 1828, 1, 11, eq. (67) (70)] [1830, 1]. Cf. [1831, 1, 923, eq. (10)]. Statical equa-
tions equivalent to those resulting from (1.1) when Ag = ug are the discovery of Navier
[1823, 2] (1827, 6] (cf. also [1829, 8, §7]; NaVIER’s result is dated 1821, in which year FREsSNEL
apparently discovered a special case of (1.1) (see [1866, 1, pp. LXXVIII-LXXXI]).

2 We employ standard tensorial notations (e.g. [1927, 1]). By “af; is the . . . tensor’’ we
mean ‘‘the a‘; are the mixed components of the . . . tensor”.

3 According to NEwToN [1687, 1, lib. II, sect IX], ‘“Resistentiam, quae oritur ex defectu
lubricitatis partium fluidi, caeteris paribus, proportionalem esse velocitati, qua partes
fluidi separantur ab invicem.” Cauvcny [1823, 1] spoke of ‘‘corps solides entidrement
dépourvus d’élasticité,’”” but his equations [1828, 1, §III, eq. (95) (96)] differ from (1.2)
only in lacking the term —pdi; . The fully general expression is Poisson’s [1831, 1, §Y60-63].
Dynamical equations equivalent to those resulting from (1.2) when d*x = 0, uv = const. are
the discovery of NaviEr [1821, 1] [1822, 2] [1825, 1] [1827, 4]. ST. VENANT [1843, 1] proposed
(1.2) in the special case when uv = const., 3\v + 2uv = 0; the latter relation (cf. §61) was
proposed also by StoxEes [1845, 1, §§3-5] and is called the Stokes relation; the resulting
dynamical equations are the Navier-Stokes equations.
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2. Possible generalizations. The classical theories describe certain types of
response, and thus represent materials of a certain ideal quality; this quality is
then specified by the simplest possible quantity, namely, a linear expression.
Accordingly, there are two different ways of defining an ideal material to de-
scribe a wider range of physical phenomena; to introduce different or additional
qualities, or to reformulate the classical theories so as to represent the same
qualities in a more accurate and general quantity.' The former leads to theories of
plasticity,” which we make no attempt to review here,® being content instead to
consider non-linear theories of elasticity and fluid dynamics.

The classical theories idealize two limits of physical behavior: the elastic
solid responds only to its present strain from a ‘“natural state,” generally re-
garded as unstressed, in a fashion independent of all time rates of change and of
its entire intervening history, while the viscous fluid responds only to its present
rate of deformation, in a fashion independent of its entire previous history.
While most physical materials behave in a manner intermediate between these
extremes, there are many phenomena which are of a purely elastic or purely
fluid quality, yet for whose description the classical theories are inadequate, as for
example in the flow of a moderately rarefied gas, or in the deformation of rubber.

3. The sccpe of this review. The idea of generalizing the classical theories by
representing more accurately the same physical qualities which their linear
formulae (1.1) and (1.2) approximate is familiar, and is often dismissed with
the vague phrase “retaining the non-linear terms.” Those who have come to
grips with the details, however, have found the classical notions to be not so
precise as might casually appear, for there are several different possible concepts
of springiness and fluidity, which lead to quite different formulae in their general
mathematical embodiments but nevertheless all yield the classical linearizations
(1.1) or (1.2) as respective first approximations. I shall organize, compare, and
extend recent researches in this field, taking care to found them in the bed rock
of the basic but too often neglected discoveries of previous generations.

To achieve a rational generalization of a classical theory it is not sufficient
simply to add a second approximation, for the mathematical simplicity which
is the main justification for the classical procedure is lost as soon as the first
non-linear term is written down.' Rather, a general non-linear theory must

1 Cf. [1932, b pp. 250-251].

2 See the survey by v. Misgs [1930, 1]. Classification of continua is attempted in [1931, 2],
[1932, 6], [1945, 8].

3 An absolute distinction is impossible, and some of the theories discussed in this memoir
represent set or hysteresis; our criterion for inclusion is whether or not some modification
of the classical theories is proposed within the range of purely elastic or purely fluid be-
havior, and, in particular, theories employing a yield condition or the concept of over-stress
or over-strain are excluded.

1 Cf. the first and second approximations in the motion of a pendulum.
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attain clarity. It must be the unequivocal mathematical expression of a concept,
and in this respect it will be simpler than the linear theory, which can express
only a first approximation. If it be successful in this first requirement it will
simultaneously achieve completeness, for this general expression will auto-
matically yield approximations of any desired order. Since integration of the
equations of these non-linear theories is difficult, emphasis must lie upon the
phenomena they represent and the types of physical behavior they lead us to
expect. In particular, we shall see that in typical specific problems not only is
there a quantitative difference in the result, but also wholly new ranges of
phenomena not included even approximately in the linear theories appear in
any non-linear generalization. Finally not the least value of a general theory is
that it clarifies the original theory which it generalizes; the nature of an ap-
proximation is never really understood until we specify just what it is that is
being approximated.

Since elastic bodies and viscous fluids represent opposite limits of physical
behavior, the formal similarity between the classical linear expressions (1.1) and
(1.2) is astonishing. Hasty persons have concluded that the non-linear theories
are similarly analogous, but this notion is utterly false, for as soon as a single
non-linear term is written down the basic physical difference between the two
types of materials appears in the mathematical formulae, and the analogy dis-
appears. Indeed, the fact that strain is dimensionless while rate of deformation
is of the dimension T, T being a unit of time, must necessarily lead to pro-
found differences in the two general theories: the formal similarity of (1.1) and
(1.2) is a fortuity incident upon linearization.

There are two methods of constructing a theory of elasticity or fluid dynamics.
The first, used originally by Boscovich, Navier, Cauchy, and Poisson’ and
after long discredit now again in favor among physicists, deduces macroscopic
equations from special assumptions relative to the behavior of the supposed
ultimate discrete entities comprising the medium. In the present article I em-
ploy only the continuum approach of Clairaut, D’Alembert, Euler, Lagrange,
Fresnel, Cauchy, Green, St. Venant, and Stokes,® in which raolecular specula-
tions are avoided, and gross phenomena are described by gross variables and
gross hypotheses alone.*

A theory aiming o represent physical phenomena must be invariant not only

2 (1763, 1] [1821, 1] [1823, 2] [1825, 1] [1827, 1a, 4-6] [1828, 2-3] [1829, 2-3] [1831, 1] [1842, 2].

3 [1743, 1] [1752, 1] [1757, 1-2] [1762, 1-2] [1769, 1] [1770, 1] [1783, 1] [1788, 1, Part II, sects.
10-12] [1823, 1] [1827, 1, 3] [1828, 1] [1829, 1] [1839, 1] [1841, 2] [1843, 1] [1845, 1] [1866, 1].
Fourier’s theory of heat flow [1822, 1] [1833, 1] and MAXWELL’s electromagnetic theory
[1873, 3] are the principal achievements of continuum physics apart from mechanics.

4 Excluded from the present survey are both MacCuLLaGH’s theory of the quasi-elastic
ether [1848, 1] [1889, b, §§217-220] [1890, 1, §§14-28] [1892, 6] [1893, 4] [1894, 6] [1895, 3] [1909,
b, §§37, 45-46] [1947, 28, §15] and relativistic continuum theories [1911, 7, 9, 11] [1912, 6]
[1924, 2] [1933, 8] (1934, 8] (1937, 3] (1939, 17-20] [1940, 3, 6, 10] [1941, 2-4] [1944, 1-2] [1945, 3]
[1946, 4-9] [1948, 19] [1949, 17] [1950, 171.
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under changes of geometrical co-ordinates but also under changes of physical units.
So as automatically to achieve the former invariance, as well as to shorten the
deductions, I employ tensor analysis.® At the same time I fully exploit the
method of dimensions, whose value as a mathematical tool is sometimes not
realized.® In face of these two invincible adversaries the general theories fall
into a definite and explicit form.

4. The plan of this review. Since isotropic media are of principal interest, if
only because of the simplicity of the theories describing them, Chapter II pre-
sents the theory of isotropic functions in a space of three dimensions. Chapter
III is a hasty exposition' of such classical results and recent developments
concerning continuous media in general as are needed for the sequel. Chapters
IV and V are devoted to the general theories of elasticity and fluid dynamics,
respectively, while Chapter VI concerns media exhibiting both elastic and fluid
properties. Chapter VII is an evaluation of the present state of the non-linear
theories. In accord with. the principles already stated, I emphasize ideas and
their realization, mentioning only such special applications as serve to illustrate
and point the general theories.

6. Notation. I have attempted to form a consistent and clear scheme from
notations already in use, summarized in the following partial table:

Latin light face: co-ordinates and tensor point functions z‘, X*, X f*, z' .,
ti; , T*y (for further distinctions see §§12-13).

Latin bold face: matrices of the above tensors f, t, T (§6). The context will
indicate whether t stands for | ¢ ||, || ¢;]l, | & |l, or || t:; ||, or whether it is
intended as a general symbol for all these matrices.

Superscript — 1: matrix inverse, (a™")*; being the mixed components of a~' (§6).

Superposed dot: total (material) time derivative &', 1% (§20). A superposed bar
(e.g. ' j or & ; as distinguished from &’ ;) serves as a bracket indicating
the extent of the symbol on which the dot operates.

Roman numerals: I, II,, III,; principal invariants of t; barred Roman nu-
merals I1., ITI. : moments of t (§6).

Greek majuscule: other invariants of tensors, A., ®(a, b) (§6).

Greek minuscule: thermodynamic variables =, p, 7 ... moduli of elasticity
e, Mg, - - - moduli of viscosity Av, pv . ...

5 The very real advantages of tensor methods in continuum mechanics I first learned
in the courses of Professor MICHAL.

¢ One-dimensional and engineering usage of dimensional principles in non-linear rheology
is familiar (e.g. {1932, 7] {1936, 3, Ch. IV] {1943, 6, pp. 128-132] [1949, 31, §4] [1949, 43, Lect.
VII]) but I believe the first systematic use of dimensional invariance in a general continuum
theory is in my preliminary study (1947, 6, §XI].

1 Other surveys, including some topics not treated in the present one, are [1896, 1] [1913,
1] [1914, 1] (1938, 2, Ch. X] [1943, 1, 14] [1950, 12].
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Seript majuscule Go®: scalar coefficients in expansion of b as an isotropic func-
tion of a (§6).

Script minuscule 3,‘,1('): dimensionless scalar coefficients in expansion of b as an
isotropic function of a (§§47, 65, 69).

Other script letters: regions of space U, €, . ... .

German letters: line, surface, and volume integrals &, B, ... ..

Bold-face sans-serif letters, physical units M, L, T, O, . .

Old English: similarity parameters R, T, . . .

Small sans-serif, Greek, or German majuscules: subscripts and superscripts
which do not indicate tensor character.
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Chapter II. Isorroric FuNcTIONS

6. Isotropy in three dimensions. The laws (1.1) and (1.2) are isotropic relations
connecting the components of two tensors: we now examine the most general
form of such relations, following the analysis of Reiner as suggested by Racah.}
Two tensors a'; and b’; are isotropically related if their matrices a and b satisfy

f(a,a’, b, b") =0, (6.1)

where primes denote transposition, and where the functions f may depend also
upon scalar functions of a and b. In particular, b is an analytic isotropic function
of a if

b = f(a,a’) = kel + kia + k12’ + k.2 + koaa’ + ko'a'a + k''a? + ---, (6.2)

where the k; , k - - - are scalar functions of a. Hence if a be symmetric, so also is b.
Henceforth we assume a is symmetric. Then (6.2) reduces to®

b = kya". (6.3)

Since a” has the same principal axes as a, it follows that the principal aves of
a and b coincide.

By the proper values a; of a we shall mean the common® proper values of the
matrices || a’; || and || a. ||.

Now any analytic scalar function of an » X n matrix a is a function of its n
principal invariants.* For the case n = 3 these invariants I, , I, , III, are the
elementary symmetric functions of the proper values®:

|
IlEi‘isiaJi'_‘al'i'a?‘l‘at,
1 )
I = 5 8100/ = 05 + a0 + (6.4)
1 km n 1§ i
III,,Eé—'sz,.a,,.a,,a;=deta,-=a1aza..

111945, 1, §4]. Cf. [1945, b, §2] [1948, 18, §2]. These results follow also from a more elabo-
rate analysis in the theory of isotropic tensors, whose rectangular Cartesian components
are invariant under rotation of axes, a theory which may be traced back to CaucHy and
which was formalized by CisortI [1939, 12]; developments are given in {1930, 13-15, 17-18]
[1931, 16, §2] [1932, 14] [1933, 10]. A typical result: the most general fourth order isotropic
tensor is (in the usual notation of Cartesian tensors) MNudmp + u(Bimdip + dixdim) + v(Bimdip
— 8ipdrm), where X, u, v are scalars ([1889, 6, §§18-23] [1892, 4, §16] [1930, 13] [1931, 9, Ch.
VII]). Cf. also [1940, 9].
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Hence the scalars ky in (6.3) are functions of I, , I1,, III, only. Furthermore,
the Cayley-Hamilton equation takes the form®

a® = IIII — Il,a + I.a’ (6.5)

Hence a* and all higher powers of a in (6.3) may be expressed in terms of I, a,
a’, and the invariants, and thus b s an analytic isotropic function of a if and only
if it be of the form

b — gg(a)l + g?(ﬂ)a + gg(')az’ (6~6)

where the coefficients G&® are power series in the principal invariants I, , I7,,

II1, . Equivalently,
b'; = go@s'; + gt™a’; + g8®a'id’; . (6.7)
The joint invariant ®(a, b) is defined by
®(a, b) = a'p’; = &(b, a). (6.8)
Hence b is an analytic isotropic function of a if and only if
& =a,,11,, II1,). (6.9)
The moments I1, , ITI, and the bdctahedral snvariant’ A, are defined by

.ﬁa = a"jaji = Q(a) a) = I¢2 - 2II& = Z(ai)2)

T—H. = a",a",,a'“,- = I,s - 3IaIIa + 3IIIa = E (ai)sr (6‘10)
38, = [21} — 6IL]' = [ (a; — a;)]".
>3

2 Here and henceforth the summation convention is applied to every diagonally repeated
indez, tensorial or otherwise, the sum being understood to run over the full range of vari-
ability of the index. Thus (6.3) reads b = Ztm0 kral.

3 The proper values of both matrices of mixed components and both matrices of physical
compnnents of any tensor of the second order coincide. Cf. [1952, 8].

« RANKINE (1856, 2, §3] refers to this result as a discovery of CayLEY, but I have been
unable to trace the reference or to find the theorem itself in modern works on algebra, al-
though it is frequently used without proof in studies on continuum mechanics. Professor
WaAPLES has kindly communicated to me a miodern proof, too long to include here.

5 These invariants were introduced by Caucuy [1827, 2, eq. (20)].

s E.g. [1934, 1, §2.05].

7 A2 was introduced by v. MisEs [1913, 2, §1] as the sum of the squares of the principal
off-diagonal components of a; a geometrical interpretation is given by Napar1 & LobkE [1933,
8, §1I]; cf. [1937, 4, pp. 206-207]. From the indication given in an abstract [1872, 2, p. 431]
of an unpublished paper, I judge it possible that similar interpretation was given by KrErTz.
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(IT,)} is the intensity of a. Thus 3!A, equals the intensity of the deviator of a,

whose components are a'; — I,5°;/3; plainly A,rex = A, , for any c. We have®
ol _ oll, _ g oIl, i
‘W‘—ai, 3, Ia&:‘ i m=2ah
oIl aIlT, (611
aaj:’ = a’ka"j — I.a'; + 11,8 = III, (anl)'j, aai;. = 3(1‘1,0:”,',

where in (6.11)5, as henceforth, (a™)°; stands for the components of a™, which
is assumed to exist.
If a relation of the type

b = — (6.12)

hold, then b as a function of a admits the potential T'. To determine whether or
not a given analytic isotropic function b(a) admits a potential, form 4T/da’;
from I' = I'({., I1,, III,) and (6.11), compare the result with (6.7), and thus
obtain expressions for dI'/dl, , aT'/dI1,, and T /II1I, ; by cross differentiation
follow the necessary and sufficient conditions’

9G0 +1. 9G1 + (I — II) 9G _ G I G

EYI A EYI by ) N
ago 391 agz — 9_9_2
srr. t o T U = 11 55 = ar (6.13)

9 _ ;. 95 _ 95
T 9IIl. ~ "“oIIl. Il

where for ease of writing the superscript b(a) has been omitted.

7. Inversion of isotropic functions. If the series (6.3) may be reverted, a similar
analysis yields for each inverse a~' an expression of type (6.6) with coefficients
*(® which are power series in I, , Iy , IIT, . Reiner' has obtained formal expres-
smns for the Gx® in terms of the 9"(”), as follows. Put (6.6) into the analogous.
expression for a, and eliminate a* and a* by (6.5). There results a quadratic
polynomial in a which must be identically zero, and whose three scalar coeffi-
cients must therefore vanish. Solving the resulting three scalar equations for
the g™, we obtain

G = —alghVae — GEVa,  GIV = g0, G = —aB7, (7.1)

8 [1937,1, §3] [1945, 1, §4].
% This analysis is given by REINER [1945, 1, §4] in terms of the deviator.

1.[1945, 1, §5). The results are expressed in terms of the deviators.
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where

3 = (68T + 2IIL.GIgy” + LIIL[G:“T,

5 = 260 — 2IT,gY gk + (111, — L IL)[G™T, (7.2)
8 = [GT) + 260963 + 2L RV + (1" ~ IL)G™T,
g = [51W3e, — g3 3™

The formulae (7.1) give ¥ as a function of I,, II., III,. To obtain these
latter in terms of I, , ITy, , II1I, one must solve the transcendental system

I = 388 + g¥®I, + gs™(I.? — 2I1.),
ITy = 3[G5™T + 266G ™I, + 2g8Wgh™ (1.} — 2I1,)
+ [GYPIT, + GG (1L 11, — 3I1L,) + [ P(I1.! — 21, 1I1,),
IIn, = [S8F + [S8™Teh™I. + (g6 Vgh™ (1. — 2I1.) (7.3)
+ gl‘;(a)[gll’u)]qln + gg(s)gl{(n)gg(a)(I-II. - 3III,,)
+ GG “PUL? — 2LIL) + (G T IL.
+ ROV CLIIL + QG “TILIIL, + (8311 .

In general, if real solutions exist, they are not unique, and the purely formal
character of the whole analysis must be borne in mind.

8. Power series for the coefficients. We write the power series for G&® in
the form
6 ® = gruk L' IL'TIL, 8.1)

where the Ghis% are independent of a.
From (6.8) and (6.6) we have then

®(a, b) = dSX I I 111X,

(ab) _
Pk, = Gou—10k + G2k — 2G11a-1k

8.2)
+ Gau-s0.k — 3G2119-1.k F+ 3G21u1 -
Thus
% = Gouoola + (Gooo + Guow)a” — 2Giow0 I 1o
+ (Gowo + Guoo + Go) L’ + (Gooro — 2Gu0 — 3Ga)LILs  (8.3)

+ 391)00111; + R}



ELASTICITY AND FLUID DYNAMICS 135

where for ease of writing the superscript b(a) has been omitted. There are cer-
tain changes of the coefficients Gy y« Which leave ® invariant, e.g. one in which
the four coefficients Goowo , Gozoo , Gr100 , and Gaoeo are varied in any way that leaves
the three sums Gozo + G100 + G2000 » Gooro — 2G100 — 3G2000 , 3G2000 invariant.

9. Linear and quasi-linear functions. The classical theories of elasticity and
fluid dynamies now appear as defined by linear approximations to isotropic
relationships. To obtain the Hooke-Cauchy law (1.1) we write b'; = ¢';,
a'; = &;,Goios = Am, Giod = 2us , and suppose all the remaining Giisx vanish.
To obtain the Newton-Cauchy-Poisson law (1.2), we write b*; = t';, a*; = d';,

6o = —Dp, GHoh = Av, Giesy = 2uv, and suppose all the remaining Grx
vanish. The conditions (6.13) are satisfied, and in fact I' = 1®; for (1.1), T is
the strain energy or elastic energy, while for (1.2) T' + pla is Rayleigh’s dissipa-
tion function.'

A part of the simplicity of the classical theories arises not specifically from
their linearity in the actual quantities concerned, but from their tensorial
linearity. Consider the quasi-linear case, in which G5® = 0 although G5 and
¥ remain arbitrary power series in I, , I1,, II1,. From (7.1) we now obtain
Gi® = —gh®/ghl® o™ _ b7l ea® _ 5o that any inverse relation
must also be quasi-linear. Let I, m, n be any three quantities such that
I+ m 4+ n = 0. Then for a quasi-linear analytic isotropic relationship between b
and a to exist it is necessary and sufficient that

lbll + mb% + nb33 _ gb“) _ 1

lall + maz2 + na’s3 = U1 = :(b); (9-1)
from! = },m = —3}, n = —1} follows the proportionality of the deviators of
aandb:

b — Idi/3 _ _niw
m =41 (92)
while from ! = 1, m = —1, n = 0 follows’
bll - b22 = b22 - bsg = bag - bll — gll)(a)o (9'3)

all —_— 022 a22 — (133 0'33 — all

An alternative formulation of (9.1) is: a necessary and sufficient condition for b
to be a quasi-linear analytic isotropic function of a is that identically

1 RAYLEIGH [1873, 4, §1I] treated an analogous situation in mass-point mechanics.
2 A special case is given by St. VENANT [1843, 1, eq. (1)] and MaxwELL [1853, 1, p. 38].
Cf. (1931, 11, Ch. 14), [1948 1, §6].
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J'y + mb’y + nb%y, mb'y, + nb% + W%, nb'y + b’ + mb%)
= f(la'; + ma® + na’s, ma'y + na’ + la% , na'y + la*s + ma%), (9.4)

where f is any homogeneous function of degree zero, and l + m + n = 0.
From (9.2) follows gt = A,/A,, so that?

I _ &

i i Dy i 1
by = 3wd; + -A—: (a; — 3107 = §<Ia i

i Db
>Ia6i+'A_l':a.ir (9.5)
ie., 39},’(“) = (Iv/I, — Av/A)I.. For the quasi-linear case the conditions (6.13)
for the existence of a potential require that Gt‘® and G¥® be functions of I,
and IT, only, and that 9g5®/aII, + I. agt'®/aII, + 8g>® /oI, = 0.

If terms of second order in a be retained in the power series expansion of (6.7)

by means of (8.1), it must follow that G2‘® 5 0 except in the special case when
9‘2’333 = 0, so that in general an approximation which goes beyond the linear

terms will fail to be quasi-linear.

10. Special cases. We note here the special cases of (6.6) which occur in typical
illustrative situations:

r 0 0
a=10r 0},
0 0 s
r 00 ” 0 0
b—gt¥I =g®llo » 0| +gt®|lo # 0 (10.1)
0 0 s 0 0 ¢
s u 0
a=(u—s0],
0 00O
s 4 0 W+ 0 0
b— g =g®u—s0|+&”| 0 «+50). (102
000 0 0 0
00u
a=|00s]|,
lusO
00w u us 0
b— I =gi |00 s|+ 8 |us s’ 0], (10.3)
| us0 00O

3[1945, 2, pp. A-261-A-262].
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Now in a linear theory g8 = KI,, g¢® = L, g2® = 0, where K and L are
constants. Hence in the case (10.1) departures from classical results are generally
of second order in a, and the influences of G5, G¥®, and G&'® are not distinguish-
able. In the cases (10.2) and (10.3), however, appear two striking new phenomena.

(1) Kelvin effect: Even though I, = 0, the coefficient 9‘3“’ gives rise to a
spherical portion G5‘®I in b This effect is lacking in a linear theory, but it occurs
in a quasi-linear theory.

(2) Poynting effect: The off-diagonal components of a and the coefficient g8'*
give rise to deviatoric diagonal components in b; this effect is lacking in a quasi-
linear theory.

Both effects are of the second or higher order in a. Now in the cases (10.2) and
(10.3), since I, = 0 the result predicted by a classical linearized theory depends
upon G alone, while the Kelvin and Poynting effects are independent of
G, Furthermore, the fact that I, = 0 reduces the expansion for - to gb® =
Ghia) + GSII, 4 - -+, so that the terms of second order in a do not affect the
magnitude of the classical effect. In the cases (10.2) and (10.3), an experiment
measuring only a classical effect can yield no information about G5 or G3¥; in
particular, such an experiment can never confirm the sufficiency or insufficiency of
a quasi-linear theory. The coefficients G5, G3® give rise to second or higher order
effects which are independent of the classical coefficient 9‘1’(“), and an experiment
measuring only these effects can yield no information about g‘,’(". Quantitative de-
partures from the classical measurements are third or higher order effects. More
generally it is easy to see that the magnitude of the classical effect is determined
by the terms of odd order in a, while the magnitude of the Kelvin and Poynting
effects is determined by the terms of even order. These extremely important
conclusions will be illustrated many times (§§42, 45, 54, 71, 72). While they
apply only to the specific examples (10.1), (10.2), (10.3), these examples include

all the situations usually employed in testing a continuum theory by experiment.

11. “Retaining the non-linear terms.” If indeed it were sufficient to ‘“‘retain
the non-linear terms,” the foregoing analysis, yielding general yet explicit
formulae for the approximations of any desired order,' would suffice. It seems
hardly to be expected, however, that a right theory can be constructed from the
mere notion of isotropy, without recourse to the principles of kinematics and
of mechanics. Before the formulae developed above become relevant, two basic
questions must be answered. (1) Does a relation of type (6.3) properly describe
the concepts of springiness and fluidity? Is one tensorial independent variable
sufficient? (2) What tensors shall be chosen for b and a? Do the variables used
in the classical theories really embody exactly the concepts they are intended
to represent, or do they merely approximate them? In the next chapter, there-
fore, the tools necessary for working at these questions will be assembled.

1 CaucHY’s method of isotropic tensors was first applied to the construction of admis-
sible non-linear expressions by BoussiNnesq [1868, 2, Note 1]. Cf. also [1900, 1, §14] [1901,
2, §§4-9]. It was used by Levy [1869, 2] to obtain elaborate linear expressions (cf. [1869, 1]).
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Chapter III. GENERAL THEORY OF CONTINUOUS BODIES

12. Material and spatial coordinates. At some fixed time ¢, let the points of the
continuum be assigned co-ordinates X“ in any Euclidean co-ordinate system,
and let the metric tensor be G5 ; at any other time ¢ let them be assigned co-
ordinates z* in any independently selected Euclidean system,' and let the metric
tensor be g.; :

dSs' = GudXdX’, ds' = gide'de’. (12.1)

Quantities which transform as tensors with respect to transformations of the
X* will be denoted by Latin majuscules with Greek miniscule indices: 4, B,
C*, C%, --- . In a rectangular Cartesian system we write’ X = X', ¥ = X?,
Z =X “.' Quantities which transform as tensors with respect to transformations
of the z' will be denoted by Latin miniscules® with Latin miniscule indices a,
b' e ” ¢ i, +++ . In a rectangular Cartesian system we write x = , Yy =

z = z*. The X * are called material co-ordinates,' the z* spatial co-ordinates.® We

1 This completely general scheme, in which the choice of the spatial co-ordinate system
is independent of the choice of the material system, is introduced by MurNaGHAN [1937, 1,
$§11. L. BriLLouin [1928, 6, §4] [1925, 1, §2] {1938, 2, Ch. X, §VI] instead requires that the
two systems be the same: g;;(z*¥) = Gy;(X*(z*, t)), thus regarding the actual motion (12.2)
a8 a transformation of co-ordinates. Hence certain quantities which are relative invariants
in BRILLOUIN’S scheme in MURNAGHAN’s are absolute. Consider e.g. (24.1); below, which
when the XZ are taken as the X= becomes pJ = po . With respect to transformations of either
spatial or material co-ordinates alone, all three quantities p, J, po are absolute scalars;
if p be regarded as the transformed value of po , however, then these two quantities must
be the values of a scalar density in the z* and X= systems, respectively. Cf. also (1950, 12
§82-3], and Note 4 below.

2 This notation is that used by EuLERr [1762, 1] [1770, 1, §100} in introducing these vari-
ables; it was at first followed by LAGRANGE (1762, 2, §44], who later {1788, 1, Part II, Sect.
11, 94] employed instead the letters a, b, ¢ now in common use.

3 Observe that, e.g., the cf; transform as components of a mixed tensor field with respect
to transformations of the z* but as scalars with respect to transformations of the X=; the
z%,, form a contravariant vector field with respect to z¢, a covariant vector field with respect
to X<, etc. Cf. Note 1.

4 Hivwy (1881, 1, §IV] introduced material co-ordinates which are not necessarily initial
co-ordinates of the particles, but merely any substantially constant independent functions;
his scheme is elaborated by Deuker [1941, 8, §§II-IV] and Orprovp [1950, 8,
§82-3]. OLprOYD bases his dynamical proposals upon an identification principle, in which
the spatial and the material co-ordinates are made to coincide at a given instant and thus
the numerical values of the components of a material tensor coincide with those of the corre-
sponding components of an associated spatial tensof. Thus e.g. he shows that under these
circumstances d coincides with E, a result equivalent to (22.15). LopgE [1951, 13] insists
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shall refer also to the particle X, the place’ z'. The motion” of the continuum
carries various particles through various places in the course of time. It is em-
bodied in the mappings

= 2(X% 1), X*=X%1), (12.2)

assumed to be single-valued and continuously differentiable with respect to
each of their variables as many times as may be desired, except possibly at
certain singular surfaces, curves, or points.
The displacement gradients are
;o o _ 0X"
=X, KT g

z (12.3)

It is easy to see that these quantities enjoy the tensorial invariance denoted
by their indices.

13. A variable reference configuration. Subject to the usual continuity and
differentiability assumptions, let a reference configuration X” and associated
metric be assigned in an arbitrary way:

X' = X¥X* 1), dS* = QoudX*dX™. (13.1)

Quantities which transform as tensors with respect to transformations of the
Xt will be denoted by Latin majuscules with Latin majuscule indices 4, Bz,
C*™, C*y, - -+ . The reference configuration may be one which the medium has
actually assumed at some time ¢, , &) < ¢, < ¢, or it may be any other configura-
tion satisfying the condition that the metric (13.1); be Euclidean. In the classical
treatments the reference configuration is taken as the initial configur: ¢ion, i.e.
t» = t. The present distinction is introduced so as to permit the distortion of
the medium to be measured with respect to a varying reference configuration if
desirable; that is, while the variables X* and t are by hypothesis independent, so
that dSy’ is necessarily constant for each particle, dS° may be chosen as a virtually
arbitrary function of time for each particle, as indicated by (13.1). Since

X5 ot = 0%, 2 LXE =0, (13.2)

upon the rather obvious fact that it is possible to use the X« and ¢ as the only independent
variables in any given problem of the mechanics of continua. GRAHAM [1949, 14] discusses a
“natural frame’’ X* intermediate between the z* and the X=, requiring that in a volume ele-
ment ‘“‘the number of atoms included never alters,” but gives no means of finding such a
frame. A more general concept including all these possibilities is given in §13.

6 The current erroneous German terminology refers to the spatial co-ordinates, which
were introduced by p’ALEMBERT (1752, 1, §43], as EULERIAN, to the material co-ordinates,
which were introduced by EuLer [1762, 1], as LAGRANGIAN..

¢ This happy term is introduced by LopaE [1951, 18, §2].

7 It is often preferable to regard ¢ as simply a parameter, not necessarily the time.
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the z*,., may be considered as functions of the X* ;, and conversely. By differ-
entiation we obtain

axX*; L M oz’ . i
Er v — XX h

e -~ (13.3)
i, M = —'X.s,j(.,—;;”j, X = —Xg1 ——

Let J be that absolute scalar which reduces to the Jacobian dx/dX when
both co-ordinate systems are rectangular Cartesian:

J = Vg det z° 1.

V@

In consequence of the regularity assumptions already stated, we have J # 0, o
Euler’s relation' between the elements of volume dv and dV and Nanson’s re-
lation® between the elements of surface da; and dA , are respectively

dv = JdvV, da; = JX* dA.. (13.5)

From (13.4) follow Boussinesq’s identity® and the Euler-C. Neumann identities,*
respectively

aJ

— =X"J, (UX").=0, (U 2)i=0 (13.6)
ox L

14. Measures of deformation I. Cauchy’s and Green’s deformation tensors.
From (12.2) and (13.1); it follows that z* = 2*(X*, ), X* = X"(2', t); hence

do’ = 2’ dX*,  dX" = X" .da’, (14.1)
and consequently
ds® = CLudX™dX™, d§* = cidx'de’, (14.2)
where
Coiu = g&‘ixi,Lx’.,M’ cij = GuauX" X" ;. (14.3)

The symmetric tensors C and c¢ are the Cauchy-Green deformation tensors.'

11762, 1] [1770, 1, §§112-118].

2 [1878, 1].

3 (1872, 1, §1, eq. (2)].

4 While (13.6): was first given by C. NEuMANN [1860, 1, eq. (25)], it is equiva-
lent to EULER’s (1770, 1, §§26, 49] solution of AZ, = 0 in the form AZ = ¥VB 4C y .

1 CaucrY considered only the case of a fixed reference configuration. He introduced ¢
explicity [1827, 2, eq. (10) (11)] and C by implication [1841, 1, §I, eq. (15)]. C had previously
been introduced explicitly by GREeN (1839) (1841, 2, pp. 295-296].
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If both systems of co-ordinates be rectangular Cartesian, then in terms of the
displacements’ u = ¢ — X,v =y — Y, w = z — Z we have

_ LAY '\’ <6w>2
Cuu = (0 28) o (22) + (22

_ ou \ ou v v owow
CAB—-(1+5)—(> -+ <1+—)+——-—— ,

aY ' aX Y X 3y’
VPV (14.4)
u v w
= (1-5) + (&) + ().
du\ Ju v v Jw dw
= -(-2)a G0 Ew

For a rigid displacement it is necessary and sufficient that C, = 8"y, or, equiva-
lently, Ci,' = 5‘,‘ .

The principal directions of C are carried by the mapping z* = z'(X*, ¢) into
the principal directions of ¢, and in general these are the only mutually ortho-
gonal directions which are carried into mutually orthogonal directions. If a vector
of length L; tangent to a principal axis of C be carried into a vector of length
L; 4+ AL;, then (1 + AL;/L;)’ = C., where C; is the proper value of C corre-
sponding to the principal axis. Similarly, if a vector tangent to a principal axis
of ¢ be now of length I; 4 Al; but originally of length I;, then (1 + Al;/l,)™* =
¢;, where ¢; is the proper value of ¢ corresponding to this principal axis. Hence
C: > 0, ¢; > 0. Now in fact Al;/l; = AL,;/L;, the common value being the
principal extension §; corresponding to the given principal direction. Equiva-
lently, ¢; = C;™', a result which can be established as follows.’ Since

Crun = G*"%’ ngit’ 2 = 2" i ue
i skyrL M L,d (14.5)
cj=gX,;,G“‘X ,,‘=X'XL,,',
by (13.2) it is easy to see that*
C o = X" Kai, (€5 =2";,. (14.6)

Since the matrices AB and BA have the same proper values, by inspection of

2 KircHHOFF [1852, 1, p. 762] most aptly remarked ‘‘durch Einfithrung der Verschiebungen
gewinnt man nichts, wenn diese nicht unendlich klein sind, im Gegentheil verlieren dadurch
die Formeln an Kirze und Ubersichtlichkeit.”

3 These results are Cavcuy’s [1841, 1, p. 353]; the proof sketched here is adapted from
[1937, 1, Appendix]. Beautiful figures representing deformation ellipsoids by a rubber or
cloth sheet stretched across an initially circular or rectangular frame are given by WEISSEN-
BERG [1935, 2, pp. 85-87] [1949, 81]. Bonvicint [1932, 10] (1935, 3] discusses the separation of
large pure strain from rotation.

+ FINGER [1894, 2, eq. (12) (31)] introduced IIT,C~! and c!.
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(14.5); and (14.6), it follows® that ¢; = (C™);. But (C"); = C;™. Hence
¢i = C L QED. Thus C; = (1 + 8)% ¢i = (1 + 87>
By (6.4) and the result just established we have®

e

= .S e = _1_
IIIe’

I, II, = T
Since (¢™): = ¢, and (C™"); = C,', similar relations connect the invariants of
¢ and C™. These formulae yield the extremely important result that while in
general a scalar function of C is not also a scalar function of ¢ only, nevertheless
an analytic isotropic scalar function of any one of ¢, ¢ ', C, C™ may be regarded
equivalently as an analytic isotropic scalar function of any of the others.

From (14.5); and (13.3); I perceive the first of the mnemonic and not in-

elegant forms

oz ; ax* i - ax™
c.M = ~ axe ¢’ = v (€ iy = ~ 3pa?
L (148
@ = -2
¢ = T axna
Similarly
—1\ LM X .
PO M+ Sz, OO o XM g X, (149)
there being analogues for ¢ and ¢
By (6.4);, (14.5)1, and (13.4), it follows that
Il = det C*y = det g;; det G*(det z°,.)* = J- (14.10)
Hence by (13.5); we obtain’
dv = \/IIIcdV, dV = ~/III, dv. (14.11)

The general problem of comparing the Cauchy tensors ¢ and ¢* measuring the
deformation of an actual configuration z* from two different reference configura-
tions X* and Xz* is difficult. Consider, however, the special case in which,
referred to a single rectangular Cartesian frame, we have X1* = KX”, so that
the starred configuration is a uniform extension of the other, with linear coeffi-
cient K. Then by (14.3); we have ¢* = K’ c; hence in particular

I.=K1., II.=K'qI,, IIl.=KIII,. (14.12)

A deformation is isochoric if dv = dV; necessary and sufficient conditions®

§ [1948, 10, §3].

8 [1948, 10, 3]. The result of [1937, 1, Appendix] is equivalent.
7 (14.11), was given by CaucHy [1827, 2, eq. (28)].

8 [1948, 7, §1], [1948, 10, §6].




ELASTICITY AND FLUID DYNAMICS 143

are IIl, = Ill.~» = IIlc = IIIc-1 = J = 1. In an isochoric deformation (14.7)
becomes

Io = Ic—l = IIC = IIo—l, II., = IIc—l = Ic = Ic—l . (14.13)

Further, since III, = cicscs = 1, we have I, = ¢; + c2 + (ci¢2)”', whence since
¢; > 0 follows the first of the inequalities

Io,II,, It , IT1 = 3. (14.14)

If we write I11, = 1 in terms of the extension ratios we obtain (1 + &) (1 + d2)
(1 4+ 83) = 1, or, in an evident notation, I; + II; + III; = 0. Hence’

I — 3 = I — 4II, — 2III;,

o orr _ , (14.15)
I~ — 3 = 21" — Il + 2111, — 71115 + 11y — 201115 .

Consequently as 8; — 0 we have Io-1 — 3 = O(8%), II,-1 — 3 = O(5°). These
results are to be contrasted with the general case, when all that can be con-
cluded is that I,-1, Io-1, III,~1 are positive and differ from 3 by a quantity
which is O(3).

16. Measures of deformation II. The Green-St. Venant and Alamansi-Hamel
strain tensors. The strain tensors' E and e, defined by

2"y = C*y — 8" u ’ 23‘:‘ = 5ii - c‘f’ (15.1)

are convenient for approximations, because their vanishing is a necessary and
sufficient condition for a rigid displacement, and consequently, since their physi-
cal components® are dimensionless, a nearly rigid displacement may be specified
by a series expansion in E or e in which all terms beyond some specified order
are neglected.® The principal strains E; and e; are related to the principal ex-

9 [1951, 2, §21].

1 e for infinitesimal strains (§19) was introduced by Cauchy [1827, 2, eq. (41)]; E for finite
strains by GREEN [1841, 2, p. 297] and St. VENANT [1844, 1] [1847, 1, §2]; e for finite strains by
Avrmansi (1911, 2, §2] and HaMmEL {1912, 1, §363]. The present tensorial treatment is adapted
from [1937, 1], which generalizes [1925, 1, §4] [1938, 2, Ch. X, §VII]. I cannot understand
the claim of SWAINGER (1949, 46] that the tensors E and e ‘‘should not be interpreted physi-
cally,” since their meaning in terms of change of length and co-ordinate angle is purely
geometrical. Mourane [1947, 19] gives a method of calculating approximately a function
fle , I, , II1,) such that e-If shall represent a change of shape without change of volume,
but RicHTER [1948, 63] claims the analysis is faulty. Cisort1 [1944, 16] characterizes defor-
mations in which E = fI.

2 [1952, 8].

3 Approximate formulae for the EL, in terms of the displacements are given in [1928,
6, §4] [1925, 1, §2] [1931, 1].
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tensions §; by
2B;=Ci—1=(14+8)"—1, 2u5=1—c;=1—0A+8)"7 (152

and hence E; =2 — 1, e; < 1. From (15.2) and (14.7) follow equations connecting
the invariants of these tensors:*

(dv/dV)* = 1 + 2@ + 4IIy + 8IIlg = IIlg = III,~1 = III,
= (1 — 2I, + 4II, — 8II1.), (15.3)
IIT -1 = 3 — 4l + 4Il,, IIIII-1 = 3 — 2I,.
Equivalent to (14.12) are®
Io =31 — K+ K ,Il, = 3(1 — K’ + K*(1 — K+ + K'II..,

_ o 121 w2 174 2 8 (15.4)
III, = 3(1 — K" 4+ iK1 — KT + 3K°(1 — KNI + K111 .

16. Measures of deformation III. Hencky’s logarithmic measure. Hencky*
proposes to take log (1 + §;) as a measure of principal strain. While Hencky him-
self does not give a systematic treatment, we may introduce the tensors H and h:

H=13logC=13log(I+2E)=E—E +4E — ...,
h=—j}logc=—3log(I—2) =e+e+4e+ -, (16.1)

whence follows h; = H; = log (1 + &;), and hence

I = log \VIII, = log dV (16.2)

Thus the deviators of h and H represent change of shape without change of
volume. The off-diagonal components of h and H are not proportional to the
logarithms of the corresponding components of ¢ and C, however, but are more
complicated infinite series. The tensors h and H are accordingly difficult to use
in practice except in the simplest situations.®

411911, 4, §2], [1912, 1, .§§364-365] [1937, 1, Appendix].
s Corresponding relations for E and E* are given in [1938, 2, eq. (x.104)].

11928, 2, §1] [1929, 1, §1] [1929, 2, §2]. Cf. [1935, 2, pp. 59-60] [1939, 8, Ch. 1, 15] [1941,
1, p. 127] [1948, 18, §2] [1948, 1, p. 127] [1949, 24]. According to [1897, 1, §I], this measure
was used by A. IMBERT (1880) to describe the simple extension of rubber. Cf. [1909, 3, Pt.
1, §11.

2 In (1948, 32] strain is measured by the quantities H:, ..., Ci2/N/CiCz..., which are
awkward to use because they do not form components of any differential invariant, and in-
deed the consequent proposals in this paper are not admissible for isotropic media as in-
tended (cf. §56°).
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17. Equivalence of the various measures of deformation. Various other meas-
ures of deformation have been proposed.! It is important to realize that since
each of the several material tensors C, E, H, etc. is an isotropic function of any
one of the others, an exact description of strain in terms of any one is equivalent
to a description in terms of any other’; only when an approximation is to be
made may the choice of a particular measure become important. A similar state-
ment holds for the spatial tensors c, e, h, etc. But the spatial description in terms
of ¢, e, h, - is not generally equivalent to the material description in terms of C,
E, H, ..., for while the proper values of any one of the former set of tensors are
functions of the proper values of any one of the latter set, the principal spatial
axes generally fail to coincide with the principal material axes. Only n two special
cases are the two descriptions equivalent: for a function which is independent of the
azxes of strain,’ or for a pure strain unaccompanied by rotation.

18. Conditions of compatibility. The converse problem of calculating a single-
valued displacement when one of the tensors C, c, E, e, etc. is given arbitrarily
does not generally admit a solution. Indeed, in order that the metrics (14.2) be
Euclidean, as it is assumed at the outset they are, it is necessary and sufficient
that the Riemann tensors' based upon C and upon ¢ must vanish identically.?
The six independent partial differential equations obtained in this way are St.
Venant’s conditions of compatability.’ Since the validity of these equations has

1E.g. [1891, 1, §1]. BroT [1939, 4, §1] [1939, 6, p. 118] [1939, 6, p. 108] [1940, 4, §1] employs
a symmetric tensor B with positive proper values such that (I + B)? = C. MURNAGHAN
[1941, 1, pp. 127-128] points out that Bior’s result can be given a form both simpler and
more accurate in terms of a tensor k such that k? = ¢~1 (cf. §41!); this tensor, whose proper
valuesare 1 + §; , is employed by RicuTER [1948, 13, §2]. BioT’sresults appear to be equivalent
to those of Biezeno & HeENcky [1928, 8, pp. 569-578] (1932, 13], generalizing those of SouTtH-
wELL [1913, 3] (cf. §41, §50). MoonEY [1948, 28, pp. 435-436] proposes to use k = (II11.)'sk
so that ITTg = 1. SWAINGER [1047, 21] [1948, 46-47] [1950, 8] bases his theory of elasticity,
plasticity, and strength upon a new definition of strain, but nowhere in the maze of quota-
tions and cross-references to his published and unpublished work have I been able to find
an equation expressing this strain in terms of the displacement. There are frequent refer-
ences to “‘elastic’’ and “‘plastic’’ strain and to strain ‘“due’’ to other strain, etc., in thorough
confusion of geometrical quantities with the dynamical circumstances the author regards
as producing them. It seems unlikely also that SwAINGER’s proposals are tensorially ad-
missible, but this point cannot be decided until they are first unequivocally stated. Cf.
§56°. In a reply to a criticism [1950, 20] he states that the theory shown to be inadequate
is not his own, but his further remarks, which contain a profusion of symbols, quotation
marks, and assertions, but a paucity of equations, serve only to deepen the mys-
tery. OLproYD [1950, 10, §6] prefers (IT1,)"*c.

21048, 1, §3).

3 E.g. for the strain energy of an elastically isotropic body.

1 B.g. [1927, 1, Ch. III, §18].

% (1911, 6] [1928, 1, §14].

3 (1864, 1, §32] [1871, 4, §1] [1876, 8, Vorl. 27, §4] (1886, 1, Note at end] [1889, 4] (1896, 1,
§13] (1906, 1] [1907, 4, Ch. I). These equations had been given earlier by Kircanorr [1859,
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recently been challenged, quite incorrectly, by an eminent physicist,' I re-
capitulate their well-known significance. The conditions of compatibility are a
necessary and sufficient condition that the space of which the continuum is a
part be locally Euclidean. They are supposed to hold everywhere except possibly
upon certain singular points, curves, or surfaces, where the material may divide
or join. That they may fail to be satisfied upon these singular loci follows because
here J becomes zero or infinite, so that for these points the first step in the theory
of differential invariants cannot be taken and consequently the Riemann tensor
even if it exist must fail of its usual significance. The fact that the conditions of
compatibility may be meaningless or not satisfied at a junction or dislocation
in a given deformation does not prevent the space in which the deformed material
is imbedded from being Euclidean, and consequently admissible for the later
imposition of the laws of Newtonian mechanics.’

19. Infinitesimal displacements, infinitesimal displacement gradients, and
infinitesimal strains. The classical theory of elasticity is called the ‘““infinitesimal
theory,” because (in addition, of course, to a dynamical law) it employs three
purely geometrical hypotheses which permit the neglect of all terms except those
of lowest order in certain expressions. These hypotheses will now be stated
precisely.

If | ;| < 1 the strain is said to be infinitestmal. In an infinitesimal strain
it follows by (15.2) that | E;| < 1, |e;| < 1, so that squares and higher
powers of E and e may be neglected in comparison to E and e themselves, and
also ¢; = E; = §;. Even in very great extension e; remains fairly small, while
even in very great compression E; remains fairly small. Thus e.g. from (15.2)
when 8; = 1 we have E; = 3}, e; = §, and when §; = — } we have E; = — §,

1, §§1-2], but without a clear statement of their meaning. For the case of infinitesimal dis-
placements referred to curvilinear coordinates, see [1937, 2] [1944, 11]. Since for finite strains
the explicit equations are easy to derive but so complicated as to be quite useless, they fur-
nish a popular literary subject: [1902, 6] [1905, 1, 3] [1911, 6] [1914, 2, §3] [1930, 8, §2] [1942,
8, p. 60] [1943, 1, Ch. 1, 120] [1944, 10] [1948, 26, eq. (8) (9)] [1950, 10, §5] [1950, 12, §4] [1950,
8, §4] [1950, 19] [1951, 4].

4 (1948, 14, §§1-2]. In fact the first and last paragraphs of §2 contradict each other. The
error does not invalidate the remainder of the author’s analysis, since he makes no use of
it This paper contains a spirited but not altogether fair attack upon the classical theory of
elasticity, as well as an interesting tentative toward a more general theory (§82). The ex-
position is difficult to follow because of the author’s habitual confusion of purely kinemati-
cal quantities, which exist in any continuous medium in motion, with physical phenomena in
whose description he may or may not wish to employ them. Particularly unfortunate is his
use of “‘strain’’ as somehow related to the dynamical action of cutting, and as an attribute
of a single configuration rather than a relation between two configurations.

5 As illustrations consider an initially straight rod bent and joined so as to form a ring,
or a ring cut and straightened out. The conditions of compatibility cannot be neglected ex-
cept in an approximative procedure where the resulting error is demonstrably insignificant.



ELASTICITY AND FLUID DYNAMICS 147

e; = 3%. For an infinitesimal strain (15.3) reduces to
I-» = 3+ 2I,;, I~y = 3 + 41, Ille-s =14 21,, (19.1)

the last of which may be written also as' dv/dV = 1 4+ I, . AlsoI; = I, = I,
II; = II, = g, 11I; = III, = g .

Let both z* and X« refer to the same rectangular Cartesian system. If either
of the equivalent sets of conditions

ou iz ou ox
x|~ a’)“f_l'«l’ ’a—? = lap| <L
¥ X (19.2)
ou i) ou a
55 = 5;—1‘<<1, 51; —|a7|<<l,"‘

hold, the displacement gradients are said to be infinitestmal. From inspection of
(15.1); and (14.4) it is plain that when the displacement gradients are infinitesi-
mal the strain components e;; may be approximated by Cauchy’s’ linear ex-
pressions

ei; = &; = $(uij + 5.0, (19.3)

which are somewhat misleadingly called the infinitesimal strain components,
and also that €. = €;; = her = Exx; 8y = €0y = hyy = Exy, - ,and I; =
Iy, Il = Iy, I1I; = IIIy. That is, in the case of infinitesimal displacement
gradients all distinctions between spatial and material strain measures may be
neglected.

If the displacement gradients be infinitesimal, plainly the strain is infinitesi-
mal, but the converse is false.® Consider, for example, the rigid rotation u =
—2X = 2z,v = —2Y = 2y, w = 0. Since du/dz = 2, dv/dy = 2, the conditions
(19.2) are not satisfied; the linear formulae (19.3) yield &.. = &, = 2, while by
(15.1), for the true strain we have e,; = e, - -+ = 0, as is obvious. Hence there
is extensive literature- concerning deformations where the strain is infinitesimal
but the rotations are large (cf. §49), which are easily produced in bodies one of
whose dimensions is very small with respect to another.!

The general problem of calculating the strain tensor E for the deformation
resultant from the composition of two others with strain tensors 'E and ’E, qr,

111827, 2, eq. (33)].

(1827, 2, eq, (41)].

3 This distinction was observed by ST. VENANT [1844, 1] [1847,1]. Cf. [1917, 2, §3]. By using
an expression for a general finite rigid displacement |1932, 12}, CisoTTI [1944, 18] is able to
put into general form the argument exemplified in the text above.

4 St. VENANT [1844, 1] [1847, 1] noted the following examples: a thin sheet may be bent
back so that its two ends touch, a long slender shaft may be twisted through several di-
ameters. In both cases the true strain components E 'y, or e'; may be very nearly zero every-
where, but at some points the linear expressions (19.3) become large and fail to approximate
the strain components correctly. Cf. [1892, 4, §2] [1939, 9, §4, footnote].
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equivalently, of comparing the strains of a given configuration with respect to
different reference configurations, is very difficult. One simple special case is
solved by (14.12) or (15.4). Another case when a simple explicit result can be
written down is that in which the displacement gradients in the second deforma-
tion are infinitesimal. Let the actual configuration z'(XL) be written z* = y° +
u’, where all three quantities are referred to the same rectangular Cartesian
system. Then %‘(Xt) is the displacement vector in the second deformation.
From the usual regularity hypotheses we have X% = Xt (u”) and we can form
du'/dy’, so that

i o’ i
= _— . 194
=Y.+ a Y. (19.4)

Supposing the displacement gradients du‘/dy’ to be infinitesimal, from (14.5),
and (15.1); we have

v _1/( iz ' _ 1
Eu—§<y +ay,y ><y..u+ay,,yku) 25u
19 1 0w’ (19.5)
u 3 4,
~ M+26’ yi.u+§a—;cyLyk.u.

Writing this result in tensor form, valid in all co-ordinate systems, from (19.3)
we have

Ery =Bty + &y Yiu, (19.6)

where & is the infinitesimal strain tensor for the second deformation. When the
gradients of the first displacement are also infinitesimal, (19.6) reduces to the
classical superposition theorem & = '€ + .

Let f(x, y, z) be some function of the spatial variables. Then by the mean
value theorem we have

f@y2=fX+uY+vZ+w),

=/(X,Y,2) +u af'+,,6f'+wdf' (19.7)

where primes denote mean values. If

of af af
Yoz T + Y %
fX, Y Z)

when 9f/dx, d8f/dy, 8f/0z are evaluated at any possible mean value X -+ «’,
Y + v, Z + w', then the displacement u, v, w is said to be infinitesimal with re-
spect to the function f. For any function f with partial derivatives at X, Y, Z a
range of infinitesimal displacements exists. In an infinitesimal displacement we

«1 (19.8)
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have f(z, y, 2) = f(X, Y, Z), so that the distinction between material and spatial
co-ordinates may be discarded. A displacement infinitesimal with respect to one
function js generally not so with respect to another. A displacement which is
simply called infinitesimal is implied to be so with respect to all functions which
are used in connection with the problem. In the classical infinitesimal theory of
elasticity these functions are: the displacements themselves, the stress com-
ponents (§26), the extraneous force densities, and the surface loads.” If the dis-
placement gradients be infinitesimal, it follows by (19.2) that (19.8) is necessarily
satisfied by the displacements u, v, w; hence u(z, y, 2) = w(X, Y, Z), and for
a general function f (19.8) becomes simply | udf/0X + vdf/dY + waf/dZ | K
X, 7, Z).

20. Velocity and acceleration. If D/Dt denate time differentiation with the
material variables X* held constant, let a superposed dot denote the material
derivative:'

_ Db i _ Do’ Db’ _DB”*

= — = hi = 22 Ppick L ReB —
b—Dt’ X Dt’ b Dt+r,kbx, ’B Dt y

(20.1)

where the T'¥ are Christoffel symbols. & is the velocity® and ° is the acceleration.
A spatial expression including all the cases of (20.1) is

<} i
()=é—t()+().z’x, (21.1)
where 9/dt denotes the time derivative when the spatial variables z* are held
constant. In particular,’

# =% 44 (20.3)
at
& ; stands for 51:_' ; ; the reverse order of differentiation would be indicated by
x+;, bars being used in place of parentheses or brackets.

s Current terminology is misleading. In the theories of rods, plates, and shells, for ex-
ample, the term finite displacement is often used to mean simply a displacement of the order
of magnitude of the smallest dimension of the body, but nevertheless infinitesimal in the
sense above; problems concerning such displacements may be in principle within the range
of applicability of the classical theory of elasticity, although not correctly described by
certain approximate theories of rods, plates, and shells.

! SToKEs’s notation [1845, 1, §5] for the material derivative is D/Dt. In a rectangular
Cartesian spatial frame we have F*** = DF/Dt.

2 The velocity was introduced as a primitive concept by p’ALEMBERT [1752, 1, §43].
DEUKER [1941, 8, §1V] employs a symmetrical system in which the velocity of the particles
relative to the space (our #*) and the velocity of the space relative to the particles, viz.
X = 9X*/3t |.i-const. , are counterparts. Differentiating (12.2): yields 0 = X% 4 X«
80 that X« = —Xe i, &' = — z'.X°

3 (1757, 2, §XIX].
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The material derivative of a quantity at a place is the rate of change of the
quantity as apparent to an observer situate upon the moving particle instan-
taneously occupying the place. Since any function of the X alone is a scalar
with respect to transformations of the spatial variables, by (20.1), it follows that.
the material derivative of such a function is zero, and the operation “ "’ always
commutes with the operation “-”, By (20.2), if the spatial co-ordinate system
be instantaneously stationary (dg:;/0t = 0), we have

gij = 0. (20.4)

21. Rate of deformation. Vorticity. Since dX* = 0 and 7' = &', we have
i = 7. dXe = &'adX® = &, do’ (21.1)
By differentiating z° sX? ; = 8°; we obtain a formula which after multiplication

by X“; yields

Xo; = —' X0, X% = —3"; X" (21.2)

Computing the material derivative of the squared element of arc length, by
(20.4) we obtain

8 = ggdoids = g;ldrde + deidr), (21.3)
whence by (21.1) follows Beltrami’s equation®
st = 2ydo'de’,  dy = Hlaos + 1. (21.4)

d is the rate of deformation tensor, and the quantities d;; , introduced and inter-
preted by Euler,’” serve as measures of the local and instantaneous rate at which
the shape of the medium is changing. The physical components of d are of dimen-
sion T, where T is a unit of time. A necessary and sufficient condition that
the instantaneous motion be one of which a rigid body is susceptible’ is d = 0.
The conditions e = 0, E= 0, compare two discrete configurations, while d = 0
refers to the instantaneous change of a given configuration. There is a formal
analogy between the linear expressions (21.4); and (19.3); the latter, however,
yield only an approximate measure of the strain within limited circumstances,
while the former are exact measures of the rate of deformation valid without
exception.

11871, 1, §4].

2 (1770, 1, §§9~-12]. A material expression for d is given in [1903, 11]. Hencky [1949, 40)
introduces ‘‘projective’’ rates of strain and rotation, defined respectively as the symmetric
and skew parts of #:.; + cix, , where ¢ is an unknown vector. The kinematical signifiance and
value of these quantities is difficult to appreciate.

3 (1770, 1, §13]. The generalization in differential geometry is known as KILLING’S equa-
tion (1892, 1, p. 167].
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The vorticity tensor w is defined by
wi; = 5(&i; — &5, (2L.5)

so that #;; = di; + w.;. The corresponding axial vector w, given by 2w’ =
— ¢® %, , which was introduced by Lagrange and Cauchy,® was shown by
Cauchy and Stokes® to represent a local instantaneous rate of rotation of the
medium.

Let dS* and ds® be the squared elements of arc associated with a particle at
times ¢ and ¢ + At, respectively. By Taylor’s theorem and (21.4); we have

ds' — dS* = At + o dFAF + -+ = At + -+ da'de’. (216)
Then by (15.1); and (14.2), it follows that

eij = d AL+ -+ . (21.7)

The general term of this series is calculated by Dupont?, who uses it to obtain
approximative formulae for the strain in terms of the curvilinear displacements
u' = #'At + --- . (Cf. §15°).

22. Rate of strain. Differentiating (14.2), and employing (21.1);, we have

o

dS? = éda'de’ + st dabda’ + da's’ idat). (22.1)

Thus if Eckart’s' reference rate tensor r be defined by

ast = 2r,dx'ds’, (22.2)

we obtain
2ri; = éi; + it + cad' ;. (22.3)

The reference rate tensor r is a measure of the rate at which the reference con-
figuration is being altered. Since this configuration is at the disposal of the
observer, the quantities r;; are partially arbitrary; since the Riemann tensor
based upon ¢ must vanish (§18), however, it is necessary that the r;; satisfy six
quite complicated partial differential equations. When the reference configura-
tion for each particle is fixed in time, as is always assumed in the classical treat-
ments, then r = 0.

4[1762, 2, §XLII] 1827, 6, Part 2, Sect. 1, §4].
5 (1841, 1, Th. IV] [1845, 1, §2].
s [1931, 16, §13].

! EckART [1948, 14, §3] introduces the unhappy term ‘‘anelasticity tensor’’, suggesting
the physical phenomenon in whose description he proposes to employ this purely kinemati-
cal quantity.
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Supposing the spatial frame be steady, from (22.3), (20.4), and (15.1); we
calculate the spatial rate of strain tensor’:

é,'j = d.'j - Tii — [ijiiik..' + e,-;‘d:",,-]. (22.4)

This result shows an inconvenient feature of e: in a strained medium, the values
of the e;; are changed by a rigid rotation, for while indeed ds* — dS,’, and hence
also the quantity e;,dz'dx’, remains constant for each particle, the individual
components e;; change because to an observer stationed upon a particle the spa-
tial axes themselves seem to rotate as places move by.

The corresponding formula for h is complicated, but since h; = log (1 4+ &)
we have h; = §;/(1 + §,) if the principal spatial axes of strain be instantaneously
stationary®; hence if these axes coincide with the principal axes of d, then w =0
and (22.4) yields é; = d.(1 — 2e¢;) when r = 0, whence by (15.2), we have h; = d; .

