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Abstract

The mechanical properties of Chelyabinsk LL5 chondrite (Chelyabinsk meteorite) were 

studied by uniaxial compression and diametral compression/indirect tension test. Twenty 

cylindrical samples, 10 for compression and 10 for tension, with the diameter 3.3  mm 

and 1.65  mm in height have been prepared for testing. It was shown that the strength 

of the tested samples under compression almost 45 times greater than it is at tension: 

372 ± 10 MPa and 8.2 ± 0.7 MPa, respectively. Fracture behaviour under compression and 

tension was similar and can be characterised as brittle. The obtained compression strength 

of the Chelyabinsk meteorite lies close to the maximal values of strength for many other 

chondrites, whereas its tensile strength magnitude resides in the bottom quarter of the 

range of similar measurements. It may be caused by the  small sizes of the investigated 

samples together with a large number of tiny cracks between the grains in the Chelyabinsk 

chondrite. Our estimations have shown that if one assumes that the initial shape of the 

Chelyabinsk fireball was spherical or ellipsoidal, then its fragmentation stress is close to 

the experimental tensile strength and much lower than the compression strength. Hence, a 

stress state equivalent to one appearing at the indirect tension test could occur in the Chely-

abinsk fireball during its fall in the Earth atmosphere.
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1 Introduction

The Chelyabinsk meteorite fell in the Chelyabinsk region  of Russia on February 15, 

2013, at 03:20 Universal Time and still attracts significant attention of scientific com-

munity (Gorkavyi et al. 2019). A large number of different fragments of the Chelyabinsk 

have been studied to date (Gorkavyi et  al. 2019; Flynn et  al.  2018; Morlok et  al.  2017; 

Kaeter et al. 2017; Righter et al. 2015; Kohout et al. 2014; Galimov et al. 2013). These 

studies reveal that Chelyabinsk is a monomict LL5 breccia with a complex bombardment 

history. At least three distinct predominant lithologies were revealed: light (main), dark 

(shocked) (Galimov et al. 2013) and fully shock-molten components (Righter et al. 2015; 

Morlok et al. 2017). According to Galimov et al. (2013), the Chelyabinsk meteorite con-

tains roughly one-third of shock-melted material, which composition is similar to the com-

position of the major part. Other recent work has focussed on the comparison of Chely-

abinsk with other meteorites (Gorkavyi et  al. 2019; Flynn et  al. 2018), refinement of its 

fall trajectory (Buhl and Wimmer 2013), a search of sources of its cosmic origin and dis-

covering new ways to protect people from asteroidal hazards (Dudorov et al. 2016; Pop-

ova et al. 2013; Emel’yanenko et al. 2013; Grygorian et al. 2013; Borovicka et al. 2013). 

Despite the considerable attention attracted to the Chelyabinsk meteorite, the data about 

its mechanical properties are not sufficient to date as it usually requires a strong multidis-

ciplinary collaboration of astronomers, mechanicians and material scientists. Another con-

siderable obstacle is  the requirement for manufacturing small-sized samples suitable for 

mechanical testing. It is equally challenging to select representative samples of the meteor-

ite with regard to mechanical properties (e.g., crack density) and to then manufacture small 

sub-samples for testing without compromising their structural integrity. In one of the first 

works, where the mechanical properties of the Chelyabinsk were subjected to study (Pop-

ova et al. 2013), the most of fragments composed of relatively small pieces contain a large 

number of cracks (Popova et al. 2013). It has been shown that the compression strength of 

the cuboid samples (10 × 10 mm and 20 mm in height), which was cut from the fragment of 

the Chelyabinsk, was 64.0 MPa, that is quite low for chondrites (Flynn et al. 2018).

