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INTRODUCTION

Insects and other flapping-wing animals are able to perform

elaborate flight manoeuvres and rapidly stabilize their body posture

following perturbations by controlling their wing kinematics. These

flight manoeuvres and their associated wing kinematics have

recently been the subject of several studies that used high-speed

stereo videography to record free-flying animals (Fry et al., 2003;

Hedrick and Biewener, 2007; Hedrick et al., 2009; Bergou et al.,

2010; Hedrick and Robinson, 2010). These observed flight

behaviours are a result of ‘closed-loop’ flight dynamics, i.e. the

combination of the passive ‘open-loop’ dynamics, sensory systems

and feedback control responses.

The open-loop or passive flight dynamics of hovering, which

describe the body motions produced in response to small

disturbances in the absence of feedback control, were recently

studied by several groups (Sun and Xiong, 2005; Deng et al., 2006;

Gao et al., 2009; Faruque and Sean Humbert, 2010; Cheng and Deng,

2011). These authors measured the aerodynamic forces and torques

from dynamically scaled robotic wing experiments (e.g. Dickinson

et al., 1999; Cheng et al., 2009; Dickson et al., 2010), or calculated

them using computational fluid dynamics (e.g. Wu and Sun, 2004;

Ramamurti and Sandberg, 2007; Gao et al., 2009). The forces and

torques were then used to predict the flight dynamic response to

small perturbations, revealing that the passive open-loop flapping

flight dynamics of animals in hover are unstable (e.g. Sun and Xiong,

2005; Cheng and Deng, 2011) or have weak stability (Gao et al.,

2009). Thus, active control of wing kinematics based on sensory

feedback is critical not only for manoeuvres but also for flight

stability.

Insects are equipped with various types of sensors for flight

control to enable closed-loop control, which relies on the fast

synthesis of these different sensory inputs and encompasses both

low-level sensory-motor reflexes and central nervous system

processing (Dudley, 2000; Dickinson, 2005; Bender and Dickinson,

2006). How these various types of sensory information are combined

and used to generate flight control inputs is an active area of research

and much remains unknown (Taylor et al., 2007).

Although the free flight behaviour of animals emerges from their

open-loop dynamics, sensory systems and sensory-motor responses,

these systems and responses are often studied individually despite

their interconnections. Simultaneous examination of several of these

research areas may now lead to rapid progress in understanding how

flying animals control and stabilize their movements. The goal of

this study was to combine recordings of the closed-loop free-flight

behaviour of hawkmoths (Manduca sexta) with an analysis of their

open-loop dynamics to reveal how these animals produce and control

flight manoeuvres.

Specifically, the manoeuvres studied here were triggered by

providing a sudden looming stimulus to a hovering moth, causing

it to pitch up, fly backwards a short distance, and then pitch back
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SUMMARY

Insects produce a variety of exquisitely controlled manoeuvres during natural flight behaviour. Here we show how hawkmoths

produce and control one such manoeuvre, an avoidance response consisting of rapid pitching up, rearward flight, pitching down

(often past the original pitch angle), and then pitching up slowly to equilibrium. We triggered these manoeuvres via a sudden

visual stimulus in front of free-flying hawkmoths (Manduca sexta) while recording the animalsʼ body and wing movements via

high-speed stereo videography. We then recreated the wing motions in a dynamically scaled model to: (1) associate wing

kinematic changes with pitch torque production and (2) extract the open-loop dynamics of an uncontrolled moth. Next, we

characterized the closed-loop manoeuvring dynamics from the observed flight behaviour assuming that hawkmoths use feedback

control based on translational velocity, pitch angle and angular velocity, and then compared these with the open-loop dynamics

to identify the control strategy used by the moth. Our analysis revealed that hawkmoths produce active pitch torque via changes

in mean wing spanwise rotation angle. Additionally, body translations produce passive translational damping and pitch torque,

both of which are linearly dependent on the translational velocity. Body rotations produce similar passive forces and torques, but

of substantially smaller magnitudes. Our comparison of closed-loop and open-loop dynamics showed that hawkmoths rely largely