Multiplying (22.3) by (¢, we obtain 2(¢™")“r;; = (¢™")"%:; + 24" ., whence
follows Eckart’s formula

Id = :t‘,i = (c_l)ijrij - log '\/—II_I‘, = (c—'l)ijrij + log j'—;‘)/', (22 5)

(C_l)ijrij =I3— I = Iy — In-

If for the moment we select the initial configuration as that of reference (r = 0),
(22.5) reduces to Euler’s expansion formula®

e mtog
I, = 3" = log v, log dv . (22.6)
With the aid of this special case we may simplify (22.5):

(™) "ry = log av. (22.7)

A corresponding material analysis is more elaborate. First, by (22.2) and
(14.1); we have

d;SZ = 2RLM dXLdXM, RLM =71y x‘,[, xj,u. (228)
Let X* be the velocity of the reference configuration with respect to the particles:

L
b = 0X (22.9)

-a_t X®==const, )

Now suppose Gry = (GLx/0X*)X* = 0; ie., the reference frame is steady

2 The case r = 0 is given in [1929, 2, §2] [1937, 1, p. 243].
31948, 1, §7].
4 [1757, 2, §XV].
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with respect to the particles. By differentiation of (13.1), we obtain

aS = GuuXE X% ,dX X",
Grau(X* XM 5+ X* XM p)dX dXP, (22.10)
= (Xp.w + Xu)dX"dX".

Comparing this result with (22.8), yields
RLM = %(XL,M + XM.L)- (22~11)

The formal similarity between (22.11) and (21.4), shows that the material
reference rate is the rate of deformation of the reference configuration.

Supposing now that the spatial frame be steady, by differentiating (14.3);
and employing (20.4) we have

Coin = g;jx‘,axj:pX“,LX”,u,
= i (@t s XL X + 2802 s XL XP u) (22.12)
+ g5 at’s (X X + XL X8 1),
but from (21.2), it is plain that 5(7; = — X*pX* ., so that by (21.4); and

(14.5); we have
Cow = gii(@ w2® 2’ w + &7 42"z’ 1)
— gii(@ 1 b X e + 2w X)), (22.13)
= 2dijx' 1w — CoX® e — CurX¥ 1.

Thus € depends not only upon the rate of deformation d and the material refer-
ence rate R, but also upon the rate of rotation of the reference configuration
Xim — Xauo and the existing deformation C. Cf. (22.3). In the special case
when R = 0, (22.13) reduces to the Cosserats’ formula’

Eag = dijt’ o2’ g (22.14)

for the material rate of strain tensor E.

From (22.4) and (22.14) it is apparent that even in the case when strain is
measured with respect to a fixed configuration (r = 0) the two rates of strain
are not all the same as the rate of deformation, nor directly related to one another.
If the present configuration be taken as that of reference and ' = X',. -+, so

5 (1896, 1, §15, eq. (2)]. Cf. [1904, 1, Part I, Ch. I, §1, eq. (30)]. In DEUKER’s scheme (§20%)
[1941, 8, §VI] we easily express E.sin terms of the velocity of the space relative to the body:
—~2Eqs = Xap + Xs.a , 80 that the material rate of strain is the negative of the rate of de-
formation of the space relative to the body. A material equivalent of the criteriond = 0
for rigid motion is thus Xa.s + X« = G.
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that e = E = 0, then indeed (22.4) and (22.14) yield
én=dn=Ey,- - : (22.15)

thus the rate of deformation is the rate of strain if the medium be unstrained. In
the case of infinitesimal displacement gradients (§19), (22.15), holds approxi-
mately, but (22.15); is valid only subject to the proviso that the vorticity w be
of at least no greater order of magnitude than the rate of deformation d. The
exact formulae (22.4) and (22.14) must be employed in any general theory where
it is necessary to differentiate the strain tensors.

23. Digression: Mechanical phenomena for whose description the various
kinematical quantities are appropriate. While the foregoing purely kinematical
analysis is valid for any continuous medium, since our aim is to construct me-
chanical theories we resume certain mechanical attributes for whose description
the various kinematical tensors may be relevant.! Spring in a body is the quality
of resuming its initial shape, once released from deforming forces. Thus the
dynamical response of a perfectly elastic solid might well be expected to depend
upon the tensors E and e measuring its strain from a preferred initial configura-
tion, and to be independent of all time rates. Fluidity in a body is the quality
of yielding to any permanent deformation which is effected sufficiently slowly.
Thus the dynamical response of a fluid might well be expected to depend upon
the tensor d measuring its rate of deformation with respect to its present con-
figuration, and to be independent of all quantities such as E, e, E, etc., which
are functions also of some previous configuration. Softness in a body is the
quality of partial yielding to deformation, sometimes qualified by some measure
of spring. Thus the dynamical response of a plastic substance might well be
expected to depend upon both its rate of deformation d and its strain e and
rate of strain e from some configuration intermediate between the initial and
actual configurations; through this latter the reference rate tensor r might be
involved.

24. Conservation of mass in simple media. Let p(X®t) be the density, and
let po(X*) be its value at the initial instant ¢ . Its dimensions are ML™, where
M is a unit of mass and L is a unit of length. The specific volume is v = p ", A

sey of particles U, of positive mass ]’O podVy = f*o pdvis a body. In regions where
0

the density is continuous the principle of conservation of mass' may be expressed

1 Cf. (1949, 80, §4].

! The mathematically inclined reader will observe that this principle is but a partial re-
statement of the hypothesis of continuity of motion (§12), plus the introduction of a new
physical unit M. Cf. (1952, 4, §7]. The equation (24.1); is the definition of density in terms
of an arbitrary function p, . Cf. the remarks of HiLBERT [1907, 1, pp. 100-108].
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in the equivalent forms®

Y. oS =5 pdo =0, (24.1)

dv
pdv = podVo, m = %

where p is the density of the reference configuration. From (22.6) we now de-
duce several forms of Euler’s continusty equation®:

& = —logp = log v, gf + (o) = 0, (24.2)

while (22.5); becomes®
log WW/IIT.) = (¢7)"ry. (24.3)

Thus I1I; and v remain independent until the reference rate r be specified. If
r = 0 then vA/TII, = const., pA/TIT,—1 = const. for each particle. For isochoric
motions, (24.1) and (24.2) take the forms

dv = dV = dV,, v=1, p=p =p, Fi=Is=0. (24.4)

The kinetic energy ® of a body U and its rate of change® are given respec-
tively by

£= fv o'y, = fv pi'ss dv. (24.5)

25. Heterogeneous media. In order to treat motions of media whose com-
ponents may suffer chemical and physical changes, Stefan' suggested the artifice
of regarding each place as simultaneously occupied by a single particle Xr* of
each of several different continua. The peculiar motion of the substance T is of
the form z' = fr'(Xr% t). Greek majuscule indices (subscript or superscript),
not indicating tensorial character, are reserved for the identification of quan-
tities associated with these motions, all sums being assumed to run from I' = 1
to I' = N, where N is the total number of substances which actually occur any-
where in the medium, or may arise from any possible chemical or physical
change. The peculiar velocity dr' of the substance T is given by

[
irt=% (25.1)

0t |x pemconst.

2[1770, 1, §§111-112, 123-129).
(1757, 2, §§XVI-XVII].
{1048, 14, §4].

511851, 1, §49).

1 (1871, 6]. Cf. [1907, 1, pp. 43-47] [1907, 1a, pp. 42-45]. Rey~oLps [1903, 19, §35] employed
a similar notion in order to obtain a mathematical resolution of a given motion, as in turbu-
lent flow.
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The peculiar motions are connected by postulated relations representing the
physical principles of chemical combination of atoms to form molecules, the
atoms themselves being regarded as indestructible. While we freely employ the
language of atoms and molecules, the mathematical reader will constantly rec-
ognize it as simply a conceptual guide, since all our equations presuppose the
medium to be the superposition of several continua. This structure was developed
by Jaumann and Lohr,” but we shall outline here the elegant presentation of
Eckart.?

For simplicity,’ let the N substances T' constituting the mixture consist of M
pure substances of atomic weights Mr, I' = 1,2, --- M,and N — M compounds
of molecular weights Mr, ' = M + 1, --- , N, which may be formed from the
pure substances. Then

Mr = nr*Ma, (25.2)

where the nr® are given non-negative integers subject to the restrictions
nd = 6p* if T < M, while nr® = 0if A > M. The case when two of the sub-
stances are but different phases of the same chemical compound is not excluded.
It is assumed that each substance has its own peculiar density p". Then the
total density p = E¥-1 p", and the molal concentration cr of the substances T is
defined by

F=2_. (25.3)

Hence Mrc™ = 1.
The rate of production e* of the substance T is defined by®

pe’ = (—;?t (pc™) + (pc"2r’)s (T unsummed). (25.4)
The indestructibility of atoms is now expressed by the postulate
na'er = 0. (25.5)

Multiplying (25.5) by Mr, from (25.2) we obtain IMMNae® = 0, a statement of
the conservation of total mass in the mixture.

The mean velocity &' is defined as that whose momentum equals the resultant
momentum of the mixture: pz' = p'@r’, or #* = MrcTér’. It then follows by

2 [1911, 6, §§I, VIII] (1917, 6, §§5, 7-8, 12, 15]. Cf. §322.

3 [1940, 2, p. 271]. Cf. [1938, 10, §III] [1939, 10] [1941, 9, §3] [1942, 18, §§12-14] [1942, 14,
§84-5] [1951, 10, §§7-13].

4 This framework is easily adjusted to describe ions in solution, atoms excited at different
energy levels, or any other sort of heterogeneity governed by simple principles of dissocia-
tion and recombination.

8 These quantities were introduced by Reynorps [1903, 19, §§13, 21, 36]. Cf. [1911, 6,
§§IV, VIII] [1913, 1, §24c].
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(25.5) and (25.4) that

9 (@Mrch)] = — %, (25.6)

(02" i = (pMrc ir’); = [pDere” — 3

that is, the mean velocity &° and the total density p satisfy the ordinary Eulerian
continuity equation (24.2).

Let ur® = @' — & define the diffusion velocities ur’. The resultant momentum
of the diffusion velocities is zero: p ur' = 0. If the ur’ be introduced into (25.4),
the resulting expression is easily transformed into pé" = pe’ — (pcfur’); (T
unsummed). A possible solution is e’ = 0, ur® = 0, ¢* = ¢"(X*), representing
an inert mizture.

26. Conservation of momentum. In the phenomenological mechanics of con-
tinua the concept of stress may be introduced either through mechanical or
through thermodynamical principles; for the latter method, see §33. For the
several alternative mechanical postulates, we refer to the excellent article -of
Hellinger."! Here we adopt the stress principle of Euler and Cauchy,’ which pos-
tulates that upon any imagined closed surface with unit normal n within a body
there exists a distribution of stress vectors t(,y whose resultant and moment are
equivalent respectively to those of the actual forces of material continuity
exerted by the material outside upon that inside.® The postulated momentum
principle' leads first to the existence of a stress tensor t such that®

tw' = tn;,  tw' da = t7day, (26.1)
and second to Cauchy’s laws of motion®

9+ of = pi', 7 =1" (26.2)

11914, 1, §§1-5]. Cf. [1913, 1, §21]. To the best of my knowledge the only subsequent ad-
dition to this subject is MURHAGHAN’S elegant formulation of the principle of virtual dis-
placements [1937, 1, §2]. Axiomatic treatment of general mechanics was introduced by
HawmeL, [1908, 1, Ch. 1], who, following a suggestion of KLEIN, pointed out that while indeed
the real content of mass-point mechanics follows as a special case from continuum mechanics,
the converse is not true at all (although the contrary impression may be gained from most
physics texts), and thus that any study of the foundations of mechanics should be directed
toward deformable continua.

2 (1757, 1, §§VI-IX] [1823, 1] [1827, 1, pp. 60-61]. EuLER stated the concept clearly, but
‘considered only the case when the stress vector is normal to the surface.

8 PoINCARE [1892, 4, §38] objected that 1°, it is not evident that the assumption that a
stress vector exists is correct, 2°, one should prove that the stress vector for a given direc-
tion is unique. These objections necessarily presuppose some prior concept of a body, such
as a molecular model.

4 A single integral formula containing as special cases the momentum equations and
several others is given by Cisorrr [1940, 11, §3].

5 (1827, 1, eq. (20)].

¢ [1827, 1, Th. II]; [1827, 8] [1828, 1, eq. (25)].
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where f is the extraneous force vector,” supposed to be a given function of position
and time, and possibly also of velocity. The physical components of t are of the
dimensions ML™'T >

Boussinesq’s® material form of Cauchy’s first law follows at once from (13.6),
and (24.1); :

19, 2L 4 = (26.3)

O:c'

When the indicated differentiations are actually carried out, the first term on
the left becomes a sum of three Jacobians’:

e MV et Lot uat v + Bff = B (26.4)
Kirchhoff" introduced the double vector 7°*:
=JX ;¢4 = U7, (26.5)
From (26.1) and (13.5);.we have then
tw'da = T*“dA,. (26.6)
Since
= (JX" ).t + JX" 5172 0, (26.7)
by (13.6);, (26.2), and (24.1); follows Kirchhoff’s form of Cauchy’s laws:
T4 8f = 8, T" . =T"";. (26.8)

7 The possibility of extraneous moments 1 per unit volume was noted by MaxwzeLL [1873,
8, §641] (cf. [1891, 2] [1902, 1]). In the thermodynamical method of DunEMm [1904, 1, Part I,
Ch. II, §§I-V] an effective 1 appears when the potential of the mutual forces is not New-
tonian. The CosseraTs [1909, 1, §53] introduced a moment stress tensor m whose action
must be added to the moments exerted by the force stress t upon any imagined closed sur-
face in order to yield a system equivalent to the mutual forces (cf. [1913, 1, §21a]). In place
of (26.2), there results m*i,; 4+ €'i*te; + pl* = 0, while (26.2); remains unchanged. In the
present memoir we shall suppose m = 0,1 = 0, so that the stress tensor t is symmetric.

8 [1872, 1, §I, eq. (3)]. The result follows by inspection from a general transformation of
CLEBsCH [1857, 1, §2]. Cf. [1896, 1, §17].

® The special case t = —pl was given by EuLER [1770, 1, §119]; the ganeral rasult in
virtually the same form is given by the CossEraTs [1896, 1, §43, eq. (117)].

10 [1852, 1, pp. 763—764] Cf. [1860, 1, §§2, 4-5] [1896, 1, §15, eq. (33)]. KircHHOFF remarked
that the matrix | T*% || is not generally symmetric, as indeed is manifest from the present
notation. Although PoiNcARrE (1892, 4, §40] gave a clear explanation of this fact, based upon
(26.6) and the observation that if the dA , be taken as the transformed value of the da;
then three orthogonal components da; are not generally carried into orthogonal components
dA, , nevertheless his elaborate, confusing, and unnecessarily restncted manner of stating
[1892, 4, §35] that for 1nﬁmte31mal displacement gradients || T* || is approximately sym-
metric gave rise to an unnecessary discussion of this ‘‘paradox’’ and an incorrect notion
that it is connected with the presence of initial stress [1896, 1, §26] 1924, 6-7).
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Kirchhoff"! introduced also the tensor
T = X5, T = JXP; XY 509, =0 W T (26.9)
From (26.8) follows Signorini’s” form of Cauchy’s laws:
@ T o + off = pi', T = T™% (26.10)
Let p be any scalar function. Then the resolution
t'; = —pd'; + o' (26.11)

separates the stress into a hydrostatic tension —pé‘; and an extra stress V5.
Here the function p is purposely left undefined, so that (26.11) defines a dif-
ferent v for each p. In §30 we discuss the definition of p, here vaguely called
the pressure. In general, it is not equal to the mean pressure p given by

p=—4=—1.. (26.12)
In terms of p and v Cauchy’s laws (26.2) become
vl — pitefi = pE, v =0y (26.13)

In heterogeneous media the stress may be regarded as a gross variable of the
mean motion only, or it may be decomposed into a sum of partial stresses.!?

27. Conservation of energy in simple media. The theory of energy is char-
acterized by two basic concepts. First, the kinetic energy & of a body U is
regarded as a part of its fofal energy & + €; the remainder is the internal energy

@, which may be expressed in terms of an internal energy density e : € = /;U pedy.

Second, the material rate of change of the total energy ® + € is the sum of the
rate at which mechanical work is done upon the volume and the rate at which
thermal energy enters or leaves the volume (by heat conduction, radiation, etc.).
This second concept, the interconvertibility of heat and mechanical work, definitely

u (1852, 1, p. 767]. Cf. [1896, 1, §15, eq. (31)]. From (26.9) it follows that if (13.1), be re-
garded as a transformation of co-ordinates, then the ¢%/ are the components in the z* system
of the tensor density whose components in the X £ system are TLM; cf. [1928, 6, §11] [1925,
1, §7]1 [1938, 2, Ch. X, §X] [1944, 14].

12 1930, 4, §4] [1943, 1, Ch. II, §4] [1943, 12]. Other material forms are given in [1930, 4,
§5] [1930, 8, §2] [1948, 26, eq. (4)] [1948, 34, §7]. The attractive result of DEUKER [1941, 8,
eq. (8.7)] is unfortunately false; carrect application of GREEN’s transformation to his eq.
(8.2) leads not to his eq. (8.3) hut eventually to our (26.10): . No interpretation I have been
able to conjecture for the undefined symbols in eq. (3) of [1948, 40] or eq. 5 of [1949, 38]
renders these supposed material equations correct.

13 (1903, 19, §38] [1911, 6, §VI.
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known to Carnot (by 1832)," stated rather vaguely by Mohr, Seguin, and J. R.
Meyer,” and first published in an unequivocal form and verified experimentally
by Joule,® for its general mathematical expression requires the introduction of a
new vector q, the heat flux, analogous to the stress tensor t in that it is a gross
macroscopic variable representing the energetic equivalent upon any imagined
closed surface of all non-mechanical transfer of energy across it. More precisely,
we postulate that

.

\Q + @ = f"(_‘) pf‘j)i dv + ﬁtﬁa‘;j dai -_ ﬁq‘ da,. (27.1)

In accord with the theory of stress (§26), the rate of doing mechanical work
has been divided into two portions, the first being that arising from the extrane-
ous force f, and the second equal to that arising from the forces of material
continuity, expressed in terms of the equivalent stress vector t, acting upon.
the bounding surface. Hence follows a differential equation which after simpli-
ﬁcatﬁion by (26.2) reduces to the Fourier-Kirchhoff-C. Neumann®* energy equa-
tion

pé = t"j di,‘ - q‘,.- . (27.2)

The scalar ®(t, d) = t*; d’; is the stress power,® the rate at which internal mechan-
ical work is being done per unit time and per unit volume of the present con-
figuration. By (26.5) and (13.5), we have’ t*; d’; dv = T**%* . dV; if the strain E

1 In CarNOT’s notes [1878, 2] the principle is clearly stated, the mechanical equivalent
of heat is calculated upon the basis of then existing data, and crucial experiments, includ-
ing the central porous plug experiment later conceived independently and executed by
JouLE and KELVIN, are projected. The contention of Crausius, still reproduced in text
books, that the result in CArRNOT’s celebrated treatise [1824, 1] though themselves correct
are based upon an incorrect axiom, is quite false; cf. the excellent article of CALLENDER
[1910, 2, §§16, 20, 22]. Professor LAMER, who has kindly let me use his note [1949, 60] in
MS, feels that a proper interpretation of CARNOT’S words in [1824, 1] reveals that in 1824
he was already possessed of the “first law of thermodynamics,’’ the best history of whose
discovery is given by PARTINGTON [1949, 47, Part II, §§10-12]; cf. also [1864, 2] [1868, 8,
Introd. and Ch. I] (1876, 1, lects. II, III, and intro. to 2nd ed.] {1882, 2] [1929, 8] (1937, 6,
§11].

2 1837, 1]; [1839, 2, Ch. VII, §1]; [1842, 1].

s [1843, 2] [1845, 2-8] [1847, 2].

4 FourIER’s analysis [1833, 1, eq. (3)] is based upon the notion of heat as an indestructible
substance, and hence valid only for inviscid incompressible fluids. KircHroFr [1868, 1, §1]
considered only small motions of a perfect gas. A fairly general case of (27.2) is given by
C. NEuMANN [1894, 4, §4]. Cf. also [1901, 1, Part 1, Ch. 1, §7] (1903, 13] [1933, 9] [1942, 1].

8 A somewhat different-treatment of the subject is given by WeisseENBERG [1931, 2, §AcII]

[1935, 2, pp. 52, 138-141], who writes ¢ in the form vF + vG —#'%; , calling F and G the
“free’’ and ‘‘bound’’ energies, respectively.

s [1851, 1, §49].

1(1852, 1, p. 771].
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be referred to a fixed configuration, from (26.9) and (22.14) follows® t';d’; dv =
T B dVo .

28. Parenthesis: Classical thermodynamics.! Classical thermodynamics deals
with the special situation when t'; = —xé";, where # = =(f). Putting this
specialization into (27.2) and using (22.4)., then integrating over a body U
whose volume is 8, we obtain the classical formula

dG = —r dB + 8Q, (28.1)

where
A€ =GCdt, dB=Vdt, Q= —[ [o q s dv] dt. (28.2)

Characteristic of the subject is the further assumption’ that € = G(r, B). Then
Q) becomes a differential form in two variables, for which there exist an infinite
number of integrating factors. Calling one of these 1/6, we have

gl:d@-i-ard%

2 5 = d9, say. (28.3)

It is possible to show® that 6(r, B) and H(w, B) may be characterized in an
essentially unique fashion; the former is the temperature, the latter the entropy
of the body .

The foregoing remarks and the great mass of formal consequences of (28.3)
which constitute the bulk of treatises on thermodynamics are valid only subject
to the assnmption € = E(w, B). A change of energy describable throughout a
period of time by such a relation is called a (grossly) reversible process." A more
elaborate change & = @(¢) in which such a relation does not hold is called a
(grossly) irreversible process. While the main formal structure of classical thermo-
dynamics is not valid for irreversible processes, the second postulate of the sub-
ject states that if € = G(x, B) be valid for the end states w1 , B, and w2, B of

8 [1896, 1, §15, eq. (30)]. Generalizations are given in [1909, 1, §§51-52, 54-55].

1 The basic papers [1834, 1] [1849, 1] [1850, 2] [1853, 2] [1853, 3] [1854, 1] [1862, 1] [1865, 1]
are elaborate, and fall short of the minimum requirements of mathematical clarity and
rigor. See also [1950, 22], which derives from 1854-5 or earlier. An axiomatic treatment
was given by CAraTeEODORY [1909, 4] [1925, 8]; this still controversial subject is discussed
further in [1921, 1] (1924, 5] [1925, 4] (1926, 2] [1930, 21] [1944, 12] [1948, 44-45), and Dr. SLup
informs me that he has discovered a new approach. The history of this theory is outlined
in [1910, 2, §§20-23] [1949, 47, Part II, §§22-37].

2 This assumption is often disguised in certain remarks about perpetual motion.

3 (1940, 1].

“ The rational student must cleave the stinging fog of pseudo-philosophical mysticism
which hides this statement in the usual physical treatments.
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an irreversible process, then
ty
AD = D(m, By) — H(m, By) > _/t 6)—? (28.4)
1

By (28.3), in the case of a reversible process inequality is replaced by equality
in (28.4). Since for any change in € either (28.3) or (28.4) is valid, we must
have $ > 30/0; since 6 = 6(x, B), at any one instant 6§ is constant over V;
hence by (28.2); we may put (28.3) and (28.4) together into the form of the
Clausius-Duhem inequality®

i
$ + fé %— da; > 0, (28.5)

where equality holds for reversible processes, inequality for irreversible ones.

Since the entropy appears now as a variable of central importance, it is more
convenient, following Gibbs,® to take ©, B instead of r, B as the primitive
variables of the subject, to begin by postulating

¢ = &S, 9), (28.6)
and to define = and 6 by

The resulting formal structure is identical with that initiated in the first para-
graph above, and hence all the variables and formulae are susceptible of the
same physical interpretation as in the conventional treatments.

Specifying the functional form of (28.6) specifies the medium (e.g., perfect
gas).

29. Thermodynamics of deformation. I. Basic postulates and definitions for
homogeneous fluids. To obtain the structure of thermodynamics it is necessary
to add assumptions beyond the bare conservation of energy (27.2). For a gas in
equiltbrium it is well established experimentally that a relation of the form
f(x, B, ) = 0 exists, as was proposed by Euler.! Hence it is an easy step to
assume € = E(B, ), thence proceeding as in §28. As far as physical interpreta-
tion is concerned, the results of classical thermodynamics are to be applied only

5 Crausius [1854, 1, p. 152] [1862, 1, §1] [1865, 1, §§1, 14-17] gave the case q = 0; the gen-
eral form is apparently DuremM’s [1901, 1, part 1, Ch. 1, §6].

% [1873, 1, p. 2, footnote] [1873, 2, p. 31]. This manner of presenting the foundations of
thermodynamics was employed also by HiLBerT [1907, 1a, pp. 435-438].

11745, 1, Ch. I, laws 3, 4, 5]. I have found no earlier statement of the general principle
or of the special case #8 = K¢, although experiments showing that for gases »8 = const.
when 0 = const. and =/ = const. when 8 = const. were published by BoyLE (1662) and by
AMONTONS (1699), respectively.
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to the comparison of terminal states of a process which starts from equilibrium
and ends in equilibrium.® Thus classical thermodynamics is totally inapplicable
to the description of conditions during a grossly irreversible change.’

Although during a grossly irreversible process the system variables €, 9, 8
are no longer functionally related, it is nevertheless quite possible that an equa-
tion of state subsists for the local variables ¢, 5, v. The entire existing theory of
energy changes in grossly irreversible processes is confined* to the case of such
locally reversible systems. By analogy® to (28.6) and (28.5) we lay down as pos-
tulates for homogeneous fluids

[
c= e, 4 7{ L aa > 0 (29.1)

defining the thermodynamic pressure w, temperature 0, and entropy 9 by

T = —-(9_6)
- dv "’

U being any body. Specifying the functional form® of the relation (29.1); now
only partly specifies the medium (e.g. perfect gas) which may well have other
physical properties (e.g. viscosity) which affect its motion without being repre-
sented in (29.1); at all. In the e-q-v space (29.1); defines an energy surface' for

0 = (g;) (D, 1) = f,o pnds,  (202)

2 In order to apply the results deduced from the mathematical theory of reversible proc-
esses, a fictitious and paradoxical physical ‘“‘quasi-static process,’”’ in which the system is
imagined changing so slowly as to be in equilibrium at all times, is often mentioned.

3 E.g., while a gas is actually passing through a porous plug.

4 According to the accepted results of the kinetic theory, a relation of the type (29.1),
holds only for gases sufficiently near to equilibrium. However, results derived from so
incomplete a theory by methods so deficient in logic as those commonly employed in the
kinetic theory should be warily regarded: ‘‘Attamen errores non sunt Artis sed Artificum.’’

5 For the basic postulates (29.1) we have no direct experimental evidence. Cf. {1903, 1,
9127]. It is sometimes stated that local conditions change sufficiently slowly that the
classical structure of §28 should be applicable to a very small volume, but it is difficult to
assign a physical (i.e. dimensionless) meaning to this vague statement; more convincing,
perhaps, is the fact that the extensively cultivated theory of gas dynamics, in which for-
mulae equivalent to special cases of (29.1) are always adopted, at least up to the present
has never been shown to yield a result in contradiction with experience in a situation to
which it can reasonably be applied. There is also the council of despair: if we do not assume
(29.1), there remain insufficient equations to solve any except the most degenerate problems
of fluid mechanics (problems of incompressible fluids).

¢ Since the quantities occurring in (29.1), are of independent dimensions: dim ¢ = L?T-2,
dim n = L2T20!, dim v = ML™3, in a change of units any one may be multiplied by an
arbitrary quantity without affecting the values of either of the others. Thus the only
properties of the energy surface (29.1); which can represent physical (i.e. dimensionless)
properties of the material must be affine invariants (cf. 1873, 2, pp. 34-35] (1938, 2, Ch. I,
§§VIII-I1X]). E.g., the postulate that ‘“absolute’ zeros of temperature and pressure exist
may be put in the following form: only functions e such that » and 8 have finite greatest
lower bounds P and T are admissible as energy functions. Referring 8 and = to scales whose
zeros are the absolute zeros then amounts to replacing ¢ by its affine equivalent ¢ + Pv — 9T,

7 [1878, 2, pp. 33-34].
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the particular material, along any curve on which by (29.2) we have
0dy = de + = dv. (29.3)

In.particular, 3y = é + =0, for adding (29.1), as a postulate is equivalent to stat-
ing that the path of each particle in any possible motion of the medium is mapped
-onto some curve upon the energy surface.?

30. Thermodynamics of deformation. IL. Pressure, dissipated power. Writing
® for (v, d) = v'; d;' and putting (26.11), (29.3), and (24.2) into the energy
equation (27.2), for compressible fluids we obtain

poy = (r — p)t*r+ @& — g, (30.1)
while for incompressible fluids follows the simpler result
oo =@ — ¢'i. (30.2)

Since this last equation does not contain the arbitrary scalar pressure p at
all, it implies that for incompressible substances no internal work is done by any
hydrostatic stress —pl, while any work done by the extra stress v is necessarily
converted into one or another form of thermal energy. From (30.1) it appears
that by adding the definition

p= (30.3)

for compressible fluids we can simultaneously simplify the theory in two ways:
(1) the stress tensor t is uniquely resolved into a portion —#I doing work which
is always mechanically recoverable and a portion v doing work which is always
dissipated, and (2) an energy equation of the same form, viz. (30.2), holds both
for compressible and for incompressible fluids." For incompressible fluids the
specific volume is a given constant v = vy, while the pressure p is a primitive
unknown. For compressible fluids v is taken as a primitive unknown, but the
pressure p is always taken as the thermodynamic pressure =. In the case of the
incompressible fluids the pressure p occurs in none of the equations governing
the motion except the dynamical equation (26.13),, so that it may be taken as
any convenient scalar part of the stress,” there being no need to relate it to any
other variables. For incompressible fluids it is only in comparison of a solution
with the results of an experiment that the nature of the decomposition (26.11)
need be examined, but here the greatest care must be taken to insure that what

8 For an incompressible substance the energy surface degenerates to a curve in a certain
plane v = const., the definition (29.2); of the thermodynamic pressure fails altogether, and
(29.3) becomes simply 6dn = de.

1 By an analysis in the kinetic theory of gases KoHLER [1950, 2] obtains an entropy
equation different from (30.2), a result which must be thoroughly investigated before it
can be accepted. Cf. §29¢.

21948, 5, §11] [1948, 7, §3].
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is measured by a pressure-measuring instrument actually corresponds to what
is called p in the equations. For incompressible fluids it would be permissible,
but does not appear to be advantageous, to define p as the mean pressure P,
given by (26.12); for compressible fluids it is not generally possible to have
(30.2) and p = P simultaneously’; thus in general p  p. The mathematical
structure established above is valid for compressible and incompressible fluids
alike, although the meanings of the variables in the two cases are somewhat
different.*

Subject to this understanding, ® in all cases is the rate at which mechanical
work is converted into thermal energy, and may accordingly be called the
dissipated power. The stress power ®(t, d) is thus resolved into a portion repre-
senting power used up in changing shape and power stored as internal energy
arising from change in volume: ¢';d’; = ®(t, d) = —p l_dg—u + &. If the pressure
p in the relation (26.11) were given by any other definition than (30.3) for a
compressible substance, the resulting function ® would not have this simple
meaning. By the results of §9, in the classical theory of viscous fluids Rayleigh’s
dissipation function® is 3®. In general, however, even in the case when a poten-
tial T for v exists, it is not simply related to &.

31. Thermodynamics of deformation. III. Consequences of the Clausius-
Duhem inequality. From (30.2) follows

5+£%dm=ﬁi§—%q@ 31.1)

for any fluid body V. Hence by (29.1); ®/6 — ¢°0,,/6" > 0. If the terms may be
taken as independent, it must follow that'

¢0:<0, &>0. (31.2)

These statements are the mathematical expressions of two familiar irrevers-
ibilities: (1), heat never flows against a temperature gradient, and, (2), de-
formation absorbs energy, but cannot release it. The inequalities constitute
important restrictions upon the possible defining equations for various spe-

3 The contrary impression is given by many treatments of fluid dynamics. Lams, as
always, is correct, although he handles the matter in a rather circuitous fashion [1932, 1,
§325 footnote, §358]. The distinction between = and p is noted by Zaremsa [1903, 7, pp.
385, 390, 392]. Cf. §61.

4 Cf. the remarks of DuneMm [1901, 1, Part I, Ch. I, §8] and HiLBERT [1907, 1, pp. 220~
222].

§ We do not follow the literature in calling §® the dissipation function in general, pre-
ferring a different usage because the function ® always exists and always represents dis-
sipation of energy, while the interest of Ravyreigu’s function (in the rare circumstances
when such a function exists) is not that it represents dissipation but that it is a poten-
tial. Cf. §9'.

! We assume 6 > 0 (cf. §299).
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cial types of fluids. As the simplest example, consider Fourier’s law® of heat
conduction: ¢; = —«6,;. From (31.2), it follows that this law is physically
admissible only if « > 0. Conversely, if we start with (31.2) we may derive
the Clausius-Duhem inequality (29.1); for fluids; thus that inequality is a
direct consequence of simple physical observation expressed within the struc-
ture of thermodynamics.

The Clausius-Duhem postulate (29.1); refers only to the fotal entropy; com-
parison of its consequence (31.2) with (30.2) shows that it is quite possible for
the specific entropy 7 of a particle to decrease, as is remarked by Meissner.®

32. Thermodynamicsof deformation. IV. Heterogeneous fluids. Gibbs’s theory
of the equilibrium of heterogeneous substances' was generalized to apply to
media in motion by Jaumann and Lohr?; we sketch here the recent presentation
of Eckart.? By analogy to (29.1); , the first postulate is

€= ¢(n, pla p2’ ) PN)' (32.1)

Entropy and energy are thus regarded as variables describing the mean motion,
and the system is thermodynamically defined when the relation between them
is given, just as in the case of a simple fluid; account is taken of the heterogeneity
only by permitting the form of this relationship to depend upon the outcome,
but not the process, of the peculiar motions. By (25.3), (32.1) becomes

1 N
€=€(71,p0,p02,"',pc )1

and it is in fact more convenient to write ¢ = ¢(n, p, ¢', -+ -, ¢"), although one
of the ¢” may be eliminated (Mrc” = 1). Pressure = and temperature 8 are now
defined by (29.2); and (29.2); as properties of the mean motion, with the under-
standing that the concentrations ¢" are held constant during the differentiations;
the potential ur of the substance T is defined similarly by* ur = de¢/dc’, and in
place of (29.3) we now obtain 8dy = de + wdv — ur dc”, where the differentials
are taken along any path on the energy surface (32.1), and in particular
On = é+ m — prc’ .

Now diffusion can change the total energy of a mass of the material even when

21822, 1, §127].
? [1938, 10, §11].

11875, 1).

* (1911, 5, §§IV-VI]; [1917, 6] [1924, 5]; cf. [1913, 1, §24c]. JAUMANN pointed out that in
an isolated spinning cylinder containing a non-uniform solution, diffusion will change the
moment of inertia, so that it is impossible that both the kinetic energy and the moment
of momentum can be conserved. Deciding in favor of conservation of energy, he chose to
modify the Newtonian laws of momentum and the principle of conservation of mass. It
is preferable to regard both moment of momentum and total energy & + € as conserved,
since by (32.1) the internal energy changes when the concentrations change.

3 [1940, 2, p. 272]. Cf. (1938, 10, §III] (1941, 9, §3] [1942, 13, §§15-16] (1942, 14, §§7-8].

4 (1875, 1, p. 63].
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the mean motion and the heat flux vanish. To describe this effect Eckart adds
to the right hand side of (27.1) the surface integral® of —p urur’. The resulting
energy equation now assumes the alternative forms

pé = t';d% — ¢'.i — (pcTprur’) s,
pby = ® — ¢' i — plore” + pr.ur'e’],

generalizing (27.2) and (30.2); in (32.2); the quantity ér is the difference in
potential between the substance I' and its equivalent in free elements: ér =
ur — nrfua (note that 6y = 0if T' < M).

Since entropy, heat flux, and temperature are variables describing the mean
motion, the postulate (29.1); may be retained for heterogeneous media without
modification. In place of (31.2) we now obtain

(32.2)

2 _ 00 [ 4 ppsurle’ 2 0 (323)
8 [ ] r uriurc | 2 L. o
The defining equations and thermodynamic equations of motion for any sub-
stance must be such that (32.3) is satisfied in any possible motion. If the four
terms may be regarded as independent, we obtain urur'c’ < 0, ére’ < 0 in
addition to (31.2). Since it is possible that at a particular point only one sub-
stance happens to be present, we conclude that ur;ur® < 0; that is, the diffusion
current for the substance I' always carries a particle of the substance I' relative
to the mean motion toward a region of lower potential. Similarly, in the case
when all the potential differences ér but one vanish, if §r > 0 the compound T
must be dissociating, while if §r < 0 it must be forming; thus when but a single
compound substance can be created, the reaction proceeds so as to reduce its
potential difference to zero.

A basically different approach is indicated by Leaf,® who regards each sub-
stance I' of an inert mixture as an independent thermodynamic system with
energy e, entropy nr, and an equation of state of type e = er(9r, p"). The
partial energy er is in effect defined by an equation of the form (27.2) in ternis
of the partial stress and partial heat flux for the substance T, and the partial
entropy nr satisfies an analogue of (29.1), . There are three different connections
between the several substances: (1) there is an equation of state (32.1) for the
mean motion, where pe = p"er, pn = pnr; (2) the temperature at a given point

5 While no objection can be raised against this term, EckART does not positively demon-
strate that it correctly describes the desired mechanism, and his proposal differs from
those of Jaumann (1911, 5, §IV] and Lorr [1917, 5, eqq. (108), (109)], and a still different
diffusion term occurs in the energy equation stated without derivation by HIRSCHFELDER
& CurTiss |1949, 25, App. A]. Cf. also [1948, 46]. Earlier REynoLps [1903, 19, §39] had given
the equation governing interchanges of purely mechanical energy in a system of several
components.

¢ [1946, 18]. A continuum theory of diffusion involving differences instead of derivatives
of density, similar to that derived by MaxweLL from the kinetic theory of gases, was
formulated by Steran [1871, B].
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and time is the same for all the substances: 0y = der/dnr = 04 = Jea/IMr =
0 = 9¢/d7; (3) the partial pressures wr are related to the chemical potentials
pr by er = Onr — wr/p" + pur.

33. Thermodynamics of deformation. V. Elastic solids. There was at one
time a tendency to regard all macroscopic phenomena as essentially thermo-
dynamical and therefore to construct a system of energetics which included
mechanics as a subsidiary part.! The simple equation of state (29.1), is to be
replaced by

€= ¢e(n, P, Py, -+, Pyn), (33.1)

where the P, are “external parameters” characterizing the relation of the
thermodynamic system to its surroundings. In the special case of the homo-
geneous fluid the single external parameter is v; another special case is the
equation of state (32.1) for the heterogeneous fluid. The various proposals of
this type, as far as pure mechanics is concerned, are summarized in the excellent
article of Hellinger,” and we rest content here with a sketch of those pertaining
to elastic bodies.

Green® in effect defined an elastic body as one for which ppe = f(X“, E), where
the strain E is taken with respect to a fixed ‘“natural state” X* (§34 below).
Thermodynamical aspects of Green’s theory were clarified by Kelvin®; a similar
method was used by Kirchhoff®; and Gibbs® proposed the more general defining
equation of state

Po€ = f("’) Xa, xi.ﬂ)' (332)

Developments based upon it are of two types: first, just as pressure is a defined
concept in a fluid, so also stress can be subjected to a purely thermodynamic
definition, and the conditions of equilibrium derived from a suitably general
principle of virtual work, rather than postulated in the form of the momentum
principle; and second, the existence of an elastic potential in certain circum-
stances may be demonstrated. These two procedures we now review.

A. Thermodynamic theory of equiltbrium. By analogy to (29.2),, let auxiliary

1 Such is the approach of Dunem [1911, 1] and Jaumann [1911, 6] [1918, 1]; the latter’s
work has been continued by Lour [1917, 6] [1924, 6], who has shown recently [1940, 18]
[1948, 48] that some phenomena for which a wave-mechanical explanation is customary
may be described by thermodynamic means without introducing probability considera-
tions.

* (1914, 1, §§7, 9, 15].

2 (1839, 1, pp. 248-255] 1841, 2, pp. 298-300].

4 [1856, 1, Chs. XIII, XIV] (1863, 1, §§61-67] [1867, 1, §673 and App. C, §§(c)-(d)]. An
incomplete treatment is given in [1855, 1].

5 (1850, 1, §1] 18562, 1, pp. 770-772].

8 (1875, 1, pp. 184-190].
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quantities F,;* and 6 be defined from (33.2) by

Jde

wy

(33.3)

a ___ Jde
F& = Po 071'
The postulated principle of virtual work’ and principle of thermodynamic
equilibrium are, respectively,

b ﬁo pedy = -/:() of: 8z dv + ?i tenyi 02 da, 89 =0. (33.4)

By executing the variations and taking account of (24.1); and the definitions
(33.3) we obtain

a da (1
ﬁo 0 on Vo + ﬁ o (Fi QA = tori 7 dA) o

- lo (F&.a+ pofs) 6a* dVy = 0, (33.5)

on dVo = 0.
fnmar

Hence the local conditions of equilibrium are
0 = COIlSt., Fia dAa = t(n),' da, F;a,a + pof.' = 0. (33.6)

The formal similarity of (33.6): to (26.6) and of (33.6); to (26.8); with #° = 0
enables us to identify F;* with Kirchhoff’s mixed vector 7';* and hence by taking
(26.5), as a definition to derive Cauchy’s first law (26.2); for the case of equi-
librium. It does not appear to be possible to derive Cauchy’s second law (26.2), ,
however, except when (33.2), reduces to Green’s form pe = f(n, X“, E), when
it becomes an immediate consequence of the definition (33.3); .

Despite the elegance of the foregoing derivation, its validity cannot be ac-
cepted. The equations of mechanics describe a wider range of phenomena than
do the equations of thermodynamics. In particular, Cauchy’s laws (26.2) are
valid for viscous fluids and plastic bodies, for which there is certainly no equa-
tion of state of the type (33.2). The great weakness of the thermodynamic
method is revealed by its treatment of viscosity, which always has to be dragged
in by the heels by the assumption that (33.4); is to be modified by the addition
of a linear form® in 8. Not only is such an assumption totally unmotivated in
thermodynamics, but also it is extremely restrictive, for it can never lead to

7 This method of deriving laws of motion is formally similar to the method of virtual
displacements, but is founded upon a basically different idea. In the latter method the
stress components are regarded as given variables, or else introduced as multipliers in a
variational principle, while here they are defined as partial derivatives of a special function
characterizing the medium. But for either method the stress principle (§26) must be assumed.

81901, 1, Ch. I, §§1-5] [1903, 12-18] [1904, 1, Ch. II, §VI.
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viscous stresses which are non-linear functions of d, and in any event there are
many types of ideal bodies in which the stress is not a simple superposition of
purely elastic and purely viscous portions. But, worst of all, to obtain dynamical
equations by the energetic method one must add d’Alembert’s principle—at
bottom indistinguishable from the momentum principle—as a new postulate. It
would seem both more lucid and more simple to cleave to the momentum prin-
ciple alone. The best construction we can put on the foregoing analysis is to
say that it indicates the consistency of the mechanical theory of elasticity with
thermodynamic principles.

B. Elastic potentials. A function 2
tial or strain energy if

(&’ q....) is said to be an elastic poten-

L (33.7)

Po

The importance of this function will appear in Chapter IVA, where it will be
shown that in consequence of its existence the stress can be proved to be given
by a formula completely analogous to Gibbs’s definition (33.3); .

A motion is adiabatic if no heat be added or taken away from any part of the
material. Equivalently, ¢°; = 0, so that the general energy equation (27.2)
reduces to pé = t'; d’; . Comparison with (33.7) shows that a body with an equa-
tion of state (33.2) in adiabatic motion has an elastic potential = = poe.

While it is generally stated that an elastic energy exists also for isothermal
motions, the proof adduced is faulty. The fullest and clearest treatment, which
was given by Voigt,’ rests upon writing the “second law of thermodynamics’” in
the form

pé = t';d%; + pbn. (33.8)

Apparently Voigt proposed it simply as a natural extension of the classical
relation (28.3) for pure fluids."® That relation, however, is derived either from
the existence of an integrating factor for the form (28.1), or, alternatively, by
taking (28.7) as definitions. The former method is not applicable to continuous
media in general; the latter may be used if we adopt (33.3); as the definition of
stress (F;* = T.%), but such a procedure amounts to assuming stress-strain rela-
tions so as to transform the energy equation, while our reason for wishing an
elastic potential is to be able to derive stress-strain relations.

Suppose, however, that somehow (33.8) has been derived. By (27.2) we ob-
tain

o0 = —q';. (33.9)

9 [1889, 2, pp. 943-749] [1895, 2, Pt. III, Ch. I, §§6-9] [1910, 1, §§277, 381-382, 389, 392,
394]. Cf. (1907, 2, §5c] [1938, 2, Ch. X, §VIII] [1949, 89, Cap. I, T91-2].
10 At this point the standard texts (e.g. [1927, 8, §62]) resort to verbal evasions.
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Some writers regard this equation, which is equivalent to (33.8), as a general
expression of the second law." In any case, by introducing the free energy'
¢ = ¢ — 70 we may put (33.8) into the form

pd+ 18 =t;d%. (33.10)

Comparison with (33.7) shows that a body with an equation of state (33.2) in an
isothermal deformation (6 = 0) has an elastic potential = = pyd.

Mr. R. Toupin & Dr. J. Ericksen have pointed out another approach to the
subject. Suppose (33.9) be assumed—say, as part of the definition of an elastic
body, along with (33.2). Then we have (33.8), whence follows

PPV B
plo it 2| = bt o @.10)

If now we assume both that ti/ = ¢/ and that ¢; and  are independent of %
and 4, it follows that T;* = pyde/dx?,, and 8 = d¢/dn, without restriction to iso-
thermal or adiabatic deformations. Cf. §44¢ This method, however, is very
near to assuming rather than proving the existence of stress-strain relations.

A satisfactory thermodynamical treatment of the foundations of elasticity
theory remains to be discovered. For this reason I simply lay down (33.7) as a
postulate for Chapter IVA.

1! VoieT showed that (33.9) reduces when ¢ = —«;i0 ; and when the temperature changes
are ‘‘small”’ to a generalization of the FourIER-DUHAMEL equation of heat conduction
[1832, 1, pp. 361-366].

2 An equivalent function was introduced by Massieu [1869, 3-4].
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Chapter IV. EvrasticiTY

IVA. Green’s Method: The Natural State Theory

34. The idea of a natural state. The classical theory of elasticity formulates
the intuitive notion of spring (§§2, 23) in a basic hypothesis: For a given body,
there exists a fixed natural state', generally regarded as unstressed, such that
the body when constrained into a form near to that in its natural state and
then released from all external forces returns perfectly to this natural state
independently of the manner in which the forces have been applied and re-
moved. Thus the minimum energy required to effect a given deformation is
stored by the body and is always available for recovery. Many authors® have
insisted that the initial state is an arbitrary one, not characterized by any special
properties. While the infinitesimal theory, which is essentially a theory of small
stress differences (cf. §55), possesses this physically desirable attribute of being
applicable to any initial state, in the classical finite strain theory the stress is a
function of strain from some one configuration (§37), and the response of the
body to strain from another configuration is necessarily different.

36. Cauchy’s method and Green’s method. Two possible methods of realizing
this concept of springiness have been proposed. Cauchy’s' method, which will
be discussed in Chapter IVB, was to define a perfectly elastic body as one in
which the stress is a function of the strain.? Green’s’ method was to define a per-
fectly elastic body as one in which the iniernal energy (or a related quantity) is a
function of the strain. Within the range of infinitesimal strain both methods
yield the same result for isotropic bodies,* but for finite strain Green’s method

! E.g. CavucHy [1828,1, §1I, p. 203] regarded the natural state as the state of a body in a
vacuum at uniform temperature. Cf. {1829, 8, Introd. p. 365] [1831, 1, §14] [1845, 1, §15]
[1850, 1, §1] [1852, 1, p. 762] [1863, 2, T2] [1896, 1, §28].

2 E.g. (1875, 1, p. 185] [1938, 2, Ch. X, §VIII].

11823, 1] [1828, 1, §11]. (CaucHY proposed also a molecular theory of elasticity (§32).)

2 ST, VENANT, prompted by LEvy’s theory of fluids (§60) and employing NAVIER’s molec-
ular notions, once [1869, 1] proposed a theory in which the stress depends not merely upon
the z¢, but also upon the zi 4, ..., Ziop...y, ***

31839, 1, p. 249] [1841, 2, pp. 295~-296].

4 For infinitesimal strain of a general anisotropicebody the method of Cauchy yields
stress-strain relations containing 36 elastic moduli, which CaucHy [1829, 1, eqq. (7) (8)]
stated to be independent, while the method of GREEN [1841, 2, p. 298] yields but 21 con-
stants. The difference is not to be confused with that between the ‘‘multi-constant’’ and
‘“‘rari-constant’’ theories; in the latter, based upon a molecular hypothesis, the number of
moduli is further reduced to 15 by means of ‘“CaucHY’s relations” [1828, 8, eqq. (36) (37)].
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leads to a more definite theory, which has been studied by many authors,®
employing such a variety of quantities and notations as to render the literature
a trackless wilderness. Although the reader of certain recent papers might gain
a contrary impression, since Kelvin’s® improvement of Green’s analysis the
only significant addition to the general theory is Finger’s’ use of the spatial
strain measure ¢~ for isotropic media and consequent essential simplification of
the stress-strain relations. Unfortunately the definitive expositions of the
Cosserats’® do not mention Finger’s results, which have received neither the
credit nor the attention they deserve. Fifty years after Finger’s time they have
been rediscovered by Rivlin and shown to be the instrument whereby the
classical theory of finite elastic strain can give concrete results of the greatest
importance (§42). Through the introduction of tensorial notations and methods,
enabling pages of the earlier work to be not only presented but also easily and
perspicuously derived in a few lines, L. Brillouin’ has done great service, and
Murnaghan has put the theory into its most elegant form. In the following
sections we give a slight generalization of Murnaghan’s first and best treatment.

36. Definition of a perfectly elastic body according to the natural state theory.
The response of a body is perfectly elastic if for co-ordinates X referred to a certain
natural state, there exists a strain energy = of the form

Z = E(Xa! Gaﬁ: giis Py Xﬂ-i); (361)

such that

é = tij dj,'. (362)

3l

Conditions under which the existence of a strain energy follows from the
energy equation (27.2) and an hypothesis regarding the form of the internal
energy € have been discussed in §33; here we confine our attention to formal
consequences of (36.1) and (36.2). The occurrence of the X in (36.1) permits
the medium to be heterogeneous, so long as it be inert. By (24.1);and (14.10);
we may eliminate p from (36.1):

z = Z(Xuy Gaﬁ » Gij s Xavi)- (363)

8 For references, see §§33, 39-41.

6 (1863, 1, §§51-67]. While KircuuoFF [1852, 1, pp. 770-772] treated only a special case,
his method was perfectly general and could have yielded KELVIN’S results.

71894, 2.

8 [1896, 1] [1909, 1].

9 (1928, 6] [1925, 1]. Cf. [1931, 16-17]. The use of tensorial methods in the infinitesimal
theory was indicated by Ricct & Levi-Crvira [1901, 7, Ch. VI, §3]. Cf. [1924, 4] [1938, 9].

10 [1937, 1]. This paper, important for method despite its lack of new results, is trans-
lated into dyadic notation in [1949, 36].
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37. Proof that = is a function of C. In §§14-17 two methods for measuring
strain were introduced: the material, employing any of the measures C, C%,
E, H, etc., and the spatial, employing any of ¢, ¢, e, h, etc. In general the two
methods are not equivalent. Which then shall be used in elasticity? The classical
authors' always employed E or C, and Cellerier’ demonstrated that this choice
is actually correct. We give the proof as arranged by Murnaghan.® For a sta-
tionary co-ordinate system, by (20.4), (21.2);, (21.4),, and (21.5) we have
from (36.3)

0T —— )

¥ = ox X T T axes

0z

X g = —
38 aXa,

X*(di; 4 wy). (37.1)

By (36.2), £ = 0if d = 0; hence, since w is an arbitrary alternating tensor,
from (37.1) it must follow

02 yui _ 02

oy ax X (37.2)

Of the nine components of this tensor equation only three are independent and
not automatically satisfied, and these form a complete system of linear homo-
geneous first order partial differential equations in nine independent variables,
the commutator of any two being the third, so that their general solution is a
function of 9 — 3 = 6 independent solutions.* Now (37.2) is simply a condition
that = shall be a solution x of x = 0 when d = 0. By (22.14), the six quantities
E .5 satisfy this condition, and hence furnish the required six independent solu-
tions of (37.2). Therefore (36.3) must reduce to

2 = 2(X% Gap, gij, Cap) = (X%, Gag, gij , Bap)
= E(Xa) Gaﬁ y Gii» (C—!)aﬂ) = v (37.3)

The derivatives occurring in (37.3); and (37.3); are material (z*,o), while those
occurring in (37.3); are spatial (X ).

It will henceforth be assumed that all scalar functions of symmetric tensors
will be formally symmetrized; e.g., in Z(X* Gas, gij , Cap), the quantities Cs
wherever they occur will be replaced by the numerically equal quantities
3(Cas + Cra). Hence 82/3C .5 = 0Z/9Cs4 -

38. Elastically isotropic bodies. An elastic body will be said to be sotropic
if = be an isotropic function of C. By §6 we have then

T =32X%1c,1lc,IIIc) = 2(X% Ig, Il , IIlg) = --- (38.1)

1 E.g. [1841, 2, p. 298] [1852,-1, p. 769]. While CaucHy introduced ¢ in his study of the
geometry of finite strain, he did not propose a theory of elasticity intended to be valid for
large strain.

2 (1893, 3, §4]. Cf. [1896, 1, §26].

31937, 1, §3].

4 E.g. [1930, 2, Ch. XV, §2].
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By (14.7) it follows that
2=22(X41,IL, IIIl) = 22X 1,1l ,III,) = - (38.2)

Thus for isotropic bodies it is legitimate to regard the elastic energy alternatively as
a function of any one of the various spatial tensors c, e, h, - -+ .

Z=3(X%¢)=2(Xc) =2(X"%e) =Z(Xh) = ---. (383)
(Cf. §17).

39. Derivation of general stress-strain relations: I. Material forms. Putting
(37.3); in (36.2), by (22.14) we obtain

p 02 p 02

tidy =22 Cg=22 x
T e dCe T T py 30

Pat’ g dy. (39.1)

Since this relation must hold for an arbitrary d, it follows that

a9z i . p E)) o o3 ; )
2 _e “ ’ = - J T a 4 .2
po 9Cas Tl 0o 0E o T .,aZ B8, (39.2)

V=
EYo

t'at'p =

which is Boussinesq’s' form of the stress-strain relations.” By (26.5) it is plain

1 [1870, 1] [1872, 1, Note 3, p. 591]. Cf. [1896, 1, §24, eq. (61)] [1937, 1, §6] [1941,1, p. 125]

2 8o far as I know, the fully general theory has been pursued in three directions only:

A. Propagation of discontinuities. Hanamarp [1901, 6, §§7-8] [1903, 1, §§264-267] states:
(1) a plane acceleration wave (sound wave) traveling in a given direction can be the carrier
of a discontinuity pointing in any one of three mutually orthogonal directions, to each of
which there corresponds a definite speed of propagation; (2) if the present configuration of
the body be a possible state of stable equilibrium, all three speeds of propagation are real;
(3) the acceleration waves in general are neither transversal nor longitudinal. These results
are considerably generalized by Dunem [1903, 16-18] [1904, 1, Part IV], who shows also
that no waves can propagate in a MEYER-Vorar material (§81). Jougurr {1920, 2-5] (1920,
1, 1st note] discusses the propagation of velocity waves (shock waves). The extension of
HapaMARD’s results to media in which there are stress-strain relations of arbitrary form
claimed by Finzr [1942, 15, §4] is not valid because the distinction between spatial and
material tensors is not observed; in any case the reality of the directions of propagation
is assumed, not proved. SiGNORINT has stated that HapamARD’s proof of the reality of the
directions of propagation is not valid in the case of finite strain, and TororTr [1943, 11]
derives a necessary and sufficient condition to be satisfied by the form of the strain energy
in order that HaApaMARD’s results remain valid. Cf. also [1949, 22, §6].

B. Elastic stability. [1903, 1, 19269-271] [1904, 1, Part III].

C. General integration theory. SIGNORINI [1936, 4, pp. 18-21] [1949, 39, Cap. I, §§2-3]
[1950, 16] shows that for any form of strain energy if the extraneous and surface loads be
written with a multiplicative factor k, then if these forces admit no axis of equilibrium
the formal coefficients in a series for the displacement in powers of k£ may be determined
uniquely; the coefficient of the first power is the displacement as predicted by the infini-
tesimal theory. If, however, the load system admit an axis of symmetry, he states that
even the first coefficient is no longer uniquely determined, which he regards as a fault of
the classical theory. It does not seem to me that there is any reason to expect even a formal
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that (39.2); is equivalent to Kelvin’s® form

0z
30 z'g. (39.3)

By (26.9) we then obtain the Cosserats™ form

T =2

0z i5 0z
T% = T I = ﬁm z ety (39.4)

hence T as a function of E admits T as a potential (§6). From (15.1); and
(14.9); we have

0% _ o3 0By _1(0z | o) _
55n = 3Ep 5ts " 2 <6E.,g aE,) i (89.5)
enabling us to reduce (39.2); to C. Neumann’s® form
o, 95 ey 0
t =J 1 Frn mx F (39.6)
which by (26.5) is equivalent to Kirchhoff’s® form (cf. (33.3),):
]
T; P, (39.7)

These results presuppose the medium susceptible of any continuous motion.
For an incompressible material,” however, since only isochoric deformations
(Ia = 0) are admissible, an arbitrary hydrostatic pressure p3‘; can do no internal
work (§30) and hence may be added to any stress ¢'; without affecting the

power series in k to exist: rather, the infinitesimal theory might be expected to have an
elaborate asymptotic character with respect to the general non-linear theory. The subject
is considered further by ToroTTI [1943, 10].

3 (1863, 1, §62]. Four forms of the differential equations for the stresses in an elastic
body are given by SuGamoro [1948, 52]. His equations (L), (E), (L), (E') correspond,
respectively, to stress-strain relations in terms of C, ¢, C™, ¢!, and thus (E) and (E’) are
valid only for isotropic media. The stress-strain relations corresponding to (L), (E), (L)
are, respectively, (39.3), (41.2), and (40.3)..

41896, 1, §24, eq. (59)]. Cf. [1903, 18] [1910, 4, §1, eq. (6)] [1930, 4, §6] [1939, 7, §7]. GREEN
[1841, 2] and ST. VENANT [1863, 2, Y2] gave (39.4); incorrectly with ¢*; on the left. Cf. §492.
If the material and spatial coordinate systems be made to coincide at the instant under
consideration, (39.4): reduces to the deceivingly simple form po ¢;; = 2p 9Z/dg;: obtained by
Quoroyp [1950, 10, §2].

8 [1860, 1, eq. (21)]. Cf. [1872, 1, Note 3, p. 594] [1894, 1, eq. (39.6)] [1896, 1, §24, eq. (62)]
[1948, 7, §7].

¢ [1852, 1, p. 772). Cf. [1875, 1, p. 190] [1891, 1, §3] [1896, 1, §24, eq. (60)] [1909, 1, §54]
(1925, 1, §13].

7 OLbROYD (1950, 10, §6] regards incompressibility as incompatible with the notion of
perfect elasticity, preferring to define an “‘almost incompressible material’’ and to approach
deformations without changes of volume by means of a limiting process.
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energy balance equation (36.2) from which stress-strain relations are derived.®
Thus e.g. we obtain in place of (39.6) Poincaré’s’ equation

t =2 éa—x;z.- — pd%. (39.8)

40. Derivation of general stress-strain relations. II. Spatial forms. The stress-
strain relations derived in §39 contain only the material displacement gradients
z',o. To obtain stress-strain relations in terms of the spatial gradients X°;,
note first by (13.3), that

0 _ 9T 8XP, _ oz

8  ya
o, 0XP, or. ax, X X (40.1)

whence by (39.7) and (26.5); we obtain Hamel’s' spatial form

i _ P 9T yp
lj = — ;oaXﬁ,iX Y (40.2)
hence by (14.9), follows Murnaghan’s® form
i_ _ p_ 02 a(CcH™ Bi _ _o P 02 VB
o= s g K = —2 LS XX (09)

If the displacement gradients be infinitesimal (§19), it follows at once from
any of the above equations or any of those of §39 that the stress-strain relations
may be approximated by’

i~ =, (40.4)

the form used in the infinitesimal theory.

8 Cf. [1945, 2, p. A-263, footnote].

9 The first result of this type was derived by LAGRANGE [1762, 2, Ch. XL] [1788, 1, Part
II, Sect. 11, 2] for incompressible perfect fluids, where Iq = 0 is added as a constraint
upon a variational principle, and p is simply the ‘Lagrangian multiplier’”’. The same
method was applied to the elastic body by PoIincar# [1889, 5, §152] [1892, 4, §33], the con-
straint now being any equation of the form F(z%.) = 0, which includes the condition of
incompressibility J = 1 as a special case. Cf. [1948, 7, §8].

1[1912, 1, §369].