The compression tests of other ordinary chondrite meteorites were carried out by many 

researchers (Kimbereley and Ramesh 2011; Flynn et al. 2018). Ordinary chondrite com-

pression strengths were in the range of 50–500 MPa (Popova et al. 2013; Kimbereley and 

Ramesh 2011; Flynn et al. 2018). On the other hand, there is extremely little information 

about the strength properties of these materials under tension. It seems obvious that the 

direct tension test of such brittle materials is impossible. Therefore, the diametral com-

pression test or Brazilian disk test (Yuan and Shen 2017) is commonly used to study the 

tensile properties of  ordinary chondrite meteorites. According to Morgan et al. (2015) ten-

sile strength of ordinary chondrites was 36 MPa. The stony meteorites have compressive 

strength 217 ± 134 MPa and tensile strength of 30 ± 17 MPa for the samples recovered on 

the ground (Svetsov et al. 1995; Tsvetkov and Skripnik 1991; Popova et al. 2011).

There is a large scatter, with  a variance of  50 % and even more from the distribu-

tion mean, in the data on mechanical properties of meteorites in the literature (Svetsov 

et al. 1995; Tsvetkov and Skripnik 1991; Popova et al. 2011; Flynn et al. 2018).  To a large 

extent, it reflects the degree of imperfection of the meteoritic material, the used experimen-

tal techniques and  skills of the researchers. More than this, meteorites are often mechani-

cally heterogeneous on a macroscopic scale due to their bombardment history—including 

the final fall through the atmosphere. Such a level of uncertainty in the initial mechani-

cal properties of asteroids makes it challenging to model their fracture behaviour during 
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atmospheric entry. The Chelyabinsk meteorite is  quite an exceptional case: a large number 

of observations (more than 400 videos) of its fall make it possible to obtain more accu-

rate estimations of its mechanical properties (Popova et al. 2013). Additional detail studies 

of the deformation and fracture behaviour of the Chelyabinsk chondrite under compres-

sion and tension should help researches to simulate the entrance of the meteoroid into the 

Earth’s atmosphere (Gorkavyi et al. 2019; Dudorov and Mayer 2014) followed by a colli-

sion with the Earth surface.

Here, we study the mechanical properties of Chelyabinsk LL5 chondrite under uniaxial 

compression and diametral compression/indirect tension tests. These findings will expand 

our knowledge about the mechanical properties of a meteoritic material that allows one to 

determine the place of the Chelyabinsk meteorite among other meteorites in terms of its 

mechanical characteristics. There are just a few measurements of the strength of LL type 

chondrites (Flynn et al. 2018). As far as we know, we have measured the tensile strength of 

the Chelyabinsk chondrite for the first time.

2  Materials and Methods

2.1  Sample Preparation

Two similar fragments of the Chelyabinsk meteorite which have been found during the 

expedition headed by professor A.E. Dudorov in  February 2013 near the Emanzhelinka 

township (Chelyabinsk region, Russia) were used in this work (Fig.  1a). The fragments 

were cut into pieces having 3 mm in thickness (Fig. 1b) using the diamond saw with water 

irrigation. The disk of the diamond saw diameter was 35 mm whereas its thickness was 

0.15 mm. The observation was shown that the fragments were covered by a thin layer of 

fusion crust formed in the process of falling through the Earth’s atmosphere, and there 

were a number of long cracks inside the pieces (Fig. 1b). Our samples had the light (or 

“main”) lithography bounded by the melted layer. In the samples available to the authors, 

only small parts of their volume remain undamaged (Fig. 1b), so only small samples for 

mechanical testing could be prepared. They have been drilled by the diamond core bit 

with water irrigation from the regions of the pieces where the cracks were absent. Ten 

samples for each of the two groups were prepared for uniaxial and diametral compression 

tests, respectively. After that, the flat surfaces of the samples were abraded using  abrasive 

papers. Finally, the samples have a cylindrical or tablet shape with a diameter of 3.3 mm 

and 1.65 mm in height (Fig. 1c).

Fig. 1  The fragment of the Chelyabinsk meteorite: a  general view; b  pieces after cutting; c  sample for 

mechanical testing
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2.2  Microscopic Characterisation of Samples

Canon photo microsystem (Canon D60 with Canon EF-S 60 mm f/2.8 Macro USM and 

Canon Macrolite MT-24 EX) was used for imaging of the meteorites and the samples 

prior testing. Scanning electron microscope (SEM) JEOL-JEM 6390LV with acceler-

ated voltage 20 kV was used for characterisation of the fracture surfaces of the samples 

after the diametral compression test.