on passive damping to reduce the body translation but use feedback control based on pitch angle and angular velocity to control

their orientation. The resulting feedback control system remains stable with sensory delays of more than two wingbeats.
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down towards its initial orientation (Fig.1). These actions were

recorded via high-speed videography and used to: (1) identify the

wing kinematics used to perform the manoeuvre and (2) measure

the closed-loop dynamics of the animal through the manoeuvre. We

then replicated the flapping kinematics of the manoeuvring moth

in a dynamically scaled mechanical flapper to: (3) measure forces

and torques and (4) characterize the open-loop dynamics of the moth.

Finally, we compared the open- and closed-loop dynamics to reveal

the moths’ control strategy and likely sensory inputs. Hawkmoths

are known to use their antennae as mechanosensor-based biological

gyroscopes, providing low latency sensing of angular velocity; moths

without antennae are reported to fly poorly (Sane et al., 2007).

Sensing of angular orientation is likely visual, and thus subject to

latencies of one to three wingbeats (Sprayberry, 2009).

Given these earlier studies of the open-loop dynamics of flying

insects and the sensory characteristics of moths, we developed

the following hypotheses to be examined: (1) the open-loop

hovering flight of hawkmoths is unstable, (2) the closed-loop

dynamic responses with a controller based on sensing of pitch

angle and velocity will closely match the hawkmoth kinematics,

(3) the closed-loop dynamics will be stable to small perturbations

and (4) the closed-loop dynamics will be stable given sensory

delays of less than three wingbeats in pitch and <0.5 wingbeats

in pitch velocity.

MATERIALS AND METHODS

Experiment design and videography

We recorded flight manoeuvres from four male hawkmoths

[Manduca sexta (Linnaeus 1763)] from the domestic colony

maintained at the University of North Carolina at Chapel Hill;

morphological characteristics and basic flapping kinematics for the

animals are given in Table1. The moths were maintained on a

22h:2h light:dark cycle to minimize accumulation of wing damage

during caged activity. Beginning on the third day post eclosure, the

moths were trained to feed from an artificial flower containing a

4:1 water:honey solution. We recorded manoeuvres on the third to

fifth day post eclosure.

Manoeuvres were elicited by waiting for the moth to approach

the artificial flower, and then providing a visual looming stimulus

coming from just above the artificial flower towards the moth,

moving in the horizontal plane, applied just before the moth began

to feed. The stimulus was provided by the researcher’s hand, thrust

from a distance of ~30cm to a distance of ~5cm from the moth in

~0.2s. Over time, the moths became accustomed to the stimulus

and ceased responding to it, allowing only a limited number of

manoeuvring trials per moth. Following recording, we selected a

single trial from each individual for further analysis. These were

selected based on the rapidity of the manoeuvre and the degree to

which it was confined to a single plane and lacked a yaw rotation

component.

The manoeuvres were performed in a 0.7�0.7�0.7m glass-

walled flight chamber dimly lit in the visible spectrum and brightly

illuminated in the near-infrared (760nm), below the moth’s visual

threshold, by eight infrared LEDs (Roithner LaserTechnik GmBH,

Vienna, Austria). The manoeuvres were recorded at 1000framess–1

using three high-speed cameras (two Phantom 7.1 and one Phantom

5.1, Vision Research, Wayne, NJ, USA). These cameras were

calibrated using a direct linear transformation for three-dimensional

kinematic reconstruction (Hedrick, 2008).

Kinematics extraction and parameterization

We extracted the moth’s flight kinematics by tracking eight points

on the body and wings (Fig.2A) for all manoeuvring sequences using

DLTdv5 (Hedrick, 2008). We analyzed these kinematics by first
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Fig.1. (A)An example hawkmoth pitch and reversing manoeuvre drawn from video and (B) the associated pitch angle time series. In Phase 1, the moth is

hovering and maintaining position and orientation. During Phase 2, the moth rapidly pitches up and moves backward. In Phase 3, the moth pitches

downwards, overshooting its original orientation in Phase 1, which is then recovered in Phase 4.