21937, 1, §6].

3 Since the general stress-strain relations (39.7), which, as shown above, are easily
transformed into the forms (39.2); and (40.3); derived by MURNAGHAN, have been in the
literature for nearly 100 years, MURNAGHAN’s repeated statements [1937, 1, Introd.] [1941,
2, p. 127] that the approximation (40.4) characterizes the ‘“classical’’ theory is somewhat
misleading. In dealing with elasticity in his lectures, Hapamarp [1903, 1, Ch. VI] presented
the fully general theéory following BoussiNesq, and HiLBERT [1907, 1a, pp. 120-173] gave
an equally general treatment in the style of Kircruorr and GiBss.
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41. Stress-strain relations for isotropically elastic hodies. As shown in §38,
in an elastically isotropic body we may regard = as a function of any one of the
spatial tensors c, e, h, ---, instead of employing one of the material tensors
C, E, H, - - - required for anisotropic bodies (§37). From (40.2) we have then

4 _ By 92 o
t P 30n 9X7 7 (41.1)
whence by an evident analogue of (14.9), and by (14.5), follows
_ob l ‘2?_ P osi
2 80’ o (5 k — 2e k,) ae]k (41.2)
By (16.1), we have also'
=P 92
t'; o S (41.3)

All these stress-strain relations are Murnaghan’s’; the last shows that pt/p as
an isotropic function of h admits Z as a potential.

Since the validity of these relations is limited to the isotropic case, they should
be reduced to a more explicit form. From (6.11) we have

9z _ a2

9z & ~1\k
3. = oL, 8" m(lca, ) +6IU IIT, (c7)% (41.4)
whence by (41.2), follows
o 2P wo _ _2p (02 __@_)
= III aIII , 1 \ar + I, 31L.)
(41.5)
t(c) = 2p 9>
2 Po 6II

1 According to MURNAGHAN (see §17* for refs.), the stress-strain relations implied by
Bror are 32/0k’ = (1 + IIT.)t; — eiut*; , which MURNAGHAN derives as an approximation
to the exact relation pot'; = pk?; 9Z/9k7; , which is equivalent to (41.2); since k? = ¢7!; cf.
[1943, 8, §§4-6] and §50. Generalizing GRUBLER’s [1900, 8, eq. (3a)] empirical formula
t(A + B%) =& for the extension of sandstone, ScHLECHTWEG [1931, 8, §1] proposes stress-
strain relations which are not tensorially admissible for isotropic media, but which if cor-
rected would become essentially a special case of those implied by Bror. SCHLECHTWEG
later formulates a substitute hypothesis (§51).

2 (1937, 1, §3] [1941, 1, pp. 127-128]. While for general forms of = the stress tensor ¢'/ given
by (41.2) is not symmetric, MURNAGHAN indicates, as indeed is immediate from (41.5) or
(41.6), that for the isotropic case the special form (38.2), for Z yields ¢/ = ¢i°.
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By (14.7) and the fact that C and ¢ have the same invariants follow the ele-
gant stress-strain relations of Finger’:

200 (11 22 1 111, 5
2 YA ‘am i

t‘j

(41.6)
T LAY § § S 9z ¢
i oIl

These stress-strain relations are admirably suited to the solution of specific
problems of large elastic strain. Their only disadvantage is that checking of the
end results with those of the infinitesimal theory is not immediate, but must be
carried out through the substitutions (19.1) and

9z Ae + 2us 0F e 2z
an R uE + -—————" Ia, 6II.,—1 ~ ‘—'5, aIIIc—l ~ 0. (41.7)

The result (41.6) is interesting in itself because it shows that when t is regarded>
as it may be, as a linear function of ¢ and ¢, the dependence of = upon III.-1,
representing change of volume, affects the stress only through its hydrostatic
part. Further, (41.6) shows that if the natural state be unstressed we must have

0z 9 F:)) E))) — o .
aIc—l 0 + GIIC_‘ 0 + aIIIc—l 0 - (4 '8)

where subscript naughts indicate evaluation at the natural state ¢ = ¢ = I,
I~ = II.—1 = 3, III.-1 = 1; this formula expresses a condition upon the func-
tional form of Z.

From (41.3) and (6.11) we obtain Richter’s* formulae

wn) _ p 92 ww _ 20 02 s _ S 92
S =y S T ey 80 T onny Y

Hence follows pog"e’ = p 3Z/dAr, where Ay = Iy, 2A, = Ay — I, 4N, =
2A, — I} + 211, . Either from this result and (15.2), or from (41.3) and (16.1),
with the aid of (24.1), and (14.11) it is easy to deduce the elegant and important
formula of Koétter and Almansi® for the principal stresses ¢; in terms of the
principal extensions &; :

61+ 81 + ) = j? G, j, I ) (41.10)

3[1894, 2, eq. (35)] [1948, 10, §4]. FINGER gave also another form [eq. (47)] valid only in
a pure strain.

41948, 18, §3] [1949, 24]. RicHTER calculates also the G{K) (cf. Note 1).

5 (1911, 4, §§2-3] [1933, 1, §4].

6 [1910, 4, §1] [1911, 2, §7]. Ci. [1894, 1, eq. (35)] (1894, 2, eq. (39)].
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which shows that just as in the infinitesimal theory, so also for finite strains the
principal stresses in an elastically isotropic body are the derivatives of the
strain energy with respect to the corresponding extensions, provided the stress
be reckoned with respect to area in the undeformed body. Equivalently, in terms
of the principal strains’ E; and e; we have [(1 + 2E)(1 + 2E»)(1 + 2B}t =
(1 + 2E;) 9Z/0E; , t: = (1 — 2e)[(1 — 2e1)(1 — 2ex)(1 — 2e3)]! 0%/ de: .

From Kotter and Almansi’s formula (41.10) follows an elegant form for the
condition of existence of a strain energy:

a i)
%, (1 4 6)] = %, [t + 8],

or (41.11)

at; at;
dlog (1 +3) dlog(1+3dy

An equivalent formulation in terms of the coefficients (41.9) is®

h—t =

69 _ g'l‘(h) + 39:(h) agt(h) _9 gtz(h)
oIT, oI, ’ aIIIh oIl ’ (41.12)
390 t(h) 39“") .
=Gy —+
OI IIn ol

To obtain stress-strain relations valid in incompressible isotropically elastic
bodies we put I/I,-: = 1 in (41.6) and add an arbitrary hydrostatic pressure
pé'; , thus deriving Rivlin’s’ formula

; - iz,
t; = —pd +2 (c V=257 ¢ (41.13)

Upon these elegantly simple stress-strain relations rests the main progress in
actual solution of problems of large strain (§42).

The second law of thermodynamics implies that dZ > 0 in any loading proc-
ess. I shall not attempt to define loading, but I shall simply observe that accord-
ing to any reasonable definition an incompressible material subject to biaxial
positive extension will be said to be loaded if either principal extension is in-
creased. That is, if 6; > 0, 8 > 0, then a process in which dé; > 0, dé; = 0 is a
loading process. By forming dZ in terms of the dd; it is possible to obtain thus

7 (1930, 8, §8] [1933, 1, §4] [1949, 15, §2].

8 The corresponding conditions for the ggsﬂ are given by GoLpENBLAT [1950, 1], who uses
them to show how the form of the S,}(e) as functions of I, , I, , IIl, may be obtained if all
six quantities be experimentally determined functions of two parameters and if one further
relation connecting the six be known. As a specimen of his method he derives MURNAGHAN’S

stress-strain relations (52.2) from assumed empirical formulae.
9 [1948, 10, §4].
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the two conditions

oz 2 02 ,
aIc_l + (1 + 61) aIIc"l > 0, = 1, 2’ (41.133)

as necessary that d£ > 0 under the above conditions. Since all possible values
of I-1 and II.~1 may be reached with é; > 0, it follows that (41.13a) are valid
in all deformations. Hence one may derive the former of the conditions®

E> D>
To20% o2 (41.14)

The latter is obviously valid when I,-1 = II,-» = 3; thus far I have been un-
able to derive it in general, and I offer it here merely as a conjecture. Rivlin &
Saunders’ experiments'* on various rubbers subjected to various deformations
with values of §; up to 1.8 and values of I.-1 and II.-: up to 30 yield 1.5 kg/
em? < 92/91.-1 < 2.0 kg/em?, .06 kg/em? < 9Z/011.~1 £ .30 kg/cm?

A basic difference between the relations employing material tensors C, C™, - - -
and those employing spatial tensors ¢, ¢, - - - has been observed by Signorini.”
The former do not completely specify the present stress t in terms of any strain
measure: while they yield the principal stresses, to determine also the principal
axes of stress we must know the z° , as well. This difficulty is inherent in the
treatment of anisotropic media. In the isotropic case, however, we may employ
the formulae of the present section, which show that the principal axes of siress
cotncide with the principal axes of the spatial strain measures, and herein lies the
great advantage of these latter.”

42. Rivlin’s exact solutions of the general equations. Rivlin has obtained in
several important cases, especially for incompressible bodies, exact solutions of
the general equations for an isotropically elastic solid with arbitrary strain energy
Sfunction. Not all the results I shall now present are his, those which are his are
derived in a briefer and easier way, but it was Rivlin who first perceived and
demonstrated the possibility of obtaining such solutions, thereby opening a new
field of elasticity theory and achieving one of the major advances in classical
mechanics in this century. Of course the method of solution is inverse: a class
of deformations is assumed and reduced, then stresses necessary to produce it,
if possible, are found. The problem is made non-trivial by the demand that
f = 0. Since the tensor ¢~ is used throughout this section, for ease of writing we
drop the subscripts from its invariants I, 11, I11.

10 Rivun [1951, 2, §16] derives the weaker condition 8Z/dI,~1 + 82/dIl,~1 > 0 when
I~ = II,-1,

1 1951, 2.

12 [1942, 8, pp. 66-67].

13 Cf, [1935, 1, §1] [1937, 1, Introd.].
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A. Homogeneous strain in general.' Let both the z* and the X* be referred to
the same rectangular Cartesian system, and consider a deformation which can
be written in matrix form x = AX, where A is a constant matrix and det A = 0.
Using a prime to denote transposition, by (14.6), and (14.5); we have ¢~ = AA’,
¢ = (A)7'A™", Finger’s stress-strain relations (41.6) yield

n\—1a-1 az
= det A (tra.ce [(AYTA™] == aII aIII) I

é
az (42.1)
O« =1 —l
+thaI thaII(A) A
Since all matrices on the right are constants and since the partial derivatives of
= also are constants, the equilibrium equations with f = 0 are satisfied.
When det A = 1, the deformation is isochoric. If further the body be incom-

pressible, by Rivlin’s stress-strain relations (41.13) we obtain

’ -1 —1
=—pI+2 AA —2OII(A) A (42.2)
The equilibrium equations with f = 0 are satisfied if and only if p = const.

While the class of exact solutions just presented is fairly general, its implica-
tions are easiest seen through special cases.

B. Pure extension. Consider first the class of deformations z = f(X), y =
g(Y), z = h(Z). From (14.3); it follows that the co-ordinate axes are principal
axes of ¢, hence also of t, and we have III = (f'¢’k’)’. For the deformation to
be isochoric it is then necessary and sufficient that f’¢’h’ = 1, a case included
in part A.

For a pure but not necessarily isochoric extension the matrix A becomes
diagonal, with entries 1 + §; . In this case (42.1) yields the following expressions
for the principal stresses ¢;:

b _ ; 1 2 2
b ) (g L+ @+ o + 1+ ) 27
(42.3)
FUERa ) 2L Gk
while (42.2) yields
__ 2OZ _ , 82
= —p+ 201 +&) 3l 2(1 + &) 3IT (424)
C. Hydrostatic pressure. Put 1 + 6; = K, t = —pl. Then (42.3) reduces to
1 192 )
5P =xar T 2K o + K oy (42:5)

1 [1948, 10, §6].
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No definite conclusion can be drawn from this result, except that since K =
(o/po)} it follows that (42.5) is an equation of state p = p(p), and any such
equation of state is compatible with the general theory of elasticity in the case
of a body subject to hydrostatic pressure.

D. Simple extension. Put 8, = &, t, = &3 = 0 in (42.3), thus obtaining

1 0z

0= (T+ 8)(1 + 85 8

1468, 1438\ 02
+ (ﬁ_—g; + T’-FE) ar T 4+ + &) o7 aIH, (42.6)

1

2 02

=01+ 51){ 3TT
Since the three derivatives of = are in general functions of both 8; and &; , (42.6),
is a transcendental equation for &, as a function of §; . Thus the amount of con-
traction —&. depends upon the amount of extension &, . Substitution of the
approximations (19.1) and (41.7) valid in the infinitesimal theory yields the
classical result

e = ME
= 27 20 + pp)’

We shall call vg the Poisson modulus to distinguish it from the Poisson ratio
—82/8; , which it equals only in special circumstances. In general, since (42.6),
is an equation with essentially arbitrary coefficients, there is no indication of
either existence or uniqueness of a real solution; that is, for some types of elastic
body it may be impossible to produce simple extension of a given amount by merely
extensile loading, but suitable forces normal to the axis of extension must be supplied,
while for another type of body it may be possible that more than one contraction
ratio can correspond to a given extensile load, so that the equilibrium configura-
tion actually assumed depends on the manner in which the load is applied. This
result raises also the question of the stability of the several possible contractions,
when they exist. Once 8, has been obtained from (42.6),, it is to be put into
(42.6), to give #; as a function of §; . Substitution of the approximations (19.1)
and (42.7) valid in the infinitesimal theory yields the classical result

(42.7)

t1 . — ,UE(3)\E + 2#}3:)
AT Ty B (428)

E being called Young’s modulus.
For an isochoric simple extension the Poisson ratio is determined from the
kinematical condition (1 4+ &)(1 + 8)° = 1, or

b= (1+8)F—1. (42.9)
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For an incompressible body in simple extension we may use (42.9) to obtain
from (42.4) with ¢ = 2

- 2(1 + &) — (42.10)

6II’

whence, eliminating p from (42.4) with ¢ = 1, we obtain for the stress t;,(1 + &)*
referred to the initial area simply

2 _ _ 1 @ 1 iE_
t(l + 68)° = 2[(1 + &) aTF o 61)2] [OI + i+, 011]. (42.11)

Since 8, may be eliminated by (42.9) wherever it occurs in the second factor on
the right hand side of (42.11), it follows that ¢, is a function of &, only. Hence
in an incompressible elastic body, a given simple extension of any magnitude can
always be produced by a purely extensile load, the magnitude of which is given
by (42.11).

This example points the basic simplification which follows if an elastic body
be incompressible.

1. Of a whole class of deformations possible in a compressible body, only the
stmplest cases can occur at all in an incompresstble body. 2. To produce these simple
deformations in an incompressible body it is possible to leave free certain boundary
surfaces which in a compressible body would have to be loaded in a special way.
3. The necessary siresses are expressed more simply and in terms of fewer param-
eters than for the corresponding problem in a compressible body.

These same conclusions will be illustrated in the succeeding examples.

E. Plane biaxzial stress in an infinite slab. Put t; = 0 in (42.3), but suppose
8; and 8; given and not necessarily equal. We have again (42.6); , which now
becomes an implicit equation for é; as a function of é; and &; . In place of (42.6),,
however, we have simply (42.3) with ¢ = 1, 3, the only simplification being that
5, is to be eliminated by (42.6), .

For an incompressible body the problem becomes considerably simpler.? We
have 1 + & = (1 + &)'(1 + &), and from (42.4) follows then

0= —3p-+ TF 51)21(1 T 53)2% - (14 8)°Q + 53)2611, (42.12)
whence
1 s 83
= [(1 +8) = T 5,2][ + (1 +3) (,,H]
(1 4 6:)%(1 + &) 4 (4213)
1 # ],
4,7 =1,3.

* 1951, 2, §2].
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Thus n an incompressible slab a biaxial extension of any magnitude can always
be produced by purely extensile loads, the magnitudes of which are given by
(42.13).

F. Simple shear. For this special case we have

1 K 0
A=1{0 1 0}. (42.14)
0 0 1

Hence (42.1) reduces to’

) 010
1t 2 B> )
at [ +(2+K)au oIlT | I+K( +aII) 100
000
' (42.15)
100 {0 6 0
202 232
+K 7110 0 0 Km’()lo
0 00 0 0 0

This result gives information about the form of the strain energy function: if
£, = ', then 9Z/3I = 0;if ¢, = ¢, , then 82/9II = 0;if £, = ¢*, , then 02/01 =
8z /oIl.

To calculate the tangential and normal tractions T and N acting upon the
X = const. faces, we first observe that +7 = —tn, + t,n,, £N = tn. + 0y,
where ¢, t, are the components of the corresponding stress vector and
ns , Ny are direction cosines of the normal; but ¢, , ¢, follow from (26.1), , while

=0+ K n, = —K1 + K». Thus

+(1 4+ KT = K¢, — &) + (1 — KO,

42.16
+(1 + KN = ¢, — 2K, + K%, , ( )
whence follows
+(1 + KT = 2K<61 + ;TEI. =F,,
(42.17)

2 2
0+ KW =22+ e+ 02 p o+ ) o).
The tangential and normal tractions which act upon the ¥ = const. and Z =
const. faces may be read off from (42.15). By (41.8) it is plain that £, , ¢, , and
N are ultimately proportional to K for small values of K.
From the foregoing results we see the striking differences between the in-

3 (1948, 10, §13].
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finitesimal theory of elasticity and the general theory. In order to shear a block,
shearing forces alone are insufficient; in addition, sutlable normal forces, in first
approxtmation proportional to the square of the shear angle, must be supplied to
all the plane faces. These normal forces may be separated into two portions.
First, there is a hydrostatic tension of amount ¢, , ultimately proportional to K.
If this be not supplied, the body will tend to change in volume, this s the Kelvin
effect for elastic bodies (cf. §10). Whether the change is an increase or decrease
depends upon the signs and magnitudes of the three partial derivatives of Z.
Second, on the faces normal to the plane of shearing there must be additional
normal tractions, ultimately proportional to K*; whether these be tensions or
pressures again depends upon the signs of the coeflicients. If these be not sup-
plied, the proportions of the body will tend to change, this is the Poynting effect for
elastic bodies (cf. §10). The tangential traction which must act on X = const. is
(1 + K* 7" times that acting on ¥ = const., the ratio growing smaller the more
severe the shear. For a material obeying linearized stress-strain relations, but
subjected to a displacement whose gradients are large (§49), the change of
volume was predicted theoretically by Kelvin,® both effects by Poynting;® the
latter demonstrated their physical existence in a series of classical experime.nt:s.7
For general stress-strain relations, however, interpretation of the results of §10
shows that these same effects occur also in a shearing strain, when the strain
measure reduces to the simple form (10.2) with s = 0 (ef. §45), and it is this
more fundamental observation upon which rests the general terminology Kelvin
effect, Poynting effect, used throughout this paper. The existence of these two
phenomena point sharply the difference of kind between the infinitesimal theory
and the general theory of elasticity, since according to the infinitesimal theory
a block may be sheared by equal and purely tangential forces acting on the faces
normal to the plane of shearing, the other faces being left free.

For simple shear of an incompressible’ body (42.2) yields a result equivalent
to that obtained by replacing [---] I in (42.15) by —pl/2. Hence by choice
of p any one pair of plane faces may be left free of normal tractions, provided
suitable loads be applied to the other faces. For example, the faces parallel to
the plane of shearing may be left free by the choice p = 0. Then for the

4 The experiments of FREEMAN & WEISSENBERG [1948, 67] show that when purely shear-
ing forces are applied to a block of sponge rubber all dimensions decrease; they observe
reductions in volume up to 40%. It is not certain, however, that sponge rubber can rightly
be regarded as a homogeneous isotropic material.

5 (1883, 1, §679] [1890 reprint of [1877, 1], §44 footnote].

s (1905, 2, p. 338 [1909, 2, §1] [1912, 4, pp. 415-418].

7 From his analysis of shearing (Note 6) he concluded that a wire when twisted would
generally change in volume, in diameter, and in length, and then measured these phe-
nomena in experiments on metal wires [1909, 2, §II] [1912, 4, pp. 397-412]. Then he sep-
arated the cross-stress effect from the volume effect by similar experiments on rubber
cords [1913, 4], where the change in volume, if any, was negligible, but the change in length
more noteworthy.

8 (1948, 10, §12].
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tractions on the X = const. faces by (42.16) we obtain (42.17), and

2 2| 02 Lo, 02
+(1 4 K)N = —2K [6_I+ (2+A)5TI]' (42.18)
By (41.14) the quantity in brackets must be non-negative, so that N is always a
pressure; from (42.15) it is plain that the normal force acting upon ¥ = const.
must also be a pressure. If these pressures be not supplied, the specimen will
tend to broaden, and hence also, since it is incompressible, to shorten. If a different
pair of faces be left free of normal forces, a different stress system and different
conclusions will result. The foregoing remarks illustrate the Poynting effect for
incompressible elastic bodies; the Kelvin effect, of course, is not present, unless
we please to apply this name to the formal occurrence of the arbitrary hydro-
static pressure p.
G. Biaxial shear between parallel invariable plates. When a block is sheared
both in the -y and the y-z planes with the planes y = const. remaining parallel
to themselves and equidistant during the shear, we have

1 K 0
A=|O 1 0. (42.19)
0 L 1

Hence (42.1) yields

oz s yn 0 02
%t—[ﬁ+(2+z< + 1y 2%+ ]1

oITl

IK 1 0f o 1 0 000

8z | ] oz | . _ oz

+Kgpll 0 0+ K 51 —K O+ Lgz)0 1] (42.20)

0 0 o ”0 0 0 0 1L
o o o 0 0 1

az || )
0 1 o 100

Comparison with (42.15) shows that all of the stress system except for the last
term occurring may be regarded as of the same fype as would be obtained from
superposing the stress systems corresponding to the two separate shears. The
numerical values are not in general those obtained by superposition, since the
partial derivatives depend upon both K and L; infact, I = 3 + K* + L* = II,
II1 = 1. A new effect, however, is revealed by the last term, an interaction shear
stress whose plane is that of the two axes of shearing and whose magnitude for
small shears is proportional to the product of the two shear angles. This shear
stress may be regarded as arising from the repeated extension and tilting of the
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fibres initially normal to the shear planes y = const. The fact that I, IT, and 111
depend upon the amount of the shear only through the quantity K* + L* makes
it possible to express the result in a striking form in the case when all powers
of K and L higher than the second are negligible. To this approximation we
have the following principle of superposition of large shears: in order to produce
a combined shear about two perpendicular axes, to the surface forces required
to produce each shear separately must be added a shearing stress of magnitude
2K L3= /31 acting in the plane of the two axes. This secondary effect, of the same
order of magnitude as the Kelvin and Poynting effects, is here observed for the
first time.

For incompressible bodies [- - -]I in (42.20) is to be replaced by —plI/2. By
choice of p any pair of parallel faces may be rendered free of normal traction.
The same general conclusions hold as for compressible bodies.

H. Torsion of a circular cylinder.’ Let both the 2* and the X* be referred to
a cylindrical co-ordinate system; for the former, write », 6, z, while for the latter,
write B, ©, Z. Assumer = R, 0 = © + KZ,z = Z, where K = const. = twist/
unit length. From (14.6), follows

1 0 0
™5 =0 1+ 7K K|, (42.21)
0 K 1

and hence I = I = 3 + K*%*, IIT = 1. We treat only the case of an incom-
pressible material. Then from Rivlin’s stress-strain relations (41.13) we obtain
the stress system

6 __ g 2 26_2 z g 2 29_2_
te =1, + 2r'K 3T [ t, — 2rK oI
55 o3 (42.22)
- g Biondl =1 =
£, '2K<aI+aII>’ £, =1, = 0.

The equilibrium equations with f = 0 in the present instance reduce to

E)) o,

ot 0 =

= T 274
O_Gr 2TK01’

ot’,
5 0= 5 (42.23)
Hence all stress components are functions of r only, and if the cylindrical mantle
r = a is to be free of traction we must have

£, = 2K f r % dr. (42.24)

9 [1948, 10, §14] [1949, 19]. I am indebted to Mr. RivLiN for use of the latter paper in
MS. Cf. also [1951, 11, §8]. A shorter derivation is given by GREEN & SHIELD [1950, 11, §5].
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The stress system is now completely determined. From (42.22); it is plain that
as in the linear theory the twisting shear stress 8z = rt’, is proportional to the
twist K for small twists, but the Poynting effect appears in the form of the normal
stress *, , for small twists proportional to K*, which must be supplied upon the plane
ends of the cylinder in order to maintain the mantle free of traction. The resultant
moment M and normal traction N are easily calculated and simplified by some
integrations by parts:

o 2 a?
== 0~ . -_-— 2 —
M= fo 0z 27r dr 7 [a 2 |rea j; = d&],

. . [ (32 oz
N = /; o 2nrdr = —7K fo 5(57 + 25]7) dg, (42.25)
where ¢ = r’. By (41.14) it follows that the normal force to be supplied on the ends
18 always a pressure; if this force be lacking, the cylinder will tend to elongate when
twisted. This result embodies the Poynting effect in elasticity in its most striking
form.

1. Bending a block™. Let the 2’ be referred to a cylindrical system r, 0, z, while
the X* are rectangular Cartesian co-ordinates™ X, ¥, Z. Consider a deformation
r = f(X), 0 = g(Y), z = h(Z). For the co-ordinate systems selected (14.6), re-
duees to (¢™)?; = g;z’,o2’ « with o summed and j unsummed. Hence the spatial
co-ordinate axes are the principal spatial axes of strain and stress, and (¢™")’; =
12, (c™M% = %, (€)% = b Consequently ITI = (ff'¢g'h’)?, so that if the de-
formation is to be isochoric we must have ff’ = A, ¢ = C, k' = (AC)™ = D,
where A, C, D are constants. Thus r = (24z + B)}, 6 = CY, z = DZ, where
two constants of integration have been set equal to zero to center the deformed
block with respect to the spatial co-ordinates. Hence

2 7‘2

40 0 a2 00
r

~1yi g _ T

H(C )J”"' 0027'20 ’ ”cJ” 06%20 ’
2
00D 00 L (42.26)
D2
A’ r’ 1 1
I=-73+02r2+1)2, II'= 4+ @t p
and consequently £ = Z(r). If X = — a becomes r = r,, X = 4 a becomes

r=ry,and Y = b becomes § = =6y, then we have 44a = r’ — r’, 2B =
r’ + 1, bC = 6, 6D(re’ — 1.*) = 4ab.

10 [1949, 5] [1949, 20, §§14-16]. I am indebted to Mr. R1vLIN for use of the latter paper
in MS.

11 Here we see the great simplicity which results from MURNAGHAN’s scheme of inde-
pendently selected material and spatial co-ordinate systems.



ELASTICITY AND FLUID DYNAMICS 191

For an incompressible material Rivlin’s stress-strain relations (41.13) yield

Aoz r 92

b= =P+ 255 ~ 2 Far
o= —p+ 20%23_? - (%a %, “2.27)
£, = —p+2D’g—?—D2-2%.
The equilibrium equations with f = 0 reduce to
‘”' + ‘o =0, %’ =0, %iz‘ =0. (42.28)

Hence p = p(r); but since = = =(r) = Z(I, IT), from (42.21); and (42.26), it is
possible to reduce (42.28); to the form (8/dr)({'y — Z) = 0. Hence (42.27) be-
comes finally

=3+ K,

0 =2<02r2—i‘f)( +D”"E)+z+K_r_+z+K (42.29)
b ” oIl

p =2(D2 A)(62+ 2ot 92

= )\t aII>+E+K

where K is an arbitrary constant. By (42.29); the normal force F per unit height
on the plane ends is

= [r + K. (42.30)

If the bending is to be produced by terminal couples, we must have Z |,—,, =
2 |ymr, = — K. By (42.29),, this same condition renders the curved surfaces
r = r,and r = 7, free of traction. Since T = (I, II), this amounts to a demand
that I |,—r;, = I|smry, II |rer, = II|,r,. By (42.21); and (42.21),, this re-
quirement is met if and only if A = Crye, or, equivalently, A? = rry/D. Only
two arbitrary constants, e.g. D and r;, remain to specify the deformation
uniquely. The couple per unit height required is

re r2
M = f iy dr = 30 — DK — f rZ dr. (42.31)
Ty 1

The neutral fibre for the entire deformation is obtained by solving ¢’ = 1,
which yields C*¢® = 1, or 7o = (Dryrs)!. The neutral fibre for the bending alone
is obtained by putting D = 1, viz. ry = (rlrg)‘", just as in the infinitesimal theory.
The normal stress (42.29); shows that i¢n order to produce pure bending of an
incompressible block with curved faces free of traction, suitable normal tractions on



192 C. TRUESDELL

the faces parallel to the plane of bending must be supplied. This phenomenon is
the Poynting effect for bending.

J. Other cases. Another case solved by Rivlin” is that of a cylindrical
tube extended, inflated, and twisted. In this deformation R, ©, Z goes into
[(R* + K)/k]’, ® + kDZ, DZ, where K, k, and D are constants. Among the
results is the universal formula, valid for any type of strain energy,

Na’ 1
()

for the normal férce N required to produce the extension D in a solid rod of
radius a. This formula gives a general solution, as far as incompressible materials
are concerned, to the problem of determining the increase in torsional rigidity
of a cylindrical rod subject to large extension, once the relation between N and
D be known. Rivlin' has also made some progress toward determining the stresses
produced when a cylindrical tube is extended, inflated, sheared about itsaxis,
and sheared along its axis. In this deformation R, ©, Z goes into [(R* + K)/D}},
® + E, DZ + F, where K and D are constants, E = E(R), and F = F(R). The
two problems just mentioned correspond to the two natural ways of forcing a
rubber tube over a glass one. Rivlin & Thomas™ have outlined a method for solv-
ing numerically the problem of determining the strains in a sheet pierced by a
hole and subjected to extension.

This class of problems has been taken up by Green & Shield.” First they find
the stresses induced in a circular cylinder rotating about its axis. Next they
solve the problem of a spherical shell subject to internal pressure p; and ex-
ternal pressure p., obtaining

Frloz |1 az)1—Q2
p? - pl = _4 2 <57 Q-é m ’—R‘— dR. (42.33)

where Q = r/R, r being the initial and R the final radial distance of a typical
particle.

In his latest work'® Rivlin turns away from any attempt to determine or
conjecture the form of the strain energy Z. Instead, he compares with experi-
mental data the exact solutions explained in this section. The quantities 4Z/91
and 8Z/9I1 are determined experimentally as functions of I and II in various
circumstances. Consistency between the results of various experiments is a check
of the excellent agreement between theory and experiment, while the tabulated
values 82/l and 92/dII give all that is required to obtain specific numerical
predictions from any theoretical result.

12 1949, 20, §§3-8).
13 (1049, 20, §§9-13].
14 (1951, 8].

15 (1950, 11, §§6-7].
16 1951, 2-8).
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Added in proof. In an important paper just issued, Green & Shield" solve the
torsion problem in a quite general way. Using the classical torsion function,
they give the general solution for a small twist & of a cylinder of arbitrary cross-
section and arbitrary strain energy subjected to extension of any amount. For
an incompressible material they obtain in full generality the formula (42.32),
derived by Rivlin for the circular cylinder. A similar result holds for compres-
sible materials. They find also the general solution for small twist of a cylinder
subject to large hydrostatic pressure.

43. Power series for the elastic energy. While Rivlin’s work shows that in
some cases (§42) solutions may be obtained without specialization of the form
of =, the older authors, beginning with Green', often used a power series ex-
pansion. Assuming = to be analytic?, for isotropic bodies we may write®

s = aly + “Ei'zﬁﬁ Ty? — 2 I + U* 4 Wl [Ty 4 Al 4 -+ -,
(43.1)
= ol + E‘—z_—‘?“‘a 10 — 2unll, + I} + mI IT, + nIIT, + --- .

Since by (14.7) and (15.3) either set of invariants can be expressed in terms of
the other, it is easy to show that « = &, A\g = Ag, ug = s + 2&, | = 1l + 4a,
m =1 — 4\g — 12 @g — 12&, n = A + 12ag + 12&, - - - . Putting (43.1); into
(39.4), , with the aid of (6.11) we obtain

T% = [a + Aelg + Bl + W) + (A + a)lIg + -+ 18%
+ 28 — (" + W)e + --- 1E% + [0 + - [E%E,

(43.2)

171951, 15, §§ 3-4).

1[1839, 1, p. 249] [1841, 2, p. 298]. References to second order theories based on (43.1)
are given in §4910.12,14.16,

2 For sufficiently small strains the validity of the HookEe-CaucHY linear expression
follows indeed from (43.1), but this mathematical fact can in no way replace experimental
test of the linear relationship, since the analyticity of Z is an assumption which is much
more difficult to test experimentally than is the linear relation. Claiming to find experi-
mental deviation from the linear relation for very small simple extensions, certain authors
(e.g. [1902, 7, §5, 13]) have replaced it by various other formulae, e.g. T = Ee™, m # 1.
A history and bibliography of such work from 1729 to 1893 is given by MenmkE [1897, 1,
§I1]. IcuiNose [1941, 18] after careful measurements concludes that no such deviations
exist for steel, brass, and copper. He suggests that the contrary conclusion of some earlier
experimenters may be explained by their failure to separate the effect of secondary defor-
mations.

3 The coefficients I, m, n are MURNAGHAN’s [1937, 1, p. 250]. The coefficients I, 7, 7 are
related to the 4, B, C of L. BriLLouIlN [1938,2,eq. (X.79)] byl = A + B + C, 7 =
—24 — 3C, s = 3C.
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while putting (43.1),; into (41.2),, with the aid of (6.11), (24.1);, and (15.3);
we obtain®

t's = /1= 2I,+ 4IT, — 8IIT.{[a + Nelo + 8L+ m)IS + (m + n)II,+ - - - 18,
+ 20e — @) — m+n + N\e)o + -+ Je'; + [— dus + n + -+ Je%e’s],
=la4+Ae— ).+ @l+m—Ag — 3a)[+ (m+n—2)II,+ -5,
+[2 (e — @) — (m + n + 205 + 2ug — 2a)]o + -+ ¢, (43.3)
+ [~ 4ps + n + - e,

These expansions, carried as far as terms of the second order in the strain com-
ponents, reveal the complicated way in which the coefficients in the strain-energy
expansion enter the stress-strain relations, particularly in the spatial formula-
tion. In the case of infinitesimal displacement gradients (§19), both (43.2) and
(43.3) reduce approximately to the Hooke-Cauchy law (1.1) when a = 0.

In the natural state (E = 0, e = 0) it follows that t'; = a8’;, T%% = ad%.
For strain from an unstressed natural state we have a = a = 0. The subject
of initial stress in general will be discussed in §55. Here, however, we notice that
if an elastically isotropic body be initially subject to a pressure p = — «, from
(43.3), it follows that the apparent values® of the elastic moduli in a subsequent
infinitesimal strainare Ay = Ae = Ag + p = Ag + P, ik = pr = g + p =
e — P

For incompressible materials it is more convenient to use Mooney’s expansion®

2 = Zyle1 — 3)' (I~ — 3)!, (43.4)

since by (14.14) both variables are non-negative and by (14.15) a polynomial
approximation of degree n contains all terms of degree 2n in the extension
ratios 4.

44. Thermoelasticity. In order to describe the effect upon a body of loading
combined with a change of temperature or entropy, nineteenth century authors
appear to have been content simply to allow all moduli to depend upon 6, taking
care to retain in the series expansion (43.1) the first term, which represents an
initial thermal pressure. As a first approximation, they wrote o = «8, where «
is a constant. The molecular derivations of this result by Duhamel' and F. Neu-

41937, 1, p. 251].

5 L. BriLLouin [1938, 2, Ch. X, §XIII] [1940, 8, §6] attributes this result to PoINCARE
(1892, 4]. Cf. §525.

¢ MooNEY [1940, 7, pp. 588-589] uses an unnecessarily elaborate formula in which moments
of ¢ and ¢! of all orders are employed. While, as he in effect points out later [1948, 28,
pp. 441-443], (43.4) becomes valid for compressible bodies also if =iy be allowed to depend
upon v/v, , the two advantages mentioned in the text no longer hold. The expansion (43.4)
is given by Rivuin [1949, 19].

11838, 1, pp. 451-456].
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mann’ are not acceptable; most of the continuum treatments® seem to consist
in a mere assumption, while those which are based upon thermodynamical
principles do not appear to be free from objection’. No slight modification of
the classical theory of pure elasticity can lead to a general theory of thermo-
elastic deformations, since the classical proof of the existence of a strain energy
(§33) positively requires that the deformation be isothermal or adiabatic.

L. Brillouin® has shown, however, that it is possible to calculate the relations
between the isothermal or adiabatic moduli at different temperatures. Let ¢
be the Cauchy deformation tensor with respect to an unstressed natural state,
and let Ago, mgo, ---, be the corresponding elastic moduli. The heating will
induce a uniform expansion® with linear coefficient K at hydrostatic tension s
and density pg , and for the Cauchy tensor ¢* with respect to this state we shall
have ¢* = K’c. Let the corresponding spatial strain tensors be e and e*, re-
spectively. Then for any given deformation we have (p/p)[Z(e) — Z(0)] =
(p/po)[Z(e*) — Z(0)], since each side of this equation when integrated over a
portion of the body gives the energy stored in the deformation of that portion.
From (43.1); follows

V1 =21, + 411, — 8III,

: [ﬁ"f—g—zﬂ" 12 = 2umIIo + bIo + moI DI, + noIIl, + ]

her + 2um 7 (a4.)
2 e

= /1 — 2Ie + 4IIc» — 8III.» [aoIe° +
— 2uge I + loIecz F moglesIloe + nglllee + -- '].

Substituting from (15.4), expanding all quantities in power series in K, and
supposing these may be rearranged, we obtain’

2 (1843, 3, §10] (1885, 1, §§54-55].

3 (1853, 1, eq. (13)] [1855, 1, pp. 294-298] [1879, 8, §1] [1881, 2, eq. (2)] [1907, 8, §39] [1920,
1, 2nd note] {1939, 9, §4].

4 The analysis of PLanck [1880, 1, pp. 8-21] is open to the objection raised against that
of Voigr in §33. CELLERIER [1893, 8, §5] claims to derive Ts* = p, d¢/dz*.« for all types of
deformations; I cannot follow the analysis, and the result conflicts with the manifestly
correct T = poe (§33, Part B) for adiabatic motion.

5 [1938, 2, Ch. X, §XII]. Further developments, and a discussion of the relation of these
results to structural theories of solids, are given in [1938, 86-7] [1939, 11] [1940, 8]. Cf. [1939,
12-18]. .

¢ This fact is usually assumed; SieNoriNt [1943, 1, Ch. III, §913-15] has given a proof
of it.

7 These results differ in appearance from those of L. BriLLouiN [1938, 2, eq. (X.106)]
because instead of (43.1): he employs (43.1); with the notation indicated in §433. BircH
[1938, b) obtains the first terms in the series.
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Koy = (1_Kz)[3>\m;'2#m+2710+imo+no(1 _KY) + ]
xE,=K[xm+ Bt Tt — g+ ]

(44.2)

4
l=Ko+ ---], my = K’lmo + ---, ng = K'ng + ---1.

ME0=K|:#E0— M(l —Kz) + :I,

These formulae exhibit the effect of a small expansion, whether arising from
thermal pressure or any other cause, upon the ordinary Lamé constants. They
show that by measuring the Lamé constants for small strains at two different tem-
peratures, one of which corresponds to an unstressed state of the body, the other to
a uniform hydrostatic tension o ¢ , it is possible to determine the second order moduli
ly, my, no. I do not know whether such a determination has been attempted
or is even practicable.

In order for the free energy ¢ to depend not only upon the strain but alse
upon the temperature 6, it is necessary from purely dimensional considerations
that it depend also upon a second temperature. Signorini® has pointed out that
this reference temperature’ 6, must be arbitrary, and hence that the theory when
properly formulated must be independent of it". Tolotti" shows how this fact
can be used to relate the isothermal strain energy = to ¢. Let e; denote strain
measured with respect to the natural state of the body at temperature 8; for two
natural states ¢ = 0, 1. Then for an isotropic body the invariance requirement
assumes the form

o do ¢ , ¢ 8., , 3¢ Il d¢ oIl _
a; = o0, T oL, 50, T 3IL, oo, Torir., ao, - O (W49

Since this condition is a linear partial differential equation of first order in four
variables, its general solution is an arbitrary function of three independent
particular solutions. Now since, as mentioned above, the two natural states
are related to one another by a pure extension, the formulae (15.4) with linear
coefficient K; can be applied with respect to each in turn; an equivalent state-
ment is that the three independent functions

8 (1945, 7, pp. 166-167]. For earlier remarks on thermoelasticity, see [1930, 8, §5] [1936,
4, pp. 15-16].

9 The need for a reference temperature has been remarked by many authors, e.g. [1828,
1, §II, p. 203] [1945, 7, p. 163] [1948, 183, §§1, 6]. For the manner in which 6, arises in a strue-
tural theory, cf. [1943, 5, §6] [1948, 22, p. 247].

10 RicHTER [1948, 18, §§5-6] derives a condition that the elastic energy be separable as
in the infinitesimal theory into the sum of a part arising from changes of volume alone and
a part arising from changes of shape alone. He shows that if this decomposition be possible,
it is invariant under change of reference temperature.

1 (1943, 18, §§1-4].
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K23 —2I.,), K38 - 4l + 4II.),
] (44.4)
K1 — 2I., + 4II,, —8III,,)

are invariant with respect to change of 6; . Now put 6, = 6 and let e refer to
strain from the natural state at temperature 6. Then the functions I., IT.,
II1, as given by (15.4), being linear combinations of (44.4), are invariant under
change of 6;. Hence the most general form for ¢ may be taken as

0oy, Iy, 111, , 0, 6) = f(I., I, II,, 6), (44.5)

where the first three arguments of the function on the right are to be replaced
by the right sides of (15.4).

Now as we have seen in Part B of §33, the strain energy T4, for isothermal
deformation when 8 = 6, is given by

290(190 s e, IIIeo) = PWS(Ieo s e IIIeo , 00, 66) + const., (44.6)

where the constant depends upon 6, . Put § = 6, in (44.5); substitute the result-
ing expression for ¢ into (44.6); drop the subscript naught, and substitute the
resulting expression for f into (44.5), thus obtaining

¢, I1., III., 6, 6) = %2(1.3, II., II1,) + f(6). (44.7)
Tolotti shows further that
0 £
_ dbo
16 = f d¢ f Cpg B (44.8)

where ¢,, is the specific heat at constant pressure in the natural state at tem-
perature 6, . Since the linear coefficient K in (15.4) may be expressed in terms
of the density p, of the natural state, it follows that if po , c,, and Z ¢, be known
for a range of reference temperatures 6, , then ¢ is determined to within a linear
function of 6 for the same range of values of 6, .

Tolotti"” carries out a similar analysis for the case when the adiabatic rather
than the isothermal strain energy is known.

IV B. Cauchy’s Method: Reiner’s Semi-empirical Theory

45. Reiner’s theory of isotropic elastic bodies. Stating that physical materials
nearly always take some permanent set in any deformation, Reiner proposes

11 [1943, 18, §6]. Cf. [1940, 8, §§7-8].
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to abandon the idea of a natural state and to measure strain with respect to
whatever configuration be assumed by the body when relieved of deforming
forces’, supposing further that this relaxed configuration be unstressed. Since
a portion of the work of deformation is thus not recoverable, energy considera-
tions are not easy to apply. Reiner therefore employs Cauchy’s method rather
than Green’s method (§36), and he proposes t = f(m) as the general law of elas-
ticity’, where m is any spatial measure of strain. From (6.7) follows®

t'; = ge™s*; + gi™m'; + gi™m'um"; . (45.1)

Reiner proceeds to define various elastic “moduli” or “coefficients’* in terms of
the values assumed by the g™ and the GF‘" in special situations. Since these
moduli depend not only upon the material but also upon the strain and the
particular measure of strain, and since unique values for the gt do not gener-
ally exist (cf. §7), their usefulness is dubious.

Reiner justly observes® that by retaining Gi™ we obtain a theory which (apart
from the values of the various coefficients) is independent of the measure m of
strain, providing that the strain in all cases be taken with respect to the same
reference configuration. One or another of the tensors of §§14-17 has been recom-
mended by one or another author in proposing a linear or quasi-linear relation
of the type (9.2) or (9.3) (cf. §51). If such a relation be quasi-linear with respect
to one measure, it will in general fail to be so with respect to others, except in
the case of infinitesimal displacement gradients. In general considerations it is
therefore essential that 5™ = 0.

Among other situations, Reiner considers the typical and highly illustrative
case of a shearing stress u by putting s = 0,a = t, b = h in (10.2). Since Iy =
III, = 0, II, = v’ the Kelvin effect (§10) generally appears as a dilatation®
I, proportional to u’; the Poynting effect is a cross-stress also proportional to
u® (cf. §42). Application of the observations of §10 to the present case shows
that <n extension or hydrostatic pressure quantilative departures from the results

predicted by the linear theory will be observed sooner than in shearing or torsion;

111048, 1, §§1-2]. This idea was suggested by Tromrson [1933, 3, §1.3 footnote] and by
WEISSENBERG [1947, 8].

2 This semi-empirical viewpoint is shared by GLevzaL [1949, 88, §2], except that he pre-
fers a material formulation; he states that ‘‘there exists for any material a stress-strain
law of form T = f(C, X2, t)”’, where T is an undefined (and probably also incorrect, cf. §26'2)
material stress tensor. The expression for t as a tensorial power series in E proposed in
[1931, 15, §3] is incorrect because it fails to distinguish between spatial and material tensors;
further developments based on this series expansion are given in (1942, 16] [1943, 17, §4]
(1944, 17, §1].

3 (1945, b, §2] (1947, 9, §2] contain a similar expression for infinitesimal strains produced
by loading in the strain-hardening range (cf. §56°).

41948, 1, §8].

5 (1948, 1, §3] [1951, 11, §4].

6 For incompressible materials dilatation is impossible; the KeLvin effect then appears
only as a hydrostatic pressure (§42).
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results of experiments on extension and hydrostatic pressure, however, cannot yield
information sufficient to predict the response of the material to shearing or torsion’,
in which appear the Kelvin and Poynting effects, which are totally absent in the
classical theory and whose magnitudes are of second order, while quantitative de-
partures from the classical results are only of third order.

The foregoing discussion of special situations applies equally to the classical
natural state theory (Chapter IV A), but for this theory Rivlin’s explicit solu-
tions (§42) are more informative.

46. Criticism of Reiner’s theory. Reiner proposes that the coefficients Gi™ be
determined by experiment. The stresses and the configuration of a test body in
the deformed state are to be observed, the body is to be allowed to relax to the
reference configuration, and then the strain of the deformed body relative to
the reference configuration is to be measured. The results of a variety of such
experiments are to yield approximate values for the coefficients Gt™ under these
conditions. It seems doubtful that such a process could ever be carried out ex-
cept in the most degenerate cases, for usually the stresses cannot themselves be
measured directly, but rather must be calculated from the theory in terms of
the applied surface forces and extraneous forces. Reiner’s theory, however, will
not permit the solution of a single boundary problem, for it is altogether inde-
terminate. Strains are calculated with respect to an unspecified relaxed configura-
tion which in any given boundary problem is unknown. In effect three new un-
known functions X*(X®) are introduced; an adequate theory of set should yield
values for these functions as a part of each solution, but Reiner proposes no new
differential equations. If generalized to anisotropic media, Reiner’s theory con-
sists of nothing more than the rather empty functional relationship t = f(m).
Isotropy is an idealization whose only value is mathematical simplicity; while
indeed many physical media may be represented as isotropic without sensible
error, the basic laws of elasticity are surely independent of this accident, and
an adequate theory cannot rest on isotropy alone.

Cauchy’s method makes no use of the principles of mechanics and thermo-
dynamics in general, nor of the particular fact that since a part of the energy is
recoverable, at least a part of the stress should be derivable from this energy.
As very well expressed by J. H. C. Thompson': “Now, any molar (or large scale)
theory of the properties of a strained and straining solid can be nothing else
but the ‘thermodynamics of a continuous mediwm’. It must be emphasized that
the stress-strain relations are not the basis but the result of such a theory. A
stress-strain hypothesis, as it stands, can tell us very little about the properties
of the solid it claims to represent, and it is not necessarily consistent with the
first and second laws of thermodynamics or with the fact that the solid is to be
regarded as continuous. Further, the mere statement of a stress-strain hypothesis

7 Cf. [1930, 8, §10] [1948, 26] [1951, 11].

11933, 3, p. 350].
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gives no suggestion as to the limits in which it is valid, whereas a thermodynami-
cal theory can sometimes supply information concerning the character of the
limits.” In particular, in Reiner’s theory there are many more coefficients of
elasticity than in the natural state theory: for example, in (43.4) there are three
coefficients of second order: [, m, n; while in Reiner’s theory there are four:
Gothr, Sum Gt and Gase . This excess of coefficients (cf. §8) arises from the
neglect of energy considerations and therefore probably is not correct (cf. §52).

The main value of Reiner’s theory is its demonstration that any theory of
isotropic bodies which is not quasi-linear will predict Kelvin and Poynting
effects (§§10, 42, 45). Hence the experimental detection of these phenomena, while
evidence that a non-linear theory is required, does not substantiate any particular
theory. 1f, however, for a particular material the Poynting effect be not present
when a particular measure of strain is used, then the appropriate theory may be
quasi-linear with respect to this measure (§10).

47. Dimensional invariance. Whether we consider Cauchy’s method or
Green’s, the stress t depends not only upon the value of a certain strain measure
m but also upon the particular body and the temperature' 6. Characteristic of
the theory of elasticity is the additional postulate that each elastic material has
one and only one independent dimensional modulus, the natural elasticity g ,
whose physical dimensions are those of stress, and which shall be defined in terms
of some specified state of strain at some particular reference temperature® 6, .
Thus if we write

t = f(m, uga, 6, 60), (47.1)

where dim t = dim pg, = ML™T 7, dimm = 0, dim 6 = dim 6, = ©, we have
included among the arguments of f all dimensional quantities upon which t may
depend. If we write, equivalently,

i = g(my MKEn, 0, 00), (47.2)
MEn
we have a relation connecting various dimensionless quantities with the three
quantities ugn , 9, 0o ; since these latter are composed of two independent dimen-
sions, the relation (47.2) must reduce to one in which the dimensional quantities
occur only in 3 — 2 = 1 dimensionless ratio. Since such a ratio is 6/8, , we have
finally

t = pung <m, ;) (47.3)
0,

where the function g is dimensionless, as the most general admissible form of
stress-strain relation in Cauchy’s theory, and hence a foriior: in Green’s. This

! We are here employing coefficients with respect to some particular thermodynamic
condition (isothermal, adiabatic, etc.).
t Cf. §44°.
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result may be used to exhibit the dimensional quality of all expressions pre-
viously obtained. For the Lamé coefficients, for example, we have A\g = ug.f(6/6,),
uE = ueng(0/6y), where the functions f and g are dimensionless.

Let the value of m for a rigid deformation be m, , and supposem’ = m — m, ;
then from (47.3) it is plain that a dimensionless criterion for neglect of second
and higher order terms in the stress-strain relations is simply that the intensity of
m’ be small:

VI, <<l (47.4)

Note that IT.. is a function of strain alone: for a given material the validity of an
approximate theory of elasticity depends only upon the particular deformation in
question and s otherwise independent of the stress, thermodynamic state, etc.

IV C. Approximations

48. The nature of approximate theories. For purposes of calculation it is
usually convenient to introduce approximations. These are of three types: (I)
Linearizations, (II) Other special assumptions regarding stress-strain relations,
(ITI) Other special assumptions regarding the strain energy.

49. Theories of infinitesimal strain but large displacement gradients and
rotations. For most structural materials, even in the largest purely elastic
deformation the strain itself (with respect to the natural state) is infinitesimal,
although the displacement gradients and rotations may be large (§19). This case
corresponds to a wide range of important applications for systems one of whose
dimensions is small with respect to the others: plates, shells, rods, ete. A thin
plane sheet of spring steel may be bent into the shape of a circular cylinder, and
a long slender shaft may be twisted through several revolutions, without any
noticeable failure of perfect elasticity, although the displacements are by no
means linear functions of the loads'. For these problems it is then permissible to
linearize (43.2) or (43.3), but not permissible to linedrize the expressions for E or e
in terms of the z' . or the X* ;.

From (43.2) we thus obtain the stress-strain relations of the St. Venant-
Kirchhoff theory:

1(1844, 1] (1847, 1, §1] [1892, 4, §2] [1916, 1] [1917, 2, §4] [1942, 8, p. 57].

2 S7. VENANT [1844, 1] [1847, 1, §2] first described the relations (49.1); in words. Later
[1863, 2, 72], however, he incorrectly put t rather than T upon the left. The resulting
theory can be valid only when the displacement gradients are infinitesimal and (49.1),
reduces to (1.1). BriLL and BoussiNgesqQ pointed out the epror to ST. VENANT, who accepted
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Taﬂ = )\EE‘Y? aB + 2”EEuﬂ7
i 1 D, (49.1)
t'; = J [AeE" 6% + 2usE %z’ 2"

The corresponding strain energy has precisely the same form as that of the in-
finitesimal theory:

2= bls—i———zzwm Imz - 2MEIIE, (49.2)

and (49.1) follows from it without further approximation.
An exact spatial counterpart is proposed by Hencky’. Taking the strain
energy as

> = *_Ei'zﬁ‘f”’ I — 2uIls, (49.3)

by (41.3) and (16.2) he derives
t'; = ¢ "eh"i0; 4+ 2umh’)). (49.4)

Because of the difficulty of calculating the off-diagonal components of h in terms
of the displacement gradients (§16), Hencky’s theory is hard to use except in
trivial cases®.

the criticism and adopted [1871, 2, 7] the equations previously given by BoussiNEsq
[1870, 1], which follow by replacing J~! and z¢..z;# in (49.1), by expressions involving E
and then linearizing with respect to E. Stimulated by St. VENANT’s first notes, KIRCHHOFF
[1852, 1, p. 770] had previously derived the correct form (49.1). Apparently (49.2) formed
the basis of the stability theory of Bryan [1888, 2], whose erroneous confusion of material
and spatial co-ordinates, noted by Bonvicint [1931, 13], is repeated by Garcia [1950, 24,
eq. (7)]. The incorrect form of St. VENANT’s theory is adopted in certain theories of finite
(in the sense of §19) displacements of plates [1907, 8, §24] (1910, 3, §8] [1922, 1, pp. 99-101]
and shells [1939, 22] [1945, 6, §1] [1948, 49], with the further assumption that only certain
of the z%,, need be retained in the expressions for E. It is sometimes alleged in apology for
these not self-consistent theories that they refer not to t but to stress taken with respect
to the undeformed area, so that the relevant equilibrium equations are not (26.2); but
(26.8), but this remark is equally erroneous because the T'i* occurring in T, + pofi = 0
may be confounded with the T%# occurring in the permissible stress-strain relations (49.1):
only when the displacement gradients are infinitesimal, reducing (49.1), to (1.1). KircH-
HOFF’s theory was tacitly adopted by Trerrrz [1930, 9] [1933, 6], who applied it to the
general problem of elastic stability, as well as to the special cases of the elastica and of a
bent and twisted beam. The formulation of TREFFTZ is applied in {1937, T-9] to the theory
of plates and in [1939, 9, §§8-10] to the theory of torsion and bending of shafts and the
problem of stability. Cf. [1940, 6, Ch. VIII, §1, Y11].

31928, 2, §§2-3 and p. 457] [1929, 1, §1] [1929, 2, §1]. The theory is applied to the cases
of simple extension and simple shear [1928, 2, §§4-5], of bodies under initial stress [1929, 5],
of hydrostatic pressure [1931, 6], of wave propagation in bodies under initial hydrostatic
pressure [1932, 16], of extension of an incompressible material (1933, 4].

4 Thus in the few other cases to which it has been applied, some further approximation
has been added. In [1939, 8, Ch. 1, §15] the theory resulting from writing h = e + e? in
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An approximate spatial counterpart is proposed by Seth®:
tij = )\Ee"ka'} + 2#36‘,‘ . (49.5)

Since (49.5) is not exactly derivable from a non-negative strain energy®, as in-
deed is evident from a glance at the full series (43.3); , Seth’s theory has received
much adverse criticism,” largely unjustified. For infinitesimal strains Ix = I,,
IIy ~ II,, and (49.2) is the approximate strain energy, which is indeed non-
negative when 3\g + 2ug > 0, ug > 0.

The range of accurate validity of the foregoing three theories is the same:
that in which E; & e; & h; = §; ; i.e., say, | 6;| £ 0.01. Which theory is to be
used is then but a matter of convenience, and Seth’s seems to be preferable on
this ground. Results calculated from the three theories should agree®, to the ap-
proximation considered. In border cases, however, there are great differences:
in a 1009, extension é; = 1 we have E; = 3%, h; = log 2, e; = $, so that in this
case the St. Venant-Kirchhoff and Hencky theories are worthless but Seth’s
theory might possibly yield a crude approximation; while in a 509, compression
8;= —3wehave E; = —$%, h; = —log 2, ¢, = —3}, so that for this case Hencky’s
and Seth’s theories are worthless, but the St. Venant-Kirchhoff theory might
possibly yield a crude approximation®.

(49 4) is considered. Powers of the angle of shear higher than the second are discarded in
the analysis of shearing in [1948, 89]; the results, of course, are the same as would follow
from (49.5) or from (49.1) and thus do not differ from those of PoynTING cited in §42¢.

5 (1935, 1, §5].

8 Specifically, ZvoriNskl & Riz [1939, 14], SieNoRINI [1942, 3, p. 69], and RrvLin [1948,
10, §5] prove that (49.5) is exactly derivable from a strain energy if and only if Ag = —ug ,
or, equivalently, vg = «. Cf. §50.

7 The title of SETH’s paper, “Finite strain . . . ,” is deceiving; he adopts (49.5) as “‘the
simplest tensor form that we can take.”” MUurNAGHAN [1937, 1, §3] is quite correct that
“simplicity is not a sufficiently compelling reason,’’ but (49.5) follows from his own result
(42.5): by linearization when the strain is infinitesimal, and he himself in the same paper
adopts a quadratic approximation, no different in principle. ZvorLinskr & Riz also propose
a quadratic approximation. Whether SETH expects his theory to be valid for large strains
is not clear; in only one of his examples (that of simple extension, below) do large strains
necessarily occur. While in generalizing his theory so as to apply to aelotropic media [1945,
9] [1946, 15] SETH justifies his linear law on substantially the grounds given above, never-
theless he subsequently (1946, 16] [1948, 42] employs it again in simple extension, where it
cannot possibly be valid except in the range when (1.1) is valid. SETH’s stress-strain rela-
tions are correctly employed in SYNGE & CHIEN’s theory of finite deformation of plates and
shells {1941, 7] [1944, 5], where the strain is explicitly stated to be infinitesimal.

8 No comparison of the results in specific cases has been attempted, no doubt because of
the discouraging complication of most of the results.

9 Other linear stress-strain relations have been put forward. M. BriLrLovin [1891, 1]
proposed a theory (for isotropic media) in which quantities such as 9u/3Y — 3v/0X are
taken as measures of the rotation, and thus to be retained; his strain energy is not a scalar,
however. Substantially the same proposal is made by Frora (1940, 12], who does not trouble
to distinguish between spatial and material co-ordinates. In answer to a criticism by CrcaLa
[1941, 18, footnote 3], FrRoLA [1942, 18] states that his theory is intended only for the case
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Some of the easy consequences of Seth’s theory are interesting. In simple ex-
tension™ (49.5) together with (42.7), and (42.8), yields the following values for
the tensile stress and the Poisson contraction:

2 = 2F -—E[1——~1~—] 5y = 1t 1. (49.6)
1= aha = A+8)) 2 V1I+a@F0ee+1)

Now if | e; | < 1, as must be assumed to justify (49.5), the §; and e; are of the same
order of magnitude, so that within the range of validity of this theory we are
justified in employing (49.6) only when it reduces to the classical linearizations
(42.7), and (42.8); . Suppose, however, we neglect this fact and interpret (49.6)
as it stands. We find that as §; runs from —1 to 4 «, {; increases monotonely
from — o to +31iE, or, equivalently, the stress referred to the initial area,
t(1 + &)°, increases monotonely from — « to 3E/(vg + 1). As far as general
shape is concerned, this stress-strain curve is as good as can be expected from any
theory of purely elastic extension: it distinguishes between pressure and tension,
stating that no finite pressure can annul the length of the specimen, but to produce
nfinite length in tension only a finite limit stress is required. The existence of the
limit stress may be regarded as a qualitative suggestion of yield or rupture, as
nearly as such a phenomenon can be indicated in a theory of pure elasticity.
The contraction formula (49.6),, however, gives two obviously false results: first,
if 6, < —1 4 [ve/(ve + D} then 8, is imaginary, so that large contractions
are impossible, and, second, as 8, — « we have —§ — 1 — (1 + ve)!, so that
a specimen indefinitely extended does not indefinitely contract. The foregoing
results indicate on the one hand that Seth’s theory is a qualitative improvement
over the classical linear theory, but on the other hand that it is utterly wrong for
really large strains.
Turning next to the case of simple shear (42.14), from (49.5) we obtain

10 0| 010 iooo)i
' |
b= —3heK' |0 1 0‘+pEK 10 0|—K|0 1 0|t (49.7)
1 |
1‘0015, lo 0 o ‘oooh

of infinitesimal displacement gradients, though the displacements themselves may be
large. He in turn criticises the work of CicarLa, who prefers the St. VENANT-KIRCHHOFF
theory. SwAINGER [1948, 47] claims that the case of large rotations can be treated simply
by referring infinitesimal strain to a frame oriented so that an arbitrarily selected particle
has suffered no rotation. This procedure is always tacitly adopted in the classical infini-
tesimal theory, but is completely inadequate for treating genuinely large rotations, where
there exist particles whose rotations differ by a large amount. Later [1950, 18] he claims to
get excellent agreement with experimental data from a theory in which all equations of
the classical linear theory are referred to the deformed body and taken as valid for finite
strain; what he offers as a derivation [§4] seems to me to be setting down the equations by
fiat, and the equations themselves wholly false. Granam [1949, 14] proposes Try =
GQUL.m + Unm.1), where T and U are respectively stress and displacement referred to an
unspecified “‘natural frame”. Cf. §12,
10 1935, 1, §7] [1946, 16].
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Comparison with the general solution (42.15) shows that even in Seth’s theory,
retention of the non-linear terms in e gives rise to Kelvin and Poynting effects. Thus
the mere experimental occurrence of these effects offers no information about the
form of the strain energy function. In §53 we shall find unexpected support for
(49.7), a result which is somewhat better than the insecure foundation of Seth’s
theory would suggest. The example of Seth’s theory shows how a slight gen-
eralization of the infinitesimal theory, even if not self-consistent, may yield
non-linear results in strikingly better qualitative accord with experiment. In
discussion of a different example Treloar' has justly observed that these effects
are typical of the kind of phenomenon which occurs when any non-linear terms
are retained'. As far as Seth’s theory itself is concerned, in most of the numerous
special solutions which have been worked out”, the strain itself may be very
small, so that the results should be quantitatively correct within a useful range.
The employment of this theory in a special case should always be followed by
a careful check of the resulting strains, so as to verify that they be at least suffi-
ciently small that the strain energy be everywhere positive.