2.3  Mechanical Testing

Testing machine Shimadzu AGX-50kN was used for uniaxial and diametral compres-

sion at ambient temperature. The second mode (Brazilian disk experiment or indirect 

tension test) differs from the uniaxial one just in orientation, as it is shown  in Fig. 2, but 

such special orientation creates dramatically different stress state inside the cylindrical 

sample (Yuan and Shen, 2017). Along the sample diameter, perpendicular to the loading 

direction, the stress state is very close to pure tension deformation conditions (Fig. 2). 

The rate of loading was 0.1 mm/min in all tests. Processing of the results, including sta-

tistical analysis—average values and standard deviation measurements—was carried out 

by Trapezium,  standard software for Shimadzu. The axial deformation of the sample 

was measured by the testing machine. The compression strength was considered as the 

maximal stress on the deformation curve, whereas the elastic modulus was calculated 

from the slope of the linear part of the deformation curve as a proportion between the 

stress and the strain. The diametral tensile stress and the diametral strain were calcu-

lated by equations σ = 2F∕�Dh and ε=(Δx∕D) × 100% , respectively, where F is applied 

force, D—diameter of the sample, h—sample height and Δx—the movement of the trav-

erse (Fig. 2).

Fig. 2  The scheme of conven-

tional compression test (a) and 

diametral compression/indirect 

tension test (b)
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3  Results

3.1  Mechanical Behaviour

Most of the closest to the average stress–strain curve of the Chelyabinsk LL5 chondrite 

under compression (Fig. 3) can be approximated by the straight line. This fact allows us 

to assume that the  deformation of the Chelyabinsk chondrite is elastic under compres-

sion. The mechanical properties of Chelyabinsk chondrite under compression are given in 

Table 1. The elastic modulus, which is the coefficient of proportionality between stress and 

strain, is 5.75 ± 0.23 GPa. The compression strength (see Fig. 3) is 372 ± 10 MPa, and the 

total compression deformation is 8.8 ± 0.2 %.

The trend closest to the average stress–strain curve of Chelyabinsk LL5 chondrite 

under diametral compression is shown in Fig. 4. Clearly, the form of the curve here also as 

straight as it takes place under compression. Hence, the Chelyabinsk chondrite is deformed 

Fig. 3  The stress–strain curve of the sample of Chelyabinsk LL5 chondrite under uniaxial compression con-

ditions

Table 1  The mechanical properties of Chelyabinsk LL5 chondrite under compression and tension

The scheme of deformation Elastic modulus (GPa) Compression/tensile 

strength (MPa)

Total 

deforma-

tion (%)

Uniaxial compression 5.75 ± 0.23 372 ± 10 8.8 ± 0.2

Diametral compression 0.73 ± 0.09 8.2 ± 0.7 1.1 ± 0.1
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in an elastic regime both at compression and tension conditions. The mechanical character-

istics of the Chelyabinsk meteorite under the diametral compression/indirect tension test 

are also given in Table 1. The elastic modulus is 0.73 ± 0.09 GPa. It should be noted that 

the elastic modulus under diametral compression characterized by the ratio between the 

stress and the strain that are perpendicular to each other in this case. Therefore, its value 

cannot be compared with the elastic modulus, which was obtained from the compression 

test. The diametral tensile strength is 8.2 ± 0.7 MPa, and the total tensile deformation is 

1.1 ± 0.1 %.

3.2  3.2 Fracture Behaviour

 The abrupt changing of the deformation curve trend at the end of the test (dropping of the 

stress in Figs. 3 and 4) corresponds to the failure of the sample. At the uniaxial compres-

sion loading, the fracture occurs gradually (Fig. 3) and the samples were crumbling into 

small pieces, whereas during the diametral compression test, the sample separates into two 

equal parts along the loading plane (Fig. 2) that happens abruptly (Fig. 4). Observation of 

the fracture surfaces of pieces of the sample after its diametral compression test was shown 

that they are quite rough, and fracture behaviour corresponds to cleavage (Fig. 5a). Such 

behaviour can be characterised as  brittle. There are many light inclusions inside the mete-

oritic material (Fig. 5a, b), which are apparently a mixture of Fe, Ni metal blebs (Dudorov 

et al. 2016) with some sulphides additions. The size of the light inclusions is ranged from 