Table 1. Morphological and hovering kinematic characteristics of the hawkmoths studied here

Moth M (g) R (mm) c (mm) Iyy (gmm2) n (Hz)  (deg) � (deg) r2(S) l1/R

1 1.41 49.7 20.0 287.0 28 98 116 0.50 0.26

2 1.51 53.1 20.1 308.6 29 81 95 0.50 0.27

3 1.29 51.6 19.8 222.4 31 77 98 0.52 0.26

4 1.47 50.8 17.9 248.6 27 103 122 0.50 0.28

Mean ± s.d. 1.42±0.08 51.3±1.2 19.5±0.9 266.7±33.4 29±1.5 90±11 108±11.5 0.51±0.01 0.27±0.01

 and � are stroke amplitudes calculated in the horizontal plane and the body x–y plane, respectively; l1 is the distance between the wing base and centre of

mass. See List of symbols for definitions of other variables.
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placing the body coordinate frame at the centre of mass (COM),

then defining the wing base and body axes as follows. The body

frame places the xb axis parallel to the vector connecting the head

to the tip of the abdomen and the yb axis parallel to the vector

connecting the left to right wing bases (Fig.2). The zb axis is then

the cross product of xb and yb. Body roll, pitch and yaw angles were

calculated based on the rotation matrix from the global frame to the

body frame. The angular velocities about each principal axis were

calculated based on the derivative of the matrix (Murray et al., 1994).

Body kinematics were then low-pass filtered with a cut-off frequency

of 10Hz. Wing kinematics were quantified by representing the wing

as a two-dimensional plate with position and orientation determined

by three points located at the base, leading and trailing edges of the

forewings (Fig.2A). Wing kinematics are specified by stroke

position , stroke deviation  and wing rotation  (Fig.2B), Euler

angles corresponding to the rotation from the yb–zb plane to the wing

plane. The recorded Euler angles were parameterized using a third-

order Fourier series prior to further analysis:

where t is dimensionless time (from 0 to 1 during a single wing

stroke), and 0, si, si, etc. are coefficients for the harmonics, which

were selected to yield the best least-squares fits to the measured

wing angles (Table2).

As is shown below, angular velocity during manoeuvres was

strongly related to changes in wing rotation. These were important

to both initiation and stabilization of the manoeuvre; variation in

wing rotation was parameterized as follows:

φ φ φ π φ π(ˆ) sin( ˆ) cos( ˆ)t it iti si ci= + +=∑0 1
3 2 2 (1),

θ θ θ π θ π(ˆ) sin( ˆ) cos( ˆ)t it iti si ci= + +=∑0 1
3 2 2 (2),

ψ ψ ψ π ψ π(ˆ) sin( ˆ) cos( ˆ)t it iti si ci= + +=∑0 1
3 2 2 (3),

where *(t) is the wing rotation angle with variation, H(t) is the

Heaviside function, add1 corresponds to a variation of  during

(both ventral and dorsal) stroke reversals, add2 corresponds to a

variation during upstrokes, and add is a measure of the magnitude

of variation. A positive value for add generally corresponds to an

increase of rotation angle during upstroke and a decrease during

downstroke; a negative value produces the opposite effect. The

functions in Eqns 4–6 were selected to best replicate the observed

biological changes of wing rotation angle; typical values of add

ranged from –12 to 8deg during the recorded manoeuvres.

We also used the high-speed video images to quantify the location

of the COM and pitch moment of inertia (Iyy) of the moths. We

used the three calibrated camera views to construct a set of uniform

size voxels encompassing the head, abdomen and thorax of the moth.

We then assumed a uniform voxel density based on the total voxel

volume and the moth’s mass, and used mean voxel location to

calculate the COM and the voxel distribution to calculate Iyy about

that point.