The most obvious extension of a linearized theory is a quadratic theory; that
is, a theory in which the strain energy Z is approximated by a cubic function of the
strain. The first proposal of this type is Voigt’s™, in which the displacement
gradients z° , are so small that E may be replaced by the infinitesimal strain tensor
e, yet the terms whose coefficients are I, 7, 71, in (43.1); must be retained. After
pointing out the inconsistency of Voigt’s theory™, Finger'® gave the equation

11 (1949, 10, Ch. 13, §4]. I am indebted to Messrs. TRELOAR and RivLIN for use of this
chapter in MS.

12 Perhaps this observation accounts for the qualitative success of the inconsistent
theories of plates and shells mentioned in Note 2.

13 In [1935, 1]: bending of a block, torsion of a right cylinder; [1936, 2]: a spherical shell
subject to uniform but not necessarily equal normal tractions on the inner and outer sur-
faces, a cylindrical shell in plane strain and subject to similar tractions, a cylindrical tube
turned inside out, its curved surfaces being free of traction; [1938, 3]: a uniform circular
cylindrical tube from which a section bounded by axial planes is removed, and the resulting
edges joined, a similar cylinder slit along an axial plane and forced apart; [1939, 2]: a cylin-
der subject to radial and extraneous force, a spherical shell turned inside out; [1941, 10]:
elastic failure; [1941, 11]: a rotating shaft; [1947, 18]: flexure of a block.

1411893, 1, p. 535] [1895, 1, p. 35] [1894, 3] [1901, 9].

15 (1894, 1, pp. 198-199]. Some terms neglected by Voiar are retained by STERNBERG
|1946, 17]. The notion behind this almost certainly wrong theory, which is proposed also in
[1949, 27, §§4-6], is that there exists a range of infinitesimal displacements and infinitesimal
displacement gradients, and hence (§19) a fortior: infinitesimal strain, in which deviations
from linear stress-strain relations are observable. Such a case is possible only if = be not
analytic or if [, m, n greatly exceed Ag, ur; the latter alternative is hardly to be expected
and has never been observed, while the former is not considered by the authors in ques-
tion. Experiments appearing to indicate such deviations are probably explicable in one or
both of two ways: (1) the experimenters neglect the distinction between material and
spatial co-ordinates in a range beyond that in which such neglect is permissible (i.e. the
displacement gradients are not infinitesimal), or (2) the effects of secondary strain are
neglected. Cf. also §432.

16 [1894, 1, eqq. (47) (50)] [1894, 2, eq. (42)]. He gives also the corresponding stress-strain
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to which the cubic approximation (43.1); reduces when all terms of order higher
than three in the z* , are discarded. So as to obtain a formula for the strain energy
correct up to terms of third order in the extensions, Kotter” retained the terms
whose coefficients are 1, 7, 7, in (43.1);. Murnaghan® in his first work considers
the effect of retaining the terms whose coefficients are I, m, n, in (43.1),. L.
Brillouin® considers at length the propagation of elastic waves in a medium where
the terms whose coefficients are I, 7, 7, in (43.1); are retained.

60. Theories based on assumptions regarding the extensions. Following the
notions of Brill and Boussinesq, St. Venant' proposed that the strain energy
should be a quadratic function of the extensions §; rather than of the principal
strains E; or e; :

> = ’ﬂf_“ﬂ I} — 2usll,. (50.1)

He concluded that for infinitesimal strains (49.1) follows. Almansi’ showed from
(41.11) that the corresponding “Hooke’s law”’

ti = Ngls + 2ugd; (502)

is exactly derivable from a strain energy if and only if »z = 3. Armanni’ con-
structed an example showing that even in the resulting very simple non-linear
theory it is possible for a state of non-vanishing strain in a simply-connected
region devoid of singularities to be an equilibrium configuration when there are
no surface or extraneous loads (cf. §54).

relations (43.2): [1894, 1, eqq. (51) (54)], [1894, 2, eq. (43)]. FINGER realizes that this neglect
of 4th, 5th, and 6th order terms in the z¢,, invalidates his theory for the case of large rota-
tions. On the basis of a molecular argument [1894, 1, pp. 232-244] he proposes three relations
connecting &, X , ge , [, @, 7.

17 [1910, 4, §1].

18 [1937, 1, §§3-5]. MurNAGHAN’s formulae are adopted as a basis for the theory of thin
rods by Hay, who indicates [1942, 8, §14] an experiment by means of which one combination
of I, m, n might be measured.

19 1938, 2, Ch. XTI] [1940, 8, §§9-10, 15-16}. BrILLOUIN mentions that PoYNTING’S experi-
ments (§427) can yield numerical values for two combinations of 1, 7, %, and presents fur-
ther considerations suggesting a third, as well as certain inequalities [1938, 2, Ch. XI,
§XVII, and Ch. XII, §XI). Formulae for [, 7@, 7 are derived from molecular hypotheses by
Herpin {1949, 29].

11871, 2, T91-2]. The extensions and angles enter GREEN’s first formulation [1839, 1,
p. 249]. RicHTER [1948, 18] uses a tensor k whose principal components are the extensions
8; (§17Y).

2 [1911, 8, §1]. Cf. [1948, 13, §7]. S1eNorINI [1930, 8, §9] shows that in order for ¢; = N\glg +
2ueE; to be exactly derivable from a strain energy, it is necessary and sufficient that vg = %,
as in the classical ‘“‘rari-constant’’ theory. Cf. §496.

3 {1915, 1].
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Southwell* in treating homogeneous strain proposed that (50.1) should be taken
as the strain energy; by (41.10) we then obtain stress-strain relations of the
form of the classical Hooke-Cauchy law, but in which the stress is referred to
the undeformed area (cf. (41.10) et seq.):

t.(1 + 5,‘.)(1 + &) = Mels + 2ugd;. (2,7, k #). (50.3)

These stress-strain relations are the starting point for the lengthy calculations of
Biezeno & Hencky’; equivalent results are obtained by Biot' in a different way
(cf. §41"). These theories, too elaborate to develop here, enjoy a certain popu-
larity, despite the number of special assumptions regarding the order of magni-
tude of certain terms which must be made in order to derive their final equations.
Since they are mere second approximations (cf. §3), it is not surprising that the
analyses leading to similar results differ one from another, but are alike in being
more elaborate than those of the exact theory.

Claiming that (50.2) is “‘experimentally established” for “finite displacements
not exceeding some small value (the limit of proportionality)”, Riz & Zvolinski’
require that (50.1) shall be an approximate consequence of (43.1); when terms of
third and higher order in the §; may be neglected, but their analysis is faulty
and indeed no such approximate reduction is possible’. Next’ they propose to
take the principal stresses referred to the undeformed area as quadratic func-
tions of the principal extensions. By (41.11) and (41.10) follow

t:(1 4+ 6,)(1 4 &) = Aels + 2ugd; + A8° + BI" + C(6:ds — I15), (3,5, k =)

B-C

3 I — CI;II;. (504)

z -——5'?-*—;-3‘-‘?1#—2ME15+§m3+

4 [1913, 3, eqq. (15) (16)]. He investigated the stability of a strip of thin plating subject
to thrusts in its own plane, of a boiler flue, of a tubular strut. His equations form the founda-
tion of the theory of cylindrical shells derived by Dean [1925, 2], who investigated the
stability of a plane plate and of a tubular strut.

5 [1928, 3, pp. 569-578]. Their results are applied to a plate subject to edge stresses and
extraneous forces, to the buckling of a girder clamped on one side, to a circular ring under
external pressure.

¢ Cf. §411. He gives the following applications: in [1939, 6]: elastic stability, elastic waves
in a material under hydrostatic pressure due to gravity; in [1939, 6]: elastic stability; in
[1940, 4]: stresses in plates, torsion of a shaft subject to axial extension, a problem which
is treated in [1939, 7] and [1948, 18] also. NEUBER [1943, 8, §§4-6] applies this theory to the
study of plane waves in a stressed anisotropic medium, and gives a general method of
integrating the equations. An equivalent variational principle for the consideration of
stability is given in [1946, 12, §3]; cf. [1948, 20]. An expression for the second variation of =
similar to that obtainable from Biezeno & HENckY’s or Bror’s approximations is given in
[1933, 7]. The planar theory constructed by Kryrov [1946, 19, §§1-3] apparently coincides
with that of Biezeno & HeNncky and Bror.

71938, 1, 11].

8 Specifically, they put I = $(Ag + 2ug), m = 3(Ae — ugr), n = Yug but if these values be
put back into (43.3): , by using (15.2); it is easy to show that the resulting expression does
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Approximating the extensions by quadratic functions of the principal strains,
Zvolinski & Riz now obtain the stress-strain relations of Murnaghan’s quadratic
theory (§49)*. Taking up the subject afresh," Riz observes from (50.4) that if
the original Riz & Zvolinski hypothesis be referred to stress taken with respect to
the undeformed area, it leads to (50.3). He prefers, however, to retain 4, B, and
C in (50.4), and claims that experience indicates two relations between them®.

There is no reason to accept the premises or the conclusions of these theories.

51. Semi-empirical quasi-linear theories. There have been several attempts
to describe strain-hardening phenomena by supposing the material obeys some
semi-empirical quasi-linear stress-strain relationship in loading, but follows
the Hooke-Cauchy law in unloading’. Since the authors writing in this field seldom
trouble to define their tensors, it is difficult to assign a precise meaning to their
remarks except in the range of infinitesimal strains; the following summary of
several proposals in a fashion which is tensorially legitimate for finite strain in
isotropic media is therefore perhaps a misrepresentation.

A relation equivalent to Ay = const. was proposed as a law of strain-hardening
by Huber’ and tested experimentally by Ro§ & Eichinger’. More generally,
R. Schmidt* proposed A, = f(A.); if it be assumed further that the stress-strain

not reduce to (50.2). From REINER’S theory (§45) follows that in order for stress-strain
relations which are quadratic in e to reduce to (50.2) when terms of third and higher order
in the 8; are neglected, it is necessary and sufficient that t; = \g[le + 3I.2 — 3IL.]8%; +
2ure’; + 3uge’re®; ; these relations are not derivable from a strain energy, even as a quadratic
approximation.

9 [1939, 14]. In both [1938, 1] and [1939, 14] they apply their theory to a study of the in-
crease in torsional rigidity of a bar subjected to tension, using an identical method but ob-
taining different results in the two cases. Simultaneous flexure and extension are discussed
in [1939, 16] [1944, 18-19] [1947, 24]; bending of a bar by both a couple and a transverse force
in [1942, 19]; by two couples, [1947, 24]. An elliptical cross-section is considered in [1939, 3];
a general cross-section again in [1943, 16].

10 They claim that from their assumption it is easy to find the special values for  and n
stated in Note 8 and also m = —3(A\g + 3ug), but they do not state what this assumption
is.

11 [1947, 7]. This paper is marred by serious misprints.

12 He claims that the vanishing of the cross-stress in simple extension yields Awvg? +
B(1 — 2vg) + 3veC(l — vg) = 0, and that the conditions of equilibrium in simple shear
require A + C = g + 3ug . In a later paper [1948, 560], in which he attempts to generalize
Hencky’s theory of plasticity, he refers to the former condition as Avg? + B(1l — 2vg)? +
Cve(1 + vg) = 0. The work of Riz & ZvorinskI is deservedly criticized by SeTH [1950, 18, §4].

1 A means of determining stress-strain relations of this type from experimental data in
which all quantities depend upon a single parameter is constructed by GoLpENBLAT [1949,
44]. Cf. §418.

2 [1904, 2]. The above mathematical form was given by v. MisEes [1913, 2], who proposed
this relation as a plastic yield condition.

3 (1926, 1] and subsequent papers.

4[1932, 9, §I1].
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relations are quasi-linear, then by (9.5) this proposal is equivalent’ to g1 =
= f(A,). Nadai’ prefers A, = f(As), from which follows a similar conclusion with
regard to a quasi-linear relation between t and h. Schlechtweg' proposes a theory
equivalent to a special case of Schmidt’s: I, = Al,, A. = BA(1 + CI; +

DA+ EA/AJ.)7, where A, - - -, E are coefficients. For anisotropic “elastoplas-
tic” media Locatelli® proposes a relation which can be written
t = t9[1 + Tuf(IT0]™, (51.1)

. . . . ] l . .
where t* is the stress according to the linear theory: t*°; = ¢'/;e' , while f(u) is a
non-negative monotone increasing function which approaches a constant as
u — . Udeschini’ prefers

t=t¥1 + A(II» — I.%/3)]7" (51.2)

Gleyzal” calls a quasi-linear relation between t and e with A, = f(A.), I, = g(I.)
“general stress-strain laws of elasticity and plasticity”. He recommends
I, = 3kl. “in view of experimental evidence”; from (9.5) then

1 1) @)
t—§<x——~A—e—>I+—A—e—e, (51.3)

since the coefficients now are functions of A. only, for an arbitrary hydrostatic
pressure p the relation between t — pI and e — pI/3« is the same as that be-
tween t and e (cf. §6). Davis" generalizes Gleyzal’s relations in the case of in-
finitesimal strain by relinquishing the quasi-linearity and instead letting
(2t; — t — t3)/(ti — t3) be an experimentally determined function of the same
combination of principal strain components; this proposal is not admissible for
isotropic media™ because it is not generally expressible in terms of invariants,
but if it could be corrected it would amount to a choice of a special form for
Gy, , II,, III,). Although the authors of several of the foregoing mutually
contradictory theories justify them by statements about experiments’, they
appear to consist solely in a rather arid type of abstract speculation.

5 ParLippIpis [1947, 12] gives the mistaken impression that from A, = f(A,) one may
conclude that quasi-linear stress-strain relations exist.

811933, 5, §1I] [1937, 4, eq. (31)].

7 (1934, 4, Part I, §3]. For an earlier proposal of SCHLECHTWEG, v. §t1!.

8 In [1940, 14] the theory is applied to simple extension, bending, and torsion; in [1941,
16}, to dislocations.

9 (1041, 17] [1944, 17, §2].

10 [1945, 2].

11 [1948, 25].

12 Napar [1931, 11, Ch. IV, eq. (14)] proposes (26 — & — )/ (i — t3) =
(2¢; — e1 — e3)/(e; — e3) in this connection; this special form is admissible because by
(9.4) it is equivalent to Gi(®) = 0, i.e., to the statement of quasi-linearity.

13 GLEYZAL’S experimental curves [1945, 2, p. A-263] refer to the tensile test, the results
of which can be fitted by any stress-strain relationship containing an arbitrary function
of strain.
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Weissenberg™ proposes as a theory of “rheological phenomena” the general
quasi-linear relationship between stress t and ‘‘recoverable” strain e, the latter
being measured with respect to the relaxed state assumed after deformation has
ceased (cf. §45). He claims that this law suffices to describe the results of a
series of striking experiments on the rotational shearing of liquids, in which the
Poynting effect appears in the form of strong curvature of the free surface. The
application of a theory of elasticity to fluids is somewhat artificial, and Rivlin
has shown that these same phenomena are predicted by a simple and natural
theory of fluid dynamics (§72)". Weissenberg’s theory is subject a fortiori to all
the serious objections raised against Reiner’s theory (§46).

62. Special forms for the strain energy.' I. Murnaghan’s “proper density”
theory. Signorini? strongly criticises theories of the type discussed in §§50-51
because of their neglect of the requirement® = > 0. Although Murnaghan’s

14 1047, 8]. In [1949, 31, §3] WEISSENBERG gives more details of his experiments, and
also proposes a generalization [p. 135] of his theory, employing rather vague undefined terms
which I am unable to understand.

15 OLpROYD [1950, 3, Note at end] questions RIvLIN’s discussion of the possible effects of
elasticity of the fluid in these experiments.

1 Several proposed forms for the strain energy have already been noted: (43.1), , (43.1), ,
(49.2), (49.3), that referred to in §49°, (50.1), (50.4)2 . Three more are now mentioned:

(A). OsEEN’s theory [1929, 7). = = (IIL)* [AeK + weL), where 2K = (II[-1)} —
It — 2,4L=1¢-1+ I, — 6.

(B). DEUKER’s theory [1941, 8]. I am unable to understand the proposed strain energy
or to follow the analysis. The end result is T2 = g [Ig — (Ig? — 2 IIg)] 625 + 2uplE*s —
E=,E"g), which cannot be derived exactly from a strain energy. The theory is applied to a
study of elastic stability in general and [1943, 7] to an elaborate investigation of the stability
of thin shells, particularly those of circular cylindrical or spherical form.

(C). WEBER’s theory [1948, 81]. The objective is to obtain legitimate stress-strain rela-
tions of the type proposed empirically for strain-hardening (§561), but the analysis is in
material variables, so that the results are basically different from those of others working
in this field (the stress tensor is not defined, but since the stress-strain relations are (39.4): ,
Ta4 is the only correct possibility; the paper is confused by serious misprints.) WeBER finds
that if = = A;(Tx/3) + As(345?/2), then 3GT® = A] — A’ ,GT® = Ar/Ag = 4;,G]® =0,
It = A, ; the stress-strain relations are material analogues of GLEYZAL’s equations (51.3),
which cannot be derived from a strain energy.

2 [1942, 8, p. 65]. He particularly objects to SETH’s theory (cf. §49¢ and [1948, 23]).

3 This requirement arises because the strain is measured with respect to an unstressed
configuration. While in a theory of initial stress there must be some irreversibility relations
(cf. [1949, 12, §IV]), it is not clear what they should be, for a small amount of energy put
into a stressed body can cause it to give out a much greater amount, as when a hemisphere
initially strained into a nearly plane configuration if deformed but slightly further will
then of itself turn inside out and thus release the initially stored energy as well as that
recently added. We should have d= > 0in a loading process, but a precise definition is lack-
ing. Cf. (41.14). In the theory of infinitesimal strain Z is a quadratic form in the ¢%; , and
the conditions that this form shall be positive are ug > 0, 3A\g + 2pg > 0,0r —1 < vg < 4.
In proposing his form for the strain energy (cf. Note 1 (A)), OsEEN required that not
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first treatment’ is open to Signorini’s objection that the higher order theories
simply introduce more constants so as to yield a better empirical fit to experi-
mental data, he soon proposes® in effect

= Ae + 2#!:

3 I — 2uell,; (52.1)

z

from (43.3). follows

t'; = /1= 2I, + 411, — S8IIT.(\el5°; + [2ur — 2\alJe’; — 4upeie®;}. (52.2)

No significant applications of this theory have been made.

63. Special forms for the strain energy. Il. Signorini’s exact quadratic theories.
Signorini has long contended that progress in the theory of finite elastic strain
depends upon the determination of the correct form of the strain energy and has
sought one leading to the simplest possible stress-strain relations.

In his earlier work' he showed that in order for # to be exactly a quadratic
function of E; in an isotropic body it is necessary and sufficient that

S =g —2k— V1 + 2+ 4110 + 8III.e {(ug — 2k)(1 — Iov)
— 3(\g — pr + 6k)° + 4KIT..},
t'; = Mele + 3Qe — pe + 6k)o — 4KII.]5°;
+ 2[ue + (e — pe + 2k)Iole*; + dke*e®;,  (53.1)
where 2e* = ¢ — I, ug > 0, 3\g + 2ug > 0, k > 0.

Turning away from this theory, in his recent work® he shows that in order for
t to be exactly a quadratic function of e it is necessary and sufficient that

_—p+all —I) + 8L + cll, _

=z
V1 = 2I, + 4II, — 8III,

(53.2)

only shall £ remain constant in a rigid motion, but also that it shall not remain so in an
orthogonal transformation whose Jacobian is —1, and on this ground he criticised other
forms for =.

4 In his first treatment of hydrostatic pressure [1937, 1, §4], MURNAGHAN in effect simply
supposes the pressure to be a quadratic function of the change of volume, with coefficients
to be determined by experiment.

8 Tentatively in his treatment of simple extension [1937, 1, §5] and definitely in [1941,
1, pp. 129, 135]: ““The main defect of the classical theory has been its neglect of the variation
of density in the compressed body.’”” He applies his theory to the cases of hydrostatic pres-
sure [pp. 129-132] and of a hollow circular cylinder subject to internal pressure [pp. 132-135].
BircH [1938, 6] adopts (52.1). Cf. §447.

1 [1930, 8, §9].
2 [1942, 8, pp. 67-68] [1945, T, pp. 164-167] [1949, 15] [1949, 39, Cap. II]. I am obliged to
Professor SiGNoORINI for use of the third of these papers in MS.
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Taking the state at § = 6, as unstressed, we obtain p = 0. The coefficients may
be identified by noting that for infinitesimal isothermal strains from this un-
stressed state we obtain 28 — a@ = Ag, @ = ug for the Lamé coefficients of the
classical theory. Signorini gives special attention to the case ¢ = 0, which leads to

P‘E(l e) + An + ”E

2= /i-a.+ 411., —siil,  "®

(53.3)

T 3 . .
and to the quasi-linear” stress-strain relations

)\E+ME
2

ti:' = I}‘EIe + Iez:l 5ij + [2ug — (A& + ME)IeJG"; . (563.4)
Necessary and sufficient conditions that (53.3) be positive (subject, of course,
to the condition ¢; < 1), are ug > 0, —§ < vy < 1.

In simple extension Signorini* obtains

14 2 + 6 — (&)’
\/ 1 +(e1)? + 4vee

Necessary and sufficient conditions for the right-hand side to be a real continuous
function of 8, for —1 < § < « are precisely the same as for = > 0. The curve
of T against & is of the same general character as Seth’s (49.6)°, requiring an
infinite pressure for & = —1, having an asymptote 2T = (A\g + ug)
{v5 + 8g — 1 — 4vg} as & — =, and exhibiting positive curvature every-
where provided »gz > 0. If we expand both (49.6) and (53.5) in powers of &,
however, we find that even the.second order terms do not agree.
For simple shear (42.14) we obtain from (53.4)

T=t04+6)= O+ ME){ -1 =2y + 91} . (53.5)

oo
t=—%>\EK2[1—(1+;—5‘>I—§-] 010
3 )
00 1
010 000
e\ K
+MEK[1+<1+ >4] 1 0 0l—K|0 1 of}. (536)
00 0 0

3 The case ¢ # 0 is considered by TororTI [1942, 12], who finds necessary and sufficient
conditions in order that £ > 0, and considers the cases of hydrostatic pressure and simple
extension.

4[1942, 3, pp. 69-71] [1949, 15, §5]. This and other examples are presented in [1949, 39,
Cap. II, §2].

5 One may contrast this result with the thoroughly unsatisfactory parabolic stress-strain
curve with axis parallel to the axis of stress which was obtained by MurNaGHAN [1937, 1,

§5].
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Signorini® solves the problem of bending of a block. Supposing that the curved
cylindrical faces be unstressed, and that suitable surface tractions be applied to
the four plane faces, he shows that for any prescribed angle of flexure and change
of altitude there exists one and only one solution, which he exhibits.

Signorini” analyzes thermoelastic effects in his special theory, obtaining the
following expressions® for the coefficients in (53.2):

2
K -

p = "2 3¢ + ) + e + 5udy

2
a = ;—— [3/(2()\0 + ug) — 3ng — ,Ud]’
4 0 £
d
p=5 0t v=wmt [ k[ a0F, G0

where « is the coefficient of expansion arising from a change of temperature from
6 to 8, N\¢ and ue are the Lamé constants corresponding to the temperature 9,
and ¢, is the specific heat at constant pressure. He concludes also that in the
limiting case of a solid which can suffer no thermal expansion, for each 6 we shall
have d’us/d6® < 0, d*(9\s + 5ug)/d6® < 0, and consequently d’Ey/d6’, where
E 4 is Young’s modulus at temperature 8. These inequalities are in accord with
experimental evidence.

Since his theory satisfies every qualitative requirement, Signorini expresses the
hope that it may be borne out quantitatively as well. Some doubts must be ex-
pressed, however. Comparison of (53.6) with (49.7) shows that in simple shear, the
results of Seth’s and Signorini’s theories agree as far as terms of second order. While
this fact might be taken as indicating Seth’s theory to be a little better than its
derivation would suggest, comparison of (53.6) with Rivlin’s general solution
(42.15) reveals rather a common defect of both theories. While by (42.15) the
normal stresses £, , tY,, and ¢°, are generally governed by independent coeffi-
cients, in both Seth’s and Signorini’s theories we always have t°, = {*, in a shear
of any magnitude. In the case of Seth’s theory, the cause is to be found in the
ad hoc character of the stress-strain relations; in Signorini’s case, from his putting
¢ = 0 and thus rendering 2 independent of I.-1. The defect is made more serious
by the experimental fact, mentioned in §41, that in rubber 02/0~1 & 5Z/01 -1 .

Comparison of Seth’s and Signorini’s theories is interesting. Seth’s theory,
adequate for treating large rotations and displacements so long as the strain be
very small, at moderate strains exhibits some of the qualities of the general
theory. Such anomalies as were noted in the case of Seth’s theory (§49) in the
case of large strains cannot occur in Signorini’s, which is perfectly consistent with
the principles of mechanics, and thus will exemplify the fype of behavior which

6 (1949, 15, §6] [1949, 39, Cap. II, §3]. His result is not included in RivLIN’s general solu-
tion (42.29), because RiviiN considers only incompressible materials.

7[1945, 7, pp. 166-167] [1949, 39, Cap. II, T96-7].

8 Tovortr [1943, 12] readily obtains (53.7) from an appropriate special case of (44.7).
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can be expected from a compressible body capable of suffering large elastic strain
of any magnitude. But in Signorini’s theory, too, there is an ad hoc quality, for
why should t be a quadratic function of e, or of any other arbitrarily selected
strain measure? This arbitrariness manifests itself in the case of simple shear,
mentioned above, and may be expected to reduce the quantitative usefulness of
Signorini’s theory in general.

The work of Signorini, distinguished by careful treatment of mechanical ques-
tions and by painstaking and accurate analysis, is the only serious advance up to
the present in specific problems of large strain of compressible bodies. I cannot
help questioning, however, the underlying idea of guessing at some apparently
simple form for Z. It would be preferable to obtain general solutions, like those
of Rivlin for incompressible bodies, valid for any type of strain energy, but for
compressible bodies no such solutions have yet been found except for the trivial,
though instructive, case of homogeneous strain.

b4. Special forms for the strain energy. III. The Mooney-Rivlin theory for
rubber. The foregoing approximations are directed mainly toward application to
structural materials, where purely elastic behavior, if it exist at all, is limited to
an extension range | §;| < 0.1 (or often much less). Rubber, the first example of
an elastic material which comes to mind, for many years defied all efforts to de-
scribe its behavior by a theory of elasticity. It is virtually incompressible', and
its perfectly elastic range is often as great as —3 < §; < 3. Although in many
deformations I.-1 and II.-1 assume values up to 30, nevertheless Mooney” has
suggested using the two terms of lowest order in the series (43.4):

2 = da(lo-1 — 3) 4 BUII-1 — 3), ;= —pd'; + alc™); — Bc';. (54.1)

Necessary and sufficient for £ > 0 are the conditions « > 0, 8 > 0, which follow
also from (41.14). The Mooney theory gives results in excellent agreement with
measurements® on all sorts of extensile and shearing deformations of rubber with
3; taking values as high as 1. Later experimental work of Rivlin & Saunders®, in
which the extension range and variety of deformation is much greater, has indi-
cated that the form

2 = 3a(le1 — 3) + f(IIe-1 — 3) (54.2)

fits all data known up to the present time with sufficient accuracy, but in any
case the Mooney theory gives a good first approximation. Because of the very
large values of the arguments I,-1 — 3 and Il.-1 — 3, this fact indicates that
the higher order coefficients in the series (43.4) are vastly inferior to the first

1 Experiments on the compressibility of rubber are described in [1948, 29].

2 [1940, 7, eq. (14) and pp. 586-587].

3 (1948, 24, 30). A theory of photoelasticity for interpreting experiments on large defor-
mation of rubber is discussed in [1942, 11] [1947, 10, 13] [1949, 10, Ch. VIII].

41951, 2, esp. §19].
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two; and, as noted in §41, we have roughly o = 58 for rubber. From (6.11)5 and
(15.1), it follows that (54.1). is equivalent to

@ = —p + a(l — 21, + 4I1,) — B,

oo o (54.3)
Gi° = 2l - I.) + 8], G:® = 4a.

Thus all the characteristic effects of non-linear elasticity, and in particular the
Poynting effect’, are present even if 8 = 0, but of course their quantity is more
crudely specified than in the fully general theory. The expressions (54.3) indicate
further that the Mooney theory, like Signorini’s (§53), gives t as exactly a quad-
ratic function of e. Hence in particular (§10), shear stress is proportional to
shear strain, just as in the classical theory,® and by (42.15) we have ug = a + 8.

The special case 8 = 0 in (54.1) is of particular interest, since Guth & James
(1939)" and numerous others® have succeeded in deriving the resulting form for
= in certain simple cases from a theory of long chain molecules’. The corre-
sponding material®® is called neo-Hookean by Rivlin, who began his researches

5 REINER [1951, 7] states that the distribution of pressure on the plane ends of a twisted
cylinder, given below in the text is not ‘“in accordance with what is required by the PoynTING
effect,” claiming that his ‘‘coefficient of cross-elasticity’’ ggm is neglected. The formula
(54.3)s shows that the criticism is wholly ill-taken, since even in RiviiN’s neo-Hookean
theory this coefficient is four times the shear modulus. From a more general standpoint the
criticism is yet more inappropriate, since RivLin’s beautiful solution (42.22) (42.24) is valid
for any form of strain energy.

¢ MooNEY [1940, 7, p. 582] begins his considerations with the experimental fact that the
shearing stress and shearing strain are proportional even for very great strains; cf. (1948,
7, §4]. WaLL & TRELOAR [1942, 5, pp. 482-488] [1943, 2, p. 530] [1943, 3, pp. 37-38] give a sepa-
rate consideration to shearing, and conclude that “HookEe’s law’’ is satisfied; they do not
observe the PoyntinG effect.

7 (1941, 6, §3] [1942, 7] [1943, 5, §3] [1944, 8].

8 [1942, 5, p. 487] [1943, 2-4, 9} [1944, 3, §1II, T93-4]. (1938, 4] and [1942, 4, p. 134] are less
successful attempts. Comparison of theory with experiment is given in [1944, 4] [1944, 3,
§IV]. For reviews of the structure theories of polymers, v. (1948, 22, C II 1] [1949, 10, Chs.
111, IV].

9 A first approximation is « = Nk#, where k is BoLTzMANN’s constant and N is the num-
ber of molecules per unit volume; a more accurate theoretical value of « is given in [1944,
8, §3]. Thermoelastic experiments on rubber are described in [1948, 30].

10 Since (54.1); can be written £ = alg when g8 = 0, comparison with (43.1); shows that
the neo-Hookean theory is based upon the approximation of lowest possible order for in-
compressible bodies in a series expansion in E, and in this respect is the counterpart of the
St. VEnanT-KircHHOFF theory (§49) for compressible bodies; because of the arbitrary hy-
drostatic pressure p, the condition @ = 0 is no longer as in the case of compressible bodies
a statement that the natural state be unstressed. On the other hand, the last statement
in §43 shows that if we define an approximation in terms of the extensions, then the MooNEY
theory is the proper counterpart for incompressible bodies of the St. VENANT-KIRCHHOFF
theory for compressible bodies, since each retains all terms of degree 2 in the 3; in the series
expansion for .

It is hard to see how so simple a theory could have been overlooked until 1939, but the
explanation perhaps lies first in the still prevalent custom of avoiding tensorial methods,
so that the distinction between material and spatial stress components, although in the
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with an extensive study of it"". The same form for the strain energy was proposed
earlier by Kubo', whose work was not published until after Rivlin’s had begun
to appear. Rivlin™ analyzes the possible states of pure homogeneous strain corre-
sponding to given uniform surface tractions upon the surface of a cube. Even
in this simplest of deformations in the simplest of the exact non-linear theories,
there are ranges of loadings in which the deformation is not unique and thus the
outcome of an experiment depends upon the manner in which the load is applied.
(Cf. the complementary result of Armanni, §50).

Returning to the more general Mooney theory, Rivlin* notes that since ¢; > 0,
o > 0,8 > 0 it follows that for given ¢'; the quantities ¢; are yielded by (54.1),
as single-valued monotone decreasing functions of p; hence I11, = cicacs is such
a function; and hence there is one and only one real value of p compatible with
the condition 711, = 1. Thus not only does ¢ or ¢~ determine t, but, conversely,
t determines ¢ and ¢’. Rivlin concludes also that the equilibrium is always
stable.

The general solutions given in §42 can be specialized to the present case at a
glance. For simple extension we have from (42.11)

2 _ _ 1 B
tl(l + 52) = I:l + 61 ——————(1 "l" 51)2:| |:Ol + —‘—"1 + 51] y (544)

showing that E = 3(a + 8) = 3ug as in the classical theory and that in extension
the effect of 8 is small, though in great compressions its effect may predominate
over that of «. The result (54.4) was discovered for the case 8 = 0 by Guth &
James®™. Unfortunately, unlike the extension curves of Seth and Signorini (§§49,
53), this one approaches no finite limit as §; — .

For torsion of a circular cylinder the normal tension ¢°, on the plane ends,

literature nearly 100 years, is not generally understood even now, and second in the far
reaching effect of the constraint of incompressibility, which though discussed by Poin-
carE (§39°) has reappeared in the literature only recently.

11 For the neo-Hookean material, RivLIN considers the following problems: in [1948, 7]:
simple extension, simple shear, determination of the pressure when the stress is given; in
[1948, 8]: uniqueness of strain corresponding to given stress; in [1948, 9]: simple torsion or
combined torsion and extension of a hollow circular cylinder. Some of Rivrin’s work is
reviewed in [1949, 10, Ch. 7, §4 and Ch. 13]. Cf. §42.

12 Kupo [1948, 65] considers the following special situations: a spherical shell, a cylin-
drical shell, a medium in transverse vibration.

13 {1948, 8].

14 [1948, 11]. The case 8 = 0 is treated in [1948, 7, §§5-6].

15 (1941, 6, eq. (7)]. Cf. [1948, 7, §4]. According to Gura & James [1941, 6] [1943, 5, §6],
(54.5) is an approximation valid only for relatively small extensions. For the general case
they give t1(1 + 82)2 = o[ LK1 +8]) — (1 + 51)~% £1(K[1 + &1H)], where £(p) = cothp
— p. In [1943, 15, §10], [1947, 14] GurH gives instead &{1(1 + 82)% = af £71(k[1 + &.]) —
3k(1 4 &,)~2]. For expositions of the Guru-JamEes theory, see [1946, 13], [1948, 22, Ch II 1C],
[1949, 18]. Experiments on the extension of rubber are discussed in [1950, 16], [1951, 2, §§9-
10].
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given in general by (42.22) and (42.24), becomes'® ’,.= —K’[}a(a® — ") +
Br’]. While in the general case we were able to conclude only that the resultant
force was always a pressure, for the Mooney material the local end stress is every-
where a pressure. Moreover, this result enables us to distinguish experimentally
between the Mooney and neo-Hookean materials, for in the latter the normal
pressure vanishes at the edge r = a, while in the former it attains the value
K®Ba’. In an experiment surely to be regarded as classical, Rivlin'” verifies all
predictions of the Mooney theory for torsion of a rubber cylinder through large
angles of twist. The normal pressure, assumed to be proportional to the bulging
of the rubber into small holes in the metal plate bonded to one end of the cyl-
inder’, does not vanish at the edge, thus showing with finality that the neo-
Hookean theory is inadequate. From this experiment Rivlin concluded
B8 = 0.14a.

Added in proof. Using complex variable methods, Green & Shield” construct
a general theory of the moderate torsion of a cylinder of Mooney material of
any simply-connected cross-section, discarding powers of the twist higher than
two. They outline the solution also for the case of a large extension followed by
a moderate twist.

This section must close with a reference to the end of §42, where, based upon
the numerous exact solutions obtained, was expressed the more recent view of
Rivlin, diametrically opposed to that of Signorini, that it is futile and unnecessary
to conjecture the form of =. The main value of the Mooney theory is that it ena-
bles one sometimes in cases too difficult to be solved for general = to exhibit a so-
lution which may serve as a first approximation.

IV D. The Jaumann-Murnaghan Rate of Deformation Theory

66. Initial stress. Even in their most general form (§45), the foregoing theories
of isotropic elasticity admit at most a uniform hydrostatic stress ¢'; =
Gt (0, 0, 0)5°; in the unstrained configuration'. Now there may be very con-

16 [1947, B, §111]. Solution for an anisotropic cylinder is attempted in [1950, 10, §7], where
the anomalous results obtained arise no doubt from the fact that stress-strain relations
of the type of §41, valid only for isotropic bodies, are erroneously employed.

17 (1947, 6, §§IV~V]. More refined torsion experiments are given in [1951, 2, Part C].

18 Experimental difficulties prevented measuring the force required to plug the holes.

19 [1951, 15, §§ 5-11].

1 From the evident generalization of (43.1); to anisotropic bodies it is plain that the only
stress possible in the unstrained state is uniform. Such stresses were included by GREEN
[1841, 2, p. 298]. KELVIN’s criticism [1888, 3, §§4-6] [1904, 3, Addition to lecture XV, §§4-6]
of GREEN’s theory of initial stress is only partly sound.
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siderable initial or residual stresses in a physical body, and the configuration
the body would assume should all these stresses be relaxed is not known. Indeed,
in many cases relief of stress is not possible without destroying the continuity
of the body or effecting some physical change within it.

There have been three main routes of attack upon the problem of initial
stress’. The first lies wholly within the bounds of the classical linear theory of
elasticity, attempting by some artifice to calculate a stress system, associated
with a strain from an unstressed natural state, which is appropriate for repre-
senting the stresses naturally occurring in physical bodies as they come to hand.
The strain in question need not be physically realizable by a purely elastic
process. The example of a tube formed by cutting out a sector from an unstressed
tube and forcibly rejoining the edges is included among Volterra’s celebrated
“dislocations,”® which typify this kind of work; such a body may be regarded
as initially stressed, since its surfaces are free of load but the interior stress is not
zero. The stress in any subsequent displacement with infinitesimal gradients may
be calculated independently of the amount of initial stress, by the usual method
of superposition.* As soon as the gradients of the displacement required to return
the body to its ideal unstressed natural state become large, this entire method is
closed off.

The second route, a natural extension of the foregoing, rests upon calculating
stress-strain relations modified to take account of initial stress 't, which, however,
is presumed known a priori. The correct form of the result was obtained twice
by Cauchy, first by the method of stress-strain relations’ and second from a
molecular model,’ but we shall derive it from the general form of Green’s theory
of the elastic energy.” ‘ ‘ ‘

We consider the case * = y' + u’, where y(X®) is an arbitrary initial de-
formation and where the gradients of the second displacement u' with respect
to y* are infinitesimal, and all quantities are referred to the same Cartesian

2 Much of the literature, some parts of which are summarized by NemE~yr [1931, 4], is
cloudy.

(1907, 4].

4+ Thus JouGUueET [1924, T] speaks of an ‘‘état ... quasi-naturel & tensions petites.”
“Small”’ stress, i.e. stress negligible with respect to Az and ug , is not sufficient, however,
since not only the strain but also the rotation must be infinitesimal before superposition
is justified.

51829, 1, eqq. (36) (37)].

61829, 2, eqq. (36) (37)].

787. VENANT'S attempt [1863, 2, €3] to.derive CavcHY’s equations from GREEN’s theory
was faulty because of his erroneous formulation (cf. §49?) of the theory itself. PEARsON’s
criticism [1893, 2, §§129-130] of St. VENaANT’s derivation, however, appears to cast doubt
on Cavcny’s result (ef. (1927, 3, §75]), which in fact solves completely a problem to which
a great deal of literature, much of it faulty, has been devoted: [1883, 3, §§7-23] [1904, 3,
Addition to lecture XV, §§7-36] {1920, 1, Note 2] [1921, 2] [1924, 7] [1928, 3] [1929, 5] [1932,
15] (1939, 4, §4] (1939, 5, pp. 120-121] {1940, 4, §4] (1942, 10]. The derivation outlined in the
text above is similar to one given by MrrNaGHAN [1949, 41, p. 333], who does not mention
CaucHy or any other source for the result itself.
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frame. Let 'E be the strain tensor calculated from 3°(X®), and let E be the total
strain. Then E and 'E are related by (19.6). Supposing the body to be perfectly
elastic with respect to the configuration X° by Boussinesq’s stress-strain rela-
tions (39.2). we have for the initial stress 't and for the total stress t

Li; _ p 0% i _p 92 i
t p0 61E8y'ay ﬁ, t = o aEaax,ax,ﬁ. (5501)
Now by (19.1); follows
L. PP (1 -]y, (55.2)

Po Po Pl Po

where & is the infinitesimal strain tensor for the second deformation. Also

3 P
si = 1E)  fCEw + 5y,
~ fCEy) + M{ A (55.3)
ozl £

= alEqﬂ alEaﬁ alE ei?/a.ey rf

Putting (55.2), (55.3), and (19.4) into (55.1)., by dropping all terms of order
higher than one in the displacement gradients u}; and by employing (55.1),
we obtain Cauchy’s result, which when written in tensor form, valid in all co-
ordinate systems, is

t‘j = lts'j(l _ I;) + ltmfu:'m + ltinu{” + C‘jklélk ,
) (55.4)
C poW y,ay,ay,yyn,
where u',, is the covariant derivative of u' with respect to y™.

This important result is not sufficiently understood.® It gives a precise mathe-
matical form to the common vague statement that an isotropic body subjected
to large strain loses its isotropy: even if the displacement gradients u®,, be small
enough that (55.4) reduces to an apparent superposition formula t = 't + %,
where '; = ‘}e . if = be an isotropic function of E then neither t nor %t
can be an isotropic function of & unless the 3°,, be infinitesimal also, or, in other
words, if an isotropic elastic body be subjected to a large strain followed by a small
one, its response to the small one, considered by iiself, is linear but not isotropic,
and its tetradic C';%; of elastic coefficients (55.4); for such small linear strains de-
pends not anly upon the elastic moduli but also upon the gradients y . of the large

8 Love [1927, 8, §75] describes the last term in (55.4) so vaguely that one easily gains
the wholly false impression that for an isotropic body it is given by (1.1).
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tnitial deformation. If, for example, the strain energy have the very simple form
(49.2), then (55.4); yields

Cil = E)D\E @N5E™5 + 2uslc™ a5, (55.5)

where ¢ is calculated from y‘(X®). By measuring the C';*; experimentally it
might be possible to determine the unstressed natural state by integration. In
any case the elegant formula (55.4) is difficult to use, since not only must 't be
known, but also there is no real simplification for isotropic bodies. The gen-
eralization to the case of large strain of an initially stressed body is hopelessly
difficult.

Thus even if the theories based upon stress-strain relations be correct in prin-
ciple, they are not properly applicable to many practical cases, since they employ
strain measures we can never calculate because we do not know the ideal un-
stressed configuration with respect to which they are to be taken. A theory in
which strains can be measured from any given initial configuration (cf. §34),
and in which moreover the notion of isotropy can be put to real use in cases when
it is relevant, is therefore desirable if it can be formulated correctly. The third
route of attack has been therefore to abandon the idea of stress-strain relations,
either partially’ or wholly. An attempt in this direction is described in the suc-
ceeding sections.

56. Defining relations for the Jaumann-Murnaghan rate of deformation
theory. Murnaghan' suggests therefore that the whole idea of a natural state be
abandoned, as representing a sort of ideal behavior which is irrelevant: while
indeed it is usually employed in motivation of the infinitesimal theory, the
Hooke-Cauchy law (1.1) is also a first approximation to a quite different concept.
Starting with a body subject at time # to any state of stress 't, Murnaghan re-
gards the present configuration as “built up from a succession of infinitesimal
strains by a method of integration,” the stress increments being computed from
the strain increments in the limit by a relation having the form of the ordinary
Hooke-Cauchy law (1.1). Although he does not give any general formulae,

® A purely formal definition of a ‘“‘source’ of initial stress is given in [1931, 3]; while
stress-strain relations are abandoned, the equations proposed are formal analogues of
those of linear elasticity theory.

11944, 6, 13] [1945, 11] [1949, 6, §3]. I am indebted to Professor MurNAGHAN for use of
the last paper in MS. It is rather difficult to determine precisely what is assumed and what
is not in MURNAGHAN’S latest papers. Thus in (1949, 41] he refers to his work on large hydro-
static pressure rather perplexingly as ‘‘some results of a comparison of the exact formula
[i.e. BoussiNEsQ’s formula (39.2);] with experiment’. I am not sure that the contents of
§§56-58 represents MURNAGHAN’S own views; it should perhaps be regarded rather as an
alternative development of equivalent results.
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limiting his attention to special cases, a realization of his proposal is*
i‘j — Aijkl dlk , Ac’:‘kl - Ajikl' (56.1)

More complicated equations of a similar type were proposed by Jaumann,®
whose profound researches have not received the attention they deserve. We thus
obtain a rate of deformation theory® in which any stress components ¢, satisfying
Cauchy’s equations (26.2) are admissible as initial values for the solutions of the
system (56.1). The coefficients A“*' may be supposed to be functions of t. A body
is now elastically isotropic if t be an isotropic function of d:

i, = Ae d%"; + 2und’;. (56.2)

The Hooke-Cauchy law (1.1) results as a first approximation’ when the initial
state is unstressed: t =~ tdt, & =~ d dt.

Suppose more generally that t be an isotropic but not necessarily linear func-
tion of d:

¥ = g5, + GO, + gl g, (56.3)

As in the classical theory, suppose that there are only two dimensional moduls
(847), a natural elasticity ug. of dimension ML T * and a reference temperature

2 Hencky [1921, 2, §2] has indicated another approach to rate of strain theories. Let a
relation for a measure m of strain in terms of the stress t be given. To eliminate the influence
of the natural state, differentiate materially, obtaining a power series for 1 in terms of t
and t. Eliminate mh by a kinematical formula giving h in terms of m, d, and possibly w; then
eliminate m wherever it occurs by means of the stress-strain relations. We now have a
power series in t, t, and possibly also z¢,;, . If all but the linear terms in this power series
be neglected, (56.1) results.

31911, 5, §IX]. In our notation JAUMANN’s equation (38) is ¥#; + rifidy = 0, where
(¢ + 38) d% = ady + Bdm,8% ; his equation (43) is &%; = Whapkm,rr,; — -}‘I"};n"z"‘"\l/:ﬁ'.i,
where a, 8, i, n*/, are material constants, and ¥¢; is to be eliminated between the two
equations. By a method of power series expansion, JAUMANN shows that hi; theory yields
(1.1) as a linear approximation, and concludes that the consequences of his theory and of
the classical infinitesimal theory are the same within the range of experimentally observable
phenomena. Cf. [1917, 6, §§21-22] [1918, 1, §§96-100].

4+ MURNAGHAN employs the misleading terms “local action’ and ‘‘action at a distance’’
for the present and the natural state theories, respectively.

8 HanpELMAN, LIN, & PRAGER [1947, 9, §§2-4] propose relations similar to an inverse of
(56.2) for infinitesimal strains produced by loading in the strain-hardening range, after
concluding that finite relations of the type (45.1) for loading in general cannot be com-
bined with (1.1) for unloading. Equations similar to (56.2) but tensorially not admissible
for isotropic media are proposed in [1948, 32]. If I correctly understand the work of Swain-
GER [1947, 21, §4.1] [1949, 37, §4.1], he puts each component of a certain undefined strain
rate (§17!) separately proportional to the corresponding component of the stress rate t;
relations of this type are inadmissible for isotropic media unless the factors of proportion-
ality for the separate components are the same. Cf. §602. A pair of elaborate stress rate
equations containing his ‘“‘projective’’ rates (§212) are proposed by Hencky [1949, 40] as
‘“‘universal equations of rheology’’.
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8o of dimension ©. Let the coefficients Gi® be functions® of I, ITa, IIl4, I,
11, II1;, pg., 6, 6o. Since dim 9“") = ML”IT_3 it follows that q“d)/ldpm isa
dimensionless function of 9 quantities composed of three fundamental dimen-
sions ML™'T™>, T, and @®, and hence must reduce to a function of 9 — 3 = 6
dimensionless ratios of these quantities:

I, II, III, II4 III
QD = g, I g2@ <__t,_°,_..t 4 -4 .f’),

say. Similar reasoning applied to G and Gi@ yields Gi® = I»‘Engl(d) 14Gi@ =
pEngi@, where the gt@ are dimensionless. In order to prevent the stress rate
from becommg singular when d = 0 or t = 0 it is now necessary to put
g*<d> = 0 and to suppose 9“‘” and G¥@ to be independent of IT4and I114. Thus
we obtain a quasi-linear theory7 characterized by

t = ﬂEnId go(d)5 + pEa gt(d)d (56-5)

where 33(‘*) and 4 ‘(d) are dimensionless functions of I./ug., II./ug.’, I,/ UEn,

0/6, . If \/Ilt/ugn & 1, (56.5) may be approximated by
= O‘E + ﬂoIt)Idlsi;' + 2ug (1 + & HEn >dzu (56~6)
where Ag/ugs , ue/pen, Bo, B1 are dimensionless functions of 6/6; .

b7. Mumaghan s formula for hydrostatic pressure. By putting th = —pbd,
3d'; = do'; = log v 6'; into (56.5) we obtain

—¢ 7 = f(p), (57.1)

derived by Murnaghan in a different way.1 The linear approximation (56.6)
yields f(p) = a(p + A), where a and A are constants. In this case by integrating

(57.1) we obtain
= 4{E) - i

¢ This assumption is not the most general possible, since ®(t,d), ®(t2, d), ®(t, d?), and
&(t2, d?) might well be added to the list.

7 The present theory is one of pure elasticity, since there is no “natural time’’ or ““time
of relaxation” (§62). In fact, (56.2) results from letting the relaxation time ¢, approach «
in the equations #¥; = Agl48°; + 2up di; + t,"{t5; — pb';) — a(p — P)8%;}, which were proposed
by Zarem=A [1903, 7, eq. (28)] as a generalization of MAXWELL’s theory of relaxation (§81).

1 (1944, 8, p. 246] [1945, 11] [1949, 6, §3]. GLEYZAL [1949, 38, §3] shows that from the as-
sumption ps';zi gXe; = ABes 4 BEY,5%5 , where for £ various rather arbitrarily selected
combinations of C, €, and their time integrals are selected, result various laws similar to
(57.2). Simple extension is treated in the same tentative spirit.
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where vy is the value of v when p = 0. This formula distinguishes between hydro-
static pressure and hydrostatic tension: for no finite value of p can v become zero,
but if p = — A then vbecomes infinite, so that A is an upper bound for the rupture
or yield stress. By choice of A and a, Murnaghan® fits within 19 the results of
Bridgman’s experiments on the compression of sodium up to pressures of 10° atm.
If a = 2, (57.2) becomes equivalent to Laplace’s law for the density of the earth.

Mr. R. Toupin & Dr. J. Ericksen have remarked that for any motion what-
ever the relation (57.2) is a consequence of (56.6), provided only that p be re-
placed by .

Comparing (57.1) with its counterpart (42.5) reveals a characteristic difference
between the present theory and the classical natural state theory: when f is
specified, (57.1) determines the equation of state v = v(p) only to within an
arbitrary constant, while the functional form of 2 completely determines the
hydrostatic equation of state. Moreover, the striking special case (57.2) arises
naturally by approximating (57.1), while, although it is quite compatible with
the classical finite strain theory, it does not appear to result from (42.5) by any
otherwise natural choice of the form of Z.

58. Simple extension. To treat simple extension Murnaghan' appears to
abandon the notions of §56 and instead to fall back upon a special case of (55.4),
together with further assumptions which I do not understand. I shall derive
from (56.5) a result equivalent to his by considering the special motion
x=Xe* y=Ye*" 2= Ze" Then i = —kox,y = ~koy,2 = kg, d"s = d", =

—ko,d, =k = ¢/z = log la = (1 — 20k = (1 — 2a)log z. If the inertial
forces may be neglected, this motion becomes dynamically possible for a stress
£, = t'y, = 0, ', = I,. The former condition put into (56.5) yields (1 — 2a)3‘<d>

°<d> I 9‘(") and 4 “d) be expanded as in (56.6), the first terms yield the classi-
cal value ¢ = Ve for Poisson’s ratio, Whlle the next terms yield 8; = vgBo .From

(56.5) follows i, = Ae(l + uE)g (d)log z and hence

1 d¢
= ? =
log 1+ s log 7 Ae(l + vg) ﬁt‘, @ (é g): (58.1)
3 ue’ 0,0

where 't is the initial uniaxial stress. Murnaghan considers the special case
when gi@ is a quadratic function of #’,, obtaining

2 (1949, 6, introd.]. Cf. [1944, 6], where by putting ¢ = 2 and choosing but the single
parameter A a less good fit for the compression of lithium in the same range is obtained.
There remains, however, an element of curve-fitting, since MURNAGHAN makes no use of
the relation a4 = g + %ue , whereby a and A are related to the ordinary Lam# coefficients
measurable in infinitesimal strains.

1]1944, 18] [1945, 11] [1949, 6, §4].
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142
1+ = —2, (58.2)

where a, A, and B are constants. If we adopt this approximation, we fail to make
use of the principal advantage of the new theory, for now ", = 0 as in the classi-
cal theory. While there is an upper bound ¢, = B for the yield stress, corresponding
to 6, = oo, unfortunately & = —1if £, = — A, indicating that a finite pressure
may reduce the volume to zero.

A great deal of work remains to be done before the rate of deformation theory
can be properly understood and evaluated.



ELASTICITY AND FLUID DYNAMICS 225

Chapter V. Fruip DynNamics

V A. Stokes’s Principle. Viscosity

69. Stokes’s principle. A partial statement of the simplest concept of fluidity
(§81, 23) is embodied in Stokes’s principle:' “That the difference between the
pressure on a plane in a given direction passing through any point P of a fluid
in motion and the pressure which would exist in all directions about P if the fluid
in its neighborhood were in a state of relative equilibrium depends only on the
relative motion of the fluid immediately about P; and that the relative motion
due to any motion of rotation may be eliminated without affecting the differ-
ences of the pressures above mentioned.” The expression of Stokes’s principle
in the present notation is v = f(d). In particular, for a given value of d, vis
independent of w, e, é, etc.

A fluid is zsotropic if v be an isotropic function of d; by (6.7), then,

vy = GO + G0 + GiVdhd"; (59.1)

This formula is given by Reiner,’ to whom we owe the introduction of tensorial
methods in general fluid dynamics. Putting Ay = QX§33 , 2uv = G156, by lineariz-
ing® this basic equation we obtain the Newton-Cauchy-Poisson law(1.2)".

In a rectilinear shearing flow & = ky, y = 0, 2 = 0, since Iq4 = IIl4 = 0
Stokes’s principle (59.1) yields a power series expansion for ¢, as an odd func-
tion of d, . Series of this type, sometimes incorrectly containing even powers,
are common in the engineering literature’.

1 (1845, 1, §1].

2 (1945, 1, §4]. Five of the six terms of degree three in the di; are given in [1931, 14, Ch.
1I1).

3 STokES (1845, 1, §3] justified this linearization on the basis of a molecular argument.

4 Materials satisfying STogEs’s principle but not satisfying the linearization (1.2) are
often called non-Newtonian fluids, paint being a familiar example; cf. (1943, 6, pp. 134~
138].

5 ST. VENANT 1869, 2] attributes such a series to Dupurr. That only odd powers are ad-
missible is observed by REeiNger (1929, 4, p. 17] [1943, 6, lect. X, pp. 139, 150]. GiraULT
(1931, 14, Ch. III] claims that when a flow is reversed all stresses should change in sign,
and thus that no terms of even degree in the d¢; should occur in the general series expan-
sion for v. Premise and conclusion are alike false. In a shearing flow, for example, when the
flow is reversed the shearing forces should indeed change sign, but if the cross-viscous forces
should change sign it would imply the absurd conclusion that if pressure is required to
maintain a flow from left to right, tension is required for a flow from right to left. In §72
below we shall see that in such a shearing flow 2, and ¥, are necessarily even functions of
dz, . GirauLT’s theory thus fails to reveal the Poy~TinG effect altogether. VIGUIER applies
it to some special situations; in some of these {1949, 18] [1950, 7] the terms incorrectly an-
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60. Generalizations : Boussinesq’s principle and Levy’s principle. While great
efforts have been expended in generalizing the linear theory of elasticity, little
attention of this sort has been given to fluid dynamics. Kleitz® proposed t', — p =
f(dy), & = f(d%), ---, a type of relation tensorially admissible only when f
is a linear function. Boussinesq® was the first to show that the Newton-Cauchy-
Poisson law (1.2) is only the first term in an infinite series. His concept of fluid-
ity, which we may call Boussinesq’s principle, was somewhat more general than
Stokes’s: the extra stress v is a function of both the rate of deformation and the
vorticity, and in a rigid rotation® it reduces to zero:

v = v(d, w), v(0, w) = 0. (60.1)

Levy’, however, reasoning from Navier’s molecular notions, introduced higher
derivatives of the velocity; while he obtained only terms of the type
[.Lkdij’ll'll‘“'lk' 1 , there is no reason for limiting oneself to such linear expressions,
and we shall prefer to state Levy’s principle in the form

Vo= fE Ny, 8 e, B igigeeiny t ) (60.2)

nulled happen to be zero for the particular case considered, but for the most part [1947,
17, 26-27] [1948, 54] [1949, 48] [1951, 9] the results are misleadingly incomplete. A supposed
derivation of the corresponding dynamical equations is given in [1949, 54].

1 Cf. [1882, 1, pp. 79-80] [1932, 2, Part II, §1.7; Part III, §§1.1, 1.3].

2 (1866, 3] [1872, 2]. KLEITZ’S equations thus necessarily reduce to the form (1.2); he
states that the coefficients are to be variable, but the manner of their variation is not given
in the published abstract of his paper.

3 (1868, 2, Note I.] BoussiNEsQ wrote out the second order terms resulting from (60.1)
(cf. §111). The first equations employed by Sakap1 [1941, 12] in his discussion of certain
flows of incompressible fluids coincide with the second approximation to STOKESs’s prin-
ciple; then for the same reason as GirauLT (§59%) he abandons these equations and pro-
poses, without any explanation, a more complicated type of stress. In his next work [1942,
16] he withdraws his objection to his former results, but proposes instead (1) equations
equivalent to the second approximation to (60.1); , and (2) equations equivalent to the
second approximation in GIRAULT’S theory.

4 Proceeding by analogy to his linearized theory of elasticity (§49), SErn [1944, 9] ““for
the sake of simplicity”’ (cf. §497) proposes ti; = —pdi; — 3uvs*13%; + 2uvs?; , where s is a
formal analogue of e:i.e., 28%; = &f; + ;¢ — &k ids,; = 2d%; — dixd®; — diwk; — difwit —
wixw;*. Thus according to SETH a rigid rotation of a fluid induces viscous stresses. Cf. §77.
But here indeed we see the absurdity which can result from pursuing ‘‘simplicity’” and a
false analogy to elasticity (§3) in fluid dynamics, for in forming his tensor s SETH has abused
the most elementary physical principles by adding together terms of different physical
dimensions! Only in the present state of development of science could such a blunder be
published fwice in three years: the “formula cardinal completa y exacta . . . para deforma-
ciones finitas’ of GARcia [1947, 22, eq. (26)] [1948, 48] [1949, 49, eq. (21)] differs from SeTH’s
but in a change of sign.

511869, 2]. Earlier [1867, 3, pp. 240-241] he proposed F (&, 02/3y) for the shearing stress
in a rectilinear shearing flow, which he reduced to F(&)d%/dy.



ELASTICITY AND FLUID DYNAMICS 227

In Chapter VD we discuss a fluid still more general than that described by
Levy’s principle, and at that time also we summarize contributions from the
kinetic theory of gases.