10 to 100 µm (Fig. 5b). The fracture at our experiments occurred both between the grains 

Fig. 4  The stress–strain curve of the sample of Chelyabinsk LL5 chondrite under diametral compression/

indirect tension conditions
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and into the light inclusions (Fig.  5c). Furthermore, the layered structure of part of the 

samples (likely barred chondrules) has been observed (Fig.  6a). There are a number of 

undamaged melted layers alternated with the rock layers like structure where the cracks are 

contained (Fig. 6b). It seems clear that the layered structure had formed before the experi-

ment, while the cracks are the effect of sample loading. The width of the undamaged layer 

is 10 µm, whereas the width of another layer is in the range of 10–20 µm (Fig. 6c).

4  Discussion

4.1  Deformation and Fracture Behaviour of the Chelyabinsk Chondrite

Our study has shown that the deformation and fracture behaviour of pieces of the Chely-

abinsk meteorite is brittle. The deformation was elastic on the entire stage of loading under 

both compression and tension conditions (Figs. 3 and 4, respectively). Also, the samples 

fractured almost immediately just the maximal load is achieved, especially under diame-

tral tension conditions. The fracture occurred both between the grains and into the light 

inclusions (Fig. 5c). The strength of the Chelyabinsk chondrite under compression is more 

than 45 times greater as compared with tension: 372 ± 10 MPa and 8.2 ± 0.7 MPa, respec-

tively. The former value is much higher than the one reported by Galimov et al. (2013), and 

the latter is the first reported for Chelyabinsk (see Table 1). Such big differences between 

the compression and tensile strength are usual for a number of very different materials. 

They are maximal for brittle materials and lower for ductile in the case when the fracture 

occurs under compression conditions. For example, the compression strength is more than 

Fig. 5  The fracture surface of the sample of Chelyabinsk LL5 chondrite under diametral compression/indi-

rect tension test: a—general view (X50 magnification); b—light metallic inclusion in the meteoritic mate-

rial (X100); c—crack distribution in the sample (X500)

Fig. 6  The layered structure on the fracture surface of the sample of Chelyabinsk LL5 chondrite under dia-

metral compression/indirect tension test: a—general view at X100 magnification; b—X500 magnification; 

c—X1000 magnification
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11 times greater than the tensile strength of aluminium oxide (Shackelford et al. 2001). It 

is caused by the different types of stresses and their distribution into the material. The large 

difference for Chelyabinsk chondrite is pointed to the prominent role of the defects in its 

deformation and fracture behaviour (Popova et al. 2011). The difference given for the stony 

meteorites (compressive strength 217 ± 134 MPa and tensile strength of 30 ± 17 MPa) is 

lower than for Chelyabinsk LL5 chondrite both in the present research and the other meas-

urements (Popova et al. 2013; Svetsov et al. 1995; Tsvetkov and Skripnik 1991; Popova 

et al. 2011). However, the large standard deviation of the values for stony meteorites makes 

such a comparison purely conditional. The lower compression strength of the Chely-

abinsk meteorite (64.0 MPa) given in Popova et al. (2013), in contrast with our findings 

(372 ± 10 MPa), may be caused by the size of the testing sample. The cuboids sample hav-

ing size 10 × 10 mm and 20 mm in height was tested in (Popova et al.  2013), whereas the 

cylindrical samples with the diameter 3.3 mm and 1.65 mm in height were used in this 

work. It is possible that such a relatively big sample as in Popova et al. (2013) may contain 

long cracks, as  shown in Fig. 1a, that could lead to a lower strength of the sample.