Dynamically scaled robotic wing experiments

Dynamically scaled robotic wing experiments were used to estimate

the force and torque associated with the wing kinematics during

hovering and pitching manoeuvres (Fig.3). The robotic flapper

design, motion control and data acquisition system are documented

in detail in Zhao et al. (Zhao et al., 2009) and Cheng et al. (Cheng

et al., 2009). The instantaneous force and torque acting on the wing

ψψ ψ ψ*(ˆ) (ˆ) (ˆ) (ˆ)t t t t= + +add add (4)1 2 ,

ψ ψ ψadd add add (5)1 4(ˆ) cos( ˆ) +t t= ,π

ψ ψ π ψadd add add2 4

3 8

(ˆ) sin (ˆ – ˆ)

[ (ˆ – /

t t t

H t

= ( ) +⎡⎣ ⎤⎦Δ

–– ˆ) (ˆ – / – ˆ)]Δ Δt H t t7 8
(6)
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Fig.2. Hawkmoth body and wing coordinate systems. (A)Marked points (1–8) and body coordinate frame (xb, yb, zb). Axes xb and yb are determined by

connecting points 1 and 2 and points 6 and 3, respectively. The body frame has its origin at the centre of mass (COM; red dot). Wing base (blue dot) is at

the centre of points 3 and 6. The distance between the COM and the wing base is l1. The wing planes are determined by points 3, 4 and 5 (right wing) and

points 6, 7 and 8 (left wing). (B)Wing kinematic parameters: wing stroke position is defined as the angular position of the wing in the xb–yb plane of the body

frame; wing deviation is defined as the angle between the wing base-to-tip line and the x–y plane; wing rotation is defined as the angle rotated about the

wing base-to-tip axis.

Table 2. Fourier coefficients for the fitted wing kinematics at hover

 0 s1 c1 s2 c2 s3 c3

11.0 3.0 38.0 –3.4 0.7 0.9 3.6

 0 s1 c1 s2 c2 s3 c3

15.9 12.7 34.3 3.9 3.0 –0.2 0.7

 0 s1 c1 s2 c2 s3 c3

–35.4 –55.2 29.6 2.1 8.8 0.7 9.2

Dimensions are in deg.
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were measured using a six-component force-torque sensor (ATI

NANO-17, Apex, NC, USA) attached to the wing holder. The model

wing used is similar to that described in Zhao and Deng (Zhao and

Deng, 2009). The forewing and hindwing were both made from

polymer materials and were designed to have a shape and aeroelastic

flexural response similar to that of the hawkmoth wing. The

forewing was composed of four segments of different thicknesses

of material (1.52, 0.76, 0.51 and 0.38mm) to achieve exponentially

decaying flexural stiffness. The flexural stiffness (EI) for each

section can be approximated as:

EI  Ectw
3 / 12, (7)

where E is Young’s modulus, tw is wing thickness and c is local

wing chord length. The E of the polymer (PETG, polyethylene

terephthalate) used to construct the wing is close to 3GPa. Thus,

the EI from wing base to wing tip section, calculated at the section

midpoint, is (70.2, 12.6, 4.0, 1.5)�10–3Nm2. This distribution of

EI decays according to:

where r1 and r2 are non-dimensional wingspan locations. Therefore,

the ratio of EI at the root to EI at the tip was 10–3, which is close

to that previously measured from male M. sexta (Combes and Daniel,

2003). The hindwing was attached to the forewing and had a

thickness of 0.13mm. Note that although we used the same

exponential decay of EI, it does not guarantee the same aeroelastic

flexural response. Conservation of additional dimensionless numbers

(e.g. the density ratio between the air and the wing) (Ishihara et al.,

2009) and wing inertia properties (i.e. wing deformation due to wing

inertia force) are required to replicate the fluid–structure interaction,

which is impossible to achieve in dynamically scaled robotic-wing

experiments while also matching Reynolds number (Re).

Nevertheless, the flexible wing used here underwent deformation

comparable to that observed in the real flight during most of the

stroke cycles expect during stroke reversals (especially ventral stroke

reversals, where substantial deformation occurred in moth flight).

Because the aerodynamic forces and torques are generally small

during stroke reversals (see ‘Results’), we considered the flexibility

to have negligible effect on the average forces and torques, and

therefore a negligible effect on the analyses in the present study.