61. Possible relations among the coefficients. Mean pressure and thermo-
dynamic pressure. Incompressible fluids. Returning to the consequences of
Stokes’s principle (59.1) in the isotropic case, consider the dissipated power ®
to be written in the form (8.2). By (31.2);, we must have & = 0. Now in the
classical theory @ is reduced to a quadratic form; for this form to be non-negative
the Duhem-Stokes' conditions uy = 0, 3Av + 2uv = 0 are necessary and suffi-
cient. If the next approximation be a cubic form, it is impossible’ that ® = 0
for all values of d. But it is not necessary that & = 0 automatically; all that is
required is that ® = 0 in any actual motion, a condition which can be expressed
at most partially in terms of inequalities to be satisfied by the coefficients, but
rather must distinguish those of the various solutions of the non-linear equations
which are admissible’ (cf. §72°).

From (8.3) it follows that there are possible stresses, e.g.

v'; = Al(—=14 + 2115)8°; + Iad'}],
which are not zero yet do no work in any deformation. So as to exclude such
anomalies I propose
—Gisos + 26561 + Gilos = 0 (61.1)

for the cubic terms in ®, and analogous restrictions for the higher order coeffi-
cients.
From (26.11), (26.12), and (6.10); we have

3(p — p) = 369 + 61 I + g3V — I1). (61.2)

We must now distinguish between compressible and incompressible fluids. For
the former, p is a perfectly definite quantity defined by (30.3) and (29.2), .
From (61.2) it follows then that p # 5 in general; a necessary and sufficient
condition that p = $ in every motion would be

392)’:%2 + 9‘1’,(;1)1,.1,»( + 9;,(|d-)1,.1,|< - 29;3‘,1}—1,»( = 0. (61.3)

The case | = 1,d = 0, K = 0 yields 355 Y = 0, which is (cf. §59) the
“Stokes relation” 3\vy 4+ 2uv = 0. Since both theory and experiment now speak

1(1901, 1, Part I, Ch. 1, §3]; [Note, pp. 136-137 of 1901 reprint of [1851, 1]].

2 The case of third order terms in the strain energy in elasticity (§53) is quite different,
because the strain components have finite bounds (§15).

3 Analogously, in gas dynamics the differential equations admit solutions representing
either compression or rarefaction shocks, and the Crausius inequality is used to show
that only the former are admissible.

41845, 1, §3). This relation was implied also by St. VEnanT [1843, 1, §6].
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against the Stokes relation (see the appendix to this section), we shall not adopt
its generalization (61.3).

For an incompressible fluid the pressure p was purposely left undefined (§30).
Now for an incompressible fluid p does not enter any of the basic equations
except Cauchy’s first law (26.13),, where, by (59.1), it enters only in the com-
bination — p + Gy, This latter quantity may therefore be taken as a basic
unknown instead of p. There will never be any need to use the form of gy‘¥
if the boundary conditions be phrased in terms of stresses or of — p + Gy, In
other words (cf. §39), for an incompressible fluid there is no loss in generality® in
taking 92,’(‘” = 0. Since I4 = 0 we thus obtain Rivlin’s formula®

v'; = §YOUI,, IIT)d'; + GO 14, TTT)d" " . (61.4)
In place of (61.2) we have
3(p — p) = I1a @1, I11,). (61.5)

Thus p = P in all motions if and only if §3¥ = 0; that is, the general equality
of pressure and mean pressure’ for an isotropic incompressible fluid is equivalent
to a statement that the relation between v and d is quasi-linear. In particular,
p = P in the classical theory based upon the linear relation (1.2). If, as we shall

see in §72 to be very plausible, it can be established that Sv@ > 0, it will follow

then, since IT4 > 0 at any point where d = 0, that the equality of p and p is
an accident of the linear theory: in the general theory of incompressible fluids
the hydrostatic pressure exceeds the mean pressure at every point where the fluid
1s suffering deformation.

The term “pressure” is often taken loosely. In this memoir we have given it
several definite theoretical meanings, distinguished by different symbols. The
results of theory and experiment should be compared with caution, for the meas-
urement called ‘“‘pressure” by the experimenter depends upon the nature of the
measuring instrument; often it is a particular component of the stress tensor,
and in a fluid suffering deformation cannot be identified with any of the quan-
tities called pressure in the theory.

61A. Appendix. The Stokes relation. We summarize here the long controversy regard-
ing the STokEs relation 3\y + 2uy = 0 in the classical theory of viscous fluids.

(a.) Theory. Poisson [1831, 1, T960-64] stated that A\v and uv must be independent; cf.
[1901, 1, Part I, Ch. I, §3]. In proposing that 3\v + 2uv = 0 STokEs [1845, 1, §3] remarked
“in most cases in which it would be interesting to apply the theory of the friction of fluids

5[1948, 5, §11].

6 [1947, 4] [1948, 5, §9].

7 It is possible, of course, to define p as p for incompressible fluids in general, but then
G¥@ =+ 0 and we no longer have the simple formula (61.4) for the viscous stress.
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the density is either constant or may without sensible error be regarded as constant, or
else changes slowly with the time. In the first two cases the results would be the same and
in the third nearly the same whether 3\v + 2uv were equal to zero or not.”” His point is
that if T4 = 0 everywhere the value of \v doesnot affect the motion at all, and that if 74 =0
it does not make much difference what the value of Av may be. Later [Note, pp. 136-137 of
1901 reprint of [1851, 1]] he stated that he had never put great faith in this relation.

That the effect of Av is of the same order as that of uy in the damping of sound waves
was shown by Steran [1866, 4] and Kircunorr [1868, 1]; cf. [1894, b, §349] [1903, 4, §§2,
24-25]. This fact suggests a critical experimental test, discussed in part (b) below. The
STokES relation implies the anomalous result that a spherical mass of fluid may perform
symmetrical oscillations in perpetuity, without frictional loss. Various related reversibility
phenomena, both for simple fluids and for mixtures, are discussed by MEIXNER [1942, 17].
EckArt [1948, 35] takes up RAYLEIGH’S phenomenon of acoustical streaming, in which a
circulation is set up in a vessel of fluid by the oscillation of a source of sound upon one of
the boundaries; he derives second order acoustical equations to represent this phenomenon,
and obtains a formula connecting the ratio A\v/uv with the velocity on the acoustical axis.
To Professor TsieN I owe the observation that EckArT’s neglect of heat conduction ren-
ders his results quantitatively incorrect, though easily amended (cf. §82, last sentence).

To controvert the STOKES relation REINER [1946, 3, §§3-6] [1951, 6, §§2-5] gives an elab-
orate analysis of the simple extension of a viscous fluid. Cf. also [1949, 80, §§5, 7]. The core
of his argument lies in his claim that in the initial stages of an extension experiment the
thermodynamic pressure = = p has not yet come up to the mean pressure 7. In the classical
theory (61.2) reduces'to 3(p — ) = (3\v + 2uv)I4 . Thusif p & % and 3\v + 2uv — 0 it
must follow that Iq — o, so that the initial stage is instantaneous, contrary to experience.
If I4 — 0, however, we must have \v — « if p == . Thus REINER contends that Ay = o«
and Iq4 = 0 are equivalent. This whole argument is difficult to follow since Ay is in first
approximation a constant of the fluid, while 14 is a variable of the flow. At points where
I4 = 0 we have p = P for any fluid obeying the classical theory, while if 3\y + 2uv = 0
for a particular fluid then p = p at all points where 14 is finite.

One often hears that the STokEs relation is proved in the kinetic theory of gases. It is
more accurate to say that this result is implicitly assumed by that theory (cf. [1929, 6]
[1932, 6, pp. 54-56, 151-153]). MaxwELL’s definitions of stress and temperature [1867, 2,
eqq. (63), (102)] are t;; = —p<cic;>, 3RO = <cie;>, where <---> denotes an average
value and ¢; is the relative velocity of the molecules. Hence by definition = Rp8. While
indeed this result is not in itself an equation of state (ef. [1950, 6, §23]) since P is not yet
identified with the thermodynamic pressure p, nevertheless it shows that p like p is de-
termined by the thermodynamic state alone. Suppose now the NEwroN-CaucHY-Po1ssoN
law (1.2) somehow to have been derived. Then 3(p — p) = (8\v + 2uv)d*: . Since the left
side of this result is a function of state only, it must be independent of the value of d¥y ;
hence, so also must be the right side; and hence each side must vanish separately. Hence
P = P, 3\v + 2uv = 0: the only viscous fluid consistent with Mazwell’s definitions of stress
and temperature is a perfect gas in which the Stokes relation holds ([1952, 1, §§2-3]).

We now pass in review those efforts in the kinetic theory which have yielded a value
other than —3Zuy for Av . Those of them which purport to fall within the systematic, de-
ductive part of the theory are analysed in greater detail in [1952, 1, §§4-8]. By taking into
account the transfer of momentum at collisions, ENnskog [1922, 2, pp. 18-19] [1939, 1, §16.50]
constructs a theory of dense gases obeying an equation of state which approximates that
of VAN DER WaaLs; heobtainsAv/uy = (=% 4 a)/(1 + ), wherea = .6012b%2x2(1 + .4bpx)~2,
b being the usual VAN DER WaALS constant and x a parameter suchthat x = 0if p = 0, x =
© if p = pmin , and he remarks [1945, 10] that hence —% < Ay/uv < .649. From heuristic
molecular statements BuseMaNN [1931, 12, §7] obtains \v = (1 — v)uv , where v is the ratio
of specific heats; this result is plainly false, since it yields \v < 0 for all gases, while experi-
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mental data (see part (b)) yields positive values for Av almost always. KonLER [1946, 14]
[1947, 15] claims that P1ppuck’s model of a gas molecule as a rough perfectly elastic sphere
leads to the formula Av/uv = (10K)~! — 9/20, where K = 4I/mo?, I being the moment of
inertia of the molecule, m its mass, and ¢ its diameter; hence, since 0 £ K < % it follows that
© > Av/uv = — 15; more generally, if f, denote the number of rotational degrees of freedom
of the molecule, KoHLER [1949, 21, Teil II] obtains (3\v + 2uv)/uv = 2f,p7./(3 + f,) where
7, is a “‘relaxation time,’’ hence concluding that Av/uv = —2/(3 + f-). For a molecule with
vibrational degrees of freedom, KoHLER obtains (3Av + 2uv)/uv = (v — 1)pk, where k
is a complicated coefficient; for a molecule with both types of internal degrees of freedom,
the two values of Ay are to be added together. It has been shown [1952, 1, §5], however, that
KoHLER’s theory in essence rests upon purely phenomenological assumptions which if not
impossible are at least quite implausible. By heuristic arguments of momentum transfer
SkuprzYK [1948, 56, 10] claims to show that in a plane sound wave of velocity « we have
t:s = — p + 2uvdu/dz, a statement equivalent to Ay = 0, but, since he does not modify
MaxwEeLL’s definitions of stress or temperature, his result is contradicted by the theorem
of the paragraph preceding. PREpvODITELEV [1948, 27, eq. (26a)] derives new hydrodynam-
ical equations from intuitive continuum and molecular notions; his result implies BUsk-
MANN’s relation, but at the same time he obtains a modified form of the acceleration, in
which a third coefficient appears. A formula for 3\v + 2uv for a gas composed of polyatomic
molecules or molecules with internal quantum numbers is given by CeEANG & UHLENBECK
[1948, 4, §IVA]. A formula for Av for water is derived from molecular assumptions in [1947,
20]. Formulae for both Ay and uv are derived from a kinetic theory of monatomic liquids
by Kirkwoop, Burr, & GrEEN [1949, 42]; in this theory the STokEs relation never holds.

Of course STOKES’s point that the value of \v may not be very important remains valid,
for in many flow phenomena compressibility effects are negligible.

(b.) Experiment. Despité the flimsy theory upon which it rests, the SToxEs relation
stood virtually unquestioned for more than fifty years. The need for experimental tests
was first pointed out by M. v. SmoLucHOWSKI [1903, 4, §§2, 24-25], who noted the effect of
the value of Av on the absorption of sound, expansion of a gas into a vacuum, etc.; cf.
[1907, 5, §30].

The experiments of NEKLEPAJEV [1911, 10], made at the suggestion of LEBEDEW, indicate
for air double the absorption of sound predicted from the theory employing the STokEs
relation, and of the abundant subsequent measurements very few, even with the generous
allowance for experimental error customary in the ultrasonic field, can be forced into
agreement with the result universally miscalled the “StoxEes-KircaHOFF formula,” for
whose derivation the SToxEs relation, as well as various other assumptions, is required.
The experimental data is summarized in [1949, 51, Kap. 3bd] [1949, 52] [1951, 8]; the matter
is complicated by the inaccuracy of many reported values. Even for monatomic gases the
data must be rather leniently interpreted if it is to be taken as confirming the STokEs
relation. While the earlier authors gave elaborate molecular explanations for this dis-
crepancy, MaNDELSTAM & LEoNTOVI¢ [1936, 6] recall the influence of the value of Av,
from the experimental data concluding that in most fluids Av/uv is very large (about 90
for benzene), and that in fact it is Av rather than uv which accounts for major part of the
absorption of sound; similarly, according to Tisza [1942, 2] the absorption data for CO,
and NO; indicates a value of about 108 for Av/uv ; for water this ratio appears to lie between
1 and 3. The subject is not closed, however, since the ‘“Sroxes-KircaEHOFF formula,”
even if corrected by insertion of a part arising from M\v , is a mere linearization, valid only
at frequencies w such that uvw[2 + (Av/uv)l/pco? < 1. Elsewhere [1953, 1] I discuss this
matter more fully.

Using EckART’s results on acoustical streaming (part (a) above), LIEBERMANN [1949,
16] obtains measured values of Av/uy lying between 1.3 and 200 for twelve liquids, the
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numerical results being in rough agreement with those obtained from sound absorption
data. From experimental data on traction REINER [1949, 23, §6] concludes that Av/uv & .07
for concrete. Various methods of measuring \v are discussed and illustrated for the case of
solid CO; by BosworTH [1949, 45].

In nearly all cases experimentally investigated Av is positive, and for many fluids it is
orders of magnitude greater than uy.

62. Viscosity. Natural time. In the conceptual experiment of Maxwell! a
viscous fluid is confined between infinite parallel plane boundaries in constant
relative motion at a speed #; then the walls experience a retarding force accord-
ing to the hypothesis of Newton’:

7

i 2.1
distance between walls (area in contact), (62.1)

force = uv

uv being a factor of proportionality, independent of the other magnitudes in
(62.1) but dependent upon the particular fluid. We are not concerned with the
exactness of (62.1); it is sufficient that a crude experiment indicates it to be a
fair approximation, for our only use for it is to indicate that a characterizing
property of fluids, not less important than Stokes’s principle, is the existence of
a viscosity uv of dimension ML™'T .

This viscosity is a manifest function of temperature 6. However, a relation
uv = py(0) is not possible dimensionally unless it involve at least one other
dimensional quantity. We propose uv/uv. = f(8/6y, ---), where py, and 6
are material moduli of dimensions ML™ T~ and @, respectively, and the dots
stand for other possible dimensionless scalars. Now viscosity depends upon
pressure as well as temperature. A relation of form wuv/uv. = f(8/60, D/ttgn, - *)
where dim pg, = ML™T 7 is dimensionally admissible, but the existence of a
natural elasticity ug, implies a measure of springiness. If ug, and uv, be material
constants, so also is ¢, = uy./pe. , but dim ¢, = T. Thus follows the important
conclusion that any body endowed both with viscosity and with elasticity unavoid-
ably possesses also a material constant of the dimension of time. Such a modulus
t, we shall call a natural time of the substance’.

In Chapter VB we treat the concept of a fluid devoid of a natural time, in
Chapter VC the more general case in which a natural time exists.

In either case, for 6, we shall always take the boiling point of the fluid, so that
6, becomes a property of the fluid, not an arbitrary reference point.

1[1866, 2, pp. 7-8] [1871, 3, pp. 277-278].

2 [1687, 1, Lib. II, Sect. IX].

3 MaxXwELL [1867, 2, pp. 69-71] noted that uv/p is a time of relaxation for the stresses
in a gas, provided the pressure p be kept constant; this relaxation time is associated with a
definite phenomenon, relaxation of stress at constant pressure, and is a property jointly of
the substance and of its circumstances. The natural time ¢, above, however, is a material
constant and thus a property of the substance alone, hence indicating a time-dependent
response of the substance in general.
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V' B. The Stokesian Fluid

63. A fluid without a natural time. The simplest sort of fluid is a body which
offers no response whatever to its history, or, one might say, a body without a
memory'. Such a material is described partially by Stokes’s principle (§59);
a natural time ¢,, however, is evidence of a sort of memory, and if we require
further that there be no such time, from §62 we conclude that the viscosity
coefficient uv must either be independent of p or, more generally, must be de-
pendent both upon p and upon some other scalar possessed of the same dimen-
sions but not a constant. The simplest such scalar is the mean pressure’ § de-
fined by (26.12). Thus pv/uv. = f(6/60, p/P). In a fluid of this type, if p = P
in all circumstances then the viscosity is independent of pressure’.

64. Definition of the Stokesian fluid.! A Stokesian fluid is a continuous me-
dium obeying Stokes’s principle in the specific form

t = t(d, pvn, 0, 6o, p, D), (64.1)
where uv, and 6, are material constants of dimensions
dim pvs = MLTT,  dim 6 = @, (64.2)
and where further
t(0, uvn, 0, 60, p, p) = —plL. (64.3)

The restriction (64.3) is a statement that in equilibrium the Stokesian fluid
obeys the ordinary law of hydrostatics.

65. The consequences of invariance requirements.! Since there are 6 inde-

! According to Caucuy [1828, 1, §III], ‘I’élasticité disparait entiérement”. Cf. §13.
As it is put by JEFFrEYS [1931, 9, Ch. IX], “We may say that an elastic solid has a mem-
ory; a fluid has none.”

2 Equations (for a Maxwellian material) in which both p and P occur were first proposed
by ZareEmBA [1903, 7, eq. (28)].

3 According to a celebrated result of MaxweLL (e.g. [1939, 1, §§6.2, 7.41, 9.7]) in the
kinetic theory of gases, uv is independent of density. Since in the kinetic theory of mon-
atomic gases it is assumed that p = 7 (cf. §61A, (a)), the above result shows the consistency
of the Stokesian with the kinetic theory in this regard. For the dependence of viscosity on
pressure in a dense gas, see [1932, 6, §35]; in a liquid, [1926, 3] [1946, 11, Ch. IV, §2].

1 (1949, 7, §4] [1950, 14, §5]. In [1947, 6, §X1I] is a preliminary study.

111949, 7, §6] (1950, 14, §7] (1952, 2].
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pendent components of d, by (64.1) it follows that any one component of t is
functionally related to 11 quantities composed of the 3 fundamental dimensions
T, ML™'T" and @©. Such a relation must reduce to a dimensionless equation
connecting 12 — 3 = 9 dimensionless ratios. Six such ratios are given by the
components of wuv.d/p; another is the appropriate component of t/p; and for
the remaining two we may select p/p and 6/6, . Hence (64.1) must reduce to

dp 6
t = Kyn ,:,-> 65.1
pf( > 5 ) (65.1)

where f is a dimensionless function. This equation gives the most general form
of stress possible in a Stokesian fluid.

For an isotropic fluid the result (65.1) implies that the general power series
(59.1) must reduce to

2
vi=1p 33'(‘1)5':' + pvn g‘f(d) di+ “———;" g‘z'(d) dvd;,
(65.2)
v(d) v(d) [ MVn H2s+3K ] J K
gr = gTiK ) IS TIGTITSS,

a) - . . . - . . .
where 4v{9 is a dimensionless function of , 8/6, , and dimensionless material
griy p/p

constants only, and where 35’533 = 0. In this expansion we have the complete
and yet perfectly definite mathematical realization of the isotropic Stokesian
fluid. The terms of first and second order in d are

. S O i
v’ = pvalgotonLad + gl d]

(65.3)

2
+ 0 [ L8 + it I1ad + gites Lo d + g}l ' dl.

The Newton-Cauchy-Poisson law (1.2) results from linearization of (65.2), pro-
viding we write Av = puv, 3‘&8‘3 y 2UV = Uva g‘{égé-

66. Dynamical similarity.! The classical theory of viscous fluids has a remark-
able characteristic: although (1.2) defines a fluid by its response to rate of de-
formation, in none of the parameters (Mach number, Reynolds number, etc.?)
governing local dynamic similarity in the resulting theory does any typical
rate d or any other quantity of the same dimension occur. This anomaly is an
accident of linearization. From (65.1) it follows that for local dynamic similarity
not only the usual parameters of the classical theory but also the number @

11949, 7, §7) (1950, 14, §8].
? I8.g. [1932, 2, Part I, Ch. III, §1.3].
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given by

z="7 (66.1)
p

where d is a typical rate of deformation, vorticity, frequency, or reciprocal of a
time, must be considered. In addition, of course, the numbers gyisx/gis are
new similarity parameters, but these do not introduce any new dimensional
quantities. Thus in the similarity theory of the Stokesian fluid time rates play
the dominant part we should expect from the notion of fluidity, and moreover
this part is essentially the same no matter how many terms in the series for the
viscous stresses are retained, so long as they go past the linear terms.

Now consider the whole list of quantities from which the complete set of
similarity parameters is composed. The quantities p, (0p/dp), , ﬁﬁ,)(, etc. repre-
sent properties of the fluid, while [ (characteristic length), d, p, and 6 are prop-
erties of the flow. Thus, in the fully general Stokesian theory, to ascertain local
dynamic similarity four and only four properties (I, d, p, 6) of the flow need be
observed; in the classical linearization one of these, d, may be neglected.

Under the not unreasonable hypothesis that | gyiix/gis00 | is of the order of 1,
a criterion for neglect of all higher order terms and consequent validity of the
Newton-Cauchy-Poisson linearization (1.2) is

TK1, (66.2)

whence it appears that @ may be called the truncation number. That is, the
classical theory becomes less adequate the larger the viscosity, the larger the rate of
deformation or vorticity, and the lower the pressure. For water at 1 atm. the rate
of deformation must be about 7 X 10° sec™ in order that @ & 1, so that at
normal pressures the higher order terms need be retained only for deformations
much more rapid than those usually encountered’. By ascent into the atmos-
phere, however, T can be made arbitrarily large, and thus the higher order terms
in the theory of the Stokesian fluid are particularly appropriate to problems of
high altitude aerodynamics (cf. Chapter VD).

A glance at (66.1) and (47.4) reveals a profound difference of kind between
the elastic body and the fluid*. To determine the adequacy of the infinitesimal
approximation in elasticity we need only consider the geometry of the par-
ticular deformation: if the displacements and displacement gradients be in-

3 In this connection it should be noticed, however, that near a point where the velocity
gradient becomes infinite the solutions given by the classical theory of viscous fluids can-
not be used with confidence, even if they be perfectly adequate elsewhere.

4 Several authors (1874, 2, p. 109] (1888, 1, §466] [1929, 9, Kap. 7, §4] [1931, 14, Ch. I]
[1933, 3, p. 359] [1945, 1, p. 355] in pursuing a false analogy between elasticity and fluid
dynamics have spoken of ‘‘small velocities’’, ‘“‘small relative velocities”, ‘“‘small rates of
strain’’, etc., in the present connection. Since none of these quantities is dimensionless,
the statements are meaningless, except perhaps as a loose reference to a limit process.
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finitesimal, the infinitesimal theory is applicable, and no elastic moduli of the
body or dimensional characteristics of the deformation need be observed. To
determine the adequacy of the classical approximation for a viscous fluid, how-
ever, we must know the viscosity of the fluid and must observe both the pressure
and a typical rate or time. While this basic difference of kind is obscured by the
classical linearizations, in the general theory it is at once apparent even formally
from the contrast of the second order terms in (43.3) and (65.3).

V C. The Reiner-Rivlin Fluid with a Natural Time

67. The natural time in the Reiner-Rivlin theory. The theories of fluid dy-
namics of Reiner' and Rivlin® begin with Stokes’s principle (§59) and hence in
the isotropic case with (59.1). Reiner considers the fluid to be compressible,
while Rivlin treats only incompressible fluids and hence employs (61.4). Ac-
cording to Reiner, the Gy “will generally be functions of the hydrostatic pres-
sure or of the density of the material,” while according to Rivlin the 9;,‘}& are
“constants characterizing the particular fluid considered.” Both authors imply
also that the coefficients depend upon the temperature.

Now dim G5&/Si& = T, and thus if Rivlin’s statement can be taken literally
it follows that this theory employs a natural time t, . Neither Reiner nor Rivlin
remarks upon the dimensions of any of the terms, but I believe it a fair inter-
pretation of the quotations above to conclude that both® imply the existence
of material constants having the same dimensions as the coefficients gﬁ‘j‘.’( .
For a fluid with a natural time, uv./t. is also a material constant, and since
dim pv./t, = MLT'T?, we may say that the Reiner-Rivlin theory concerns fluids
having a natural elasticity (cf. §62), so that it may account for Schwedoff’s*
“stiffness” or “rigidity”” of such substances as gelatine.

Any material constant endowed with the dimension T may be interpreted as a
natural time ¢, . It is desirable, however, to have a precise definition. We shall
always take

v(d) v(d)

_ Geo00 _ G2000
=g = o (67.1)
1000 MV

11945, 1, §§2, 4]. We give no account of the theory of [1945, 1, §3], which proceeds bv a
false analogy to the classical theory of finite elastic strain.

2 [1947, 4] [1948, 5, §§8-11].

3 Mr. RivLIN has confirmed this interpretation orally (1949).

111889, 3] [1900, 2-3]; cf. [1932, 2, Part I, Ch. 111, §9.2]. This effect is sometimes partially
described by stating that the “apparent viscosity’’ depends upon the rate of shear.
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where it is understood that the right hand side is to be evaluated under specified
thermodynamic conditions—say when p = 0 and 8 = c6,, where ¢ = 1 for
liquids, ¢ = 2 for gases’. Thus ¢, will always be a material constant, a property
of the fluid alone, rather than of the fluid and its circumstances. That it is pos-
sible to find such a natural time is characteristic of the Reiner-Rivlin theory.

68. Definition of the Reiner-Rivlin fluid. The Reiner-Rwlin fluid may be
defined as follows: In the definition of the Stokesian fluid (§64), add a natural
time ¢, (dim ¢, = T) lo the list of quantities upon which the stress t may depend.

69. The consequences of invariance requirements. By a dimensional analysis
similar to that of §65, we may now reduce the Reiner-Rivlin theory to a definite
form. In place of (65.1) follows

t= pf(tnd; ptﬂ/l‘Vn ) p/ﬁ: 0/00), (691)

while in the case of isotropy in place of (65.2) follows

i 1 i i v i
v = uva [t_‘ 30‘7(d)6j + g\]’.(d) dj + tn32(d) d’k dkg],

(69.2)

3;'\(11) = 9:;:233< tnl+2J+3K IdIIIdJIIIdK’
where the 3?}8,} are dimensionless functions of p/p, 6/6s, Ptn/uvn , and dimen-
sionless material constants only; here too gZéodﬁ = 0. The Newton-Cauchy-

Poisson law (1.2) results from linearization of (69.2), providing we write Ay =
pv,.g'ﬁ% y 2py = uvg‘{é‘gﬁ . Hence the classical theory of viscous fluids is the limiting
case t, — 0 of the Reiner-Rivlin theory. The coefficients ﬁ‘ﬁ’K may depend upon
the pressure even if p = $, while for the Stokesian fluid the equality of the two
pressures implies that the coefficients ﬁf‘j’x become independent of both.

While the Reiner-Rivlin fluid generalizes the Stokesian fluid, in one respect
its theory is simpler. It is natural in solving specific cases to take the dimen-
sionless coefficients 9}“‘” in first approximation as constants. By (69.2) this
approximation makes the viscous stress v independent of the static pressure p,
while for the Stokesian fluid any approximation going beyond the classical
linearization (1.2) must necessarily take the dependence of v upon p into ac-
count: indeed, that dependence is one of the characteristic features of the
Stokesian theory. The foregoing remark is illustrated in the examples given

in §72 below.

5§ Recall the convention of §62 that 6, is the boiling point. The choice ¢ = 1 for gases and
liquids alike is appealing, but impracticable because of the jump in viscosity coefficients at
a change of phase.
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70. Dynamical similarity. The meaning of the natural time. The analysis of
§66 is easily modified to show that now it is the number

Br = tad, (70.1)

rather than (or in addition to) the number @, which must be added to the list
of parameters governing dynamical similarity. A criterion for the validity of
the classical theory thus becomes B < 1, or ¢, ' K d: the classical theory be-
comes inadequate as the vorticity or the rate of deformation approaches the natural
frequency t,”' of the fluid.

To illustrate the meaning of the natural time ¢, , consider' a simple shearing
flow & = ky, § = 0, 2 = 0. According to (59.1) we have 7, = 1kgi?®, £, =
ty = —p + 6@ + 1’61, Now define an instantaneous reference configuration
(§13) as that occupied by the medium a time ¢, in the past: X = & — kt,y,
Y = y, Z = z. Computing the strain with respect to this reference configura-
tion we have ¢, = %kt., ¢’y = —3ik’,’. If the material were an isotropic
relaxing elastic body obeying Weissenberg’s quasi-linear theory (§51) we should
obtain *, = %kt,G}, . = G4, #¥, = 6 — 1k*,’g¥® By adding a suitable
hydrostatic pressure and a tension t°, normal to the motion we may reduce this
state of stress to that above predicted by the Reiner-Rivlin theory, meanwhile
identifying the viscosity coefficient i with the product £,G® of the elasticity
by the natural time (cf. §62). If we may generalize from this example, the Kelvin
and Poynting effects of the Reiner-Rivlin theory appear to be similar to those arising
from a quasi-linear but finite displacement-gradient theory of elasticity in which
strain 1s measured with respect to the configuration assumed by the medium at the
time ¢ — t, . This conclusion survives the limiting process to the classical theory,
indicated in §69, for in this liit the Kelvin and Poynting effects vanish.

From structural considerations concerning high-polymer solutions Rivlin®
has calculated 9‘2’333 = a g‘{((,do%]z/ k0N, where k is Boltzmann’s constant, N is the
number of high-polymer molecules per unit volume of solution, and « is 4/5 for
one model and 6/5 for another. Numerical estimates indicate that for such
liquids Poynting effects are significant. By (67.1) we may write Rivlin’s for-
mula as an expression for the natural time:

_ 2apy

S

(70.2)

where 6 = 36, . In so far as this result applies, it indicates that Poynting effects,
which arise in consequence of an appreciable natural time, are more noticeable

1 This example is suggested by Burcers [1948, 12, §3], but his analysis is somewhat
different. A related idea was used by O.-E. MEYER [1874, 1].

2 [1948, 6] [1949, 9] [1950, 9, §6]. I am indebted to Mr. RivLIN for use of the second of these
papers in MS.
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in highly viscous fluids. Decrease in temperature also increases the relative
magnitude of the Poynting effects.

71. Reiner’s treatment of dilatancy. Putting t for a and d for b and putting

= 0 in (10.2), Reiner' observes that in any fluid defined by Stokes’s prin-
ciple a simple shearing stress r gives rise to a change of volume (I4 # 0) if
any of the coefficients G55 be different from zero. This property, which here
appears as an example of the Kelvin effect (§10), was called dilatancy by
Reynolds®: “. .. a definite change of bulk, consequent on a definite change of
shape . ..”

Reiner gives several other examples of the Kelvin and Poynting effects in
fluids, which follow at once from the cases listed in §10. He considers also the
definition of various rheological coefficients’, but since these depend upon the
particular flow as well as the fluid and sometimes are not uniquely deter-
mined, their usefulness is doubtful.

72. Rivlin’s general solutions. A variety of Poynting effects in the Reiner-
Rivlin fluid are revealed by some examples constructed by Rivlin'. All are
cases of isochoric flow (I = 0), and in Rivlin’s original treatment only in-
compressible fluids are considered, where (§61) we may put Gi“ = 0. The
results then constitute or imply exact general solutions. We extend them here
to the case of compressible fluids, taking care to note, however, that in general
they then will fail to be compatible with the energy equation, and hence are to
be regarded only as indications of tendency, not actual solutions.

In this section for ease of writing we drop the subscript d from 14, I1q4,
and III4 and the superscript v(d) from G¥®. In all cases possible dependence
of Gy on 8/6,, p/P, or pt./uv. will be neglected.

Since I = 0 in all the following examples, the series expansions (8.1) begin
Gr = Grooo + Growll + - -+ . Hence in a second order theory, all terms of third

1 (1945, 1, §7]; also [1949 30, §§6, 9] (1951, 6, §7]. REINER callsa fluid in which 3"(‘” =0
and moreover the g+*) are independent of ITIq — 4III4 + oI a Reynolds liquid. Now
in the classical theory g"(d) 0, and the standard viscometric tests measure only the
effects predicted by the classical theory. Therefore, if we neglect to observe the PoynTING
effect in the tests, we can agree with REINER [1946, 3, §1] that “‘if no other tests were avail-
able, the existence of any viscous liquid more general than the REYNoLps liquid could not
be detected.” It would seem more reasonable, however, to detect the existence of more
general fluids by quantitative measurements of PoynTiNG effects in the classical experi-
ments (cf. §72).

2 [1885, 2] [1887, 1]. REYNoLDs explained dilatancy by means of a model composed of
rigid close-packed spheres, and elaborated this notion into a general theory of matter
{1903, 19]; cf. [1913, 5].

3 (1945, 1, §§6-7] (1946, 3, §41.

111948, b6, §§14-16] [1949, 4].
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and higher order being neglected, the coefficients G; and G, reduce to the con-
stants G and Gug , while G is proportional to I1.

A. Rectilinear shearing flow. Suppose £ = f(y), y = 0, 2 = 0. Then d has the
form (10.2); with s = 0, u = f’, and hence by (10.2); we have

010 100
t=(—p+SI+4'al1l 0 of +%"g|0 1 0|, (721}
000 0 0 o

where Gy = Gr(0, — ", 0) = Gr(y). A particular consequence of (72.1) is that
the specific resistance {*, is necessarily an odd function of f’, the rate of shear-
ing’. Since ¥ = 0, if we put f = 0 the dynamical equations (26.2), reduce to

__3]) d 1 ’ _ —2 _ 1 ” _
«%*'a—y(zfgl)-o: 6y< P+ G+ 3f 92) 0. (722)

Hence

tzll %f/ 1(0’ _%fﬂ’ O) = Cy + D7

. (72.3)
Fo=t,= —p+G+ 3G =—Cc+E,

where C, D, E are constants. The former of these equations is an ordinary
differential equation for the velocity profile f. In the case C = 0, it becomes a
transcendental equation for f’ in terms of the arbitrary constant D, which can
then be interpreted as the uniform resistance per unit area, and since any poly-
nomial approximation to (72.3); is of odd degree, it follows that in general
there are an odd number of velocity profiles, all linear but of different slopes f’,
yielding the same resistance. In the case of a second order theory only the classical
f = 2Dy/Guww = Dy/uv is possible, but in a third order theory there may be one
or three profiles, depending upon the values of D, Giw , and Gimo . In the case
when C' = 0 the normal stresses ¢°, and *, in the plane of shearing assume an
equal independent constant value E, which differs from the normal stress ¢,
normal to the plane of shearing by the amount 1f’’g, .

The results just given constitute a simple and striking example of the general
conclusions of §10. To produce a shearing flow between two parallel infinite plates,
shearing forces alone are insufficient; in addition, stresses normal to the plates,
exceeding the normal stress on the planes of flow by the amount 1f°G,(0,

2 There is an extensive literature devoted to the analysis of the flow in tube and rotation
viscometers under the assumption that t¢, is a power series in d=, : e.g. [1927, 4-5] {1928,
6] [1929, 4] [1930, 7, 10-11] [1931, 6-7, 10] [1932, 3, §§1-2] [1934, 2] [1943, 6, pp. 148-150] [1948,
22, A 15B] [1949, 43, Lect. XI]. These one-dimensional treatments of course cannot reveal
the PoynTING effect. A proper second order theory of these instruments is constructed by
REINER from the solutions given in parts B and C of this section. I am obliged to him for
use of his paper [1952, 5] in MS.
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—1f70), must be applied. If Go(0, —1f”, 0) > 0, this excess is a tension, so that
in its absence the plates would tend to draw together when sheared. This phenomenon
is an example of the Poynting effect. For a given specific resistance, the various
possible velocity profiles, odd in number, require different normal forces. Finally,
the resistance as a function of f’, which is the classical subject of measurement,
is independent of G, , and ts departure from the classical value is an effect of third
order in the shearing rate f', while the magnitude of the Poynting effect for a
given profile f depends only upon G, , the effect itself being of second order.

For a Stokesian fluid® a similar analysis leads to (72.1), but the coefficients
Gy are necessarily functions of p as well as of y. It is still possible to obtain a
solution in which » = const., however, and for this special case the result (72.3)
with C = 0 still holds. The difference between the Reiner-Rivlin and Stokesian
theories becomes plain when G, is replaced by its power series expansion in
(72.3). For the former, by (69.2); we have

L g (L) = 2
2f tnglo.lo( 1) <2f th) = g (72.4)
while for the latter by (65.2), we have

1 f'uva (1! f’uw)z" _D

5 p gowo (—1) <§ p =5 (72.5)

For a given specific resistance D, in the Reiner-Rivlin theory the product ¢.f’
is determined, and hence the permissible velocity profiles f’ are independent
of the pressure. In the Stokesian theory, however, it is f'uv./p which is deter-
mined by D, and hence the velocity profile depends upon the pressure. If, alter-
natively, we think of f’ as given, then from (72.4) and (72.5) we obtain formulae
for the resistance in the two theories. For the Reiner-Rivlin theory we have*

13 4 2

D =pvf — Ianlomf 8tn + -, (72.6)

while for the Stokesian theory we have

338

D = pvf — 1010 ”;"pf; + .- (72.7)

Thus in the Stokesian theory the third order correction to the specific resistance
18 tnversely proportional fo the square of the pressure. This result indicates the
appropriateness of the Stokesian theory for low pressure phenomena in gases.

31950, 14, §12]. This type of motion in a rarefied gas is discussed by ScHAMBERG
[1947, 8, Ch. V1], using BURNETT’s equations (§76) and his own boundary conditions (§79).

4 The numerical value —0.72 X 1073 ¢.g.s. for the coefficient of the term in f’s is obtained
from experimental data by Viecuier [1949, 13].
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B. Poiseuille flow.” In cylindrical co-ordinates r, ¢, 2, suppose # = 0, ¢ = 0,
2 = v(r). Then d is of the form (10.3); with v = %/, s = 0, so that by (10.3),
we have

0 0 1 1 00
t=(—p+G)I+#G|0 0 0| +2¢|l0 0 0, (728
1 0 0] 0 01

where Gy = Gy(0, —1v”%, 0) = Gy(r). The dynamical equations (26.2), reduce to

~Fhe ey =0
(72.9)

L/ —0 L yay =
60"07 3z +r(2rv 91) = 0.

Hence follows easily

ap _ , _ ’2 -
el C, V6 (0, — v, 0) Cr,

= p—G = —Cz+ WG+ 1C f r % dr, (72.10)

f—_z_ g
t,-—t.—Cz—%szrgf-z dr.

The downstream pressure gradient is the arbitrary constant C, while (72.10),
is a differential equation for the velocity profile v. As in the shearing flow of part
A, an odd number of velocity slopes v’ are possible for a given pressure gradient.
The Poynting effect now appears as the excess of the radial and downstream
normal stresses over the classical value Cz, an excess which, apart from an ar-
bitrary constant, if G(0, m, 0) > 0 when m < 0is always a pressure and always
greatest upon the periphery. Reiner’ remarks that if this extra pressure be
wanting, the stream issuing from a tube viscometer will tend to swell, a phe-
nomenon which has been observed experimentally® and which suggests that
indeed Guww > 0. The total mass flux through a circular section of radius a,
supposing v = 0 at the periphery, is

xpC ./; ’ (r*/g) dr.

5 For a generalized Po1seviLLE flow & = f(y, 2), ¥ = 0, 2 = 0 a method of solving a class
of dynamical equations including those of the REINER-RIVLIN theory as well as those for
some types of plastic materials is given by OLpRrOYD [1949, 34] [1951, 12].

6 (1952, 5, §4].

7 {1943, 19].
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For the second approximation it follows by the general theory of §10 that the
classical effects—in this case, the parabolic velocity distribution and the Hagen-
Poiseuille efflux formula—are unchanged in magnitude. The excess pressure in
(72.10)s becomes now simply C*r°Gauno/32uv". The magnitude of the exit swelling
mentioned above should then increase in first approximation as the square
of the pressure gradient. Reiner suggests that insertion of a peripheral pressure
gauge in the usual tube viscometer should make it possible to check this result
and to measure Gaop .

C. Couette flow.” Suppose ¥ = 0, § = w(r), 2 = 0. Then the matrix of
physical components of d is of the form (10.2); with u = }rw’, s = 0, so that by
(10.2), for the physical components 7j of stress we have

010 1 0 0
51 = (=p 4+ QI + $r’G ||1 0 0| 4+ 1%"G|l0 1 0f, (7211)
0 0 O 0 0 0

where Gy = G¢(0, —ir2w’2, 0) = Gy(r). Supposing gravity to act along the z-axis,
we may put the dynamical equations (26.2), into the form

g';l—p + G+ % Gl = —pre,
14 d ’
T r &9? T3 [3rw'Gil + o'G = 0, (72.12)
a
- 5? + 09 =0

A symmetrical solution is easily obtained:

0 = 1re'Gi(0, — 1%, 0) = %, p = pln),
r
B=—ptG—pe— et [ tdr+D, (7213

~ ~

rr = 00 = —pgz +j; prw® dr + D.

The arbitrary constant 2xC is the resultant couple per unit length required to
produce the motion. Corresponding to any such couple, there are an odd num-

8 RIVLIN’S analysis does not carry over the Stokesian fluid. CouerTE flow of a rarefied
gas is discussed by ScHaMBERG [1947, 3, Ch. VII], using BURNETT’s equations (§76) and his
own boundary conditions (§79).
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ber of possible angular velocity slopes «’. The Poynting effect now appears
in its most striking form for fluids: to produce the motion normal stresses, which
if G(0, m, 0) > 0 when m < 0 are pressures, must be supplied to the planes
perpendicular to the axis. If these pressures be wanting, the fluid surface will tend
to rise, whatever be the speeds and senses of rotation. A more explicit result can be
obtained in the second approximation, since by the general analysis in §10 it
follows that all classical results—in this case, the single Couette velocity
distribution w = Ar~> 4+ B—remain valid. Neglecting the terms representing
the effects of gravity and centrifugal forces, in this case we reduce (72.13) to
the form

o 1 fw(r) — wlr)] ~
C = 2uy — 2 -l- 792 < ’ m = D: (72 14)
2 2 2 )
~ iy w(n) = w(r)]
2z = —Gaooo prrpE— + D,

where the arbitrary constant D can be adjusted so as to let zz equilibrate the
atmospheric pressure on some specified ring r = r, between the inner cylinder
r = ry and the outer cylinder r = r,. Thus if the surface be left free, it may be
expected to slope upward or downward toward the center according as G > 0
or Guge < 0, the effect being greatest at the inner cylinder, whatever be the speeds
and senses of rotation. Garner & Nisson® first observed that in an actual Couette
flow with a free surface the liquid climbs up the inner cylinder, and the phe-
nomenon is positively demonstrated in a series of striking experiments by
Weissenberg'’. Hence we may conclude” that in the actual fluids tested Gaoo > 0.

D. Parallel plate viscometer”. A motion in which # = 0, § = w(z), 2 = 0 ap-
proximates that occurring in a parallel plate viscometer, provided the fluid be
sufficiently viscous that the effect of gravity is negligible. The matrix of physical

9 11946, 20].

10 (1947, 8] [1949, 31]; cf. also [1949, 11]. Earlier REINER {1945, 1, p. 360] had concluded
the possibility of such phenomena from his theory, but had dismissed them as ‘“‘never . . .
observed’’. WEISSENBERG himself attempts an explanation by his theory of elasticity (§51),
and REINER [1952, b] proposes experiments to decide whether the effect arises from elastic
or viscous properties. To me the issue seems not to exist: the theory of elasticity is ap-
plicable only to substances in which the stress does not subside until recovery of strain
from some specified reference configuration, but the physical fluids used in the experiments
show no such tendency whatever, and an attempt to represent phenomena appearing in
fluids by a theory of elasticity seems unnecessary, irrelevant, and inappropriate. There is,
however, a sort of reconciliation of the two views in the fact that the REINER-RIvLIN fluid
possesses a natural elasticity, say uv?/Gzo00 (§§67, 70).

11 REINER [1952, 5, §3] suggests a modified rotating cylinder viscometer in which there
is a rigid lid with pressure gauges inserted to measure zz. It is doubtful if the theory given
here applies to such an instrument, however, since the adherence of the fluid to the lid will
seriously disturb the flow.

12 The analysis generalizes that of RivLin [1948, 6, §15] and REINER [1952, B, §5].
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components of d is then of the form (10.3); with « = 0, s = {rw’, and hence by
(10.3); we have

000 jo 0 0
NGl =(—p+G)I+4r'G|0 0 1 +%7‘2w/2921'0 1 of, (7215)
010 001

where Gy = G¢(0, —3%'", 0). If inertial forces may be neglected, the dynamical
equations (20.6); reduce to

(%("P + Q) — %rw’zgz = 0,

~9 4129 (g =
3 T 5 @8 =0, (72.16)

S (-p+8) +1', W) =0

If we seek a solution in which dp/38 = 0, conditions of integrability for this sys-
tem are

19 9, 4, 2 o
7’.51‘.[“7'25; (o ’92)] = &[w G, Ey (w'q) =0,

s (72.17)
2 a ?, — .
5;[7‘ a—z (wgl)] = 0,

hence

rw'G(0, —3r%'”, 0) = Cz + f(r),
r (72.18)
@G0, =3’ 0) = r7g(2) + h(r).

If the axis r = O lie within the body of fluid, we must put C = 0, ¢g(z) = 0.
The conditions (72.18) are then satisfied if and only if o’ = const., and we have

55 = %w”l‘gl, 22 = iw'z [1‘292 + f G2 dr], (72.19)
where the constant of integration has been adjusted so that 77 = 0 on the cylin-

drical boundary r = a. It is easy to show that the resultant couple L and force F
required to produce the motion are given by

L = Ww’fo 7‘391 dr, F = ;—:'w'z'/o. 7‘382 dr; (72.20)
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thus the latter is always a tension if G, > 0, so that in the absence of this force
the plates of the viscometer will tend to draw together.
For the second order theory (72.19). becomes simply

22 = $0"Gun(3r" — a”). (72.21)

Hence the stress which must be exerted upon the plates of the viscometer in order to
produce the motion is distributed parabolically, being a tension if r > a/A/3,
zero when r = a/A/3 and a pressure whenr < a/+/3. Reiner” states that in a
viscometer with stand pipes inserted into the stationary plate, the zero point
of the pressure is clearly observed.

E. General remarks. The four examples just given illustrate the general con-
clusions of §10. In all cases the classical effect is governed by the coefficient G,
alone, and its value is an odd function of the classical parameter. The Poyn-
ting effect is governed by the coefficient G, alone, and its value is an even function
of the classical parameter. This separation of the two effects makes it possible
by (67.1) to obtain from each experiment a value for the natural time of the
fluid. For example, from (72.20) we have for the second approximation theory

b = == (72.21)

V D. The Maxwellian Fluid

73. Slip flow. At altitudes of 20 to 60 miles the atmosphere may still be re-
garded for most purposes as a continuum, but not as a simple viscous fluid repre-
sented by the Navier-Stokes equations. For aerodynamics in this region Tsien'
introduced the term slip flow because the classical condition of adherence to
a solid boundary is no longer satisfied’. At these low pressures the effects de-
scribed by the higher order terms in the theory of the Stokesian fluid (Chapter
VB) become significant, but also a number of others are of equal importance.

13 [1952, 5, §5].

1[1946, 1, p. 654]. In the present review are mentioned only those efforts in the kinetic
theory which have led to stress formulae different from (1.2). A more detailed history is
given in [1951, 1, §18].

2 For a résumé of the controversy regarding slip in the classical theory, see [1901, 1,
4me partie, Ch. 5] [1932, 2, Part II, §§ 1.2, 1.3, 1.7, 3.2, 7.3]. The possible effect of slip on a
viscometric measurement in a non-Newtonian fluid is discussed in [1931, 6, 7] [1932, 8, 11].
A corresponding thermal discontinuity is observed in [1898, 2, §I] [1911, 8]; a molecular
theory for it is given in [1913, 6, §4].
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One of these is thermal transpiration, discovered by Reynolds’, in which a tem-
perature gradient in a fluid at rest is of itself sufficient to produce non-equili-
brated stresses and resultant motion. Stress formulae appropriate to this phe-
nomenon were first obtained from the kinetic theory of gases by Maxwell,
on the basis of his celebrated hypothesis of molecular forces varying inversely
as the fifth power of the distance. The method of calculating expressions for
the stress and heat flux by approximate integration of the Boltzmann equa-
tion was introduced by M. Brillouin® and developed by Hilbert’, Enskog’,
Lennard-Jones®, Rocard®, Burnett'’, and Chapman & Cowling"'; while Brillouin

3 (1879, 2, §2]; cf. [1949, 47, Part I1I, §6]. Since his similarity laws for this and related
phenomena involve both the density of the gas and the dimensions of the boundaries,
REYNoOLDs [§§4-6] concluded that they cannot result from a continuum theory and thus
afford proof of the molecular nature of gases. The conclusion is incorrect. In the one-
dimensional case considered by REyYNoLDs, the boundary conditions and the dimensions
of the boundaries determine the quantities which occur in the similarity parameters of the
continuum theory.

4 {1879, 1, §4]. A different kinetic theory treatment was given by REynoLps [1879, 2,
Sects. VI-VIII]. Elaborating MaxwELL’s earlier ideas, O.-E. MEYER [1865, 8, §8] for the
case of rectilinear shearing flow had already obtained the power series {*, = uv[o&/0y +
#N29%%/9y® + --- ], where X is the mean free path; his method is generalized in [1949, 563];
and by an application of Maxwellian notions, BurcHER [1876, 2, pp. 103-111] [1882, 1,
Pp. 79-80] had obtained the dynamical equations [kl + (k + 3v)38/0t}e7 ;i — wiii,; +
[l + 8/0t]p(fi — %) = 0, which for steady motions or for I = « reduce to the classical
ones. REyNoLDs (1901, 8] {1932, 2, Part II, §1.7] at one time (1883) claimed that the ordinary
NAvVIER-STOKES equations are inconsistent with the condition of adherence at a solid
boundary at the commencement of the motion, and by some obscure arguments of mixed
molecular and phenomenological nature proposed equations which (if I have correctly
understood his unexplained symbols) contain a term — 1%%7,; added to the acceleration,
l being a constant length, and which cannot be derived from any form of symmetric stress
tensor. The dynamical equations proposed on the basis of molecular notions by PreD-
VODITELEV [1948, 27, eq. (26a)] differ from the usual ones in that the acceleration #' is re-
placed by (1 — )& + B[ox'/dt — itk i), where 8 is a coefficient. A similar equation for
incompressible liquids is derived from mixed molecular and phenomenological notions
by FrEnNkEL [1946, 11, Ch. IV, §10]. According to the molecular calculations of ABopy-
ANDERLIK [1949, 33], the NEwTON-MAXWELL formula (62.1) should be replaced by pt*, =
uvd(oz)/dy, but this result does not satisfy the requirement of Galilean invariance.

5 [1900, 1].

6 [1912, 3] [1912, 2, Ch. 21]. HILBERT’s notion is to consider ‘‘A-series’’ solutions \if; ,
where A is an arbitrary parameter, essentially the mean free path. If valid at all, the results
are appropriate to a slightly rarefied gas. Cf. Note 7.

7 (1917, 4, Chs. I1, V1] [1939, 1, App. A]. The basic idea is similar to HiLBERT’s, but while
in HiLBERT’s method the successive approximations are uniquely determined at each
stage, in ENsK0G’S a considerable arbitrariness is introduced, to be eliminated later by a
formal procedure whose mathematical and physical meaning is obscure. ENskoa’s results
were derived by CHAPMAN [1916, 2] [1917, 8] in a different way.

8 [1923, 1, §§9-12]. The incompleteness of these results is noted by Rocarp [1927, 2, §11].

9 [1924, 3] [1927, 2, §§10-16) [1932, 6, Ch. VIII]. Cf. [1932, 2, Part 1V, §1.1].

10 [1936, 1]). BURNETT’s stress formulae contain those of MaxwEiLL, ENskog, and LEN-
NARD-JONES as special cases.

1111939, 1, §§15.3-15.41]. Numerical values of the higher order coefficients are obtained



ELASTICITY AND FLUID DYNAMICS 247

was content to obtain the general form of the terms (as in a pure continuum
theory) by constructing a series expansion for the distribution function in
terms of isotropic tensors, the later authors actually calculate both the func-
tional form and the numerical values of the coefficients”. A new method of
integration has been discovered by H. Grad™. It is the expressions of Burnett
and Chapman-Cowling which Tsien recommends as a basis for slip flow aero-
dynamics™. Until quite recently the only attempt to use continuum methods to
describe phenomena of this type was Korteweg’s” theory of motions in which
very large density gradients occur. It is possible, however, to formulate a con-
tinuum definition of a fluid which quickly yields a general yet perfectly definite
expression for both stress and heat-flux, including all of Brillouin’s, Korteweg’s,
Burnett’s and Chapman & Cowling’s formulae as special cases, and which is
easily carried systematically to any desired degree of approximation.

74. Definition of the Maxwellian fluid. Brillouin’s principle.! It is the phe-
nomenon of thermal transpiration (§73) which is the key to a general contin-
uum theory of fluids, for it shows that an effect ordinarily associated with heat
flux only can of itself produce a stress. Now in reality stress and heat flux are
closely analogous. From a molecular point of view both are averages of purely
mechanical actions—the one representing the average momentum transfer across
an imaginary surface, the other the average energy transfer. From a phenome-
nological point of view also the stress and heat flux represent but different as-
pects of the same principle. The stress is a tensor whose divergence is added to
the extraneous force in order to represent a resultant force equivalent to the un-
specified mutual forces and so to balance the momentum equation (26.2), . The
heat flux is a vector whose divergence is added to the stress power in order to
represent a resultant power equivalent to that supplied by unspecified exchanges

in a shorter way by KonLEr [1950, 2] who also derives one relation among the coefficients
valid independently of the particular law of intermolecular forces (1950, 4].

12 MoTT-SmiTH [1951, 16] has used a different type of approximate solution to describe
a plane shock wave; I am indebted to him for use of this paper in MS since 1948. Cf. [1948,
61]. BURNETT’s equations are applied to the calculation of the thickness of weak shocks
in [1948, 36]. Methods of obtaining solutions of the form A% f;, and hence appropriate to
very rarefied gases, have been given by Borza, BorN, & v. KArRMAN [1913, 6, §2], JAFFE
[1930, 6, §4], and J. KELLER [1948, 21]. Some special situations are treated in [1949, 28].

13 [1949, 86, §§4-5] [1950, B, §§31-32]. The method consists in a systematic calculation of
relations among all the moments of the distribution function, while the HiLBeErT-ENsKOG
method treats the first and second moments only.

14 A gystematic kinetic theory of liquids has been constructed by Born & GREEN [1946,
2] {1947, 1-2] [1948, 16-17] [1949, 26] and by Kirkwoob [1946, 21] [1949, 42].

15 {1901, 2, §7] (1932, 2, Part IV, §1.3]. To discuss thermal phenomena in gases VER-
SCHAFFELT [1948, 37-38] in effect proposes to add a thermal pressure « log (/60)8%; to the
stress. The coefficient « is to be a function of 8/8, only; hence such a fluid must possess a
natural time (§62).

111949, 8, §§2-4] (1951, 1, §§19-21].
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of mutual energies without performance of mechanical work, and so to balance
the energy equation (27.2). A phenomenological definition of a fluid specifies
the dependence of these two quantities upon other gross variables. The close
analogy suggests that both stress and heat flux should depend upon the same gross
variables. The counterpart of thermal transpiration for example, will then be a
heat flux arising in a deformation at uniform temperature. The difference be-
tween heat flux and stress is to be expressed only by their different physical dimen-
stons and different tensorial order—but this difference is far reaching.

Hence we are led to the following definition: A Maxwellian fluid s a continuous
medium such that:

(a) It possesses three and only three dimensionally independent material con-
stants, a natural viscosity wpv,, @ natural conductivity «, , and a reference tem-
perature 6, :

mL
T:0’

dim pv, = dim «, =

M .
LT’ dim 6, = O. (74.1)

(b) Both the stress t and the heat flux q may be considered functions of the fol-
lowing variables only:

BVn y Kn 0o , D, p, 0, D, b, j:i..‘i ’ fi,j » Diijs
(74.2)

. o e e ‘il . . il . . . - . . TR
0.1’17 » L ﬂz"‘%n’f 'tz"'in$p.21-°-1n:0'11"'%’ )

and they are analytic functions of all the vectors and tensors listed.

(e) If all the vectors and tensors in the above list vanish, then t = —pl and q = 0.
Since the list (74.2) contains the vorticity and the velocity gradients of all orders,
the present theory generalizes both Boussinesq’s and Levy’s principles (§60)
(cf. §77). Thermodynamic gradients and extraneous force gradients of all orders
are included also, as so to assure full generality.

Now M. Brillouin’s method of integrating the Boltzmann equation of the
kinetic theory amounts to the assumption that the distribution function may
be expanded in a series of powers of the vectors and tensors in the list (74.2),
an assumption which he justified a posterior: by arguments similar to those
given above’. The part (b) of the definition may therefore be called Brillouin’s
principle’. The Maxwellian fluid, like the Stokesian fluid, is a material alto-
gether without elasticity or “memory” effects, for no natural time is permitted
and the stress is independent of any previous configuration; it generalizes the
Stokesian fluid, but does not include the Reiner-Rivlin fluid.

It is convenient to introduce also a fluid constant R, = ck./uv. , where c is a

2 (1900, 1, §37].

3To Dr. Morr-SmiTH I owe the remark that M. BriLLoUIN’S method is essentially a
continuum theory method, and that my method of deriving expressions for the heat flux
and stress consists in part of applying BRILLOUIN’s treatment directly to the continuous
medium, without the unnecessary intervention of kinetic theory paraphernalia.
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dimensionless constant; R, is of the same dimensions as the gas constant R in
the perfect gas law p = Rpf, viz., dim R, = L’T°@™" = dim 5. From the quan-
tities (74.2) we may construct scalars of all four fundamental dimensions:

}
dim L;" =T, dim "___V"(f"") =L
(74.3)

= M, dim 00 = 0,

76. Expressions for the stress and heat flux. While the complexity of the
present theory necessitates a rather elaborate treatment as far as tensorial form
is concerned, the dimensional method of §65 can be applied with only slight
changes. Tt is possible to prove' as a mathematical consequence of the definition
given in §74 that both stress and heat flux are power series in the natural viscosity
MVn .

Let the coefficient of (uv,)” in the expansion for ¢'; be written ®t';. Then
after considerable analysis it is possible to show that for an isotropic fluid® the
first three of these coefficients must be of the form

Ot = —psy, Oy = AdW8Y + Bd,
@p R.0
P

+ % (D306 6% + 2C56"0,,] + I—‘-;%g [Dip™ 1 8% + 2Cip"* ]

[D1p™p s’ 4+ 2C:pp. + % [D.p*0,.6% + Co(p''0,; 4+ 6"p.)]

(75.1)
+ % [Dsf* 185 + Cs(f' 5 + fi')N + % [Ds 6" 8% + 2Cs6° ]
+ ;1) [Fy(d*)%" + Fod'ed’o% + Faw'ow' 6% + 2B,d"d

+ 2B, d%dY + 2E;whw’; + Eddhow’; + we'd)),

where 4, - - -, E, are dimensionless functions of p/p, 6/6, only. If we put Ay =
Apva, 2uv = Buvn, then @t'; + uva®t'; yields the Newton-Cauchy-Poisson

1[1949, 8, §§6, 8] [1951, 1, §§23, 251.

2 [1948, 3]. For both the anisotropic and the isotropic cases I have given in [1948. 2,
§819-20] full expressions for @®¢i; and Wt%; for the slightly less general theory in which
second and higher order velocity gradients are neglegted. A full expression for ¥¢¢; | for
both the anisotropic and the isotropic cases, is given in [1949, 8, §§6, 9] [1951, 1, §§23, 26].
The terms whose coefficients are Fi, F,, E\, E;, E, were given by BoussiNEsq [1868, 2, Note
I] with coefficients unspecified in form. From the thermal equation of state f(p, o, 8) = 0
it follows that the result of KorTEWEG [1901, 2, §7], containing terms of the form p*p, i85,
pip.i , p*.0% , and p¥,;, with unspecified coefficients, is included in (75.1); as a special
case.
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law (1.2), so that as far as stress is concerned the isotropic Maxwellian fluid
is indistinguishable in first approximation from the Stokesian, both theories
reducing then to the classical one’,

Let the coefficient of (uv.)? in the expansion for ¢; be written P¢;. Then for
the isotropic fluid it is possible to show that*

R.0
(O)QI' - 0, (I)Qi = RnPIH,i + 7 P2p,i,

@ _ B0
q' pz

+ 1—;3 [840,d% + Ss0;w's + Se6,:d")

[Sipsd’s + Sapjw’s + Ssp,id'l

R

+ ;0 [Uha? 5 + Undhdl,

where Pi, ---, U, are dimensionless functions of p/p, 0/6, only. If we put
—x = pyaR,Py , the first term in ¢, yields Fourier’s law of heat conduction.