A lot of cracks are observed between the grains (Fig. 5b). It indicates the presence of  

weak bonds between the grains. Such tiny cracks (usually below 100 µm) into the frag-

ments of the Chelyabinsk meteorite are stress concentrators. At the places of their localiza-

tion, the dangerous cracks subsequently appear that leads to fracture of the entire sample 

and significantly decrease its tensile strength under the mechanical testing. In addition, the 

fracture occurred into the light inclusions under mechanical testing (Fig. 5c). It has been 

shown that the light inclusions are metallic phase consisting  mainly of Fe and Ni (Dudorov 

et al. 2016). Brittle cracks propagated into Fe, Ni blebs which previously had been fracture 

free. The compressive strength of the specimens is not decreasing significantly since the 

wedging stress near the tiny crack tip is much lower under compression in contrast with 

tension due to the crack growth suppression.

4.2  The Shape of the Chelyabinsk Fireball

It is well known that fragmentation of the meteorite Chelyabinsk began at an altitude of 

about 30 km above the Earth’s surface (Popova et al. 2013; Dudorov et al. 2016). The air 

density at this height can be estimated by the barometric formula (Emmert 2015) and is 

about �
g
 ≈ 0.05 kg/m3 (Dudorov and Mayer 2014). The force acting on the falling meteor-

oid can be estimated  using the equation (Landau and Lifshitz 1987):

where the drag coefficient for the spherical shape C
d
∼ 0.9 and C

d
= 1.0 (Landau and Lif-

shitz 1987) for near-cube shape, S is the meteoroid surface area, and V is its velocity. The 

maximal stress is located near the front surface of the meteoroid. For the stress acting on 

the meteoroid, one can obtain with Eq. (1):

The meteoroid entry velocity into the Earth atmosphere is about V ≈ 19  km/s 

(Dudorov et  al.  2016). Hence, the stress at the initial stage of  the fragmentation pro-

cess for spherical fireball (Fig.  7a) is at most σ ≈ 8  MPa, while for cuboids fireball it 

is no more than 9 MPa (Fig. 7b). These values are significantly lower than the experi-

mental compression strength of the Chelyabinsk chondrite (372 ± 10 MPa) but are close 

(1)F = 0.5CdSV2
�g,

(2)� = 0.5CdV2
�g.
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to its experimental tensile strength (8.2 ± 0.7 MPa). Hence, the stress state equivalent 

to  those  appearing at indirect tension conditions could have been taken place in the 

Chelyabinsk fireball when it was passing through the Earth atmosphere. So, it is very 

likely that the initial shape of the Chelyabinsk fireball was also spherical or ellipsoidal. 

In favour of this  assumption also evidenced the fact that the Chelyabinsk fireball ini-

tially has separated into a few large parts (Dudorov and Mayer 2014) as it takes place at 

diametral compression (indirect tension) test, whereas the samples were crumbled into 

small pieces during the uniaxial compression test. The spherical shape of the Chely-

abinsk fireball was also supposed in the work of Dudorov and Mayer (2014). The final 

form of the tiny ellipsoidal sample presented  in Fig. 1a results from multiple fracture 

events of the initial large meteoroid, which was continuing its further disintegration 

after the initial break (Dudorov and Mayer 2014).

5  Conclusions

The mechanical testing of the Chelyabinsk LL5 chondrite under uniaxial compression 

and diametral compression/indirect tension test was shown that strength under com-

pression was more than 45 times greater as compared with tension: 372 ± 10 MPa and 

8.2 ± 0.7 MPa, respectively. The deformation behaviour under compression and tension 

tests were similar, and it can be characterized as brittle. The compression strength of the 

Chelyabinsk meteorite was similar to many other stony meteorites, whereas its tensile 

strength was lower that may be caused by a large number of tiny cracks between the 

grains. The estimations were shown that if one supposes that the shape of the Chely-

abinsk fireball was spherical or ellipsoidal, then the maximal shear stress (~ 7.78 MPa) 

is close to the experimental tensile strength (8.2 ± 0.7 MPa). Comparison of the experi-

mentally measured tensile strength with the numerical evaluations leads us to conclude 

that the failure of the Chelyabinsk meteor occurred via tension rather than compression 

during its passage through the Earth’s atmosphere.
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Fig. 7  The schemes of stress 

acting on the meteoroid during 

its penetrating into the Earth 

atmosphere: a—spherical shape; 

b—cuboids shape
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