Finally, the net upward force generated by the mechanical model

(14mN, scaled to the moth) was almost equal to the average body

weight of the animals used in the study.

The wing and the gearbox were immersed in a tank

(61�61�305cm width�height�length) filled with mineral oil

EI r

EI r
r r

( )

( )
– ( – )1

2

310 1 2=  , (8)

(kinematic viscosity�3.4cSt at 20°C, density�850kgm3) and they

were able to move along the tank on a linear stage (Fig.3),

controlled by a stepper motor system (Applied Motion Products,

Watsonville, CA, USA). Re in this study was calculated using:

where AR is aspect ratio, n and  are wingbeat frequency and

amplitude, respectively, R is wing length and  is the kinematic

viscosity of the fluid. The flapping frequency (0.3Hz) and wing

length (24cm) in the dynamically scaled model were selected to

yield a Re close to that calculated for the moths used in the study,

approximately 5500. The force (Frobot) and torque (robot) measured

using the robotic wing were then scaled back to those of an actual

hawkmoth (Fmoth, moth) using:

where  is fluid/air density, S is wing area and r2(S) is the non-

dimensional radius of the second moment of wing area.

In the first set of dynamically scaled wing experiments, we

investigated the aerodynamic effect of changing wing rotation angle

on force and torque production. Specifically, we re-played the

hovering wing kinematics (Eqns 1–3, Table2) with modified wing

rotation angle (Eqns 4–6, with stroke position and deviation angles

unchanged) and recorded the results. Wing rotation deviations add

were –12, –8, –4, 0, 4, 8 and 12deg, which includes the range of

those observed from the flight data.

After characterizing the effects of wing rotation on torque

production, we produced an open-loop flight dynamics model

appropriate for the measured manoeuvres. As described above, these

were characterized by a fast body rotation around the pitch axis

with simultaneous rapid backward body translations (Fig.4). As

body movement substantially changes the aerodynamic force and

torque produced by flapping wings (e.g. Zhang and Sun, 2009;

Cheng and Deng, 2011), we incorporated the effects of these two

specific types of body motion in the open-loop model.

In a second set of robotic wing experiments, we measured open-

loop aerodynamic derivatives relating to body translation by re-

playing the hovering wing kinematics in the robotic flapper while

it moved forwards or backwards along the linear stage. Because the

moths moved backwards with varying pitch angles, we performed

the experiment using pitch angles set at 15, 30, 45 and 60deg (Fig.3).

Re
( )

=
4 2ΦR n
ARυ

 , (9)

F F
S r S

moth robot
air moth moth moth mot=

⋅ ⋅ ⋅ ⋅ρ 2 2
2
2ˆ ( ) hh

oil robot robot robot robot

 ,
ρ ⋅ ⋅ ⋅ ⋅n R S r S2 2

2
2ˆ ( )

(10)

τ τmoth robot
moth

robot

 , (11)=
R

R

Translation

      

Stepper motor

Linear stage

60 deg
45 deg

30 deg

15 deg
Stroke planes

Pitch angle

Upstroke

Rotation

      

Downstroke

Robotic 
 flapper

Side view

Tank

Fig.3. Schematics of dynamically scaled robotic-wing

experiments simulating hawkmoth body translations

and rotations. The wing is attached to the robotic

flapper, which can be driven by a linear stage

controlled by a stepper motor. Wing kinematics are

played to realize: (1) body translations at different

body pitch angles (from 15 to 60deg) and different

translational velocities, and (2) pitch rotations at

different angular velocities. Also shown is a moth

body at 30deg pitch angle (not present in the

experiment), wing base (blue dot) and COM (red dot).
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The translational velocity is described by a dimensionless parameter,

the advance ratio:

where vb is body translational velocity and vw is mean wing

flapping velocity (calculated as 2nR). The advance ratios in this

experiment are –0.3, –0.2, –0.1, 0, 0.1, 0.2 and 0.3. The largest

magnitude advance ratio observed in the moths was approximately

–0.15.