The forms of the various terms indicate many interesting phenomena, in-
cluding thermal transpiration and its heat flux counterpart.

There is not space to write down the generalizations of these results to aniso-
tropic fluids. If one does so, however, one finds a much closer analogy between
stress and heat flux, as would be expected from Brillouin’s principle (§74).
It is the combination of the different tensorial orders of t and q with the notion
of isotropy which forces those terms which appear in the one to be absent from
the other, as indicated by (75.1) and (75.2).

76. Comparison with the equations of Burnett and Chapman-Cowling.! The
idealization of the kinetic theory model of a gas results in the loss of but one of
the ordinary coefficients of viscosity, as expressed by the Stokes relation (cf.
§61A). In the second order theory, however, 13 of the 19 coefficients are lost.
To reduce our formula for ®t'; to Burnett’s we first put 3D; 4+ 2C; = 0,
3F; + 2E; = 0, so0 as to express the equality p = p which is assumed® in the kin-

3 This conclusion does not hold for anisotropic fluids; cf. [1949, 8, §9], [1951, 1, §26].

4 (1949, 8, §10] [1951, 1, §27]. In [1950, 14, §§13-16] a theory of heat flux in the isotropic
Stokesian fluid is worked out. On the supposition that thermal and mechanical reactions
are to be associated exclusively with thermal and mechanical phenomena, respectively, it
is shown that FouRriER’s law is then the only possible law of heat conduction. An approxi-
mation to this result can be read off from (75.2), since the term representing FOURIER’S
law is the only one in which 6,; is the only vector or tensor occurring.

1[1949, 8, §§13-14] [1951, 1, §§30-31]. In the corresponding discussion in [1948, 2] [1948,
8, §22] there are errors in sign.
2 E.g. [1939, 1, §§2.31-2.32, 2.41-2.42]. Cf. §61A.



ELASTICITY AND FLUID DYNAMICS 251

etic theory. In addition we must assume the relations C, = —Cy = Cs = —F; =
1E, , whose physical meaning is not apparent.

Turning now to the heat flux, we find that while (75.3) contains two first
order and eight second order coefficients, the equations of Chapman & Cow-
ling contain but one and five, respectively®. To reduce our result to theirs, we
must put 8; + 38; =0, S; = 83U, + U;, P, = 0, S; = 0. Now the first two
of these restrictions express the linking of the magnitudes of various effects,
as in the case of the stress above. The last two conditions indicate a more serious
shortcoming of the kinetic theory result, however, for two phenomena possible
n a Maxwellian fluid are not predicted at all by Chapman & Cowling’s heat flux
formulae. The first of these, which I propose to call the Brillouin effect since a
term equivalent to that which reveals it occurs in M. Brillouin’s formulae for
the heat flux®, shows that at sufficiently high temperatures and low pressures,
a sufficiently large pressure gradient induces thermal flux even at uniform
temperature. This effect is of first order in the viscosity (or conductivity), and,
unless the coefficient P, be found very small experimentally, at high tempera-
tures and low pressures may predominate over ordinary thermal conduction.
The term whose coefficient is Sp shows that just as a combination of rigid rotation
and temperature gradient, so also a combination of rigid rotation and pressure
gradient gives rise to a flow of energy.

From the foregoing results it appears that the kinetic theory, at least as or-
dinarily presented, becomes increasingly inadequate for the prediction of macro-
scopic phenomena the higher the approximation required’.

77. The effect of vorticity.! Expressions for t involving the vorticity w were
first obtained in the kinetic theory of M. Brillouin?, who believed, following
Stokes’s principle (§59), that the stress should be independent of vorticity for
a given rate of deformation, and thus several times emphasized his opinion
that coefficients such as F;, E;, and E; would be found to be zero in the case
of conservative intermolecular forces. Burnett’s calculations’, however, yield
E; = 1, F; = —% for Maxwellian molecules. This result is most improbable,
for it implies the existence of a deviatoric stress proportional to uy.’ even in a

3[1939, 1, §15.4].

4 BrRiLLouinN [1900, 1, §36] did not show that this effect is of first order in the viscosity,
however, and in his equations this term is but one of some thirty and not distinguished in
any way. Since BRILLOUIN had no means of ordering in powers of u, some of his remaining
terms would occur in the ®¢; ,@Wgq; , - -+ of the Maxwellian fluid, and several of the terms
in our ®@g¢; he failed to obtain.

5 A more extended comparison of continuum and kinetic theory methods may be found
in [1949, 8, §15] [1951, 1, §32].

11948, 2] [1948, 3, §23] [1949, 8, §13] [1951, 1, §30].
21900, 1, §8§14 footnote, 23 end, 27 end, 34 end, 39 end].
3 (1939, 1, §15.41].
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rigid body rotation* when p; = 6,; = f;; = 0. Adopting a modification of
Boussinesq’s principle (60.1);, we exclude such an effect by strengthening (c)
of the definition of §74 to read:

(¢)’ If all the vectors and tensors in the list (74.2) with the exception &' ; vanish,
and 5f this latter reduce to a rigid rotation (&*; = —,"), thent = —pIl and q = 0.
It follows then that E; = F; = 0.

78. Approach to a theory involving a natural time. The list of variables (74.2)
includes velocity gradients " ;,...;, of all orders, and as the approximations are
carried further terms in which there appear gradients of higher and higher order
oceur. Except for local time derivatives, the approximations are specified in
terms of the same quantities which occur in a polynomial approximation to
@'(t 4+ At) for a moving particle as a function of time. In a certain formal sense
the theory may be said to approach in the limit one in which the succession of
strains suffered by a particle in an interval of time influences its present response.
The higher approximating formulae are so complicated as to render the theory
quite useless for any type of calculation, and perhaps the type of behavior they
suggest is represented both more accurately and more simply by a theory of
fluids possessed of a natural time ¢, and thus endowed at least with a natural
elasticity (Chapter VC), possibly also with slight elasticity of shape (Chapter
VI).

79. Boundary conditions. Several authors' have discussed the boundary con-
ditions in rarefied gases from the standpoint of the kinetic theory, but a satis-
factory result is yet to be obtained. Chang & Uhlenbeck®, motivated by the
desire to find boundary conditions in some sense intermediate between the
adherence of the classical theory and the complete slip of the ‘“Knudsen gas,”
have tentatively proposed not only the classical adherence condition Az’ = 0
but also the stronger condition @° n’ = 0, where n is the unit normal to the
surface. The former condition is contrary to what experimental evidence is
available (§73); the latter implies that all the frictional resistance arises from
the second order terms. Under rather general hypotheses Grad® by his kinetic
theory method derives a result equivalent to Navier’s classical slip condition
A = kai'/on.

The question of boundary conditions is equally critical’ in the Stokesian and

4 Criticisms of Professors SYyNGE and TsiEN are repeated and answered in [1951,
1, §30).

1 E.g. [1879, 2, §§80, 83, 84] [1924, 3] [1929, 6] {1932, 6, Ch. IX-X] (1947, 8, Ch. V]. The
validity of the results given in the last noted reference was questioned by UHLENBECK in
a lecture at a meeting of the Am. Phys. Soc., New York, January 1948.

2 (1948, 4, §1Ve].

3 [1949, 36, §6] [1950, 5, §33].

4 RivLIN [1948, 6, §13] apparently overlooks this fact. Viguier [1950, 7] in treating a
special case adds another boundary condition “pour simplifier”.
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Reiner-Rivlin theories. It does not arise in Rivlin’s examples (§72) simply
because these are developed by an inverse method, in which a motion is defined
kinematically and then shown to be dynamically possible, provided certain
surface stresses be supplied (but cf. §84 C).

80. Propagation of small disturbances in the Maxwellian fluid. At present
experimental tests of the theory are necessarily limited to phenomena unaffected
by the boundary conditions, such as the propagation of plane infinitesimal waves
in a Maxwellian fluid of indefinite extent. Primakoff' and Tsien & Schamberg,’
using for the coefficients special values calculated from the kinetic theory, find
that while the damping is much increased as the pressure decreases, the speed
of propagation is nearly unaltered. These conclusions depend upon the numeri-
cal values of the coefficients in an essential way; according to Chang & Uhlen-
beck®, when two errors in Chapman & Cowling’s coefficients for the heat flux
are corrected, the dispersion becomes considerable. Assuming a special force
law for the molecules and special values for the coefficients, Mme Chang* con-
cludes that the speed of sound in helium as predicted by the linearized Burnett
equations exceeds the usual velocity by .444®°%, where d in the definition
(66.1) of the number T is taken as the frequency of a harmonically oscillating
source. Mme Chang calculates that if p = 10™* atm. and 8 = 300° K, a 3 me.
sound is propagated about 20 per cent faster than at standard conditions, and
hence that the effect should be experimentally measurable. In any case these
results have no quantitative value for gases like air because the Stokes relation
is adopted in the kinetic theory (cf. §61), while the value of Av affects the mag-
nitude of both absorption and dispersion in an essential way. On the other hand,
recent measurements of Greenspan® indicate that in rarefied helium over a
wide range of conditions the absorption and dispersion are very closely predicted
by the ezact solution of Kirchhoff’s® complex frequency equation, derived from
the Navier-Stokes equations, and of the four theoretical curves he compares
with the experimental data that of Chang & Uhlenbeck gives by far the poorest
fit.

The subject of ultrasonic absorption and dispersion in general is muddied by
the roughness of the experimental data on the one hand, the disease of unneces-
sary and inappropriate theoretical approximations on the other. A review of the
whole matter, together with the correct and complete results derivable from the
linearized Navier-Stokes equations, will appear elsewhere’.

1(1042, 9].

2 (1946, 10].

311048, 4, §VI.
41048, 41, §IV].

5 (1949, 66 [1950, 23].
s [1868, 1].

711953, 1].



254 C. TRUESDELL

Chapter VI. SUPERPOSITION THEORIES

81. The classical superposition theories. Since elasticity and fluidity are two
limiting cases of physical behavior (§2), it is natural to try to represent actual
materials by a mathematical model possessing both elastic and fluid properties,
and one way of formulating such models is by superposition. For simplicity,
consider a case of simple infinitesimal extension. Then for the stress in an elastic
body we have T = 2ugeq, while for a viscous fluid we have

Ty = 2uvdy = 2uvén, or 2uven = f Tndt.

Superposing stresses, we obtain
T = T,z —I— Tﬂ = ZMEG + 2p.vé. (81.1)

Introduced by O.-E. Meyer', the material defined by this equation was studied
by Voigt’ and has been named a Voigt material by v. Mises’; its theory has
been thoroughly investigated by Duhem* and Thompson®. If T = 0 the material
relaxes according to the law e = ¢ exp (—ugt/uv), so that the natural time ¢, =
uv/un (§62) is a relaxation time for the strain when the siress is removed.

If instead we superpose strains, we obtain

e=caton=5- T+—det T+ BT = 246 (812)
2uy My

In the material defined by this equation, which was introduced by Maxwell®

and generalized by Natanson and Zaremba’, the natural time t, = uv/us s a re-

laxation time for the stress when the strain is kept constant.

1 MEYER [1874, 1-2] [1875, 2] employed both molecular and continuum arguments.

2 [1889, 1] [1892, 2-3] [1910, 1, §§395-396].

311930, 1].

+ DunEM considered not only infinitesimal motions [1903, 14] [1904, 1, Part II] as did
MEeYER, Vorar, THOMPsSON, etc., but also the case of finite elastic strain (with linear viscous
damping) [1903, 12, 16-17] [1904, 1, Part I, Ch. II; Part IV, Chs. II-III].

& (1933, 3].

¢ MaxwEeLL [1867, 1, pp. 30-31] considered only the one-dimensional case used above
for illustration. The occurrence of a relaxation time of this sort in the kinetic theory of
gases is discussed in [1867, 1, p. 69] [1902, 5] [1946, 11, Ch. IV, §3].

7 (1901, 3-4, 6] [1902, 2-3] [1902, 4, §§4-7] (1903, 2-3, 6-10]. These papers contain a heated
controversy as to the proper form of the general equations, but both authors agree in using
d rather than e or E. NaTansoN’s final equations are givenin [1903, 6, eqq. (1a) (2a)] [1903,
8, eqq. (1a) (2a)]. ZarEMBA’s final equations are [1903, 9, eq. (32)], but [1903, 7, eq. (28)]
seem preferable. ZAREMBA discusses some solutions of his equations in [1937, 6].
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It is easy to form more and more complicated materials by further super-
positions. The corresponding general equations in three dimensions may be
written down by inspection so long as the strains be infinitesimal; in the finite
case, however, the distinction between rate of deformation d and strain rate
E or & occasions difficulty. Much attention® has been given to these theories,
particularly in connection with infinitesimal oscillations. We make no attempt
to review this field, but since Eckart’s generalization of the Meyer-Voigt ma-
terial contains a new idea as far as pure elasticity is concerned, we shall sketch
its development.

82. Eckart’s anelastic material. For an elastically isotropic! material Eckart?
proposes the defining equation

e = e(n,v, c), (82.1)

where the Cauchy tensor ¢ is taken with respect to a varying reference con-
figuration whose rate of change r will be specified later. In the natural state
theory (§36), v was eliminated by (24.1), and (14.11), . The corresponding step
here would complicate (82.1) by the introduction of an invariant of a different
¢, namely, that taken with respect to a fixed initial configuration; alternatively,
v may be expressed in terms of ¥ and an invariant of the present ¢, but since
 is not a function of the X“ alone (as is vy), nothing would be gained. Let pres-
sure = and temperature 0 be defined by (29.2), and let an elastic stress s be de-
fined (cf. §33) by?

. . aé

= —2pc" — . 2.2

8 PC k 3o, (82.2)
Then by (22.3) we have

é = 017 - ijli,i + ﬁ (27"'1, - ijii)m,k -_ thi?m'j),
ac’y

- (52
= 0y — vad’; + vsi(d — i)Y,

8 (1898, 1, §2] [1917, 1] [1918, 1, §100] [1928, 4] (1929, 2, §3] [1929, 3] (1930, 6, 16] (1935, 4,
§8§6-71 [1938, 8] [1939, 16] [1941, 14-15] (1943, 18] [1945, 4] [1947, 23, 25] [1948, 38, 56] [1949,
1-3, 32] [1951, 18, §4]. Comparative expositions are given in [1924, 1, §§14.421-14.423] [1930,
1] [1931, 2] [1932, 4, 8] [1933, 8, Introd.] [1942, 6, §18] (1943, 6, Lect. VI] [1944, 7] [1947, 16]
[1948, 22, AI8 and Apps. I, IIT] [1949, 48, Lect. XI].

! For anisotropic media we should use C in order to obtain a theory containing the
classical natural state theory of finite strain as the special case r = 0, v = s. The possible
rotation of the reference configuration introduces a difficulty (§22) which I have not been
able to overcome.

2 [1948, 14, §4]. For the case of strain referred to a fixed initial configuration, with super-
posed linear viscous damping, essentially this same analysis was given by DuneMm [1904,
1, Part I, Ch. II, §§1-1V]; cf. also (1931, 9, pp. 77-79] [1933, 2, §§8-9] [1933, 8, §1.7].

3 EckART instead puts si; = —2pde¢/dci; , which also will yield (1.1) of the infinitesimal
theory as a first approximation, but is not consistent with (41.2) of the classical theory of
finite strain. This error complicates his subsequent equations.
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so that by (27.2), (26.11), and (30.3) we obtain the elegant equation

ptn = (v'; — s')d’s + 'rie ™ = ¢ (82.4)
as a generalization of (30.2). Equivalently,

i io,' 1 $ : . 1 i g _
P+ (%) = "‘q—og* 7 (% — s di + 5 s (™. (82.5)

Thus the dissipated power is the sum of two portions (§30): the rate at which
the extra stress v less the elastic stress s does work of deformation, and the rate
at which the elastic stress s does work of relaxation. By (29.1)., the right side
of (82.5) must be everywhere non-negative in any admissible motion.

We may now define particular types of bodies by specifying the vector q and
both the tensors v — s and r as functions of other variables*. We shall not dis-
cuss possibilities for q (cf. §§74-75). It is reasonable to suppose that v = v — s
represents viscous damping, so that by (59.1)

Vi — 8 = gr 9 +gT Y + gy @ di d, (82.6)

where the Gy @ are functions of T4, I1a , II1,, scalar state variables, and scalar
moduli only. Eckart suggests that the relaxation phenomena may well depend
only on s, the elastic part of the stress:’

ri(e ™) = ™8’ + 61" + G Vst (82.7)

where the Gi*® are functions of I, , II,, ITI,, scalar state variables and scalar
moduli only. Finally

s = 6% + g%, + gi¢idt;, (82.8)

where the G are of the special form (41.5). The various coefficients G are
subject to the following restrictions. (1) When put into (82.5), the expressions
(82.6), (82.8) must yield a non-negative right hand side in any admissible mo-
tion. (2) The appropriate conditions of compatibility (§22) upon r must be
satisfied.

In place of (82.8) we may write the equivalent

si" = g;(e)sij + g;(e)e‘j + g;(e)eikekj , (82.9)

4+ ECKART proposes ¢; = —«f,;, vii — g% = Niigd*  rii = Miiy sk where N =
Nitgy, Mii, = Mi‘, . Thus he considers a body of the following remarkable type: it is
thermally linear and isotropic, its viscosity and relaxation are linear but (incorrectly)
anisotropic (v. Note 1), while its elasticity is (incorrectly) non-linear (v. Note 3).

5 EckART actually proposes that r be an isotropic linear function of s.
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a form which is convenient in case the strain from the relaxed configuration be
very small (although the strain from the initial configuration may be very large),
as for a fluid exhibiting a very slight springiness. Under these conditions the
first requirement above can be satisfied in part by the linearized equations

s'; = p[Neled’; + 2use’, (82.10)
£y = —ps'; + v'; = &' + (—=p + A\la)d'; + 2uvd’;, (82.11)

where ug = 0, 3\g + 2us = 0, pv = 0, 3A\v + 2uv = 0. Note that p is the
present density (cf. §52). Now by hypothesis the quantities s';/pug are very
small, and hence it may be permissible to linearize (82.7) also:

rile™Y = (a + Ael)d’; + 2urs’;, (82.12)

where the condition 7*;(¢™")*;s"; = 0 requires that a = 0, 3\g + 2ur = 0, ugr = 0.
Eckart remarks that in experience great hydrostatic pressure effects very little
permanent set; hence in the linearized theory® we shall put 3\g + 2ug = 0,
so thatr = 0 if s = sI. Thus from (82.11)

7".1(0“1)1;' = 4PFSFR[—%106‘J' + eii]- (82.13)

The differential equations of the theory may now be obtained in two ways,
just asin classical elasticity. (1) Since e must satisfy the St. Venant compatibility
equations’ (§18) with the X* as independent variables, six partial differential
equations each for r'y(¢™)";/4pugur and for s* i/ p, analogous to the Beltrami-Michell
equations®, may be derived; and since the d'; must satisfy the St. Venant equa-
tions with respect to the &, six similar partial differential equations for ¢'; —
st; + pd'; may be derived. To these must be added Cauchy’s equations (26.2).
Just as in classical elasticity, in this way we obtain an over-determined system.
(2) From the definitions of e and d both (82.11) and (82.13) may be expressed
in terms of the z*, and &' ;, so that the compatibility conditions are automati-
cally satisfied. The z°, may be expressed in terms of the X% ;. Putting (82.11)
into (26.2), yields three equations; putting (82.12) into (22.3) yields six equa-
tions. Thus nine equations for the six unknowns z* and X* are obtained. While
in the classical theory of elasticity the analogous procedure yields a determinate
system, in the present theory an over-determined system results again.

There is nothing new in the superposition of elastic and fluid properties,
which is simply that of the Meyer-Voigt material (§81) extended to the case
of finite deformations; in this respect Duhem’s treatment is both correct and
more thorough. The novel and valuable feature of Eckart’s theory is that it

¢ EckART apparently concludes that the mere absence of the thermodynamic pressure
from the expression resulting from substitution of (82.12) into (22.3) is sufficient to repre-
sent this effect.

7 We assume here that the displacement gradients z°,;, are also infinitesimal (§19).

s [1892, 5] [1900, 4, pp. 111-114] [1927, 8, §§92-931.
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specifies the relaxation of the reference configuration.® Perhaps (82.7) is not
the best possible hypothesis, but in any case it is a first step toward a concrete
theory of relaxation based upon thermodynamic principles.

The relaxation moduli such as ug are of the dimension of reciprocal viscosity.
Thus among the similarity parameters of this theory are upuv and pug/duv ,
where d is a characteristic rate of deformation or of relaxation or reciprocal of
a time.

The only examples Eckart!® gives concern infinitesimal motions, where in
the usual manner all differential equations are linearized and all coefficients
reduced to constants. He defines a “relaxation time” as the period of a plane
wave whose phase velocity vanishes, indicates that his anelastic media have
many relaxation times, and studies how these may arise in various types of
waves. The value of his results is lessened by his neglect of thermal phenomena,
while it was shown by Kirchhoff" that for a perfect gas even when relaxation
is neglected the effects of viscosity and of heat conduction are of the same order
of magnitude.

® Thus it is quite different from the semi-empirical and purely static theory of REINER
(§§45-46), in which the relaxed configuration (i.e. the final state of the body) must be known
before a problem can be solved.

10 1948, 14, §5] [1948, 15].

11 (1868, 1].
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Chapter VII. PROGRESS AND PROGRAM OF
THE GENERAL THEORIES

83. Progress of the general theories. Experience, in part known for a long
time and in part recently presented, exhibits a range of purely elastic or purely
fluid behavior of interest both in the science of mechanics and in its practical
applications, for whose description the classical theories are inadequate. We
have seen that these phenomena are typical of the non-linear theories, and that
a number of different theories yield qualitatively correct predictions for most
or all of the indicated phenomena. The major concrete progress is the demonstra-
tion that in the common simple shearing and torsional situations Kelvin and
Poynting effects arise: the magnitudes of these effects and of the classical subjects of
measurement are governed by independent moduli: the new effects are generally of
the second order, while departure of the classical subject of measurement from its
classical value s a third or higher order effect (§§10, 42, 45, 71, 72).

Further, Rivlin (§§42, 72) has actually given general solutions, both in the
natural state theory of isotropically elastic incompressible bodies and in the Reiner-
Rivlen theory of incompressible fluids, corresponding to the tests generally employed
for simple elastic and fluid measurements. He has conducted also a number of
experiments on very large strain of rubber, obtaining in every case full confirma-
tion of the predictions of the theory.

The theory of isotropic functions (Chapter II) offers simple and convenient
tools for the discussion of any general theory in an important special case. The
infinitesimal theory of elasticity has been generalized in three ways. Green’s
method of strain energy leads to the classical natural state theory (Chapter IVA),
where several equivalent forms of general non-linear stress-strain relations in
terms of strains measured from a certain preferred state of the body are derived.
Cauchy’s method of stress-strain relations in its broadest form leads to the more
general but less convincing semi-empirical theory of Reiner (Chapter IVB),
where the stress is assumed to be a function of the strain from whatever con-
figuration the body would assume if the deforming forces were removed. If the
classical linear relations be supposed to apply strictly to material rates, the
simplest form of the Jaumann-Murnaghan rate of deformation theory (Chapter
IVD) results. The classical theory of viscous compressible fluids is generalized
by precise specification of the manner in which energy is dissipated, and by the
dimensional moduli which occur. In the theory of the Stokesian fluid (Chapter
VB) no modulus of the dimension of time is allowed, and the resulting higher
order terms are appropriate to the description of phenonema at low pressures.
The Mazwellian fluid (Chapter VD) is a generalization of the Stokesian fluid in
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which thermal gradients, pressure gradients, ete. give rise to stresses even in a
fluid suffering no deformation, and thus is intended to represent phenomena
occurring in rarefied gases. The Reiner-Rivlin fluid (Chapter VC) possesses a
natural time, and its higher order terms are appropriate to phenomena in which
the rate of deformation or vorticity approaches the reciprocal of this time. In
In Eckart’s anelastic material (§82) the stress is composed of two parts, one being
that arising from a strain energy and the other being of a viscous type; the for-
mer is specified in terms of strain from a varying relaxed state, whose rate of
change depends upon the present stress.

In logical development and presentation there is much difference between the
various theories. The classical natural state of theory of elasticity may serve
as a model of clarity and completeness, except for its defective thermodynamical
foundation. Owing to a great variety of awkward notations, as well as a few
misconceptions, the literature of this subject is deplorably repetitious;
apparently the various authors have been unwilling to devote the pains neces-
sary to follow the elaborate and lengthy analyses of their predecessors, preferring
instead to plague posterity with yet another long list of special symbols in the
derivation of results which if expressed in a general notation would immediately
be seen to be equivalent to others already known (cf. §§39-41). While an author
easily remembers his own notations, however ill chosen, some sort of uniformity
is helpful to the reader, and here as in all the general theories fensor notation
is not merely an abbreviation but a real conceptual aid.

84. Program of future research.! A. The natural state theory of elasticity (Chap-
ter IVA). The general theory is complete except for an adequate treatment of
thermoelastic effects. For the technically important case of infinitesimal strain
but large rotations (§49), various proposed approximations should yield equiva-
lent results, but Seth’s formulation seems most convenient for solution of spe-
cial examples. Rivlin has shown what can be done when the strain is large, but
his results are almost completely limited to incompressible bodies. Perhaps
some further solutions, say for torsion of an elliptic cylinder, bending of a cir-
cular cylinder, and a half plane or sphere subject to concentrated force, might
reveal new phenomena. Some clear examples showing the effect of compressi-
bility should be obtained. In any case further work in elasticity should concen-
trate upon the fully general theory, leaving the form of the strain energy arbi-
trary.

B. Dynamic elasticity. Results predicted from the natural state theory of
elasticity for bodies in motion are not realistic when internal damping
is neglected. While numerous more or less plausible theories of solid bodies en-
dowed with viscosity exist (§81), none simple enough to yield solutions gives
results in agreement with experiment. A wholly new theory, physically adequate
and yet mathematically tractable, is most instantly needed.

1 Fuller proposals for both the experiment and theory are given in {1952, 2].
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C. The Jaumann-Murnaghan rate of deformation theory (Chapter IVC). This
theory offers a natural approach to problems of large initial stress. The ener-
getics should be worked out in detail. Some special problems should be solved
in as exact a fashion as possible and compared with the results of experiment—
preferably not by curve-fitting, but with formulae using the classical coefficients
of elasticity.

D. Theories of fluid dynamics (Chapter V). Here there is one great hindrance
to future progress: lack of proper boundary conditions (§79). In a fluid it is natural
to expect the boundary conditions to be at least partially kinematical. Thus for
example Rivlin in giving a general solution for flow in a pipe (§72B) tacitly
assumes that the fluid adheres to the walls without slipping. Since the differen-
tial equations for &° increase in degree with the degree of approximation adopted
for the stress formulae, we should expect Rivlin’s solution to be only one of
several satisfying the same boundary condition. In the case of the Maxwellian
fluid the situation is still more complicated because not only the degree but also
the order of the differential equations may be arbitrarily high.

E. Eckart’s theory of anelasticity (§82). Eckart’s notion of specifying the re-
laxation of the material by specifying the functional dependence of the reference
rate tensor r is promising. While the energetics of the theory are fairly clear, no
illustration of its dynamical aspects has been given, except for some dubious
linearizations. Here as in the rate of deformation theory an exact treatment of
simple extension, simple shear, simple torsion, etc., perhaps in the special cases
of fluids with slight elasticity of shape or solids with slight viscosity, should be
the next objective.

¥. Connection- with plasticity. Some of the general theories presented here
represent some aspects of plasticity. It should be possible to study plastic ma-
terials with corresponding generality, and corresponding emphasis upon essen-
tial non-linear phenomena.

G. Reacting media. The framework of §§25, 32 may serve as a foundation for
the theory of deformation of media in which chemical reactions take place. I
have not been able to examine Jaumann and Lohr’s treatments of the subject
with the attention they deserve.

H. Use of structure theories in conjunction with continuum methods. An example
of the use of a structure theory to suggest a special form of a continuum theory
may be found in the recent investigations of rubber (§54), leading to Rivlin’s
neo-Hookean material. In this case the only purpose actually served by the
structure theory was to call attention to the simplest possible exact continuum
theory—a theory so simple that apparently no one had thought of investigating
it, and one which turned out moreover to be insufficient. In general, the extreme
idealization of the molecular theories severely limits their value for the quantita-
tive prediction of gross phenomena (cf. e.g. §76). Their chief advantage lies
in their yielding specific values for the various moduli, which in a continuum
theory must be experimentally determined—but to obtain these values still
further idealizations are necessary, so that the results are often at variance with
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experiment except for the simplest substances, and should be used only in case
no experimental value is available. In the study of gross phenomena the struc-
ture theories might possibly be useful as priming to suggest the variables suit-
able for a proper continuum analysis.

1. Methods of solution in general. All solutions of special problems in the general
theories given so far have been obtained by purely inverse methods. As in other
branches of the mechanics of continua, it is likely that many valuable and in-
formative results can be obtained by semi-inverse methods, in which some bound-
ary conditions are prescribed, while others are replaced by some geometrical
or kinematical property”’.

J. Comparison of results with experiment. The non-linear theories offer the
temptation of a large number of empirical moduli, by which the results of almost
any single experiment can be fitted. This temptation should be resisted, and a
new term should be retained in the equations only when it is positively demon-
strated to yield a new effect not present in the classical theories but significant
in the experiment. The introduction of “apparent” moduli, depending on the
motion as well as the material, while common in engineering practice, is con-
fusing and useless; moduli should be absolute constants, or functions of the
thermodynamic state only.

K. Decisive experimental tests. Rigorous solutions of the equations of all the
proposed theories for simple cases, particularly in shearing, torsion, combined
torsion and extension, etc., should be calculated and put side by side®, and then
carefully compared with experiments on various materials, particular attention
being paid to the Poynting effect. Response of the material in these cases is
a more significant test for the non-linear theories than for the classical theories
because even though one-dimensional in one of the tensors these situations are
two-dimensional or three-dimensional in another (§10).

2 A stimulating survey is given by NEmfnyr [1951, 6]. Note added at press time: semi-
inverse methods have just been successfully applied to the problem of moderate twist of
an incompressible cylinder by GrReeN & SuieLp [1951, 15].

3 Such a comparison for some of the approximate theories of elasticity is unsuccessfully
attempted by SETH [1950, 18, §§5-13]; cf. [1951, 14].



ELASTICITY AND FLUID DYNAMICS 263

References

This list, not attempting to be a complete bibliography of the subject, contains only
those references actually cited in this memoir. Page references in the text are understood
to refer to the author’s collected works, if such exist.

1676 1. R. Hookr, A Description of Helioscopes, and some Other Instruments, London=

R. T. GunTHER, Early Science in Oxford, 8, 119-152 (1931).

1678 1. R. HookeE, Lectures de Potentia Restitutiva, or of Spring Ezxplaining the Power of

1687

1743

1745

1752
1757

1762

1763

1769

1770

1783

1788
1821

1822

1823

Springing Bodies, London=R. T. GUNTHER, Early Science in Ozford, 8, 331-356
(1931).

. I. NEwToN, Philosophiae Naturalis Principia Mathematica, London; 3rd ed., ed.

H. PeMBERTON, London, 1726; repr. Glasgow (1871); trans. A. MorTe, Sir
Isaac Newton’s Mathematical Principles of Natural Philosophy and his System of
the World, London (1729); revised ed., Berkeley (1934).

. A. C. CraIrAaUT, Théorie de la Figure de la Terre, Tirée des Principes de I’ Hydro-

statique, Paris; 2nd ed. (1808); trans. ed. Ph. E. B. JourpAIN & A. v. OETTINGEN,
Theorie der Erdgestalt nach Gesetzen der Hydrostatik, Ostwald’s Klass. 189 (1913).

. L. EuLER, Neue Grundsdtze der Artillerie, aus dem Englischen des Herrn Benjamin

Robins ibersetzt und mit vielen Anmerkungen versehen, Berlin=0pera (2) 14.

. J. L. D’ ALEMBERT, Essat d’une Nouvelle Théorie de la Resistance des Fluides, Paris.
. L. EULER, Principes généraux de Uétat d’équilibre des fluides, Hist. Acad. Berlin

1766, 217-273.

. L. EvLER, Principes généraux du mouvement des fluides, Hist. Acad. Berlin 1755,

274-315.

. L. EuLer, Lettre de M. Euler &4 M. de La Grange, Recherches sur la propagation

des ébranlemens dans une miliew élastique, Mise. Taur. 22 (1760-1761), 1-10 =
Opera (2) 10, 255-263 = Oeuvres de Lagrange 14, 178-188.

. J.-L. LAGRANGE, Application de la méthode exposée dans le mémoire précedent d la

solution de différens probléemes de dynamique, Misc. Taur. 22 (1760-1761), 196~
298 = Qeuvres 1, 365-468.

. R. J. BoscovicH, Theoria Philosophiae Naturalis Redacta ad Unicam Legem Virium

in Natura Existentium, revised ed., Venice; trans. J. M. CHiLp, A Theory of
Natural Philosophy, Chicago and London (1922). (1st ed., 1758).

. L. EvLER, Sectio prima de statu aequilibrii fluidorum, Novi Comm. Petrop. 138

(1768), 305-416.

. L. EULER, Sectio secunda de-principiis motus fluidorum, Novi Comm. Petrop. 14

(1769), 270-386.

. J.-L. LAGRANGE, Mémoire sur la théorie du mouvement des fluides, Nouv. Mém.

Acad. Berlin 1781, 151-198 = Oeuvres 4, 695-748.

. J.-L. LAGRANGE, Mechanique Analitique, Paris; Oeuvres 11, 12, are the 5th ed.
. C.-L.-M.-H. NavVIER, Sur les lois des mouvements des fluides, en ayant égard &

Uadhésion des molécules, Ann. de Chimie 19, 244-260.

. J. FouriEr, Théorie Analytique de la Chaleur, Paris = QOeuvres 1.
. C.-L.-M.-H. NAVIER, Sur les lots du mouvement des fluides, en ayant égard & ’ad-

hésion de leurs molécules, Bull. Soc. Philomath., 75-59.

. A.-L. Cavcny, Recherches sur ’équilibre et le mouvement intérieur des corps solides

ou fluides, élastiques ou non élastiques, Bull. Soc. Philomath., 9-13.



264

1824

1825

1827

1828

1829

1830

1831

1832

1833

1834

C. TRUESDELL

2. C.-L.-M.-H. NAvIER, Sur les lois de I’équilibre et du mouvement des corps solides
élastiques (1821), Bull. Soc. Philomath., 177-181. (Abstract of [1827, 5).)

1! S. Carnor, Reflexions sur la Puissance Motrice du Feu et sur les Machines Propres
& Développer cette Puissance, Paris = Ann. Ecole Normale (2) 1, 393-457 (1872).
See [1878, 2].

1. C.-L.-M..-H. NAVIER, Mémoire sur les lois du mouvement des fluides, en ayant
égard & adhésion des molécules (1822), Bull. Soc. Philomath., 49-52. (Abstract
of (1827, 41.)

1. A.-L. CavucHy, De la pression ou tension dans un corps solide, Ex. de Math. 2 =
Oeuvres (2) 7, 60-78.

la. A.-L. CavcHy, Addition & Darticle précédent, Ex. de Math. 2 = QOeuvres (2) 7,
79-81.

2. A.-L. Cavcuy, Sur la condensation et la dilatation des corps solides, Ex. de Math.
2 = Qeuvres (2) 7, 82-83.

3. A.-L. Cavuchy, Sur les relations qui existent dans Iétat d’équilibre d’un corps solide
ou fluide, entre les pressions ou tensions et les forces accelératrices, Ex. de Math.
2 = Qeuvres (2) T, 141-145,

4. C.-L.-M.-H. NAVIER, Mémoire sur les lois du mouvement des fluides (1822), Mém.
Acad. Sci. Inst. France (2) 6, 289-440.

5. C.-L.-M.-H. NavVIER, Mémoire sur les lois de 'équilibre et du mouvement des corps
solides élastiques (1821), Mém. Acad. Sci. Inst. France (2) T, 375-393.

6. A.-L. Caucny, Théorie de la propagation des ondes & la surface d'un fluide pésant
d’une praofondeur tndéfinie (1815), Mem. Divers Savants (2) 1 (1816), 3-312 =
Oecuvres (1), 5-318.

1. A.-L. Cavucny, Sur les équations qui expriment les conditions d’équilibre ou les lois
du mouvement intérieur d’un corps solide, élastique ou non élastique, Ex. de Math.
8 = Oecuwres (2) 8, 195-226.

2. A.-L. CavucHuy, Sur Déquilibre et le mouvement d’un systéme de points matériels
sollicités par des forces d’attraction ou de répulsion mutuelles, Ex. de Math.
8 = Qeuvres (2) 8, 227-252.

3. A.-L. Cavucny, De la pression ou tension dans un systéme de points matériels, Ex.
de Math. 3 = Oeuvres (2) 8, 253-277.

1. A.-L. CaucHy, Sur l’équilibre et le mouvement intérieur des corps considérés comme
des masses continues, Ex. de Math. 4 = Oeuvres (2) 9, 342-369.

2. A.-L. CavucHy, Sur les équations différentielles d’équilibre ou de mouvement pour un
systéme de poinls matériels sollicités par de forces d’attraction ou de répulsion
mutuelle, Ex. de Math. 4 = Oeuvres (2) 9, 162-173.

3. 8.-D. PoissoN, Mémoire sur U’équilibre et le mouvement des corps élastiques (1828),
Mém. Acad. Sci. Inst. France (2) 8, 357-570.

1. A.-L. Caucuy, Sur les diverses méthodes & l’aide desquelles on peut établir
les équations qui représentent les lois d’équilibre, ou le mouvement intérieur des
corps solides ou fluides, Bull. Sci. Math. Soc. Prop. Conn. 13, 169-176.

1. S.-D. PorissoN, Mémoire sur les équations générales de U'équilibre et du mouvement
des corps solides élastiques et des fluides (1829), J. BEcole Poly. 13, cahier 20,
1-174.

1. J.-M.-C. DuHAMEL, Mémoire sur les équations générales de la propagation de la
chaleur dans les corps solides dont la conductibilité n’est pas la méme dang tous les
sens (1828), J. Fcole Poly. 183, cahier 21, 356-399.

1. J. FOURIER, Sur le mouvement de la chaleur dans les fluides, Mém. Acad. Sci. Inst.
France (2) 12, 507-530 = Oeuvres 2, 595-614.

1. E. CLAPEYRON, Mémoire sur la puissance motrice de la chaleur, J. Ecole Poly. 14,
cahier 23, 153-190.



1837

1838

1839

1841

1842

1843

1844

1845

1847

1848

1849

ELASTICITY AND FLUID DYNAMICS 265

. F. MoHR, Ansichlen uber die Natur der Warme, Ann. der Pharm. 24, 141-147 =

trans. P. G. Tarr, Views of the nature of heat, Phil. Mag. (5) 2 (1876), 110-114.

. J.-M..-C. DUuHAMEL, Mémoire sur le calcul des actions moléculaires développées par

les changements de temperature dans les corps solides, Mem. Divers Savants (2)
5, 440-485.

. G. GREEN, On the laws of refexion and refraction of light at the common surface of

two non-crystallized media (1837), Trans. Cambr. Phil. Soc. 7 (1839-1842), 1-24 =
Papers, 245-269.

. M. SecuIN, De U'Influence des Chemins de Fer et de I’Art de les Tracer et de les

Construire, Paris.

. A.-L. CavucHY, Mémoire sur les dilatations, les condensations et les rotations produits

par un changement de forme dans un systéme de points matériels, Ex. d’An. Phys.
Math. 2 = Oeuvres (2) 12, 343-377.

. G. GREEN, On the propagation of light in crystallized media (1839), Trans. Cambr.

Phil. Soc. 7 (1839-1842), 121-140 = Papers, 203-311.

. J. R. MaYER, Bemerkungen iber die Kréfte der unbelebten Natur, Ann. der Chemie

61, 233-240 = pp. 3-12 of J. R. MAYER, Die Mechanik der Wérme, Stuttgart
(1867) = [1929, 8, pp. 35-42]; trans. G. C. FosTER, Remarks on the forces of
inorganic nature, Phil. Mag. (4) 24, 371-377 (1862); trans. G. SarTON, [1929 8,
pp. 27-33]; trans. W. F. MagG1e, A Source Book in Physics, N. Y. & London,
1934, pp. 197-203.

. 8.-D. PoissoN, Mémotre sur I’équilibre et le mouvement des corps cristallisés (1839),

Mém. Acad. Sei. Inst. France (2) 18, 1-152.

. A.-J.-C. B. oE S1. VENANT, Note & joindre au mémoire sur la dynamique des fluides,

présenté le 14 Avril 1834, C. R. Acad. Sci. Paris 17, 1240-1243.

. J. P. JoULE, On the caloric effects of magneto-electricity, and on the mechanical value

of heat, Phil. Mag. (3) 28, 263-276, 347-355, 435-443 = Papers 1, 123-159. (Abstract
in Rep. Brit. Assn. 1843, 33 = [1929, 8, p. 43]).

. F. E. NEUMANN, Die Gesetze der Doppelbrechung des Lichts in comprimirten oder

ungleichformig erwdrmien unkrystallinischen Korpern, Abh. K. Akad. Wiss.
Berlin, Jahr 1841, Part 2, 1-254.

. A.-J.-B. pE St. VENANT, Sur les pressions qui se développent & U'intérieur des corps

solides lorsque les déplacements de leurs points, sans alterer ’élasticité, ne peuvent
cependant pas étre considérés comme trés-petits, Bull. Soc. Philomath. 6, 26-28.

. G. G. STokES, On the theories of the internal friction of fluids in motion, and of the

equilibrium and motion of elastic solids, Trans. Cambr. Phil. Soc. 8 (1844-1849),
287-319 = Papers 1, 75-129.

. J. P. JoULE, On the changes of temperature produced by rarefaction and condensation

of air (1844), Phil. Mag. (3) 26, 369-383 = Papers 1, 171-189.

. J. P. JoULE, On the existence of an equivalent relation between heat and the ordinary

forms of mechanical power, Phil. Mag. (3) 27, 205-207 = Papers 1, 202-205.

. A.-J. C. B. pE Sr. VENANT, Mémotire sur équilibre des corps solides, dans les

limites de leur élasticité, et sur les conditions de leur résistance, quand lés déplace-
ments ne sont pas trés-petits, C. R. Acad. Sci. Paris 24, 260-263.

. J. P. JouLs, On malter, living forces, and heat, Manchester Courier, May 5 & 12 =

Papers 1, 265-276 = pp. 385-390 of E. C. WaTsoN, Joule’s only general exposition
of the principle of conservation of energy, Am. J. Phys. 16, 383-390 (1947).

. J. MacCuLLAGH, An essay toward a dynamical theory of crystalline reflexion and

refraction (1839), Trans. R. Irish Acad. Sci. 21, 17-50 = Works, 145-184.

. W. TaoMsoN (KELVIN), An account of Carnot’s theory of the motive power of heat;

with numerical results deduced from Regnault’s experiments on steam, Trans. R.
Soc. Edinb. 16, 541-574 = Ann. de Chimie 86, 248-255 (1852) = Papers 1, 113—
155.



266 C. TRUESDELL

1850 1. G. KircHHOFF, Ueber das Gleichgewicht und die Bewegung einer elastischen Scheibe,
J. Reine Angew. Math. 40, 51-88 = Ges. Abh., 237-279.

2. R. Crausius, Ueber die bewegende Kraft der Warme und die Geselze, welche sich
daraus fur die Warmelehre selbst ableiten lassen, Ann. der Phys. (3) 19, 368-398,
500-524 = Abh.1, 16-78; trans. On the moving force of heat, and the laws regarding
the nature of heat itself which are deducible therefrom, Phil. Mag. (4) 2 (1851),
1-21, 102-119; trans. W. F. MaGIE, On the motive power of heat, and on the laws
which can be deduced from it for the theory of heat, pp. 65-107 of The Second Law
of Thermodynamics, N. Y. & London (1899).

1851 1. G. G. StoxkEs, On the effect of the internal friction of fluids on the motion of pendu-
lums (1850), Trans. Cambr. Phil. Soc. 92, 8-106 = (with added notes) Papers 3,
1-141.

1852 1. G. KircuHorr, Ueber die Gleichungen des Gleichgewichts eines elastischen Kérpers
bet nicht unendlich kleinen Verschiebungen seiner Theile, Akad. Wiss. Wien
Sitzungsber. 9, 762-773. (Not repr. in Abh.)

1853 1. J. C. MAXWELL, On the equilibrium of elastic solids (1850), Trans. R. Soc. Edinb.
20, 87-120 = Papers 1, 30-73.

2. W. J. M. RANKINB, On the mechanical action of heat I-V (1850-1851), Trans. R.
Soc. Edinb. 20, 147-210.

3. W. TromsoN (KELVIN), On the dynamical theory of heat I-V (1851), Trans. R. Soc.
Edinb. 20, 261-293, 475-483 = Phil. Mag. (4) 4 (1852), 8-20, 105-117, 168-176,
424-434, 9 (1855), 523-531 = Papers 1, 174-232. Pts. I-III = pp. 111-146 of The
Second Law of Thermodynamics, ed. W. F, MaGIE, N. Y. & London (1899).

1854 1. R. Craustus, Ueber eine verdnderte Form des zweiten Hauptsatzes der mechanischen
Wirmetheorie, Ann. der Phys. 93 (1854), 481-506 = Abh. 1, 126-154.

1855 1. W. TuomsoN (KELVIN), On the thermo-elastic and thermo-magnetic properties of
matter, Q. J. Math. 1 (1855-1857), 55-77 = (with notes and additions) Phil.
Mag. (5) 6 (1878), 4-27 = Pt. VII of On the dynamical theory of heat, Papers 1,
291-316.

1856 1. W. Tuomson (KELVIN), Elements of a mathematical theory of elasticity, Phil.
Trans. R. Soc. London (A) 146, 481-498. (See [1877, 1].)

2. W.J. M. RANKINE, On azxes of elasticity and crystalline forms, Phil. Trans. R. Soc.
London 146, 261-285.

1857 1. A. CrLeBscH, Uber eine allgemeine Transformation der hydrodynamischen Gleich-
ungen, J. Reine Angew. Math. 54, 293-312.

1859 1. G. Kircunorr, Ueber das Gleichgewicht und die Bewegung eines unendlich dinnen
elastischen Stabes, J. Reine Angew. Math. 66, 285-313 = Ges. Abh., 285-316.

1860 1. C. NEUMANN, Zur Theorie der Elasticitdt, J. Reine Angew. Math. 57, 281-318.

1862 1. R. Crausius, Ueber die Anwendung des Satzes von der Aequivalenz der Verwand-
lungen auf die innere Arbeit, Viertelj. Nat. Ges. Ziirich 7, 48- = Ann. der Phys.
116, 73-112 = Abh. 1, 242-279.

1863 1. W. Tuomson (KELVIN), Dynamical problems regarding elastic spheroidal shells
and spheroids of incompresstble liquid, Phil. Trans. R. Soc. London (A) 163,
583-616 = Papers 3, 351-394.

2. A.-J.-C. B. pE St. VENANT, Mémoire sur la distribution des élasticités autour de
chaque point d’un solide ou d’un miliew de contexture quelconque, particuliére-
ment lorsqu'il est amorphe sans étre isotrope, J. Math. Pures Appl. (2) 8, 257-295,
353-430.

1864 1. A.-J.-C. B. pE St. VENANT, Etablissement élémentaire des formules et équations
générales de la théorie de Vélasticité des corps solides, appendix in Résumé des
Lecons données o I’Ecole des Ponts et Chaussées sur I’ Application de la Mécanique,
premiére partie, premiére section, De la Résistance des Corps Solides, par. C.-L.-
M.-H. Navier, 3rd ed., Paris.



1865

1866

1867

1868

1869

1870

1871

2.

1

1.

ELASTICITY AND FLUID DYNAMICS 267

J. P. JouLE, Note on the history of the dynamical theory of heat, Phil. Mag. (4) 28,
150-151.

R. Crausius, Ueber verschiedene fir die Anwendung bequeme Formen der Haupt-
gleichungen der mechanischen Wirmetheorie, Viertelj. Nat. Ges. Ziirich 10,
1- = Ann. der Phys. 126, 353-400 = Abh. 2, 1-44.

W. TuomsoNn (KELVIN), On the elasticity and viscosity of metals, Proc. R. Soc.
London 14, 289-297. (See [1877,1].)

. O.-E. MEvYER, Ueber die innere Reibung der Gase, Ann. der Phys. (5) 6 = 126,

177-209, 401-420, 564-599.

. E. VErDET, Introduction, Ocuvres de Fresnel, 1, IX-XCIX.
. J. C. MAXWELL, On the viscosity or internal friction of air and other gases (1865),

Phil. Trans. R. Soc. London (A) 1566, 249-268 = Papers 2, 1-25.

. M. KvrErrz, Sur les forces moléculaires dans les liquides en mouvement avec appli-

cation & hydrodynamique, C. R. Acad. Sci. Paris 63, 988-991.

. J. StEFAN, Uber den Einfluss der inneren Reibung in der Luft auf die Schallbewegung,

Sitzungsber. Akad. Wiss. Wien 682, 529-537.

. W. Taomson (KeLvIN) AND P. G. Tarr, Treatlise on Natural Philosophy, Part I,

Cambridge. (See [1879, 4], [1883, 1].)

. J. C. MAXWELL, On the dynamical theory of gases (1866), Phil. Trans. R. Soc.

London (A) 1567, 49-88 = Phil. Mag. (4) 356 (1868), 129-145, 185-217 = Papers 2,
26-78.

. M. Levy, Théorie d’un courant liquide & filets rectilignes et paralléles de forme

transversale quelconque. Application aux tuyauz de conduite, Ann. Ponts Chauss.
(4) 13, 237-319.

. G. KircuHOFF, Ueber den Einfluss der Warmeleitung in einem Gase auf die Schall-

bewegung, Ann. der Phys. 134, 177-193 = Ges. Abh. 1, 540-556.

. J. BoussINEsQ, Sur Uinfluence des frottements dans les mouvements reguliéres des

Sfluids, J. Math. Pures Appl. (2) 18, 377-438.

. P. G. Tarr, Sketch of Thermodynamics, London.
. A.-J.-C. B. pE St. VENANT, Note sur les valeurs que prennent les pressions dans un

solide élastique isotrope lorsque 'on tient compte des dérivées d’ordre supérieur des
déplacements trés-petits que leurs points ont éprouvés, C. R. Acad. Sci. Paris 68,
569-571.

. Rapport sur un mémoire de M. Maurice Levy, relatif & I’hydrodynamique des liquides

homogenes, particuliérement & leur écoulement rectiligne et permament (St.
Venant), C. R. Acad. Sci. Paris 68, 582-592.

. F. Massiev, Sur les fonctions caractéristiques des divers fluides, C. R. Acad. Sci.

Paris 69, 858-862.

. F. Massieu, Addition au précédent mémoire sur les fonctions caractéristiques,

C. R. Acad. Sci. Paris 69, 1057-1061.

. J. BoussINEsQ, Note complémentaire au mémoire sur les ondes liquides periodiques,

présenté le 29 novembre 1869, et approuvé par I’Académie le 21 fevrier 1870.—
Etablissement de relations générales et nouvelles entre Pénergie interne d’un corps
Jluide ou solide, et ses pressions ou forces élastiques, C. R. Acad. Sci. Paris 71,
400-402,

E. Beurrami, Sui principi fondamentali della idrodinamica, Mem. Acc. Sci.
Bologna (3) 1, 431-476, 2 (1872), 381437, 3 (1873), 349-407, 5 (1874), 443484 =
Ricerche sulla cinematica det fluidi, Opere 2, 202-379.

. A.-J.-C. B. pE St. VENANT, Formules des augmentations que de petites déformations

d’un solide apportent auz pressions ou forces élastiques, supposées considérables,
qut déja étaient en jeu dans son intérieur.—Complément et modification du pré-
ambule du mémoire: Distribution des élasticités autour de chague point, etc., qui



268

1872

1873

1874

1875

1876

1877

1878

1879

[

1

C. TRUESDELL

a été inséré en 1863 au Journal de Mathématiques, J. Math. Pures Appl. (2) 16,
275-307.

. J. C. MaxweLL, Theory of Heat, London.

. J. BoussiNesq, Btude nouvelle sur Uéquilibre et le mouvement des corps solides
élastiques dont certaines dimensions sont trés-petites par rapport & d’autres,
Premier Mémoire, J. Math. Pures Appl. (2) 16, 125-240.

. J. StEraN, Uber das Gleichgewicht und die Bewegung, insbesondere die Diffusion
von Gasmengen, Sitzungsber. Akad. Wiss. Wien 632, 63-124.

. J. BoussINEsQ, Théorie des ondes liquides périodigues (1869), Mém. Divers Savants
20, 509-615.

. Rapport sur un mémoire de M. Kleitz intitulé: “Btudes sur les forces moléculaires
dans les liquides en mouvement, et application & ’hydrodynamique’ (St. VENANT),
C. R. Acad. Sci. Paris 74, 426-438.

. J. W. GiBss, Graphical methods in the thermodynamics of fluids, Trans. Conn.
Acad. 2, 309-342 = Works 1, 1-32.

. J. W. GiBBs, A method of geometrical representation of the thermodynamsic properties
of substances by means of surfaces, Trans. Conn. Acad. 2, 382-404 = Works 1,
33-54.

. J. C. MaxweLL, A Treatise on Electricity and Magnetism, 2 vols., Oxford; 2nd ed.
(1881), 3rd ed. (1892).

. J. W. Strurr (RAYLEIGH), Some general theorems relating to vibrations, Proc.
Lond. Math. Soc. 4 (1871-1873), 357-368 = Papers 1, 170-181.

. J. C. MaxwELL, On double refraction in a viscous fluid in motion, Proc. R. Soc.
London 22, 46-47 = Papers 2, 379-380.

. O.-E. MEYER, Zur Theorie der inneren Reibung, J. Reine Angew. Math. 78, 130-135.

. O.-E. MEYER, Theorie der elastischen Nachwirkung, Ann. der Phys. (6) 1, 108-119.

. J. W. GiBBs, On the equilibrium of heterogeneous substances, Trans. Conn. Acad.
38 (1875-1878), 108-248, 343-524 = Works 1, 55-353.

. O.-E. MEYER, Zusatz zu der Abhandlung zur Theorie der inneren Reibung, J. Reine
Angew. Math. 80, 315-316.

. P. G. Tarr, Recent Advances in Physical Science, London; 1st and 2nd eds.

. J. G. BurcHER, On viscous fluids in motion, Proc. Lond. Math. Soc. 8, (1876-1877),
103-135.

. G. KircHHOFF, Vorlesungen tiber mathematische Physik: Mechanik, Leipzig; 2nd
ed., 1877; 3rd ed., 1883.

. W. Tromson (KELVIN), art. Elasticity, Ency. Britt., 9th ed. = (with revisions)
Papers 8, 1-112. The first part is a revision of [1865, 2]; the second part, a re-
vision of [1856, 1].

. E.J. Nanson, Note on hydrodynamics, Mess. Math. 7 (for 1877-1878), 182-183.

. Reprint of [1824, 1], with the addition of MS notes of CaArNOT (1824-1832) Paris;
trans. R. H. THURSTON, Reflections on the Motive Power of Heat, New York
(1890) ; new ed., New York (1943); trans. W. F. MaGIE, pp. 2-60 of The Second
Law of Thermodynamics, N. Y. & London (1899). The most important portions
of the MS notes = [1929, 8, pp. 33-34, 44].

. J. C. MAXWELL, On stresses in rarified gases arising from inequalities of tempera-
ture (1878), Phil. Trans. R. Soc. London 170, 231-256 = Papers 2, 680-702.

. O. ReynNoLps, On certain dimensional properties of matter in the gaseous state,
Phil. Trans. R. Soc. London 170, 727-845 = Papers 1, 257-383.

. N. ScHILLER, Nekotonyia prilozheniva mekhanicheskoi teorii tepla k izmeneniu
sostoyaniya uprugago tela, Zh. Rus. Fiz.-Khim. Ob. 16 (Phys. Part), 55-77.

. 2nd ed. of 1st half of [1867, 1].



1880

1881

1882

1883
1885

1886

1887

1888

1889

1890

1891

1892

DD b=

[

ELASTICITY AND FLUID DYNAMICS 269

. M. Pranck, Uber Gleichgewichtszustinde isotroper Korper in verschiedenen T'empera-
turen, Miinchen.

. M. J. M. HiLL, Some properties of the equations of hydrodynamics, Q. J. Math. 17,
1-20, 168-174.

. J. SteFaN, Uber das Gleichgewicht eines festen elastischen Kirpers von ungleich-
formiger oder verdanderlicher Temperatur, Sitzber. Wien 832, 549-575.

. W. M. Hicks, Report on recent progress in hydrodynamics, Part I, Rep. Brit. Assn.
Adv. Sci. (1881), 57-88.

. H. HeumuOLTZ, Zur Geschichte der Entdeckung des Gesetzes von der Erhaltung der
Kraft, Abh. 1, 71-74.

. 2nd. ed. of 2nd half of {1867, 1].

. F. NEUMANN, Vorlesungen tber die Theorie der Elasticitit der festen Korper und
des Lichtdthers, Leipzig.

. O. REYNOLDS, On the dilatancy of media composed of rigid particles in contact.
With experimental tllustrations, Phil. Mag. (2) 20, 469-481 = Papers 2, 203-216.

. E. BEvtrawmr, Sull’ interpretazione meccanica delle formole di Mazwell, Mem. Acc.
Sci. Bologna (4) 7, 1-38 = Opere 4, 190-223.

. O. ReyNowLps, Experiments showing dilatancy, a property of granular material,
possibly connected with gravitation, Proc. R. Inst. Gt. Brit. 11, 354-363 = Papers
2, 217-227.

. A. B. Basser, A Treatise on Hydrodynamics, 2 vols., Cambridge.

. G. H. BRYAN, On the stability of elastic systems, Proc. Cambr. Phil. Soc. 6, 199-210.

. W. Taomson (KEeLvVIN), On Cauchy’s and Green’s doctrine of extraneous force to
explain dynamically Fresnel’s kinematics of double refraction, Phil. Mag. (5)
25, 116-128.

. W. Voiagt, Ueber die innere Reibung der festen Korper, insbesondere der Krystalle,
Gott. Abh, 36, No. 1.

. W. Voiar, Ueber adiabatische Elasticitdtsconstanten, Ann. der Phys. 36, 743-759.

. T. ScawEDOFF, Recherches expérimentales sur la cohésion des liquides, J. de Phys.
(2) 8, 341-359, 9 (1890), 34-46.

. E. BeELtrAMI, Sur la théorie de la déformation infiniment petite d’un milieu, C. R.

Acad. Sci. Paris 108, 502-504 = Opere 4, 344-347.

. H. PoINCARE, Lecons sur la Théorie Mathématique de la Lumiére, redigées par J.
Blondin, Paris.

. W. TaomsoN (KELvVIN), Motion of a viscous liquid; equilibrium or motion of an
elastic solid; equilibrium or motion of an ideal substance called for brevity ether;
mechanical representation of magnetic force, Papers 8, 436-465.

. M. BriLLovin, Déformations homogénes finies. Energie d’un corps isotrope, C. R.
Acad. Sci. Paris 112, 1500-1502.

. J. LARMOR, The equations of propagation of disturbances in gyrostatically loaded
media, and of the circular polarization of light, Proc. Lond. Math. Soc. 28 (1891~
1892), 127-135 = Papers 2, 248-255.

. W. KrLruing, Uber die Grundlagen der Geometrie, J. Reine Angew. Math. 109, 121-
186.

. W. Vorar, Ueber innere Reibung fester Korper, insbesondere der Metalle, Ann. der
Phys. (2) 47, 671-693.

. W. Voiar, Bestimmung der Constanten der Elasticitat und Untersuchung der inneren
Reibung fir einige Metalle, Gott. Abh. 38, No. 2.

. H. PoIrNcarg, Legons sur la Théorie de I’Elasticité, Paris.

. E. BELTrAMI, Osservaziont alla nota del Prof. Morera, Rend. Lincei (5) 1, 141~
142 = Opere 4, 510-512.



270

1893

1894

1895

1896
1897
1898

1900

1901

'S

[

C. TRUESDELL

. A. SoMMERFELD, Mechanische Darstellung der electromagnetischen Erschetnungen in
ruhenden Kérpern, Ann. der Phys. (2) 46, 139-151.

. W. Vorar, Ueber eine anscheinend nothwendige Erweiterung der Theorte der Elasti-
citdt, Gott. Nach., 534-552 = Ann. der Phys. (2) 52, 536-555.

. I. Topaunter & K. PEARSON, A History of the Theory of Elasticity and of the
Strength of Materials, 2, Cambridge.

. G. CELLERIER, Sur les principes générauz de la thermodynamique et leur application
auz corps élastiques, Bull. Soc. Math. France 21, 26-43.

. R. RE1FF, Elasticitdt und Elektrizitit, Freiburg & Leipzig.