In the third set of dynamically scaled flapper experiments, we

measured the open-loop effects of pitch rotation by re-playing the

hovering wing kinematics while rotating the stroke plane about the

wing base (Fig.3). The angular velocities used were –30, –20, –10,

0, 10, 20 and 30degstroke–1 (–15 to 30degstroke–1 were observed

in the manoeuvres).

In all dynamically scaled flapper experiments, only steady-state

data after five wing strokes were used in the analyses to exclude

the transient effects of a developing wake. Wing inertial and

gravitational force and torque were measured by playing the wing

kinematics in air, and subtracting the results from the force and

torque measured in the oil, thereby extracting the fluid dynamic

components.

In this paper, we non-dimensionalize some of our results for

comparison with previous studies. The non-dimensionalization

factors are: length by mean chord length (c), time by a stroke period

(1/n), translational velocity by wing velocity at the radius of the

second moment of wing area (2nRr2), angular velocity by flapping

frequency (n), and force and torque by U2Rc and U2Rc
2,

respectively. The dimensionless quantities are denoted by a

superscript ‘+’.

J =
v

v

b

w

 , (12)

Flight stabilization and control model

Here we develop a dynamic model with feedback control from the

observed body motions. All the pitch manoeuvres investigated in

the present study show similar body motions in the four stages of

sequences (Figs1, 4, 5), which suggests that these dynamic responses

resulted from similar flight control strategies among the four

individuals. We will focus in particular on the stabilization phases

of the manoeuvre (Phases 3 and 4), assuming that the controller is

acting to bring the disturbed body posture back to the hovering

orientation. Control of the initial phase of the manoeuvre, which

depends on the visual looming startle response, was not modelled

in this study.

We initially developed the model assuming that a moth has

the following sensory inputs acquired at negligible time delay

with respect to the stroke cycle: body forward and backward

velocity, pitch angle and pitch velocity. We later investigated the

effect of different sensory delays on the form and stability of the

controller.

The stabilization of the pitch manoeuvre was hypothesized to

result from proportional-plus-derivative (PD) feedback control,

which has also been used to explain locomotion activities

including cockroach walking and rapid turning in the fruit fly

(Cowan et al., 2006; Ristroph et al., 2010). Specifically, based

on the sensory system described above, we proposed a

proportional feedback of pitch angle and derivative feedbacks of

fore/aft and pitch velocities. This assumption implies that

achieving a certain pitch angle with zero velocity (i.e. hovering)

is the desired output in the stabilization phase, regardless of the

body location in space. However, during the experiments, the

moth was attracted to an artificial flower and therefore was

controlling its body location, so the above assumption is only
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Fig.4. Time series of hawkmoth body and

wing kinematics during a pitch manoeuvre.

(A)Body positions and path velocities in

fore/aft (black), lateral (blue) and vertical

(red) directions. (B)Roll (black), pitch (blue)

and yaw (red) angles of the body, and pitch

velocity. (C)Wing stroke position (blue),

deviation (green) and rotation angle (red).

The whole sequence is divided into four

phases: hover, pitch up, pitch down and

return to hover, as indicated by the dashed

lines and schematics of body orientation

shown at the top. Body kinematics are low-

pass filtered with a cut-off frequency of

10Hz; wing kinematics are not filtered.
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valid during the fast stabilization phase when recovering from

the drastic and unstable body motion associated with the

manoeuvre is the primary control task.

Next, we derived simplified equations of motion describing the

pitching and backward motions during stabilization. Two

assumptions were made in the derivation. First, we assumed that

the changes of lift force magnitude and direction in the body frame

are negligible (i.e. the lift force vector is unchanged relative to the

body frame), and the magnitude of the average lift is equal to the

body weight (mbg, where mb is body mass and g is gravitational

acceleration). Second, because pitching and backward motions

dominate the flight dynamics in these recordings, other components

of body velocities were considered to be negligible. Therefore,

starting from the complete equations of motion of a rigid body (e.g.

Etkin and Reid, 1996), one can show that the equations of motion

can be simplified to:

mbx  X + mbgsin(b – b
h), (13)

Iyy�b  M, (14)

where x is the body position along the global x-axis (Fig.2), b is

the body pitch angle, b
h is the pitch angle at hover equilibrium,

mbgsin(b–b
h) represents the components of lift force along the

positive x (backward) direction, X is the total force along the x

direction and M is total pitch torque. X is approximated by:

where Xxx represents the passive damping due to body translation

(XxX/x is also known as a stability derivative), and –Kx
a
x

represents the force due to derivative (velocity) feedback control of

body translation, i.e. the result of active changes (indicated by the

superscript ‘a’) of wing kinematics. The passive and active terms

are lumped together as –Kxx; the negative sign indicates that the

total force acts against the direction of translation. M is approximated

by:

where M��b represents the passive damping due to pitch rotation

(again, M�M/� is a stability derivative), –K(b–b
h) represents

the torque due to proportional feedback control of pitch orientation

from active changes of wing kinematics, –K�
a
�b represents the torque

due to derivative (velocity) feedback of pitch rotation and –Kx
�
x

represents the pitch torque created by body translation, which has

been shown in previous studies (Sun and Xiong, 2005; Cheng and

Deng, 2011) to be non-negligible. Again, velocity coefficients M�
and K�

a
are lumped together as K�. Finally, incorporating the force

and torque approximations into Eqns. 12 and 13, the equations of

motion are written as:

We then used the nlinfit function in MATLAB (MathWorks,

Natick, MA, USA) to find the coefficients Kx, K� and K that yielded

the best fits to the measured x and �b for the averaged and individual

body kinematics of the four trials (Fig.5). The MATLAB function

nlparci was used to find 95% confidence intervals for the

coefficients.

Importantly, although we fit this model to the observed closed-

loop flight behaviour, it includes several open-loop or completely

passive terms. For instance, Kx
 does not involve any component

related to active changes of wing kinematics. Therefore, it can be

measured directly from robotic-wing experiments. Similarly, other

passive terms Xx and M�, which are included in Kx and K�, can also

be measured. Then, by comparing the difference between the passive

open-loop (e.g. Xx) and the total closed-loop (e.g. Kx) coefficients,

we can determine the amount of force and torque due to active

control by the moth. Note that M� is estimated from the robotic-

wing experiment that rotated the stroke plane around wing base;

because the wing base and COM are located at different positions

(Fig.2A), pitch rotation about the COM further causes a translation

of the stroke plane. The drag (or FCF) caused by this translation

creates a torque against the pitch rotation, which can be estimated

by:

where L is the ratio of body to wing length and l1 is the ratio of

COM-to-wing-base-distance to wing length.

Equations 17 and 18 represent closed-loop dynamics with active

feedback terms Kx
a, K�

a
(included in Kx and K�) and K, allowing

easy investigation of flight stability using linearization around hover
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Fig.5. Individual and averaged body kinematics for four different hawkmoth

pitch manoeuvres. (A)Pitch angle, (B) pitch velocity, (C) backward velocity.

The shaded area indicates ±1 s.d. (N4). The time series of different pitch

manoeuvres are aligned at maximum pitch velocity, as indicated by the

dashed line in B.
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equilibrium. By applying small-disturbance theory (e.g. Taylor and

Thomas, 2003), one can show that:

where  denotes a small disturbance. Eqn 20 represents a linear

system approximating the closed-loop dynamics at hover; its

stability and modes of motion can be analyzed by examination of

the eigenvalues and the corresponding eigenvectors in the system

matrix A.

The model described above assumes zero latency of sensory

feedbacks. However, because real sensory systems exhibit delays

and these may be particularly large in the visual systems of

crepuscular insects (Kelber et al., 2006), they might change the flight

dynamics; therefore, a zero latency assumption may not be

appropriate for this study of M. sexta. To investigate this possibility,

we applied delays to the active feedback components in the model.