. J. FINGER, Das Potential der innern Kréfte und die Beziehungen zwischen den
Deformationen und den Spannungen in elastisch isotropen Kérpern bei Beriick-
stchiigung von Gliedern, die beziiglich der Deformationselemente von dritter,
beziehungsweise zweiter Ordnung sind, Akad. Wiss. Wien Sitzungsber. (IIa) 103,
163-200, 231-250.

. J. FiNGER, Uber die allgemeinsten Beziehungen zwischen Deformationen und den
zugehorigen Spannungen in aeolotropen und isotropen Substanzen, Akad. Wiss.
Wien Sitzungsber. (IIa) 103, 1073-1100.

. W. Voier, Einige Bemerkungen zu Herrn Jos. Finger’s Abhandlung ‘““Das Potential
der inneren Krdifte etc.’”’, Akad. Wiss. Wien Sitzungsber. (ITa) 103, 1069-1072.

. C. NEUMANN, Ueber die Bewegung der Wdrme in compressiblen oder auch incom-
presstblen Flissigkeiten, Ber. Verh. Ges. Wiss. Leipzig 46, 1-24.

. J. W. StrurT (RAYLEIGH), The Theory of Sound, 2nd ed., Cambridge.

. J. LArMOR, A dynamical theory of the electric and luminiferous medium, Proc. R.
Soc. London 54, 438-461; 68, 222-228 (1895); 61, 272-285 (1897).

. W. Voiar, Ueber eine anscheinend nothwendige Erweiterung der Elasticititstheorie,
Gott. Abh. 1894, 33-43.

. W. Voiaer, Kompendium der theoretischen Physik, 1, Leipzig.

. J. LArRMOR, A dynamical theory of the electric and luminiferous medium, Phil.
Trans. R. Soc. London (A) 185, 719-822.

. E. & F. Cosserar, Sur la théorie de l’élasticité, Ann. Toulouse 10, I 1-1 116.

. R. MEnMKE, Zum Geselz der elastischen Dehnungen, Z. Math. Phys. 42, 327-338.

. M. BRILLOUIN, Théorie des déformations permanentes des métaux industriels, Ann.
de Chimie (7) 13, 377-404; 14, 311-331; 16, 447-469.

. M. SmorucuHowski, Ueber Warmeleitung in verdiinnten Gasen, Ann. der Phys. (2)

64, 101-130.

. M. BriLrLovIN, Théorie moléculaire des gaz. Diffusion du mouvement et de I’énergie,
Ann. de Chimie (7) 20, 440-485.

. T. ScawEDOFF, Die Starrheit der Flissigkeiten, Phys. Z. 1, 552-554.

. T. ScuwEpoOFF, La rigidité des liquides, Rapp. Pres. Congr. Int. Physique 1, 478~
486.

. J. H. M1TCHELL, On the direct determination of stress in an elastic solid, with appli-
cation to the theory of plates, Proc. Lond. Math. Soc. 31, 100-124.

. M. GrUBLER, Ringspannungen und Zugfestigkeit, Z. Ver. Deutscher Ing. 44,
1157-1163.

. P. DunEeMm, Recherches sur U’hydrodynamique, Ann. Toulouse (2) 8, 315-377, 379-
431; 4(1902), 101-169; 5(1903), 5-61, 197-255, 353-404 = repr. separ., Paris
(1903).

2. D. J. KorTEWEG, Sur la forme que prennent les équations du mouvement des fluides

st Pon tient compie des forces capillaires causées par des variations de densité
considérables mais continues et sur la théorie de la capillarité dans U’hypothése
d’une variation continue de la densité, Arch. Néerl. Sci. Ex. Nat. (2) 6, 1-24.

. L. Naranson, Sur les lois de la viscosité, Bull. Int. Acad. Sci. Cracovie, 95-111.



1902

1903

(=23

10

11

12

13

14

ELASTICITY AND FLUID DYNAMICS 271

. L. NaTansoN, Sur la double refraction accidentelle dans les liquides, Bull. Int.
Acad. Sci. Cracovie, 161-171.

. J. HapamaRrp, Sur la propagation des ondes, Bull. Soc. Math. France 29, 30-60.

. L. Naranson, Uber die Gesetze der inneren Reibung, Z. Phys. Chemie 38, 690-
704.

. G. Ricar & T. Levi-Crvita, Méthodes de calcul différentiel absolu et leurs applica-
tions, Math. Ann. 54, 125-137.

. O. REYNOLDS, On the equations of motion and the boundary conditions for viscous
Sfluids (1883), Papers 2, 132-137.

. G. ComBEBIAC, Sur les équations générales de l’élasticité, Bull. Soc. Math. France
30, 108-110, 242-247.

. L. Naranson, Sur la propagation d’un petit mouvement dans un fluide visqueuz,
Bull. Int. Acad. Sci. Cracovie, 19-35.

. L. NaransoN, Sur la fonction dissipative d’un fluide visqueuz, Bull. Int. Acad.
Sci. Cracovie, 488-494.

. L. NaTaNnsoN, Sur la déformation d’un disque plastico-visqueuz, Bull. Int. Acad.
Sei. Cracovie, 494-512.

. L. Naranson, Sur la conductibilité calorifique d’un gaz en mouvement, Bull. Int.
Acad. Sci. Cracovie, 137-146.

. O. MANVILLE, Sur la déformation finie d’un milieu continu, Mém Soc. Sci. Bordeaux
(6) 2, 83-162. According to SiGNoRINI [1943,1, Ch. I, 1] this paper is not exempt
from errors. '

. C. BacH, FElasticitit und Festigkeit, 4th ed., Berlin.

. J. Hapamawrp, Lecons sur la Propagation des Ondes et les Equations de I'Hydro-
dynamique, Paris.

. L. Naranson, Uber einige, von Herrn B. Weinstein zu meiner Theorie der inneren
Retbung gemachten Bemerkungen, Phys. Z. 4, 541-543.

. 8. ZAreEMBA, Remarques sur les travaux de M. Natanson rélatifs & la théorie de la
viscosité, Bull. Int. Acad. Sci. Cracovie, 85-93.

. M. SmorucHOWSKI, Sur les phénoménes aérodynamiques et les effets thermiques qui
les accompagnent, Bull. Int. Acad. Sci. Cracovie, 143-182.

. L. Naranso~N, Sur Uapplication des équations de Lagrange dans la théorie de la
viscosité, Bull. Int. Acad. Sci. Cracovie, 268-283.

. L. NaransoxN, Sur Uapproximation de certaines équations de la théorie de la vis-
cosité, Bull. Int. Acad. Sci. Cracovie, 283-311.

. S. ZAREMBA, Sur une généralisation de la théorie classique de la viscosité, Bull.

~Int. Acad. Sci. Cracovie, 380-403.

. 8. ZareMBA, Sur un probléme d’hydrodynamique lié ¢ un cas de double refraction
acctdentale dans les liquides et sur les considérations théoriques de M. Natanson
relatives & ce phénoméne, Bull. Int. Acad. Sci. Cracovie, 403-423.

. S. ZarEMBA, Sur une forme perfectionée de la théorie de la relaxation. Bull. Int.
Acad. Sci. Cracovie, 594-614.

. S. ZAREMBA, Le principe des mouvements relatifs et les équations de la mécanique
physique. Réponse & M. Natanson, Bull. Int. Acad. Sci. Cracovie, 614-621.

. P. Dunewm, Sur quelques formules de cinématique utiles dans la théorie générale de
Délasticité, C. R. Acad. Sci. Paris 136, 139-141.

. P. DunugwMm, Sur la viscosité en un milieu vitreux, C. R. Acad. Sci. Paris 136, 281-
283.

. P. Dunem, Sur les équations du mouvement et la relation supplémentaire au sein
d’un milieu vitreux, C. R. Acad. Sci. Paris 136, 343-345.

. P. DuneMm, Sur le mouvement des milieux vitreux, affectés de viscosité, et trés peu
déformés, C. R. Acad. Sci. Paris 136, 592-595.



272 C. TRUESDELL

15. P. DuneM, Sur les ondes au sein d’un milieu vitreux, affecté de viscosité et trés peu
déformé, C. R. Acad. Sci. Paris 136, 733-735.

16. P. DuneM, Des ondes du premier ordre par rapport & la vitesse au setn d’un milieu
vitreuz doué de viscosité, et affecté de mouvements finis, C. R. Acad. Sci. Paris
136, 858-860.

17. P. DusEM, Des ondes du second ordre par rapport a la vitesse au setn des milieux
vitreuz, doués de viscosité, et affectés de mouvements finis, C. R. Acad. Sci. Paris
136, 1032-1034.

18. P. DungewM, Sur la propagation des ondes dans un milieu parfaitement élastique
affecté de déformations fintes, C. R. Acad. Sci. Paris 136, 1379-1381.

19. O. ReyNoLps, The Sub-Mechanics of the Universe, Papers 8.

1904 1. P. Dunewm, Recherches sur Pélasticité, Ann. Ecole Norm. (3) 21, 99-139, 375-414;
22 (1905), 143-217; 23 (1906), 169-223 = repr. separ., Paris (1906).

2. M. T. HusBer, Die spezifische Formdnderungsarbeit als Mass der Anstrengung
eines Materials, Lemberg. (I have not been able to see this reference.)

3. Lorp KeLVIN, Baltimore lectures on molecular dynamics and the wave theory of
light (lectures of 1884, with numerous additions). London, Cambridge, and
Baltimore.

1905 1. R. MARcOLONGO, Le formule del Saint-Venant per le deformazioni finite, Rend.
Circ. Mat. Palermo 19, 151-155.

2. J. H. PoynTiNGg, Radiation-pressure, Phil. Mag. (6) 9, 393-406 = Papers 2, 335~
346.

3. C. RiqQuier, Sur l'intégration d’un systéme d’équations aux dérivées partielles
auquel conduit Vétude des déformations finies d’un milieu continu, Ann. Ecole
Norm. (3) 22, 475-538.

1906 1. E. Cesaro, Sulle formole del Volterra, fondamentali nella teoria delle distorsioni
elastiche, Rend. Ace. Napoli (3a) 12, 311-321.

1907 1. D. HiLBeRT, Mechanik der Continua, lectures of 1906-1907; MS notes by A. R.
CRATHORNE in Univ. Illinois Library.

1a. Ibid., more complete MS notes by W. MarsuaLL in Purdue Univ. Library.

2. C. H. MuLLer & A. TimpE, Die Grundgleichungen der mathematischen Elasti-
zildtstheorie, Enz. Math. Wiss. 44, 1-54.

3. A. ForrL, Vorlesungen tiber technische Mechanik, 6, Die wichtigsten Lehren der
hoheren Elastizitdtstheorie, Leipzig.

4. V. VOLTERRA, Sur 'équilibre des corps élastiqies multiplement connexes, Ann. Ecole
Norm. (3) 24, 401-517.

5. M. BriLLouiN, Legcons sur la Viscosité des Liquides et des Gaz, 2 vols., Paris.
1908 1. G. Hamer, Uber die Grundlagen der Mechanik, Math. Annalen 68, 350-397.
1909 1. E. &. F. CosseERAT, Théorie des Corps Déformables, Paris = pp. 953-1173 of O. D.

CawoLsoN, Traité de Physique, trans. E. Davaux, 2nd ed., 2, Paris (1909).

2. J. H. PoYNTING, On pressure perpendicular to the shear-planes in finite pure shears,
and on the lengthening of loaded wires when twisted, Proc. R. Soc. London(A)
82, 546-559 = Papers 2, 358-371.

. P. Lupwik, Elemente der Technologischen Mechantk, Berlin.

. C. CaraTtHtopORY, Unlersuchungen tber die Grundlagen der Thermodynamik,
Math. Annalen 67, 355-386.

. A. BriLL, Vorlesungen zur Einfihrung in die Mechanik raumerfillender Massen,
Leipzig & Berlin.

. W. Voigt, Lehrbuch der Kristallphysik, Leipzig (repr. 1928).

. H. L. CALLENDER, art. Heat, Ency. Britt., 11th ed. to present ed.

. T. v. KArMAN, Festigkeitsprobleme im Maschinenbau, Enz. Math. Wiss. 44, art. 27.

. F. Korrer, Uber die Spannungen in einem urspriinglich geraden, durch Einzel-

W

[,

1910

D D



ELASTICITY AND FLUID DYNAMICS 273

kréfte in stark gekrimmter GQleichgewichtslage gehaltenen Stab, Sitzber. Preuss.
Akad. Wiss., part 2, 895-922.
1911 1. P. Dunew, T'raité d’Energetique, Paris, 2 vols.
2. E. Aumansi, Sulle deformazioni finite det solidi elastict isotropt, I, Rend. Lincei
(5A) 201, 705-714.
3. E. Aumansi, Sulle deformaziont finite dei solidi elastict isotropt, II, Rend. Lincei
(5A) 202, 89-95.
4. E. Aumanst, Sulle deformazion? finite dei solidi elastict isotropi, III, Rend. Lincei
(5A) 202, 289-296.
5. G. JAuMANN, Geschlossenes System physikalischer und chemischer Differential-
gesetze, Akad. Wiss. Wien Sitzber. (IIa) 120, 385-530.
6. V. CRUDELI, Sorpa le deformazioni finite. Le equazioni del De Saint-Venant, Rend.
Lincei (5A) 202, 306-308.
7. W. v. IanaTowsky, Zur Hydrodynamik vom Standpunkte des Relativititsprinzips,
Phys. Z. 12, 441-442.
8. M. SmoLucHOWwSKI, Zur Theorie der Warmeleitung in verdiinnten Gasen und der
dabet auftretenden Druckkrifte, Ann. der Phys. (4) 36, 983-1004.
9. F. JUTTNER, Die Dynamik eines bewegten Gases in der Relativtheorie, Ann. der
Phys. (4) 85, 145-161.
10. N. NEkLEPAJEYV, Uber die Absorption kurzer akustischer Wellen in der Luft, Ann.
der Phys. (4) 86, 175-181.
11. M. v. LAUE, Zur Dynamik der Relativititstheorie, Ann. der Phys. (4) 35, 524-542.

1912 1. G. HaMmEL, Elementare Mechanik, Leipzig & Berlin.

2. D. HiLBERT, Grundziige einer allgemeinen Theorie der linearen Integralgleichungen,
Berlin; 2nd ed., 1924.

. D. HiLBERT, Begriindung der kinetischen Gastheorie, Math. Ann. 72, 562-577.

. J. H. PoYNTING, On the changes in the dimensions of a steel wire when twisted, and
on the pressure of distortional waves in steel, Proc. R. Soc. London (A) 86, 534~
561 = Papers 2, 397-423.

5. E. Lamra, Ueber die Hydrodynamik des Relativititsprinzips, Ann. der Phys. (4)
87, 772-796.
1913 1. K. HEUN, Ansdtze und allgemeine Methoden der Systemmechanik, Enz. Math.
Wiss. 42, (1904-1935), art. 11.
2. R. v. MisEs, Mechanik der festen Korper im plastisch-deformablen Zustand, Gott.
Nach., 582-592.

. R. V. SouTHWELL, On the general theory of elastic stability, Phil. Trans. R. Soc.
London (A) 213 (1913-1914), 187-244.

4. J. H. PoyNTING, The changes in the length and volume of an India-rubber cord when
twisted, India-Rubber J., Oct. 4, p. 6 = Papers 2, 424-425.

. H. Lams, Osborne Reynolds, Proc. R. Soc. London (A) 88, xv—xxi.

6. H. Borza, M. BorN, & T. v. KArMAN, Molekularstromung und Temperatur-
sprung, Gott. Nachr., 221-235.
1914 1. E. HELLINGER, Die allgemeinen Ansdtze der Mechanik der Kontinua, Enz. Math,
Wiss. 44, 602-694.
2. P. Buraatti, Sulle deformazioni finite det corpi continui, Mem. R. Accad. Sei.
Bologna (7) 1, 237-244.
1915 1. G. ArRMANNI, Sulle deformaziont finite dei solidi elastici isotropi, Il Nuovo Cimento
(6) 10, 427-447.
1916 1. E. AumansI, La teoria delle distorsiont e le deformazioni finite dei solidi elastici,
Rend. Lincei (5) 252, 191-192.
2. S. CuaPmAN, On the law of distribution of molecular velocities, on the theory of

-

[

(=]



274

1917

1918

1920

1921

1922

1923

1924

1925

C. TRUESDELL

viscosity and thermal conduction, in a non-uniform simple monatomic gas, Phil.
Trans. R. Soc. London (A) 216, 279-348.
1. H. JerrrEYs, The viscosity of the earth, Monthly Not. R. Astr. Soc. 77 (1916-1917),
449-456.
2. E. ALmaNs1, L’ordinaria teoria dell’ elasticita e la teoria delle deformaziont finite,
Rend. Lincei (5) 262, 3-8.
3. S. CHAPMAN, On the kinetic theory of a gas, Part II. A composite monatomic gas;
diffusion, viscosity, and thermal conduction, Phil. Trans. R. Soc. London (A}
217 (1917-1918), 115-197.
4. D. EnskoG, Kinetische Theorie der Vorgdnge in mdssig verdinnten Gasen, I. Allge-
meiner Teil, Uppsala.
5. E. Lour, Entropieprinzip und geschlossenes Gleichungssystem, Denkschriften
Akad. Wiss. Wien 93, 339-421.
1. G. JAuMANN, Phystk der kontinuterlichen Medien, Denkschriften Akad. Wiss.
Wien 95, 461-562.
E. JouGuET, Notes sur la théorie de Vélasticité, Ann. Toulouse (3) 12, 47-92.
. E. JouguEr, Sur les ondes de choc dans les corps salides, C. R. Acad. Seci. Paris
171, 461-464.
3. E. JouguEr, Sur la célerité des ondes dans les solides élastiques, C. R. Acad. Sei.
Paris 171, 512-515.
4. E. JouguEr, Sur la variation d’entropie dans les ondes de choc des solides élastiques,
C. R. Acad. Sci. Paris 171, 789-791.
E. JouauEr, Application du principe de Carnot-Clausius aux ondes de choc des,
solides élastiques, C. R. Acad. Sci. Paris 171, 904-907.
1. M. BornN, Kritische Betrachtungen zur traditionellen Darstellung der Thermo-
dynamik, Phys. Z. 22, 218-224, 249-254, 282-286.
. E. JouauEr, Sur le cas de Poincaré dans la théorie d’élasticité. C. R. Acad. Sci.
Paris 172, 311-314.
. J. PrEscorT, The equations of equilibrium of an elastic plate under normal pressure,
Phil. Mag. (6) 43, 97-125.
2. D. EnskoG, Kinetische Theorie der Wirmeleitung, Reibung und Selbst-diffusion
in gewissen verdichteten Gasen und Flissigkeiten, K. Sv. Vet. Akad. Handl.
63, No. 4.
1. J. E. JonEs, On the velocity distribution function, and on the stresses in a mon-
uniform rarefied monatomic gas, Phil. Trans. R. Soc. London (A) 223, 1-33.
H. J. JerrrEYs, The Earth, Cambridge; 2nd ed., 1929.
L. P. E1sENHART, Space-time continua of perfect fluids in general relativity, Trans.
Amer. Math. Soc. 26, 205-220.
3. Y. Rocarp, Sur les équations du mouvement d’un gaz, C. R. Acad. Sci. Paris 178,
1882-1884.
4. J. L. SYNGE, Applications of the absolute differential calculus to the theory of elas-
ticity, Proc. Lond. Math. Soc. (2) 24, 103-108.
5. E. Lonr, Das Entropieprinzip der Kontinuitdtstheorie, Festschr. D. Tech. Hoch-
schule Brunn, 176-187.
6. E. CoLuINET, Sur l’énergie interne d’un corps élastique, C. R. Acad. Sci. Paris
178, 373-375.
7. E. JouGUET, Le potentiel interne des corps élastiques, C. R. Acad. Sci. Paris 178,
840-842.
1. L. BRILLOUIN, Les lots de I’élasticité sous forme tensorielle valable pour des coordon-
nées quelconques, Ann. de Phys. (10) 3, 251-298.
2. W. R. DEAN, On the theory of elastic stability, Proc. R. Soc. London (A) 107, 743-
760,

DN ==

o

N

—

D -



ELASTICITY AND FLUID DYNAMICS 275

3. C. CARATHEODORY, Uber die Bestimmung der Energie und der absoluten Temperatur
mat Hilfe von reversibel Prozessen, Berichte Akad. Wiss. Berlin, 39-47.
4. T. EHRENFEST-AFANASSIEWA, Zur Aziomatisierung des zweiten Hauptsatzes der
Thermodynamik, Z. Physik 88, 933-945.
1926 1. M. Ro$ & A. E1cHINGER, Versuche zur Klarung der Frage der Bruchgefahr, Disk.
No. 14 Eidg. Materialpriifungsanstalt, Ziirich.
2. A. Lanp£, Aziomatische Begrindung der Thermodynamik durch Carathéodory,
Hdbuch Phys. 9, Ch. 4.
3. J. FRENKEL, Uber die Wairmebewegung in festen und flissigen Korpern, Z. Phys.
35, 652-669.
1927 1. O. VEBLEN, Invariants of quadratic differential forms, Cambr. Tracts Math. and
Math. Phys. No. 24, Cambridge.
2. Y. Rocarp, L’hydrodynamique et la théorie cinétique des gaz, Ann. de Phys. (10)
8, 5-120; 10 (1928), 345-348.
3. A.E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed., Cam-
bridge.
4. M. REINER & R. RiwLIN, Die Theorie der Stromung einer elastischen Flissigkeit
iwm Couette-A pparat, Kolloid Zeit. 43, 1-5.
5. M. REINER & R. RrwLiN, Zur Hydrodynamik von Systemen verdnderlicher Vis-
kositat, Kolloid Zeit. 48, 72-78.
. E. TreFrrz, Mathematische Elastizitdtstheorie, Hdbuch Phys. 6, Ch. 2.
. H. Hencky, Uber die Form des Elastizititsgesetzes bei ideal elastischen Stoffen,
Z. Techn. Phys. 9, 214-223, 457.
. C. B. Biezeno & H. HENCKY, On the general theory of elastic stability, K. Akad.
Wet. Amst. Proc. 31, 569-592.
4. A. PREDWODITELEW, Das Maxwellsche Relaxationsgesetz und die innere Reitbung
der Flissigkeiten, Z. Phys. 49, 279-294.
5. L. BRILLOUIN, Les lois de ’élasticité en coordonnées quelconques, Proc. Int. Congr.
Math. Toronto (1924) 2, 73-97 (a preliminary version of [1925, 1]).
6. M. REINER & R. RiwLIN, Zur Hydrodynamik von Systemen verdnderlicher Viskosi-
tit, I1. Die Stromung in der Kapillare, Kolloid Z. 44, 9-10, 272,
1929 1. H. Hencky, Welche Umstdnde bedingen die Verfestigung bei der bildsamen Ver-
formung von festen isotropen Kérpern? Z. Phys. 56, 145-155.
2. H. Hencky, Das Superpositionsgesetz eines endlich deformierten relaxationsfihigen
elastischen Kontinuums und seine Bedeulung fir eine exakte Ableitung der Gleich-
ungen fur die zdhe Fliussigkeit in der Eulerschen Form, Ann. der Phys. (5) 2,
617-630.
3. H. ScuLECcHTWEG, Ein Beitrag zur Theorie der nicht volkommen elastischen Korper,
Ann. der Phys, (5) 3, 997-1016.
. M. REINER, The general law of flow of matter, J. Rheol. 1 (1929-1930), 11-20.
. C. BiezeNo & H. HENCKY, On the general theory of elastic stability, K. Akad. Wet.
Amst. Proc. 32, 444-456.
6. Y. Rocarp, L’hydrodynamique et la théorie cinétique des gaz, C. R. Acad. Sci.
Paris 188, 553-554.
7. C. W. OseEN, Uber die Energie eines elastischen Korpers bei endlichen Forménder-
ungen, Arkiv Mat. Ast. Fysik 21A (1928-1929), No. 17.
8. G. SARTON, The discovery of the law of conservation of energy, Isis 18 (1929-1930),
18-34.
. L. LicHTENSTEIN, Grundlagen der Hydromechanik, Berlin.
1930 1. R.v.Misgs, Uber die bisherigen Ansdtze in der klassischen Mechanik der Kontinua,
Proc. 3rd Int. Congr. Appl. Mech., Stockholm 2, 1-9.

1928

D =

W

v

©



276

1931

C. TRUESDELL

2. P. Frank & R. v. Misgs, Die Differential- und Integral- gleichungen der Mechanik
und Physik, 2 vols., 2nd ed., Braunschweig.

3. A. SiagNoRINI, Sulle deformaziont finite dei sistemi continut, Rend. Lincei (6) 12,
312-316.

. A. SiaNoRINI, Sulla meccanica det sistemi continui, Rend. Lincei (6) 12, 411-416.

. B. GurenBERG & H. ScHLEcHTWEG, Viskositdt und innere Reibung fester Korper,
Phys. Z. 81, 745-752.

. G. JAFFS, Zur Methodik der kinetischen Gastheorie, Ann. der Phys. (5) 6, 195-252.

. M. REINER, In search for a general law of the flow of matter, J. Rheol. 1 (1929-1930),
250-260.

8. A. S16NoRINI, Sulle deformazioni termoelastiche finite, Proc. 3rd Int. Congr. Appl.
Mech., Stockholm 2, 80-89.

9. E. TrErrrz, Uber die Ableitung der Stabilitétskriterien des elastischen Gleich-
gewichtes aus der Elastizititstheorie endlicher Deformationen, Proc. 3rd Int.
Congr. Appl. Mech., Stockholm 8, 44-50.

10. M. REINER, Zur Hydrodynamik von Systemen verdnderlicher Viskositdt, III.,
Kolloid Z. 50, 199-207.

11. M. REINER, Zur Hydrodynamik der Kolloide, Z. Angew. Math. Mech. 10, 1-14.

12, U. Cisorti, Tensori isotropi, Rend. Lincei (6) 11, 727-731.

13. U. Cisorr1, Tensori quadrupli isotropi, Rend. Lincei (6) 11, 1055-1058.

14. M. PasTor1, Sui tensori isotropi: relazione fra le componenti, Rend. Lincei (6)
12, 374-379.

15. M. Pastori, Espressione generale dei tensori isotropi, Rend. Lincei (6) 12, 499~
502.

16. A. REeuss, Bericksichtigung der elastischen Formdnderung in der Plastizitits-
theorie, Z. Angew. Math. Mech. 10, 266-274.

17. U. Cisort1, Tensort isotropi e tensori emisotropi, Rend. Lincei (6) 11, 917-920.

18. U. Cisorti, Tensori quintuplt emisotropt, Rend. Lincei (6) 12, 195-199.

1. Y. DuronTt, Sur la théorie invariantive de U’élasticité & déformations finies, C. R.
Acad. Sci. Paris 192, 873-875.

2. K. WEISSENBERG, Die Mechanik deformierbarer Kérper, Abh. Akad. Wiss. Berlin,
No. 2.

3. H. REeissNER, Eigenspannungen und Eigenspannungsquellen, Z. Angew. Math.
Mech. 11, 1-8.

4, P. NEMENYI, Selbstspannungen elastischer Gebilde, Z. Angew. Math. Mech. 11,
59-70.

5. H. HENcKY, The law of elasticity for isotropic and quasi-isotropic substances by
finite deformations, J. Rheol. 2, 169-176.

6. M. REINER, Slippage in a non-Newtonian liquid, J. Rheol. 2, 337-350.

7. M. Mooney, Ezxplicit formulas for slip and fluidity, J. Rheol. 2, 210-222.

8. H. ScHLECHTWEG, Ein nicht-lineares Elastizitdtsgesetz bet rotierenden Kreisscheiben,
Z. Angew. Math. Mech. 11 (1931-1932), 97-105.

9. H. JerrrEYs, Cartestan Tensors, Cambridge.

10. M. REINER, Zur Hydrodynamik von Systemen verdnderlicher Viskositdt, IV, Kol-
loid Z. b4, 175-181.

11. A. NApa1, Plasticity, New York.

12. A. BusEMANN, Gasdynamik, Hdbuch Exp’talphys. 4, 341-460.

13. D. BonviciNi, Osservazioni sul problema della stabititd dell equilibrio elastico,
R. Acad. Sci. Torino Atti 66, 186-194.

14. M. Girauvrr, Essai sur la Viscosité en Mécanique des Fluides, Publ. Sci. Tech.
Min. de I’Air, No. 4, Paris.

15. B. Finzi, Tensor: elastict per deformaziont finite, Boll. Un. Mat. Ital. 10, 57-61.

[

3 &



ELASTICITY AND FLUID DYNAMICS 277

16. Y. DuronT, Quelques contributions & la théorie invariantive de U'élasticité, Bull.
Sci. Acad. R. Belgique (5) 17, 441-459.
17. TH. pE DoONDER, Théorie invariantive de l’élasticité a déformations finies, Bull.
Sci. Acad. R. Belgique (5) 17, 1152-1157.
1932 1. H. LawmB, Hydrodynamics, 6th ed., Cambridge.
2. H. BaTemaN, L. Ch. 3, General physical properties of a viscous fluid; 11. Motion of
an incompressible viscous fluid; IV. Compressible fluids, in Report of the Com-
mittee on Hydrodynamics, Bull. Nat. Res. Council No. 84.
3. M. REINER, Die Berechnung des Einflusses einer festen Wand auf den Aggregat-
zustand etner Flissigkeit aus Viskositdtsmessungen, Phys. Z. 33, 499-502.
4. K. HoHENEMSER & W. PRAGER, Fundamental equations and definitions concern-
ing the mechanics of isotropic continua, J. Rheol. 8, 16-22.
5. M. REINER, Outline of a systematic survey of rheological theories, J. Rheol. 3, 245-
256.
6. Y. Rocarp, L’Hydrodynamique et la Théorie Cinétique des Gaz, Paris.
7. M. D. HErsEY, Dimensional analysis of plastic flow, J. Rheol. 8, 23-29.
8. K. HonENEMSER & W. PRAGER, Uber die Ansditze der Mechanik isotroper Kontinua,
Z. Angew. Math. Mech. 12, 216-226.
9. R. Scamiot, Uber den Zusammenhang von Spannungen und Formdnderungen im
Verfestigungsgebeit, Ing. Archiv 8, 215-235.
10. D. Bonvicini, Sulle deformazioni non infinitestme, Rend. Lincei (6) 16, 607-612.
11. M. REINER, Haflet eine Flissigkeit an einer Wand, die sie nicht benetzt? Z. Phys.
79, 139-140.
12. U. Cisorri, Spostamentt rigids finiti, Rend. Lincei (6) 16, 381-386.
13. C. B. BiezeEno & H. HENcKY, Sur les équations générales de la stabilité élastique,
Atti Congr. Int. Mat. 1928, Bologna, 6, 233-237 (cf. [1929, 5]).
14. B. CaLpONAZZO, Osservazione sui tensori quintupli emisotropi, Rend. Lincei (6)
15, 840-843.
15. H. HENcKY, On the propagation of elastic waves tn materials under high hydro-
static pressure, Phil. Mag. (7) 14, 254-258.
1933 1. A. SieNowmINI, Sulle deformazioni finite dei sistemi a trasformazioni reversibili,
Rend. Lincei (6) 18, 388-394.
2. Y. Duront, Thermodynamique invariantive des systémes élastiques, Bull. Sci.
Acad. R. Belgique (5) 19, 1167-1179.
3. J. H. C. TuoMPsON, On the theory of visco-elasticity: a thermodynamical treatment
of visco-elasticity, and some problems of the vibrations of visco-elastic solids,
Phil. Trans. R. Soc. London (A) 231, 339-407.
4. H. HENCKY, The elastic behavior of vulcanized rubber, Appl. Mech. 1, 45-53 = Rub-
ber Chem. and Tech. 6, 217-224.
A. NApa1, Theories of strength, Trans. A.S.M.E. 66, APM-55-15, 111-129.
. E. TreFrrz, Zur Theorie der Stabilitdt des elastischen Gleichgewichts, Z. Angew.
Math. Mech. 12, 160-165.
7. D. Bonvicini, Sulla variazione seconda del potenziale elastico nei solidi isotropi,
Rend. Lincei (6) 17, 69-74.
. R. C. ToLMaNn & H. P. RoBERTSON, On the tnterpretation of heat in relativistic
thermodynamics, Phys. Rev. 43, 564-568.
9. G. VAN LERBERGHE, La conservation de l’énergie dans les milieux continus, Publ.
Assoc. Ingen. Mons 47, 601-618.
10. G. Racan, Determinazione del numero dei tensors isotropi indipendenti di rango n,
Rend. Lincei (6) 17, 386-389.
1934 1. J. H. M. WEDDERBURN, Lectures on matrices, Amer. Math. Soc. Colloquium Publ.
17, New York.

> o

oo



278

1935

1936

1937

1938

C. TRUESDELL

. M. ReINER, The theory of non-Newtonian liquids, Physics 5, 321-341.
. J. L. SYNGE, The energy-tensor of a continuous medium, Trans. R. Soc. Canada
(3) 28, 127-171.

4. H. ScuLECHTWEG, Uber ein allgemeines Elastizititsgesetz sproder Korper, Z. Angew.
Math. Mech. 14, 1-12.

1. B. R. SeTH, Finite strain in elastic problems, Phil. Trans. R. Soc. London (A)

234, 231-264.
. K. WEIsSENBERG, La mécanique des corps déformables, Arch. Sci. Phys. Nat.
Genéve (5) 17, 44-106, 130-171.
3. D. Bonvicini, Sulla deformazione pura nel caso di spostamenti finiti e sulla relazione
di essa colla tensione nei corpt anisotropt, Ann. di Mat. (4) 13, 113-117.
4. J. M. BURGERS, First report on viscosity and plasticity, Verh. K. Akad. Wet. Am-
sterdam 16, No. 3.
1. D. Burnerr, The distribution of molecular velocities and the mean motion in a
non-untform gas (1934), Proc. Lond. Math. Soc. (2) 40, 382-435.
2. W. M. SuerHERD & B. R. SETH, Finite strain in elastic problems II., Proc. R. Soc.
London (A) 166, 171-192.
3. M. D. HersEY, Theory of Lubrication, London.
4. A. SiaNORINI, Trasformazioni termoelastiche finite, caratteristiche dei sistemi
differenziali, onde di discontinuitd, in particolare, onde d’urto e teoria degli es-
plostvi, Atti XXIV Riun. Soc. Ital. Progr. Sci. 3, 6-25.
5. L. ManpELsTAM & M. LEonTovie, Uber die Ultraschallabsorption und tiber einige
damit zusammenhangende optische Erscheinungen, C. R. Doklady Acad. Sci.
URSS (2) 3 = 12, 111-114,
1. F. D. MURNAGHAN, Finite deformations of an elastic solid, Amer. J. Math. 69,
235-260.
2. F. Opqvist, Equations de compatibilité pour un systéeme de coordonnées triples
orthogonauzx quelconques, C. R. Acad. Sci. Paris 206, 202-204.

. J. L. SYNGE, Relativistic hydrodynamics, Proc. Lond. Math. Soc. (2) 43, 376-416.

. A. NApar, Plastic behavior of metals in the strain-hardening range, Part I, J. Appl.
Phys. 8, 205-213.

. S. EpstEIN, Textbook of Thermodynamics, New York.

. S. ZAREMBA, Sur une conception nouvelle des forces intérieures dans un fluide en
mouvement, Mém. Sci. Math., No. 82.
7. K. MarGUERRE & E. Taerrrz, Uber die Tragfahigkeit eines lingbelasteten Balken -
streifens nach Uberschreiten der Beullast, Z. Angew. Math. Mech. 17, 85-100.
8. K. MARGUERRE, Die mittragende Breite der gedrickten Platte, Luftfahrtforschung
14, 121-128.
9. A. Kromm & K. MARGUERRE, Verhalten eines von Schub und Druckkrdften bean-
spruchten Plattenstreifens oberhalb der Beulgrenze, Luftfahrforschung 14, 627-
639.
1. P.M. Riz & N. V. Zvouinsky, Torsion of a prismatic bar which is simultaneously
subjected to tension, C. R. (Doklady) Acac. Sci. URSS 20, 101-104.

. L. BRILLOUIN, Les Tenseurs en Mécanique et en Elasticité, Paris.

. S. T. NewiNGg & W. M. SHEPHERD, Finite strain: dislocation solutions, Phil. Mag.
(7) 26, 557-569.

4. H. PeLZER, Zur kinetischen Theorie der Kautschukelastizitit, Monatsh. fiir Chemie
71 (1937-1938), 444-447.

5. F. BircH, The effect of pressure upon the elastic parameters of isotropic solids, ac-
cording to Murnaghan’s theory of finite strain, J. Appl. Phys. 9, 279-288.

6. L. BriLLovIN, On thermal dependence of elasticity in solids, Phys. Rev. b4, 916~

917.

W N

[

W

(=23

W N



ELASTICITY AND FLUID DYNAMICS 279

7. L. BRILLOUIN, On thermal dependence of elasticity in solids, Indian Acad. Sci.
(A) 8, 251-254.
8. A. N. Gerasimov, Osnovaniva teorii deformatsi uprugo-vyazkikh tel, Prikl. Mat.
Mekh. (2) 2 (1938-1939), 379-388.
9. T. N. BuLinNcuHiKOV, Differentsialnye uravneniya. ravnoyesiya teorit uprugosti v
krivolineinot koordinatnot sisteme, Prikl. Mat. Mekh. (2) 2, (1938-1939), 407~
413.
10. W. ME1ssNER, Thermodynamische Behandlung stationdrer Vorgdnge in Mehr-
phasensystemen, Ann, der Physik (5) 82, 115-127.
11. N. V. Zvouinskl & P. M. Riz, O zakone Guka dlya konechnykh smeshchenit, Isvest.
Akad. Nauk SSR Otdel. Tekhn. Nauk, No. 8-9, p. 17-20.
1939 1. 8. CuarmaN & T. G. CowvrinG, The Mathematical Theory of Non-Uniform Gases.
Cambridge.
. B. R. SETH, Some problems of finite strain—II, Phil. Mag. (7) 27, 286-293, 449~
452.
. D. PaNovV, On secondary effects arising at the torsion of an elliptical cylinder, C. R.
(Doklady) Acad. Sci. URSS 22, 158-160.
4. M. A. Bior, Non-linear theory of elasticity and the linearized case for a body under
initial stress, Phil. Mag. (7) 27, 468-489.
5. M. A. Bior, Theory of elasticity with large displacements and rotations, Proc. 5th
Int. Congr. Appl. Mech., New York & London, 117-122.
6. M. A. Bror, Théorie de 1’¢lasticité du second ordre avec application d la théorie du
flambage, Ann. Soc. Sci. Brux. (1) 69, 104-112.
. M. A. Bior, Increase of torsional stiffness of a prismatical bar due to axial tension,
J. Appl. Phys. 10, 860-864.
. C. B. Biezeno & R. GRAMMEL; Technische Dynamik, Berlin.
. R. Karrus, Zur Elasticitdtstheorie endlicher Verschiebungen, Z. Angew. Math.
Mech. 19, 271-285, 344-361.
10. H. BaTEMAN, The aerodynamics of reacting substances, Proc. Nat. Acad. Sci.
U. S. A. 25, 388-391.
11. L. BriLLoulN, On thermal dependence of elasticity in solids, Phys. Rev. 56, 1139.
12. M. BorN, Thermodynamics of crystals and melting, J. Chem. Phys. T, 591-603.
13. M. Born, Gittertheoretische Behandlung des Schmelzprozesses, C. R. Inst. Sci.
Roumanie 3, 405-411.
14. N. V. Zvorinsk1 & P. M. Riz, O nekotorykh zadachakh nelineinoi teorii uprugosts,
Prikl. Mat. Mekh. (2) 2 (1938-1939), 417-426.
15. A. N. Gerasimov, K voprosu o malyk kolebaniyakh uprugo-vyazkikh membran,
Prikl. Mat. Mekh. (2) 2 (1938-1939), 467-486.
16. P. M. Riz, On the flexure of a stretched prismatic bar, C. R. (Doklady) Acad. Sci.
URSS (2) 22, 560-563.
17. D. VaN DanTz1G, Stress lensor and particle density in special relativity, Nature
143, 855.
18. D. VanN Danrzig, On the phenomenological thermodynamics of moving maiter,
Physica 6, 673-704.
19. D. VaN Danrzia, On relativistic thermodynamics, K. Akad. Wetens. Proc. 42,
601-607 = Indagat. Math. 1, 212-218.
20. D. Van DanTz1c, On relativistic gas theory, K. Nederl. Akad. Wetens. Proc. 42,
608-625 = Indagat. Math. 1, 219-236.
21. W. JARDETZKY, Zur Frage der Axiomatik des zweiten Hauptsatzes der Thermo-
dynamik, Bull. Acad. R. Serbe Sci. (A) 5, 33-47.
22. K. MARGUERRE, Zur Theorie der gekrimmien Platte grosser Formdnderung, Proc.
5th Int. Congr. Appl. Mech. (1938), New York & London, 93-101.

N

W

-~

© 0



280 C. TRUESDELL

1940 1. C. Eckart, The thermodynamics of irreversible processes, I. The simple fluid,
Phys. Rev. (2) 68, 267-269.
2. C. Eckart, The thermodynamics of irreversible processes, 11. Fluid miztures, Phys.
Rev. (2) 68, 269-275.
3. C. EckarT, The thermodynamics of irreversible processes, II1. Relativistic theory
of the simple fluid, Phys. Rev. (2) 68, 919-924.
. M. A. Bior, Elastizititstheorie zweiter Ordnung mit Anwendungen, Z. Angew.
Math. Mech. 20, 89-99.
. G. KraLL, Meccanica Tecnica delle Vibraziont, 2, Bologna.
. A. LicaNEROowICZ, Sur un théoréme d’hydrodynamique relativiste, C. R. Acad.
Sci. Paris 211, 117-119.
. M. MoonEyY, A theory of large elastic deformation, J. Appl. Phys. 11, 582-592.
. L. BriLLoviN, Influence de la Temperature sur UElasticité d’un Solide, Mém.
Sci. Math., No. 99.
. H. P. RoBERTSON, The invariant theory of isotropic turbulence, Proc. Cambr.
Phil. Soc. 36, 209-223.
10. D. VaN Dantzic, On the thermodynamics of perfectly perfect flurds, K. Nederl.
Akad. Wetens. Proc. 43, 387-401, 609-618.
11. U. Cisorr1, Elementi di media nella meccanica dei sistemi continui, Rend. Sem.
Mat. Fis. Milano 14, 128-138.
12. E. Frora, Sull’ elasticita non globalmente lineare, Atti Accad. Sci. Torino 75,
531-540.
13. E. Lour, Ein thermodynamischer Weg zur Planckschen Strahlungsgesetz, Z. Phys.
116, 454-468.
14. P. LocaTELL1, Estensione, flessione, torsione di corpst elastoplastici, Ist. Lombardo
Rend. Cl. Sci. 78 = (3) 4, 581-598.
1941 1. F. D. MURNAGHAN, The compressibility of solids under extreme pressures, Kdrmén
Anniv. Vol., 121-136.
. P. G. BERGMANN, On relativistic thermodynamics, Phys. Rev. (2) 59, 928.
. A. LicHNEROWICZ, Sur des théorémes d’unicité relatifs aux équations gravitationnelles
du cas intérieur, Bull. Sci. Math. (2) 85, 54-72.
4. A. Licanerowicz, Sur linvariant intégral du Uhydrodynamique relativiste, Ann.
Ecole Normale (3) 58, 285-304.
5. E. Gura & H. Jamgs, Elastic and thermoelastic properties of rubberlike materials,
Ind. Eng. Chem. 83, 624-629.
6. H. James & E. GurH, Theoretical stress-strain curve for rubberlike materials,
Phys. Rev. (2) 59, 111.
7. J. L. SynGE & W. Z. Cuien, The intrinsic theory of elastic shells and plates, Kér-
mén Anniv. Vol., 103-120.
8. E.-A. DEUKER, Beitrag zur Theorie endlicher Verformungen und zur Stabilitdts-
theorie des elastischen Korpers, Deutsche Math. & (1940-1941), 546-562.
9. J. MEIxNER, Zur Thermodynamik der Thermodiffusion, Ann. der Physik (5) 39,
333-356.
10. B. R. SETH, On Guest’s law of elastic fatlure, Proc. Ind. Acad. Sci. (A) 14, 17-40.
11. B. R. SetH, Finite strain in a rotating shaft, Proc. Ind. Acad. Sci. (A) 14, 648-651.
12. Z. SAKADI, On the extension of the differential equations of incompressible viscous
fluid, Proc. Physico-Math. Soc. Japan (3) 23, 27-33.
13. M. IcHINOSE, Precise investigation of Hooke's law in primary elastic deformation,
Proc. Physico-Math. Soc. Japan (3) 23, 119-131.
14. I. Osipa, On the mechanical behavior of liquids under high frequency oscillation,
Proc. Physico-Math. Soc. Japan (3) 23, 18-27.

D O >

o0 3

©

W N



ELASTICITY AND FLUID DYNAMICS 281

15. Z. Sakabli, Plastic deformation of a circular cylinder and spherical wave in plastic
solid, Proc. Physico-Math. Soc. Japan (3) 23, 33-37.
16. M. Pastorr, Il problema delle distorsioni nei corpt imperfettamente elastici, Ist.
Lombardo Rend. Cl. Sci. 74 = (3) 5, 3-12.
17. P. UpescHiINI, Deformazioni elastiche di corpi elastoplastici, cast di Clebsch, Ist.
Lombardo Rend. Cl. Sci. 74 = (3) 6, 373-388.
18. P. Cicava, Sulla teorid non lineare di elasticita, Atti. Accad. Sci. Torino 761,
94-104.
1942 1. R. J. StEwWART, The energy equation for a viscous compressible fluid, Proc. Nat.
Acad. Sci. U. S. A. 28, 161-164.
. L. Tisza, Supersonic absorption and Stokes’s viscosity relation, Phys. Rev. (2)
61, 531-536.
. A. SiaNoRINI, Deformaziont elastiche finite: elasticita di 2° grado, Atti 2° Cong.
Mat. Ital. Rome 1940, 56-71.
. F. T. WaLL, Statistical thermodynamics of rubber, J. Chem. Phys. 10, 132-134.
. F. T. WaLw, Statistical thermodynamics of rubber, II, J. Chem. Phys. 10, 485-488.
. W. PRAGER, Theory of Plasticity (notes), Brown Univ., Providence.
. H. James & E. GutH, Theory of rubber elasticity for development of synthetic rub-
bers, Ind. Eng. Chem. 84, 1365-1367.
. G. E. Hay, The finite displacement of thin rods, Trans. Am. Math. Soc. 51, 65-102.
. H. PRIMAKOFF, The translational dispersion of sound in gases, J. Acoust. Soc. 14,
(1942-1943), 14-18.
10. H. JEFFREYs, Initial siress and elastic instability, Proc. Cambr. Phil. Soc. 38,
125-128.
11. W. Kunn & F. GrUN, Beziehungen zwischen elastischen Konstanten und Dehnungs-
doppelbrechung hochelastischer Stoffe, Kolloid Z. 101, 248-271.
12. C. Tovorri, Sulla piw generle elasticita di 2° grado, Rend. Sem. Mat. Univ. Rome
(5) 8, 1-20.
13. J. E. VERscHAFFELT, La thermomécanique de la diffusion des gaz, Bull. Sci. Acad.
R. Belgique (5) 28, 455-475.
14. J. E. VERSCHAFFELT, Sur la thermomécanique des fluides en mouvement, Bull. Sci.
Acad. R. Belgique (5) 28, 476-489.
15. B. Finzi, Propagazione ondosa nei continut anisotropi, Rend. Ist. Lombardo CI.
Sci. Mat. Nat. 76 = (3) 6 (1941-1942), 630-640.
16. S. SakaADI, On the extension of the differential equations of incompressible fluid,
II., Proc. Physico-Math. Soc. Japan (3) 24, 719-722.
17. J. MEIXNER, Reversible Bewegungen von Fliussigkeiten und Gasen, Annalen der
Phys. (5) 41, 409-425.
18. E. Frova, Su alcune questioni di elasticitda non lineare, Atti Accad. Sci. Torino
71, 258-262.
19. A. I. PozuarostiN & P. M. Riz, K teorii kosogo izgiba v nelineinot teorit uprugosts,
Prikl. Mat. Meh. 6, 375-380.
1943 1. A. SieNoORINI, Trasformazioni termoelastiche finite, Memoria 1¢, Ann. di Mat. (4)
22, 33-143.
. F. T. WaLL, Statistical thermodynamics of rubber III, J. Chem. Phys. 11, 527-530.
. L. R. G. TRELOAR, The elasticity of a network of long chain molecules, 1., Trans.
Faraday Soc. 39, 36-41.
4. L. R. G. TrRELOAR, The elasticity of a network of long chain molecules—II., Trans.
Faraday Soc. 39, 241-246.
. H. James & E. GutH, Theory of the elastic properties of rubber, J. Chem. Phys. 11,
455-481.
6. M. REINER, Ten Lectures on Theoretical Rheology, Jerusalem.

[

N O O w

© 00

wW N

(<]



282 C. TRUESDELL

7. E.-A. DEUKER, Zur Stabilitit der elastischen Schalen, Z. Angew. Math. Mech. 28,
81-100, 169-179.
8. H. NeuBER, Die Grundgleichungen der elastischen Stabilitit in allgemeinen Ko-
ordinaten und thre Integration, Z. Angew. Math. Mech. 28, 321-330.
9. L. R. G. TRELOAR, Why is rubber elastic?, Trans. Inst. Rubber Ind. 18, 256-264.
10. C. TovrorTI1, Orientamenti principali di un corpo elastico rispetto all sua sollecita-
zione totale, Mem. R. Acad. Italia 133, 1139-1162.
11. C. Tovorr1, Deformaziont elastiche finite: onde ordinarie di discontinuitd e caso
tipico di solidi elastict isotropi, Rend. Sem. Mat. Univ. Rome (5) 4, 34-59.
12. C. TovortI, Le equazioni lagrangiane della meccanica dei sistemi continuz in co-
ordinate generali, Rend. R. Accad. Napoli (4) 13, 1-9.
13. C. Tovorr1, Sul potenziale termodinamico dei solidi elastici omogenei ed isotropi
per trasformaziont finite, Mem. R. Accad. Italia 14, 529-541.
14. A. Tonovo, Teoria tensoriale delle deformazioni finite dei corpi solidi, Rend. Sem,
Mat. Padova 14, 43-117.
15. E. GurH, The problem of the elasticity of rubber and of rubberlike materials, Surface
Chemistry, Amer. Ass. Adv. Sci. Publ. No. 21, 103-127.
16. P. M. Riz, Obshchee reshenie zadachi krucheniya v nelineinoi teorii uprogosti,
Prikl. Mat. Mekh. (2) 7, 149-154.
17. P. UpgescuiNI, Sull’energia di deformazione, Rend. Ist. Lombardo Cl. Sci. 26
= (3) 7, 25-34.
18. E. Harorwig, Uber die Wellenausbreitung in einem visko-elastischen Medium,
Z. Geophysik 18, 1-20.
19. A. C. MERRINGTON, Flow of visco-elastic materials in capillaries, Nature 162, 663.
1944 1. O. Costa DE BEAUREGARD, La Relativité Restreinle et la Premiére Mécanique
Broglienne, Paris.
2. 0. CosTA DE BEAUREGARD, Sur les équations fondamentales, classiques, puis rela-
tivistes, de la dynamique des milieuz continus, J. Math. Pures Appl. 23, 211-217,
3. P. J. FLory, Network structure and the elastic properties of vulcanized rubber.
Chem. Rev. 86, 51-75.
4. L. R. G. TRELOAR, Stress-strain data for vulcanised rubber under various types of
deformation, Trans. Faraday Soc. 40, 59-70.
5. W. Z. CuieN, The intrinsic theory of thin shells and plates, Q. Appl. Math. 1, 297~
327; 2, 43-59, 120-135 (1945).
6. F. D. MURNAGHAN, The compressibility of media under extreme pressures, Proc.
Nat. Acad. Sci. U. S. A. 80, 244-247.
7. T. ALFREY, JR., Non-homogeneous siresses in visco-elastic media, Q. Appl. Math.
2, 113-119.
8. H. M. JamEs & E. GuTH, Theory of the elasticity of rubber, J. Appl. Phys. 15, 294~
303.
9. B. R. SETH, On the stress-strain velocity relations in equations of viscous flow, Proc.
Ind. Acad. Sci. (A) 20, 329-335.
10. B. R. SETH, Consistency equations of finite strain, Proc. Ind. Acad. Sci. (A) 20,
336-339.
11. V. Z. Vrasov, Uravneniya nerazhrivnosti deformatsi v krivolinenikh koordinatakh,
Prikl. Mat. Meh. 8, 301-306.
12. B. LEAF, The principles of thermodynamics, J. Chem. Phys. 12, 89-98.
13. F. D. MURNAGHAN, On the theory of the tension of the elastic cylinder, Proc. Nat.
Acad. Sci. U. 8. A. 30, 382-384.
14. J. R1vauDp, Remarques sur le probléme de U’élasticité non linéaire, C. R. Acad. Sci.
Paris 218, 698-700.



ELASTICITY AND FLUID DYNAMICS 283

15. U. Cisorti, Deformazione finite isotrope, Ist. Lombardo Rend. Cl. Sci. 77 = (3)
8, 73-79.
16. U. Cisorti, Influenza delle rotazione finite nelle deformazioni infinitesime di un
solido elastico, Ist. Lombardo Rend. Cl. Sci. 77 = (3) 8, 249-252.
17. P. UpsscHINI, Onde di discontinuitd nei corpi elastoplastici, Atti Accad. Ital.
Mem. Cl. Sci. Fis. Mat. Nat. 14, 651-659.
18. A. Y. Goraipze & A. K. RUKHADZE, Flexure of a twisted rod by a couple (in Geor-
gian, with Russian summary), Soob. Akad. Nauk Gruzinskoi SSR 5, 253-262.
19. A. Y. GorainzE & A. K. RukHADZE, Viorichni effekti v zadachakh rastyazsheniya i
izgiba parot brusa, sostavlennovo iz razlichnuikh materialov, Trudi Thilisskogo
Mat. Inst. 12, 79-94.
1945 1. M. REINER, A mathematical theory of dilatancy, Amer. J. Math. 67, 350-362.
2. A. GLEYzAL, General stress-strain laws of elasticity and plasticity, J. Appl. Phys.
12, (1945-1946), A-261-A-264.
3. O. Costa DE BEAUREGARD, Définition covariante de la force, C. R. Acad. Sei. Paris
221, 743-747.
4. T. ALFREY, JR., Methods of representing the properties of viscoelastic materials,
Q. Appl. Math. 3, 143-150.
. W. PRAGER, Strain hardening under combined stresses, J. Appl. Phys. 16, 837-840.
. E. BrRomBERG & J. J. STOKER, Non-linear theory of curved elastic sheets, Q. Appl.
Math. 3, 240-265.
. A. SiaNORINI, Recenti progressi della teoria delle trasformazioni termoelastiche
finite, Atti del Conv. Mat. (1942), Rome.
. M. REINER, A classification of rheological properties, J. Sci. Instr. 22, 127-129.
. B. R. SETH, Finite strain in aelotropic elastic bodies I, Bull. Calcutta Math. Soc.
37, 62-68.
10. D. EnskoG, Die durch innere Reibung und Wdarmeleitung verursachte Schallab-
sorption in Gasen und Flissigkeiten, IVA (Stockholm) (1944), 303-308.
11. F. D. MURNAGHAN, A revision of the theory of elasticity, Bol. Soc. Mat. Mexicana
2, 81-89.
1946 1. H. S. TsieN, Superaerodynamics, mechanics of rarefied gases, J. Aero. Sci. 13,
653-664.
2. M. Born & H. S. GREEN, A general kinetic theory of liquids, Proc. R. Soc. Lond.
(A) 188, 10-18; 189 (1947), 103-117; 190 (1947), 455-473; 191 (1947), 168-181 =
repr. separ., Cambridge, 1949.
. M. REINER, The coefficient of viscous traction. Amer. J. Math. 68, 672-680.
. 0. Costa DE BEAUREGARD, Sur la conservation de la masse propre. Sur la notion
de fluide parfait, C. R. Acad. Sci. Paris 222, 271-273.

5. 0. Costa DE BEAUREGARD, Equations générales de Uhydrodynamique des fluides
parfaits, C. R. Acad. Sci. Paris 222, 369-371.

6. O. CosTa pE BEAUREGARD, Sur la théorie des forces élastiques, C. R. Acad. Sei.
Paris 222, 477-479.

7. 0. CosTAa DE BEAUREGARD, Sur la thermodynamique des fluides, C. R. Acad. Sci.
Paris 222, 590-592.

8. O. Costa DE BEAUREGARD, Rétour sur la dynamique et la thermodynamique des
milieuz continus, C. R. Acad. Sci. Paris 222, 1472-1474.

9. O. Costa DE BEAUREGARD, Dynamique relativiste des milieux continus. La bariation
de la masse propre en fonction du travail des forces superficielles, J. Math. Pures
Appl. 26, 187-207.

10. H. S. Tsien & R. ScHAMBERG, Propagation of plane sound waves in rarefied gases,
J. Acoust. Soc. 18, 334-341.

~ [= <

© w

> W



284 C. TRUESDELL

11. J. FRENKEL, Kinetic Theory of Liquids, Oxford.

12. W. PrAGER, The general variational principle of the theory of structural stability,
Q. Appl. Math. 4, 378-384.

13. E. Gura, H. M. JamEs, & H. MARK, The kinetic theory of rubber elasticity, Adv.
in Colloid Sei. 2, 253-298.

14. M. KoHLER, Die Volumviskositit in Gasen als gaskinetische Transporterscheinung,
Naturw. 33, 1-4.

15. B. R. SerH, Finite strain in aelotropic elastic bodies, 1I, Bull. Calcutta Math.
Soc. 38, 39-44.

16. B. R. SETH, On Young’s modulus for India rubber, Bull. Calcutta Math. Soc. 38,
143-144. [Abstract in Current Sci. 15, 280 (1946)].

17. E. STERNBERG, Nonlinear theory of elasticity with small deformation, J. Appl.
Mech. 13, A-53-A-60.

18. B. LeaF, Phenomenological theory of transport processes in fluids, Phys. Rev. (2)
70, 748-758.

19. V. V. Kryvov, Ploskaya zadachl teorii uprugosti dlya konechnykh peremeshchenit,
Prikl. Mat. Meh. 10, 647-656.

20. F. H. GarnER & A. H. N1ssoN, Rheological properties of high-viscosity solutions
of long molecules, Nature 1568, 634-635.

21. J. G. Kirkwoob, The statistical mechanical theory of transport processes, I. General
theory, J. Chem. Phys. 14, 180-201.

1947 1. M. BorN & H. 8. GrEEN, A kinetic theory of liquids, Nature 169, 251-254.

2. M. BorN & H. S. GREEN, Quantum theory of liquids, Nature 1569, 738-739.

3. R. ScHAMBERG, The fundamental differential equations and the boundary conditions
for high speed slip-flow, and their application to several problems, Thesis, Calif.
Inst. Tech.

. R. 8. Rivuin, Hydrodynamics of non-Newtonian fluids, Nature 160, 611-613.
. R. 8. RivLiN, Torsion of a rubber cylinder, J. Appl. Phys. 18, 444449, 837.
. C. A. TruesDELL & R. N. ScHWARTZ, The Newtonian mechanics of continua, U. S.
Nav. Ord. Lab. Mem. 9223.
. N. M. Riz, Zametk: ob uprugikh konstantakh v nelineinoi teorii uprugosti, Akad.
Nauk USSR Prikl. Mat. Mekh. 11, 493-494.
8. K. WEISSENBERG, A continuum theory of rheological phenomena, Nature 159,

310-311.

9. G. H. HanpELMAN, C. C. LIN, & W. PRAGER, On the mechanical behavior of metals

in the strain-hardening range. Q. Appl. Math. 4, 397-407.

10. L. R. G. TrRELOAR, The photoelastic properties of rubber, Part I. Theory of the

optical properties of strained rubber, Trans. Faraday Soc. 48, 277-284.

11. L. R. G. TRELOAR, The photoelastic properties of rubber, I1. Double refraction and
crystallisation in streiched vulcanised rubber, Trans. Faraday Soc. 43, 284~293.

12. A. Puivierinis, Eine Beziehung zwischen der nichi-linearen Elastizititstheorie und
der Verfestigungstheorie von Ro$-Eichinger-Schmidt, Z. Angew. Math. Mech.

26-27, 31-32.

13. L. R. G. TRELOAR, Stress-optical properties of rubber, Nature 169, 231.
14. E. GurH, Muscular contraction and rubberlike elasticity, Ann. New York Acad.

Sei. 47, 715-766.

15. M. KoHLER, Die Volumviskositit in idealen Gasen als gaskinetische Transporter-

scheinung, Z. Phys. 124, 759-771.

16. G. GurEvicH, O zakone deformatsii tverdykh i zhidkikh tel, Zh. tekhn. Fizik. 17,

1491-1502.

17. G. V1GUIER, Les équations de la couche limite dans le cas de gradients de vitesse

élevés, C. R. Acad. Sci. Paris 224, 713-714.

(=<

~



ELASTICITY AND FLUID DYNAMICS 285

18. B. R. SErH, Finite pure flexure, Current Sci. 16, 387.

19. R. MovuFaNnGg, Volumentreue Verzerrungen bei endlichen Formdnderung, Z. Angew.
Math. Mech. 25-27, 209-214.

20. L. HaLL, The origin of excess ultrasonic absorption in water. Phys. Rev. (2) 71,
318.

21. K. SWAINGER, Stress-strain compatibility in greatly deformed engineering metals,
Phil. Mag. (7) 88, 422-439.

22. G. Garcia, Ecuaciones exactas y soluciones exactas del movimiento y de las tensiones
en los fluidos viscosas, Actas Acad. Ciencias Lima 10, 117-170.

23. J. G. ScHOLTE, On Rayleigh waves in visco-elastic media, Physica 18, 245-250.

24. A. K. RukHADZE, Viiyanie na izgeb sterzhnya paroi izgiba ot poperechnoi sils,
Prikl. Mat. Meh. (2) 11, 351-356.

25. E. Harorwic, Uber die Anfangswertaufgabe in der Theorie der Rayleighwellen,
Z. Angew. Math. Mech. 26-27, 1-13.

26. G. VIGUIER, L’écoulement d’un fluide visqueux avec gradients de vitesse élevés,
C. R. Acad. Sci. Paris 224, 1048-1050.

27. G. ViGUIER, La couche limite de Prandtl avec importants gradients de vitesses,
C. R. Acad. Sci. Paris 226, 45-46.

28. A.SoMMERFELD, Vorlesungen uber theoretische Physik. I1, Mechanik deformierbaren
Medien, 2nd ed., Wiesbaden.

1948 1. M. REINER, Elasticity beyond the elastic limit, Amer. J. Math. 70, 433-446.

2. C. TRUESDELL, On the differential equations of slip flow, Proc. Nat. Acad. Sci.
U. S. A. 384, 342-347.

. C. TRUESDELL, 4 new definition of a fluid, U. S. Nav. Ord. Lab. Mem. 9487.

. C. 8. Wanc CHANG & G. E. UHLENBECK, On the transport phenomena in rarified
gases, Appl. Phys. Lab. Rep. No. APL/JHU CM-443.

. R. 8. RivuiN, The hydrodynamics of non-Newtonian fluids I. Proc. R. Soc. Lond.
(A) 193, 260-281.

. R. 8. RivuiN, Normal stress coefficient in solutions of macromolecules, Nature
161, 567-569. (Abstract of [1949, 9]).

7. R. 8. RivLIN, Large elastic deformations of isotropic materials, I. Fundamental
concepts, Phil. Trans. R. Soc. (A) 240, 459-490.

. R. 8. RivuIN, Large elastic deformations of isotropic materials 11. Some uniqueness
theorems for pure, homogeneous deformation, Phil. Trans. R. Soc. (A) 240, 491~
508.

9. R. 8. RivuIN, Large elastic deformations of isotropic materials I1I. Some simple
problems in cylindrical polar co-ordinates, Phil. Trans. R. Soc. (A) 240, 509-525.

10. R. 8. RivLIN, Large elastic deformations of isotropic materials IV. Further develop-
ments of the general theory, Phil. Trans. R. Soc. (A) 241, 379-397.

11. R. 8. RivLiN, A uniqueness theorem in the theory of highly-elastic materials, Proc.
Cambr. Phil. Soc. 44, 595-597.

12. J. M. BURGERSs, Non-linear relations between viscous stresses and instantaneous rate
of deformation as a consequence of slow relaxation, K. Nederl. Akad. Wetens.
Proc. 61, 787-792.

13. H. RicHTER, Das isotrope Elastizitdtsgesetz, Z. Angew. Math. Mech. 28, 205-209.

14. C, EckART, The thermodynamics of irreversible processes IV : The theory of elasticity
and anelasticity, Phys. Rev. (2) 78, 373-382.

15. C. EckART, T'he theory of the anelastic fluid, Rev. Mod. Phys. 20, 232-235.

16. H. S. GreEN, Liquid helium 11, Nature 161, 391-393.

17. L. M. Yang, Coefficients of viscosity and thermal conduction in dense gases and
liquids, Nature 161, 523-524.

(<] -~ W

[=3

o]



286 C. TRUESDELL

18. J. N. GoobpIER, Elastic torsion in the presence of initial axial stress, Dept. Mech.
Eng. Stanford Univ. T. R. No. 1. = J. Appl. Mech. 17, 383-387 (1950).

19. A. H. Taus, Relativistic Rankine-Hugoniot equations, Phys. Rev. (2) 74, 328-334.

20. L. Norzi, Teoria dell’instabilita elastica, Atti Accad. Sci. Torino Cl. Sci. Fis.
Mat. Nat. 81-82, 253-263.
21. J. KELLER, On the solution of the Boltzmann equation for rarefied gases, Comm.
Appl. Math. N. Y. U. 1, 275-285.
. T. ALFREY, JR., Mechanical Behavior of High Polymers, New York.
. A. S1GNORINI, Rapport sur mes travauz pendant la guerre, Bull. Ecole Poly. Jassy
3, 17-28.
. L. R. G. TRELOAR, Stresses and birefringence in rubber subjected to general homo-
geneous strain, Proc. Phys. Soc. 60, 135~144.
. E. A. Davis, A generalized deformation law, J. Appl. Mech. 16, 237-240.
. A. L. ZeLmaNov, Primeneniye soputstvuyushchikh koordinal v nereliativistkoy
mechanike, C. R. Acad. Sci. USSR (Doklady) 61, 993-996.
. A. S. PrREDVODITELEV, O molekuliarno-kineticheskom obosnovanii uravneniy gidro-
dinamiki, Isvestiya Akad. Nauk. SSSR Otd. Tehn. Nauk, 5§45-560.
. M. MoonNEY, The thermodynamics of a strained elastomer, I. General analysis,
J. Appl. Phys. 19, 434-444.
. L. E. CorELAND, The thermodynamics of a strained elastomer. I1. Compressibility,
J. Appl. Phys. 19, 445-449.
. L. E. CorELaAND & M. MoONEY, The thermodynamics of a strained elastomer. III.
The thermal coeflicient of modulus and the statistical theory of elasticity, J. Appl.
Phys. 19, 450-455.
31. C. WEBER, Zur nichtlinearen Elastizititstheorie, Z. Angew. Math. Mech. 28, 189~
190. Errata, ibjd. 29, 256 (1949).

32. J. E. DorN & A. J. LATTER, Stress-strain relations for finite elastoplastic deforma-
tions, J. Appl. Mech. 16, 234-236.

33. H. FromMm, Laminare Strémung Newtonscher und Mazwellscher Flissigkeiten
Z. Angew. Math. Mech. 28, 43-54.

34. L. CasToLpl, Deduzione variazionale delle equazionti della dinamica dei continui
deformabili, Nuovo Cim. (9) 5, 140-149.

35. C. EckaRrT, Vortices and streams caused by sound waves, Phys. Rev. 73, 68-76.

36. C. S. WaNG CHANG, On the theory of thickness of weak shocks, Appl. Phys. Lab.
Rep. No. APL/JHU CM-503.

37. J. E. VERSCHAFFELT, La thermomécanique des fluides idéauzx, Bull. Sci. Acad. R.
Belgique (5) 34, 325-343.

38. J. E. VERSCHAFFELT, La thermomécanique des fluides réels, Bull. Sci. Acad. R.
Belgique (5) 34, 344-355.

39. E. G. CuiLTON, Large deformations of an elastic solid, J. Appl. Mech. 15, 362-368.

40. CH. PraTrIER, Equations universelles de 1’équilibre isotherme des milieuz les plus
généraux @ tenseur symétrique, Bull. Acad. Belg. Cl. Sci. 34, 274-277.

41. C. 8. Wane CHANG, On the dispersion of sound in helium, Appl. Phys. Lab. Rep.
No. APL/JHU CM-467.
42. B. R. SeTH, Finite longitudinal vibrations, Proc. Ind. Acad. Sci. (A) 25, 151-152.
43. E. LoHR, Quantenstatistik and Kontinuumphysik, Z. Naturforschung 3a, 625-636.
44. J. L. FINcK, Thermodynamics, Part 1: The second law from the standpoint of the
equation of state, Part I1: Work, heat, and temperature concepts, and an examina-
tion of the temperature scale, J. Franklin Inst. 246, 301-317, 365-378.

45. R. C. TomaN & P. C. FINE, On the irreversible production of entropy, Rev. Mod.
Phys. 20, 51-77.

8 8 % B8 R 8B

w
o



ELASTICITY AND FLUID DYNAMICS 287

46. K. H. SWAINGER, Stratn energy in greatly deformed elastic or inelastic anisotropic
engineering metals, J. Franklin Inst. 245, 501-516.
47. K. H. SwAINGER, Large displacements with small strains in loaded structures,
J. Appl. Mech. 15, 45-52.
48. G. Garcia, Sur une formule exacte, cardinale et canonique des tensions internes et
sur Péquation cardinale, canonique du mouvement des fluides visqueuz, Ann. Soc.
Polonaise Math. 21, 107-113.
49. T. E. ScuuNck, Der zylindrische Schalenstreifen oberhald der Beulgrenze, Ing.-
Arch. 16, 403-421.
50. P. M. Riz, Bolshie deformatsit ¢ plastichnost, Prikl. Mat. Meh. 12, 211-212.
51. A. HErPIN, La théorie cinétique de ’onde de choc, Rev. Sci. 86, 35-37.
52. S. Sugamoto, Theory of elasticity for finite displacement, J. Phys. Soc. Japan 3,
90; 4, 348-349 (1949).
53. H. RIcHTER, Bemerkung zum Moufangschen Verzerrungsdeviator, Z. Angew. Math.
Mech. 28, 126-127.
54. G. VIGUIER, Quelques remarques sur la couche limite de Prandtl. Son équation dans
le cas de gradients de vitesse élevés. Recherche Aeron., No. 1, pp. 7-9.
55. R. KuBo, Large elastic deformation of rubber (1945), J. Phys. Soc. Japan 8, 312-317.
56. E. SKUDRzZYK, Die Theorie der inneren-Reibung in Gasen und Flissigkeiten und die
Schallabsorption, Acta Phys. Austr. 2, 148-181.
57. S. M. FreemaN & K. WEISSENBERG, Some new rheological phenomena and their
significance for the constitution of materials, Nature 162, 320-323.
1949 1. R. D. ManbLIN, A mathematical theory of photo-viscoelasticity, J. Appl. Phys.
20, 206-216.
2. H. T. O’NEI1L, Reflection and refraction of plane shear waves in wiscoelastic media,
Phys. Rev. (2) 76, 928-935.
3. W.P.Mason, W. O. BAkER, H. J. McSkimiN, & J. H. Hess, Measurement of shear
elasticity and viscosity of liquids at ultrasonic frequencies, Phys. Rev. (2) 76,
936-946.
4. R. S. RivLiN, The hydrodynamics of non-Newtonian fluids, II, Proc. Cambr.
Phil. Soc. 45, 88-91.
5. R. S. RivuiN, Large elastic deformations of isotropic materials, V. The problem of
flexure, Proc. R. Soc. Lond. (A) 196, 463-473.
6. F. D. MUuRNAGHAN, The foundations of the theory of elasticity (1947), Non-linear
Problems in Mech. of Contin., N. Y., 158-174.
7. C. TRUESDELL, A new definition of a fluid, I. The Stokesian fluird, Proc. VII Intern.
Cong. Appl. Mech. (1948) 2, 351-364 = U. S. Naval Research Lab. Rep. No.
P-3457.
8. C. TRUESDELL, A new definition of a fluid, II. The Mazwellian fluid, U. S. Naval
Research Lab. Rep. No. P-3553.
. R. 8. RrvLiN, The normal-stress coefficient of macro-molecules, Trans. Faraday
Soc. 46, 739-748.
10. L. R. G. TRELOAR, The Physics of Rubber Elasticity, Oxford.
11. M. REINER, G. W. Scorr Brair, & H. B. HawLey, The Weissenberg effect in
sweetened condensed milk, J. Soc. Chem. Ind. 68, 327-328.
12. W. PRAGER, Recent developments in the mathematical theory of plasticity, J. Appl.
Phys. 20, 235-241.
13. G. ViGUiER, Les forces tangentielles de viscosité avec gradients de vitesse élevés,
Experientia &, 397-398.
14. A. GRauAM, A new approach to the problem of flow, Proc. VII Intern. Cong. Appl.
Mech. (1948) 1, 348-351.

©



288

15

16

17
18

19

21

30

31

32

33

34

35

36

37

38

39

40
41

C. TRUESDELL

. A. Si6NORINI, On finile deformations of an elastic solid, Proc. VII Intern. Cong.
Appl. Mech. (1948) 4, 237-247.

. L. N. LieBERMANN, The second viscosity of liquids, Phys. Rev. 75, 1415-1422; 76,
440.

. 0. CosTa DE BEAUREGARD, La Théorie de la Relativité Restreinte, Paris.

. H. M. James & E. GurH, Simple presentation of nelwork theory of rubber, with a
discussion of other theories, J. Polymer Seci. 4, 153-182.

. R. 8. RivLIN, A note on the torsion of an incompressible highly-elastic cylinder,
Proc. Cambr. Phil. Soc. 46, 485-487.

. R. 8. RivuIN, Large elastic deformations of isotropic materials V1. Further results
in the theory of torsion, shear and flexure, Phil. Trans. R. Soc. London (A) 242,
173-195.

. M. KoHLER, Retbung tn mdssig verdinnten Gasen als Folge verzégerter Einstellung
der Energie, Z. Phys. 126, 715-732.

. M. Pastori, Propagazione ondosa nei continui anisotropi e corrispondenti direzioni
principali, I1 Nuovo Cimento (9) 6, 187-193.

. M. REINER, On volume or isotropic flow as exemplified in the creep of concrele,
Appl. Sci. Research A1, 475-488.

. H. RicHTER, Verzerrungstensor, Verzerrungsdevialor, und Spannungstensor bei
endlichen Formdnderungen, Z. Angew. Math. Mech. 29, 65-75.

. J. O. HirscHFELDER & C. F. Curtiss, The theory of flame propagation, J. Chem.
Phys. 17, 1076-1081.

. H. 8. GREEN, The kinetic theory of elasticity and viscosity in liquids, Proc. Int.

Congr. Rheology (1948), I-12-1-28.

. H. KaupErerR, Uber ein nichilineares Elastizilitsgesetz, Ing.-Archiv 17, 450-480.
. C. 8. WanaG Cuang & G. E. UHLENBECK, Transport phenomena in very dilute gases,

Univ. Michigan Eng. Res. Inst. Rep. CM-579.

. A. HerrIN, Ezxtension des relations de Cauchy aux cocfficients d’élasticité du
trotsiéme ordre, C. R. Acad. Sci. Paris 229, 921-922.

. M. REINER, Relalion between stress and strain in complicated systems, Proc. Int.
Congr. Rheology (1948), IV-44-1V-63.

. K. WEISSENBERG, Abnormal substances and abnormal phenomena of flow, Proc. Int.
Congr. Rheology (1948), I-29-1-46.

. E. SkupRCcYR, Die innere Reibung und die Materialverluste fester Korper, 1. Allge-
meine Theorie, Oster. Ing.-Archiv 8, 356-373.

. E. ABOoDY-ANDERLIK, Friction in variable density fluid, Proc. VII Intern. Cong.
Appl. Mech. (1948) 3, 4-12.

. J. G. OLpROYD, Rectilinear flow of non-Bingham plastic solids and non-Newtonian
viscous liquids, 1., Proc. Cambr. Phil. Soc. 45, 595-611.

. L. M. M1LNE-THOMSON, Finite elastic deformations, Proc. VII Intern. Cong. Appl.
Mech. (1948) 1, 33-40.

. H. Grap, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math. N. Y. U.
2, 331-407.

. K. H. SWAINGER, Severe deformations, Proc. VII Intern. Cong. Appl. Mech. (1948)
1, 49-60.

. A. GLEYZAL, A mathemalical formulation of the general continuous deformation
problem, Q. Appl. Math. 6, 429-437.

. A. S1eNoRINI, Transformazioni termoelasiiche finite, Memoria 2°, Annali di Mat.
(4) 30, 1-72.

. H. HENcKY, Mathematical principles of rheology, Research 2, 437-443.

. F. D. MURNAGHAN, A revision of the theory of elasticity, Anais Acad. Brasil Ci.
21, 329-336.



ELASTICITY AND FLUID DYNAMICS 289

42. J. Kirgwoob, F. Burr, & M. GREEN, The statistical mechanical theory of transport
processes III. The coefficients of shear and bulk viscosity of liquids, J. Chem.
Phys. 17, 988-994. Errata, ibid. 18, 901-902 (1950).
43. M. REINER, T'welve Lectures on Theoretical Rheology, Amsterdam.
44. 1. V. GoLDENBLAT, Ob uravneniyakh ravnovesiya dlya plasticheskoi sreda, Prikl.
Mat. Meh. 13, 113-114.
45. R. C. L. BosworTH, The second viscosity coeffictent in rheological systems, Austral.
J. Res. (A) 2, 394-404.
46. K. H. SWAINGER, Saint-Venant’s and Filon’s finite strains: definitions non-linear
in displacement gradients, Nature 164, 23-24.
47. J. R. PARTINGTON, An Advanced Treatise on Physical Chemisiry, vol. 1, London,
N. Y., & Toronto.
48. G. V1GUIER, Nouvelles équations de la mécanique des fluides visqueux, Hrvatsko
Prirodoslovno Drustvo. Glasnik Mat.-Fiz. Astr. Ser. II. 4, 193-200.
49. G. Garcia, Ecuaciones cardinales canonicas exactas para los movimientos finitos y
las tensiones en los fluidos viscosos, Actas Acad. Ciencias Lima 12, 3-30.
50. V. K. LAMER, Some current misconceptions of N. L. Sadi Carnot’s memoir and
cycle, Science 109, 598.
51. L. BERGMANN, Der Ullraschall und seine Anwendungen in Wissenschaft und
Technik, 5th ed., Ziirich.
52. D. SertE, L’assorbimento delle onde ultrasonore nei liquidi, Nuovo Cim. (9) 6,
Supplemento.
53. T. Koga, On states not in thermal equilibrium (induction of the equation of motion
of a gas), J. Phys. Soc. Japan 4, 34-38.
54. G. VIGUIER, Structure analytique de la nouvelle mécanique des fluides visqueuz,
Rev. Sci. 81, 86-88.
55. M. GREENSPAN, Attenuation of sound in rarefied helium, Phys. Rev. (2) 75, 197-
198.
1950 1. I. I. GOLDENBLAT, Ob odot probleme mekhaniks konechnykh deformatsi splashnykh
sred, C. R. Doklady Akad. SSR 70, 973-976.
. M. KoHLER, Entropiesatz im inhomogenen verdiinnten Gas, Z. Phys. 127, 201-208.
. J. G. OLproOYD. On the formulation of rheological equations of state, Proc. R. Soc.
London (A) 200, 523-541.
4. M. KoHLER, Eine Symmetriebezichung in der Theorie des inhomogenen verdiinnten
Gase, Z. Phys. 127, 215-220.
5. H. Grapo, Kinetic Theory and Statistical Mechanics (notes), Inst. Math. Mech.
N.Y.U.
6. K. H. SwAINGER, Non-coaziality of principal normal stresses and the ‘strain’
ellipsoid in the classical theory on infinitesimal deformation, Nature 165, 159-160.
. G. VIGUIER, Quelques aper¢us sur un probléme de M. J. Boussinesq, Bull. Cl. Sci.
Acad. R. Belg. (5) 86, 71-76.
8. W. ZeRrNA, Allgemeine Grundgleichungen der Elasticititstheorie, Ing. Arch. 18,
211-220.
. R. 8. RivLIN, Some flow properties of concentrated high-polymer solutions, Proc. R.
Soc. London (A) 200, 168-178.
10. J. G. OLbprOYD, Finite strains in an anisotropic elastic continuum, Proc. R. Soc.
London (A) 202, 345-358.
11. A. E. GreeN & R. T. SHIELD, Finite elastic deformation of incompressible isotropic
bodies, Proc. R. Soc. London (A) 202, 407-419.
12. A. E. GrReeEN & W. ZerNA, Theory of elasticity in general coordinates, Phil. Mag.
(7) 41, 313-336.
13. K. H. SWAINGER, Finile elastic straining, Appl. Sci. Res. A2, 281-298.

W N

-

o



290 C. TRUESDELL

14. C. TRUESDELL, A new definition of a fluid, I. The Stokesian fluid, J. Math. Pures
Appl. (9) 29, 215-244.

15. A. S1aNORINI, Un semplice esempio di ‘“incompatibilita’’ tra la elastostatica classica
e la teoria delle deformazioni elastiche finite, Rend. Lincei (8) 8, 276-281.

16. B. BOONSTRA, Siress-strain properties of natural rubber under biaxial strain, J.
Appl. Phys. 21, 1098-1104.

17. F. pE HorrmMaN & E. TELLER, Magneto-hydrodynamic shocks, Phys. Rev. (2) 80,
692-702.

18. B. R. SeTH, Some recent applications of the theory of finite elastic deformation,
Elasticity, N. Y., Toronto, & London, 67-84.

19. W. R. SevcLING, Equations of compatibility for finite deformation of a continuous
medium, Am. Math. Monthly 67, 679-681.

20. A. N. GorooN, A linear theory of finite strain, Nature 166, 657.

21. K. H. SWAINGER, reply to criticism of Gordon {1950, 20], Nature, 166, 657-659.

22. Ein Kapitel aus der Vorlesung von F. NEUMANN 1iber mechanische Wrmetheorie.
Konigsberg 1854/55. Ausgearbeitet von C. NEUMANN. Herausgegeben von E. R.
NEUMANN. Abh. Bayer. Akad. Wiss. Math.-Nat. Kl. (2) no. 59.

23. M. GREENSPAN, Propagation of sound in rarefied helium, J. Acoust. Soc. Am. 22,
568-571.

24. G. Garcfa, Ecuaciones de los movimientos finitos vibratorios en los medios eldsticos
1s6tropos.—Fuerza superficial capaz de mantener el equilibrio, Actas Acad. Ci.
Lima 13, 29-38.

1951 1. C. TRUESDELL, A new definition of a flurd. II. The Mazwellian flurd, J. Math.
Pures Appl. 30, 111-158.

. R. 8. RivuiN & D. W. SaunpERs, Large elastic deformations of isotropic mate-
rials. VII. Experiments on the deformation of rubber, Phil. Trans. R. Soe.
London (A) 243, 251-288.

. R. S. RivuiN & A. G. Tuomas, Large elastic deformations of isotropic materials
VIII. Strain distribution around a hole in a sheet, Phil. Trans. R. Soc. London
(A) 243, 289-298.

. A. 8. LopGE, The compatibility conditions for large strains, Q. J. Mech. Applied
Math. 4, 85-93.

5. P. NEmfinyi, Inverse and semi-inverse methods in the mechanics of continua (1949),
Adv. Appl. Mech. 2, 123-151.

. M. REINER, The rheological aspect of hydrodynamics, Q. Appl. Math. 8, 341-349.

. M. REINER, Cross-elasticity, Bull. Res. Council Israel 1, 126.

. R. T. BEYER, A review of sound absorption in fluids, Rep. Research Analysis
Group, Dept. Physics, Brown Univ.

9. G. Viguier, Circulation d’un fluide visqueuz incompressible, Acad. R. Belg. Bull.

Cl. Sci. (5) 87, 397-405.

10. J. E. VERSCHAFFELT, La thermomééanique des phénomenes de transport, J. Physique
Radium 12, 93-98.

11. M. REINER, The theory of cross-elasticity, Z. Angew. Math. Phys. forthcoming.

12. J. G. OLpROYD, Rectilinear flow of non-Bingham plastic solids and non-Newtonian
viscous liquids. I1, Proc. Cambr. Phil. Soc. 47, 410-418.

13. A. S. LopGE, On the use of convected coordinate systems in the mechanics of con-
tinuous media, Proc. Cambr. Phil. Soc. 47, 575-584.

14. C. TruespELL, Review of [1950, 18], Math. Rev. 12, 457.

15. A. E. GReEN & R. T. SHIELD, Finite extension and torsion of cylinders, Phil. Trans.
R. Soc. London (A) 244, 47-86.

w [

'S

W N R



ELASTICITY AND FLUID DYNAMICS 201

16. H. M. Morr-SmitH, The solution of the Bolizmann equation for a shock wave, Phys.
Rev. (2) 82, 885-892.
1952 1. C. TRUESDELL, On the viscosity of fluids according to the kinetic theory, Z. Physik
131, 273-289.
. C. TRUESDELL, A program of physical research in classical mechanics, Z. Angew,
Math. Phys. 3, forthcoming,.
3. C. TruespELL, The physical components of vectors and tensors, to appear.
4. C. TRUESDELL, On the fundamental theorem of statistical mechanics, to appear.
5. M. REINER, Problems of cross-viscosity, Q. J. Math. Mech., forthcoming.
1953 1. C. TRUESDELL, The precise theory of sound absorption and dispersion in fluids, in
preparation. Preliminary report forthcoming in J. Wash. Acad. Sci., 1952

[



292

C. TRUESDELL

Index of Authors

Numbers refer to sections, to footnotes within sections, and to the bibliography.

ABopY-ANDERLIK, E. 734, [1949, 33].

AvrreY, T., JR. 449, 548. 15 722 818 (1944,
7] (1945, 4] [1948, 22].

ALmanst, E. 15, 151 ¢, 41, 415, 5, 491, 50, 502,
{1911, 2-4] [1916, 1] [1917, 2].

AmonTons, G. 28!,

ArMaNNI, G. 193, 50, 503, [1915, 1].

BacH, C. 432, [1902, T].

Baker, W. O. 818, (1949, 3].

Basserr, A. B. 664, [1888, 1].

Bareman, H. 253, 60, 732, (1932, 2] (1939, 10].

Beurrami, E. 183, 21, 21!, 828 [1871, 1]
[1886, 1] [1889, 4] [1892, 5].

BeramaNN, L. 61A, [1949, 61].

BERGMANN, P. G. 3¢, [1941, 2].

Beyer, R. T. 614, [1951, 8].

Biezexo, C. B. 16!, 17!, 493-4) 50, 503-6, 557,
[1928, 3] (1929, 5] (1932, 13] [1939, 8].

Bror, M. A. 171, 394, 411, 50, 50¢, 557, [1939,
4.7] [1940, 4].

Birch, F. 447, 528, (1938, 5].

Brincuikov, T. N. 35, (1938, 9].

BoLTzMANN, L. 73.

Bowza, H. 732. 12 [1913, 6].

Bonvricing, D. 143, 492, 508, [1931, 13] [1932,
11] (1933, 7] [1935, 3].

BoonsTraA, B. 5418 [1950, 16].

Born, M. 281, 445 732 12, 14 [1913, 6] [1921,
1] [1939, 12-13] [1946, 2] (1947, 1-2].

Boscovich, R. J. 12, 3, [1763, 1].

BoswortH, R. C. L. 614, [1949, 45].

Boussingsq, J. 111, 13, 133, 183, 26, 268, 39,
391. 5 403, 492, 50, 55, 60, 603, 74, 752, 77,
(1868, 2] [1870, 1] [1871, 4] [1872, 1].

Boyig, R. 29!.

BripgMmaN, P. 57.

BriLL, A. 34, 491, 50, [1909, b].

BriLLovuin, L. 41, 121, 151 3. 5 2611, 206 342,
35, 359, 398, 433. 5 44 445.7.12 49 4919
[1925, 1] [1928, 5] (1938, 2, 6-T] (1939, 11]
[1940, 8].

BriLrouin, M. 111 171 398 49° 61A, 73,

735, 74, 742-3, 76, 764, 77, 772, 818, [1891, 1]
{1898, 1] [1900, 1] [1907, B].
BromeBERG, E. 492, [1945, 6].
Bryan, G. H. 492, [1888, 2].
Burr, F. 61A, [1949, 42].
Burcarrr, P. 183, [1914, 2].
BurcEers, J. M. 70!, 818, (1935, 4] [1948, 12].
BurnerT, D. 73, 73'°, 76, 77, 80, [1936, 1].
BuseMann, A. 614, [1931, 12].
BurcHER, J. G. 734, [1876, 2].

CaLponazzo, B. 6!, [1932, 14].

CaLLENDER, H. L. 271, 28!, [1910, 2].

CaraTHEODORY, C. 28!, [1909, 4] [1925, 3].

Carnor, S. 27, 271, [1824, 1] [1878, 2].

Casrowpt, L. 2612, [1948, 34].

Cavcny, A.-L. 1, 11.3 3, 3!. 3, 65, 111, 14,
14t.8.7 151, 1912 21, 214-5, 26, 26%- 5-9,
341, 35, 351, 3-4, 371, 449, 55, 555-6, 631, 83,
(1823, 1] (1827, 1, 1a, 2-3, 6] [1828, 1.3]
(1829, 1-2] [1830, 1] [1841, 1].

CAYLEY, A. 64

Cesaro, E. 183, [1906, 1].

CELLERIER, G. 37, 372, 444, [1893, 8].

CuaprMAN, S. 61A, 73, 73711, 76, 763, 80,
(1916, 2] [1917, 8] [1939, 1].

CuieN, W. Z. 497, (1941, 7] [1944, 5].

Cuivton, E. G. 494, [1948, 39].

Crcavra, P. 499, (1941, 18].

Crsorti, U. 6!, 15!, 193, 264, [1930, 12-13,
17-18] (1932, 12] [1940, 11] [1944, 15-16].

CraIravur, A. C. 3, 33, [1743, 1].

CLAPEYRON, E. 281, [1834, 1].

Cravustus, R. 27!, 28, 28'.5 31, [1850, 2]
[1854, 1] [1862, 1] [1865, 1].

CLEBSCH, A. 268, (1857, 1].

CoruINET, E. 260, [1924, 6].

ComsEesiac, G. 267, (1902, 1].

CoreLaND, L. E. 54!+ 9, [1948, 29-30].

CosseraT, E. & F. 4!, 183, 22, 225 267-8. 10,
278, 34!, 35, 358, 372, 39, 39t ¢-¢ (1896, 1]
(1909, 1].



ELASTICITY AND FLUID DYNAMICS

Costa pE BEAUREGARD, O. 34, [1944, 1.2]
(1945, 3] [1946, 4.9, 17].

Cowwring, T. G. 61A, 73, 737- 11, 76, 763, 80,
[1939, 1].

CrupELl, V. 182-3) 11911, 6].

Curtiss, C. F. 328, [1949, 26].

D’ArvemBERT, J. L. 3, 38, 125, 201, (1752, 1].

Davis, E.-A. 457, 51, 5111 [1948, 25].

DEean, W. R. 503, [1925, 2].

pE DonbER, TH. 35¢, [1931, 17].

DEeUKER, E.-A. 121, 202, 225, 2632, 52!, [1941,
8] (1943, 7].

Dorn, J. E. 163, 565, [1948, 32].

DunameL, J.-M.-C. 3311, 44, 44! [1832, 1]
[1838, 1].

Dungem, P. 202, 225 267, 274, 28, 285, 304, 31,
331.8 392, 4 611, 61A, 732, 81, 814 82, 822,
[1901, 1] [1903, 11-18] (1904, 1] (1911, 1].

Duront, Y. 153, 21, 216 35° 822 [1931, 1,
16] [1933, 2].

Dururr, 595.

Eckart, C. 34, 184, 22, 22! 244 25, 2583,
283, 32, 323 8, 61A, 81, 82, 822-6. 10, 83 84,
[1940, 1-3] (1948, 14-15, 35].

EHRENFEST-AFANASSIEWA, T. 28!, [1925, 4].

EICHINGER, A. 51, 513, [1926, 1].

EiseNsART, L. P. 34, [1924, 2].

Enskog, D. 61A, 633, 73, 737, [1917, 4]
[1922, 2] [1945, 10].

ErsTEIN, 8. 271, [1937, b].

ERIcksEN, J. 33, 57.

EvuLEr, L. 3, 33,122, 513 131. 4 208, 21, 2124,
22, 224, 241-2 26, 262.° 29, 201 [1745, 1]
1757, 1-2] [1762, 1] [1769, 1] [1770, 1].

Fing, P. C. 28!, 325, (1948, 45].

Frory, P. J. 548, [1944, 3].

FINCK, J. L. 281, [1948, 44].

FINGER, J. 144, 35, 357, 395, 41, 413, ¢, 42, 49,
4915-16 1804, 1-2].

Finzi, B. 61, 359, 392, 452, [1931, 16] [1942,
15, 20].

ForpL, A. 443, 492 1907, 3].

Fourier, J. 33, 27, 274, 31, 312, 3311, (1822, 1|
{1833, 1].

Frank, P. 374, (1930, 21.

FreEMAN, S. M. 424 [1948, 57].

FreNkEL, J. 3, 633, 734, 81¢, [1926, 3] [1946,
11].

FRrESNEL, A. 11, 33, 1866, 1].

293

Frova, E. 499, [1040, 12] [1942, 18].
Fromu, H. 818, [1948, 83].

Garcia, G. 492, 604, [1947, 22] [1948, 48] [1949,
49] [1950, 24].

GARNER, F, H. 729, [1946, 20].

GEerasimov, A. N. 818, [1938, 8] [1939, 15].

GiBBs, J. W. 28, 286, 29¢-7 32 32!. 4 33, 33¢,
342, 39¢, 403, [1873, 1-2] [1875, 1].

Giraurt, M. 592 5, 603, 66¢, (1931, 14].

GLEYZAL, A. 9%, 2612, 308, 4523, 51, 5110, 13,
521, 571, [1945, 2] [1949, 38].

GoLbENBLAT, 1. 1. 498, {1950, 1].

GoLpENBLAT, 1. V. 511, [1949, 44].

GoobIERr, J. N. 508, (1948, 18].

Gorpon, A. N. 171, [1950, 20].

Goraipzg, A. Y. 50°, (1944, 18-19].

Grap, H. 61A, 73, 7313, 79, 793, [1949, 36]
[1950, 5].

GranAM, A. 12!, 497, (1949, 14].

GramuMmEL, R. 161, 494 [1939, 8].

GREEN, A. E. 41, 121, 182, 42, 429, 15 54, 5419,
842, [1950, 11-12] [1951, 15].

GREEN, G. 3, 38, 14, 141, 15, 15!, 33, 33, 35,
353-4, 371, 394, 43, 431, 50!, 55!, 83, [1839, 1]
[1841, 2].

Green, H. S. 7314, [1946, 2] [1948, 16] [1949,
26).

GreEN, M. 61A, [1949, 4].

GRrEENSPAN, M. 80, 805, (1949, 65] (1950, 23].

GrUBLER, M. 41!, [1900, 5].

Gron, F. 543, (1942, 11].

GurevicH, G. 818, [1947, 186].

GUTENBERG, B. 818, [1930, 5].

Gurn, E. 449, 54, 547. 9. 15 [1941, 6-6] [1942,
7] (1943, 5, 15] [1944, 8] [1946, 13] [1947, 14]
[1949, 18].

Hapamarp, J. 295, 392, 403, [1901, 6] [1903, 1].

Hawr, L. 614, {1947, 20].

Hagen, G. 72.

HameL, G. 15, 15!+ 4, 26!, 40, 40!, [1908, 1]
1912, 1).

HanpeLMaN, G. H. 453, 565, [1947, 9].

Harprwia, E. 818, [1943, 18] [1947, 25].

HawirLey, H. B. 7210 [1949, 11].

Hay, G. E. 4918 (1942, 8].

HeLLINGER, E. 26, 26!, 33, 332, 41, [1914, 1].

Heumuortz, H. 271, [1882, 2].

Hencky, H. 15, 161, 171, 202, 222, 49, 493, 50,
50%-¢, 557, 56%- 5, 818 ([1928, 2-8] [1929,



294

1-2, 6] [1931, 5] [1932, 13, 15] [1933, 4] [1949,
40].

HEeRrrPIN, A. 4919, 7312, [1948, 51] [1949, 29].

Hersey, M. D. 35, [1932, 7] {1936, 3].

Hess, J. H. 818, (1949, 3].

Heun, K. 41, 255 261, 7, 322, [1013, 1].

Hicks, W. M. 60!, [1882, 1].

HiiBerT, D. 241 25! 28¢ 30¢, 403, 73, 738,
{1907, 1-1a] [1912, 2-3].

Hiwi, M. J. M. 12}, 66¢, [1881, 1].

HIRSCHFELDER, J. O. 328, [1949, 25].

pE Horrman, F. 3¢, [1950, 17].

HoHENEMSER, K. 818, [1932, 4, 8].

Hooke, R. 1, 1, [1676, 1) [1678, 1].

Huser, M. T. 51, 512, [1904, 2].

IcuiNosg, M. 432, [1941, 13].
IMBERT, A. 16!

JAFFE, G. 7312, (1930, 6].

James, H. 449 54, 547,915 (1941, 5-6]
[1942, 7] [1943, 6] [1944, 8] [1946, 13] (1949,
18].

JarbpETZKY, W. 281, [1939, 21].

Jaumann, G. 25, 252, § 263, 32, 322, § 331,
56, 563, 818, 83, 84, [1911, b] [1918, 1].

JerFREYS, H. J. 61, 55 | 631, 818, 822, [1917,1]
1924, 1] [1931, 9] [1942, 10].

Jones, J. E. 73, 738, {1923, 1].

JoucueTr, E. 2610, 392, 443 55¢. 7, [1920, 1-6]
(1921, 2] [1924, 7].

JouLg, J. 27, 271.3  [1843, 2] (1845, 2-3]
[1847, 2] (1864, 2].

Juorrner, F. 34, [1911, 9].

Karpus, R. 194, 443, 492 [1939, 9].

KAUDERER, H. 491§  [1949, 27].

KELLER, J. 7312, (1948, 21].

Keuvin, Lorp 34, 27!, 281, 33, 334, 35, 35¢,
39, 303, 42, 425, 443 551.7, 83, [1849, 1]
[1853, 8] [1855, 1] (1856, 1] [1863, 1] [1865, 2]
{1867, 1] [1877, 1] [1879, 4] [1883, 1] [1888, 8]
[1890, 1] [1904, 8].

Krnuing, W. 213, [1892, 1].

KircuuorFr, G. 141, 183, 26, 26, 27, 274, 7,
33, 335, 341, 358, 371, 39, 398, 403, 49, 492,
61A, 80, 808, 8111, 82 [1850, 1] (1852, 1]
[1859, 1] [1868, 1] [1876, 8].

Kirgwoop, J. 61A, [1946, 21] [1949, 42].

KuEIn, F. 261,

Kueirz, M. 67, 60, 602, [1866, 3].

Koaa, T. 734, [1949, 563].

C. TRUESDELL

Konrer, M. 301, 61A, 7311, [1946, 14] [1947,
15] [1949, 21] [1950, 2, 4].

KorTeEWEG, D. J. 111, 73, 735, 752, (1901, 2].

KOTTER, F. 394, 41, 416, 49, 4917 (1910, 4].

KraLr, G. 492, {1940, 5].

Kromm, A. 492, {1937, 9].

KryvLov, V. V. 508, [1946, 19].

Kuso, R. 54, 5412, [1948, 565].

Kunun, W. 543, [1942, 11].

LagranGg, J.-L. 3, 33, 122, 21, 399, [1762, 2]
[1783, 1] (1788, 1].

Lawms, H. 303, 712, {1913, 6] (1932, 1].

La MEgr, V. K. 271, (1949, 50].

Lamia, E. 34 [1912, 5].

LanpE, A. 28!, {1926, 2].

LAPLACE, P.-S. pE 57.

LARMOR, J. 34, 267, [1891, 2] [1894, 6] [1895, 3].

LATTER, A. J. 162, 565, [1948, 82].

LEear, B. 281, 32, 326, [1944, 12] [1946, 18].

LeBEDEW, P. 61A.

LENNARD-JONES, J. E. (see JoxEs, J. E.)

LeoNTtovié, M. 614, (1936, 5].

Levi-Crvita, T. 359, (1901, 7].

Levy, M. 111, 60, 605, 74, {1867, 3].

LicaNnerowicz, A. 34, {1940, 6] [1941, 3-4].

LicHTENSTEIN, L. 66¢, {1929, 9].

LieBerMaNN, L. N. 61A, [1949, 16].

Lin, C. C. 453, 565, [1947, 9].

LocaTeELL1, P. 51, 518 [1940, 14].

Lobg, 67.

Lopge, A. S. 121. & 183 818, [1951, 4, 13].

Lour, E. 25, 252, 28! 32, 322. 5 33!, 563, 84,
[1917, 6] [1924, 6] {1940, 18] {1948, 43].

Love, A. E. H. 557-8 (1927, 8].

Lupwik, P. 161, (1909, 3].

MacCurLags, J. 34, (1848, 1].

MaNDELSTAM, L. 614, [1936, 6].

ManviLLg, O. 183, [1902, 6].

MarcoroNGo, R. 183, [1905, 1].

MARGUERRE, K. 492, [1937, 7-9] [1939, 22].

Magrk, H. 5415, [1946, 18].

Mason, W. P. 818, {1949, 3].

Massievu, F. 332, (1869, 3-4].

MaxweLL, J. C. 33, 92, 267, 443, 61A, 62,
62!+ 3, 633, 73, 734, 81, 81¢, [1853, 1] [1866, 2]
[1867, 2] [1871, 3] (1873, 8, 5] [1879, 1].

MAYER, J. R. 27, 27, [1842, 1].

McSkimin, H. J. 818, [1949, 8].

MEeuMKE, R. 161, 432, [1897, 1].

Mez1ssNER, W. 253, 31, 313, 323, [1948, 10].

MEIXNER, J. 253, 322, 614, [1941, 9] [1942, 1T].



ELASTICITY AND FLUID DYNAMICS

MEeRRrINGTON, A. C. 727, [1943, 19].

Mever, O.-E. 664, 70!, 734, 81, 81!, [1865, 3]
(1874, 1-2] [1875, 2].

MicuaL, A. D. 35,

MicueLL, J. H. 828, [1900, 4].

MiLNe-THOMSON, L. M. 35!, [1949, 35].

Minpuin, R. D. 818, [1949, 1].

Mong, F. 27, 271, [1837, 1].

Moongey, M. 171, 43, 438, 54, 542. 6.9 722
732, [1931, T] [1940, 7] [1948, 28, 30].

Morr-SmiTH, H. M. 7312) 743, [1951, 16].

Movurang, R. 15!, [1947, 19].

MiurLer, C. H. 339, [1907, 2].

MvurnaGHAN, F. D. 68, 121 143, 6 151, ¢ 16!,
171, 222 261, 35, 3510, 37, 373, 391, 40, 402-3,
41, 411-2, 8,13 4211 433-4 409 497,17 52
5245, 535, 557 ,56, 561 4, 57, 571 2, 58, 58!, 83,
84, (1937, 1] [1941, 1] (1944, 6, 13] [1945, 11]
[1949, 6, 41].

NA4par, A. 67, 92, 51, 51¢. 12 [1931, 11] [1933,
6] (1937, 4].

Nanson, E. J. 132, 81, [1878, 1].

Naranson, L. 81¢-7 {1901, 3-4, 6] [1902, 2-5]
[1903, 2, 5-6].

Navigr, C.-L.-M.-H. 1.3 3 32 60, 79,
(1821, 1] [1822, 2] (1823, 2] [1825, 1] [1827,
4.5).

NekLEPAJEV, N. 614, [1911, 10].

NemENyI, P. 552, 842, [1931, 4] (1951, 5].

NEeuser, H. 508, [1943, 8].

Neumany, C. 13, 134 2610, 27, 274, 39, 395,
(1860, 1] [1894, 4].

NeumanN, F. E. 28! 44, 443 [1843, 3] (1885,
1] [1950, 22].

Newing, S. T. 4913 [1938, 3].

Newron, 1. 1, 13, 612, 62, [1687, 1].

Nisson, A. H. 729, {1946, 20].

Norzi, L. 508, [1948, 20].

Opqvist, F. 183, [1937, 2].

Oupbroyp, J. G. 12!, 17t 183, 394 7 5115,
5416 725 (1949, 84] (1950, 3, 10] [1951, 12].

O’NErL, H. T. 818, [1949, 2].

Oseen, C. W. 52t 3 [1929, 7].

Osipa, 1. 818, [1941, 14].

Panov, D. 50°, [1939, 3].

ParTINGTON, J. R. 271, 281 733-4 [1949, 47].

Pasrtorr, M. 61, 392, 518, [1930, 14-15] [1941,
16] [1949, 22].

Pearson, K. 557, [1893, 2].

PeLzER, H. 548, [1938, 4].

295

PHivippIDIS, A. 515, [1947, 12].

Pranck, M. 444, [1880, 1].

PraTrIER, CH. 2612, [1948, 40].

Poincarg, H. 3¢, 61, 194, 263 10, 39, 399, 435,
491, 5410 [1889, 5] [1892, 4].

Poisson, 8.-D. 1, 11 3 3, 32 341, 61A, [1829,
3] [1831, 1] 1842, 2].

PoynTting, J. H. 42, 426-7 494 83, [1905, 2]
[1909, 2] [1912, 4] [1013, 4].

PozrarLosTiN, A. 1. 509, [1942, 19].

Pracer, W. 61, 45%, 508, 565, 818, [1932, 4, 8]
[1942, 8] [1945, 6] [1946, 12] [1947, 9] [1949,
12].

PrepwopIiTELEW, A. S. 61A, 734, 818, [1928,
4] [1948, 27].

Prescorr, J. 492, [1922, 1].

Primakorr, H. 80, 80!, [1942, 9].

Racan, G. 6, 61, [1933, 10].

Ranxking, W. J. M. 64, 281, [1853, 2] [1856, 2].

RavieieH, Lorp 9, 91, 30, 305, 61A, [1873, 4]
[1894, B].

Rerrr, R. 3¢, [1893, 4].

REINER, M. 21-2, 3% 6, 6! 9, 71, 91 161, 17!,
221, 231, 429, 45, 45'.4-5.7 46, 545 59,
5924, 61A, 664, 67, 67!, 71, T11.3 72,
72%. 6, 10-13 74 83 [1927, 4-B] [1928, 6]
[1929, 4] [1930, 7, 10-11] [1931, 6, 10] [1932,
3, 6, 11] [1934, 2] [1943, 6] [1945, 1, 8]
(1946, 3] (1948, 1] [1949, 11, 23, 30, 43]
[1951, 6-7, 11] [1952, 5].

ReEIssNER, H. 559, 732, 818, 82°, [1931, 3].

REuss, A. 818, (1930, 16].

REeYNoLDs, O. 25!: 5, 263, 325 71, 712 73,
7334, 791, (1879, 2] [1885, 2] [1887, 1]
[1901, 8], (1903, 19].

Riccr, G. 359, [1901, 7].

RicuTER, H. 15!, 16!, 17!, 41, 414, 44°-10
501-2) [1948, 13, 53] [1949, 24].

Riquikr, C. 183, [1905, 3].

Rivaup, J. 2611, [1944, 14].

Rivuin, R. 8. 148-6 8-9, 302, 35, 395. 9, 41,
413, 9'11’ 42’ 421-3. 8-9, 12-14, 16’ 43’ 436, 45’
49¢, 51, 5115, 53, 53¢, 54, 544-6. 11, 13-17 6]
615-6, 67, 672-3, 70, 702, 72, 721, 8. 12 74 79,
794, 83, 84, [1947, 4-5] [1948, 5-11] [1949,
4-5, 9, 19-20] [1950, 9] [1951, 2-8].

RiwriN, R. 722, [1927, 4-5] [1928, 6].

Riz, P. M. 49%-7, 50, 507- °-12_ [1938, 1, 11]
{1939, 14-16] [1942, 19] [1943, 18] [1947, 7]
[1948, 60].

RogerTson, H. P. 34, 61, [1933, 8] [1940, 9].



296

Rocarp, Y. 61A, 73, 7389, 70!, [1924, 8]
(1927, 2] [1929, 8] [1932, 6].

Ro#, M. 51, 513, 1926, 1].

RuknADZE, A. K. 509, [1944, 18-19] [1947, 24].

SAKADI, Z. 603, 818, [1941, 12, 15] [1942, 16].

SarTon, G. 271, [1929, 8].

SaunpERS, D. W. 149 41, 4111 422.16 54,
544,15, 17 11951, 2].

SceaMBERG, R. 728, 79!, 80, 802, [1946, 10]
[1947, 8].

ScHILLER, N. 443 [1879, 8].

ScHLECHTWEG, H. 411, 51, 517, 818, [1929, 8]
{1930, 5] [1931, 8] [1934, 4].

Scumipt, R. 51, 514, [1932, 9].

ScaoLTE, J. G. 818, [1947, 23].

Scaunck, T. E. 492, [1948, 49].

ScawaRrTz, R. N. 3¢, 641, [1947, 6].

Scaweporr, T. 67, 674, [1889, 3] [1900, 2-3].

Scort Brair, G. W. 7210, [1949, 11].

SeauiN, M. 27, 271, (1839, 2].

SeTH, B. R. 183, 4113, 49, 495. 7. 13 5012 522,
53, 54, 60, 84, 843, [1935, 1] [1936, 2] [1939,
2] [1941, 10-11) [1944, 9-10] [1945, 9] [1946,
16-18] [1947, 18] [1948, 42] [1950, 18].

SETTE, D. 614, [1949, 52].

SeucGLiNg, W. R. 188, (1950, 19].

SuePHERD, W. M. 493, [1936, 2] [1938, 3].

SuieLp, R. T. 42, 429, 15 54, 5419 842 [1950,
11] [1951, 16].

S1GNORINI, A. 41, 183, 26, 2612, 339, 392. 4, 41,
415.7.12 44 446.8-9 457 491, 6 502, 52,

522, 53, 531-2. 4. 6-7, 54, [1930, 3-4, 8] [1933,

1] [1936, 4] (1942, 3] [1943, 1] [1945, 7]
[1948, 23] [1949, 15, 39] [1950, 16].

SkuDRrzYK, E. 61A, 818, [1948, 656] [1949, 32].

SvLup, M. 28!,

SOMMERFELD, A. 34, [1892, 6] {1947, 28].

SourtaweLL, R. V. 171, 50, 504, [1913, 8].

STEFAN, J. 251, 326, 443, 61A, [1866, 4] [1871,
5] [1881, 2].

STERNBERG, E. 4915 [1946, 17].

StEwaRrT, R. J. 275, (1942, 1].

STOKER, J. J. 492, [1945, 6].

Stoxkes, G. G. 13, 3, 33, 20!, 21, 215, 245, 278,
341 59, 5913 60, 61, 61A, 61'. 4 63, 64,
67, 77, (1845, 1] (1851, 1].

Strurt, J. W. (see RAYLEIGH)

St. VENANT, A.-J.-C. B. pE 13, 3, 38, 92, 111,
15, 15!, 183, 193-4, 341, 352, 394, 49, 491-2, 50,
501, 557, 595, 614, [1843, 1] [1844, 1] [1847, 1]
[1863, 2] [1864, 1] [1869, 1-2] [1871, 2]

C. TRUESDELL

[1872, 2].
Sucanmoro, S. 393, [1948, 52].

Swainger, K. H. 151, 171, 49 565, [1947, 21]
{1948, 46-47] [1949, 37, 46] [1950, 13, 21].
SyngE, J. L. 34, 359, 497 774, [1924, 4] [1934,

8] [1937, 3] [1941, 71.

Tarr, P. G. 27, 425, [1867, 1] (1868, 3]
[1876, 1].

Taus, A. H. 34, [1948, 19].

TELLER, E. 34, [1950, 1].

TraoMASs, A. G. 42, 4214, 16 [1951, 3]

TraompsoN, J. H. C. 451, 46, 461, 664, 81, 814, 8,
822, [1933, 3].

TraoMsoN, W. (see KELVIN)

Timpee, A. 339, [1907, 2].

Tisza, L. 61A, [1942, 2].

TopHUNTER, 1. [1893, 2].

Torman, R. C. 3¢, 281, 325, [1933, 8], [1948,
45).

Tororri, C. 262, 392, 44, 4411-12 538,38
[1942, 12] [1943, 10-13].

Tonovro, A. 41, [1943, 14].

Tourin, R. A. 33, 57.

Trerrrz, E. 182, 492, [1928, 1] [1930, 9]
[1933, 6] [1937, T].

TreLOAR, L. R. G. 49, 4911, 543. 6,8, 11
[1943, 3-4, 9] [1944, 4] [1947, 10, 1%, 13]
[1948, 24] [1949, 10].

TruespELL, C. 3%, 63, 152, 241, 61A, 64!, 65!,
661, 723, 731, 741, 751-4, 761 8 771 807, 841. 3,
[1947, 6] [1948, 2-3] [1949, 7-8] [1950, 14]
[1951, 1, 14] [1952, 1-4] [1953, 1].

Tsien, H. S. 61A, 73, 731, 774, 80, 802, [1946,
1, 10].

UpgescHiNi, P. 452, 51, 519, [1941, 17] [1943,
17] (1944, 17).

UnLENBECK, G. E. 61A, 7312, 79, 791-2) 80,
803, [1948, 4] (1948, 28].

VaN Dantzig, D. 34, [1939, 17-20] [1940, 10].

VAN LERBERGHE, G. 274, [1933, 9].

VEBLEN, O. 12 [1927, 1].

VerpET, E. 1! [1866, 1].

VERsCHAFFELT, J. E. 253, 323, 7315 [1942,
13-14] [1948, 37-38] [1951, 10].

Viguier, G. 595, 724, 794, [1947, 17, 26-27]
[1948, 54] [1949, 13, 48, 64] [1950, 7] (1951, 9].

Vwiazov, V. Z. 183, [1944, 11].

Vorar, W. 33, 339 11, 444 49, 4914 81,6 812,
(1889, 1-2] [1892, 2-3] [1893, 1] [1894, 3]



ELASTICITY AND FLUID DYNAMICS

[1895, 1-2] [1901, 9] [1910, 1].

VoLTERRA, V. 183, 55, 553, [1907, 4].

v. IeNaTowsky, W. 34, [1911, 7].

v. KArMAN, TH. 492, 732 12 [1910, 3] [1913, 6].

v. Lavug, M. 34, (1911, 11].

v. Mises,-R. 22, 67, 512, 81, 813. 8, [1913, 2]
[1930, 1-2].

v. SmorucHowskl, M. 61A, 732, [1898, 2]
{1903, 4] [1911, 8].

WarL, F. T. 546. 8, [1942, 4-5] [1943, 2].
Waneg Cuang, C. 8. 61A, 7312, 79, 792, 80,

80-4, [1948, 4] (1948, 36, 41] [1949, 28).
WEeEBER, C. 521, [1948, 31].

297

WepDERBURN,'J. H. M. 6¢, (1934, 1].

WEISSENBERG, K. 12, 3¢ 143 16!, 278 424
45! 51, 5114 72, 7210 818 [1931, 2] [1935, 2]
[1947, 8] [1948, 567] [1949, 81].

WuarLEs, G. 64.

Yang, L. M. 734, [1948, 17].

ZareEMBA, S. 303, 567, 632, 81, 817, [1903, 8,
7-10] [1937, 6].

ZeLMANOV, A. L. 188, 2612, [1948, 26].

ZErNa, W. 41, 121, 183, [1950, 8, 12].

ZvoLinskl, N. V. 49¢6-7 50, 507 ®-10. 12, [1938,
1, 11] {1939, 14].



298 C. TRUESDELL

Table of Contents

CHAPTER 1. Preliminary Discourse.

1. The classical linear theories of elasticity and fluid dynamiecs..... 126
2. Possible generalizations.................... ... ... ... ... 127
3. The scope of thisreview.................... ... . ... .. ... ... 127
4. The planof thisreview................................. SN 129
5. Notation.. ... 129
CuarteR II. Isotropic Functions.
6. Isotropy in three dimensions................... ... ... ......... 131
7. Inversion of isotropic functions............ ... ... ... ... ... 133
8. Power series for the coefficients................................ 134
9. Linear and quasi-linear functions.............................. 135
10. Special Cases.... . ... 136
11. “Retaining the non-linear terms.”.................. e 137
CuarteR III. General Theory of Continuous Bodies.
12. Material and spatial coordinates............................... 138
13. A variable reference configuration.............................. 139
14. Measures of deformation. I. Cauchy’s and Green’s deformation
BONSOTS. . . . o 140
15. Measures of deformation. II. The Green-St. Venant and Almansi-
Hamel strain tensors............... ... ..o, 143
16. Measures of deformation. ITI. Hencky’s logarithmic measure... ... 144
17. Equivalence of the various measures of deformation.............. 145
18. Conditions of compatibility............... .. ... ... ..., 145
19. Infinitesimal displacements, infinitesimal displacement gradients,
and infinitesimal strains................ ... . ... ... 146
20. Velocity and acceleration..................... ..., .. 149
21. Rate of deformation. Vorticity................. ... . ... ..... 150
22, Rateof strain........... ... ... o u it 151
23. Digression: Mechanical phenomena for whose description the
various kinematical quantities are appropriate................ 154
24. Conservation of mass in simple media.......................... 154
25. Heterogeneous media.. ..., 155
26. Conservation of momentum................. ..., 157
27. Conservation of energy in simple media........................ 159
28. Parenthesis: classical thermodynamics.. ....................... 161
29, Thermodynamics of deformation. I. Basic postulates and defini-
tions for homogeneous fluids................. ... ... ... . ... 162

30. Thermodynamics of deformation. II. Pressure, dissipated power... 164



ELASTICITY AND FLUID DYNAMICS 299

31. Thermodynamics of deformation. III. Consequences of the

Clausius-Duhem inequality.. ............................... 165
32. Thermodynamics of deformation. IV. Heterogeneous fluids.. . . ... 166
33. Thermodynamics of deformation. V. Elastic solids............... 168

Cuapter IV. Elasticity.
IVA. Green’s Method: The Natural State Theory.

34. The idea of a natural state.. . ................................ 173
35. Cauchy’s method and Green’s method...........,............. 173
36. Definition of a perfectly elastic body according to the natural state
theory. . . .. e 174
37. Proof that Tisafunctionof C................................ 175
38. Elastically isotropic bodies.. . .....................ciiiiiin.. 175
39. Derivation of general stress-strain relations: I. Material forms..... 176
40. Derivation of general stress-strain relations: I1. Spatial forms..... 178
41. Stress-strain relations for isotropically elastic bodies.. ........... 179
42. Rivlin’s exact solutions of the general equations................. 182
43. Power series for the elasticenergy............................. 193
44. Thermoelasticity.. .. ... ... . ... o i 194
IVB. Cauchy’s Method: Reiner’s Semi-empirical Theory.
45. Reiner’s theory of isotropic elastic bodies....................... 197
46. Criticism of Reiner’s theory................ ... ............... 199
47. Dimensional invariance.. . . ...... ... .. ... . ... ... 200
IVC. Approximations.
48. The nature of approximate theories............................ 201
49. Theories of infinitesimal strain but large displacement gradxents
and rotations.. . ... ... 201
50. Theories based on assumptions regarding the extensions......... 206
51. Semi-empirical quasi-linear theories............................ 208
52. Special forms for the strain energy. I. Murnaghan’s ‘“‘proper den-
Sity” theory.... ... ... 210
53. Special forms for the strain energy. I1. Signorini’s exact quadratic
theories.. . ... ... i 211
54. Special forms for the strain energy. III. The Mooney-Rivlin
theory forrubber.. .. ... ... ... ... .. 214
IVD. The Jaumann-Murnaghan Rate of Deformation Theory.
55. Initial stress.. . ........oviiiii e 217
56. Defining relations for the Jaumann-Murnaghan rate of deformation
theory.. .. ... o 220
57. Murnaghan’s formula for hydrostatic pressure.................. 222
58. Simple extension.. . ....... .. ... ... 223

CuaPTER V. Fluid Dynamics
VA. Stokes’s Principle. Viscosity.
59. Stokes’s principle.......... ... ... 225
60. Generalizations: Boussinesq’s principle and Levy’s principle.... 226



300 C. TRUESDELL

61. Possible relations among the coefficients. Mean pressure and ther-

modynamic pressure. Incompressible fluids.. .. ............... 227
61A. Appendix. The Stokes relation......................... ... ... 228
62. Viscosity. Natural time.. . .......... ... . ... ... . 231
VB. The Stokesian Fluid.
63. A fluid without a natural time.. .............. e 232
64. Definition of the Stokesian fluid................... .. ... ... ... 232
65. The consequences of invariance requirements................... 232
66. Dynamical similarity.. . ....... ... ... . ... .. i 233
VC. The Reiner-Rivlin Fluid With a Natural Time.
67. The natural time in the Reiner-Rivlin theory................ ... 235
68. Definition of the Reiner-Rivlin fluid........................... 236
69. The consequences of invariance requirements.. . ................ 236
70. Dynamical similarity.. . ... ... .. ... ... ... 237
71. Reiner’s treatment of dilatancy...................... ... . ..., 238
72. Rivlin’s general solutions............ ... ... ... ... ... ... ... 238
VD. The Maxwellian Fluid.
73. Slp flow.. . ... 245
74. Definition of the Maxwellian fluid. Brillouin’s principle........... 247
75. Expressions for the stress and heat flux......................... 249
76. Comparison with the equations of Burnett and Chapman-Cowling.. 250
77. The effect of vorticity............ ... ... . . 251
78. Approach to a theory involving a natural time.................. 252
79. Boundary conditions........ TS 252
80. Propagation of small disturbances in the Maxwellian fluid.. . ... ... 253
Cuarter VI. Superposition Theories.
81. The classical superposition theories......................... ... 254
82. Eckart’s anelastic material.. . . ................... ... . ..., 255
Cuaprer VII. Progress and Program of the General Theories.
83. Progress of the general theories.. . ............................ 259
84. Program of futureresearch.. .......... ... ... ... ... 260
REFERENCES. . .. oot i ittt et ittt et e e e R 263

INDEX OF AUTHORS . .« oot ittt it et a e e e 202