Here we consider the delay in pitch angle and velocity feedback,

termed  and �, respectively. The modified equations of motion

given these delays are written as:
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We used values of  ranging from 0 to 2 wingbeats and � ranging

from 0 to 0.5 wingbeats, assuming low latencies in the

mechanosensor-based angular velocity sensing (Sane et al., 2007)

and the larger latencies of typical of visual sensing (Sprayberry,

2009) for pitch angle detection. Similar to the no-delay case, Kx,

K�
a

and K can be obtained from fits to measured x(t) and �b(t) with

b and �b offset by the specified delays. Open-loop or passive

coefficients are not affected by sensory delay were not re-estimated.

Using the fitted coefficients, the dynamic model (Eqns 21 and

22) was simulated using the dde23 function in MATLAB, which

solves differential equations with delays. The responses of the system

[i.e. b(t), �b(t) and x(t)] were obtained from the simulation and

compared with those measured.

Finally, we investigated the stability of the closed-loop dynamics

in the presence of sensory delays. The dynamic model was simulated

using dde23 with different combinations of  and �. Three sets of

Kx, K�
a

and K were used, corresponding to fitted coefficients

assuming (, �) equal to (0, 0), (1, 0.25) and (2, 0.5), respectively.

We considered the system unstable if the pitch angle exceeded 90deg

in the simulated response. The degree of stability was evaluated by

the root mean square (RMS) error of pitch angle �b(t) relative to �b
h

at hover equilibrium:

where T is the simulation time (70 wingbeats).

RESULTS

Body and wing kinematics

To better interpret the characteristics of body and wing kinematics,

we divided the manoeuvres into four phases according to the pitching

velocity (Fig.1). Fig.4 shows the time series of body and wing

kinematics for one of the manoeuvres analyzed. The moth was first
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Fig.6. Measured and fitted hawkmoth wing kinematics. (A)Stroke position, (B) stroke deviation and (C) wing rotation for hovering wing kinematics. (D)Wing

rotations during hover (add0deg, blue), pitch-up (add8deg, red) and pitch-down (add–12deg, green) body rotations. Measured data points are shown

as dots and fitted results are shown as solid lines. (E)Schematic representation of the hovering wing kinematics. The black line denotes the wing chord, with

a dot marking the leading edge. The dashed line shows the body x-axis. (F)Schematics of the stroke plane (top view) and the area swept by the wing.
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at hovering (phase 1). After being startled, it began to pitch up and

to accelerate backwards simultaneously (phase 2); the backward

velocity was close to maximum when the moth reached the largest

pitch angle. Next, the moth began to pitch down while it was still

moving backwards (phase 3), and typically over-pitched down to

approximately 15deg below the initial hovering pitch angle. Lastly,

the moth began to pitch up again but at a slower rate (phase 4).

Recordings from all individuals demonstrate these four stages, as

shown in Fig.5 (phase 1 not shown). This similarity suggests that

the body motions result from similar underlying open-loop dynamics

and closed-loop control strategy.

Fig.5 shows the averaged kinematics among different

manoeuvres, each from a different moth (N4). Stroke-by-stroke

hovering wing kinematics were fitted and plotted in Fig.6A–C. In

general, the stroke plane was tilted forwards relative to the horizontal

plane (Fig.6E) and the average wing position was dorsal and caudal

to the wing root (Fig.6E,F).

Two kinematic changes were consistently observed during the

pitch manoeuvres. The most prominent of these were changes in

the mean wing rotation angle �. Fig.6D shows the rotation angle

at different phases of a manoeuvre. According to the definition,

an increase in � corresponds to a decrease in the geometric angle

of attack (AOA) during upstroke and an increase in AOA during

downstroke, reflecting an asymmetry between upstrokes and

downstrokes. We found that the observed � has a strong

correlation with the pitching velocity (Fig.7). When pitching up,

� was increased (compared with hovering) and when pitching

down, it was decreased. Eqns 4–6 were then used to generate

functions that best fit the observed rotation angles, where the

results for add8 and –12deg (t1/16) were plotted for

comparison (Fig.6D).

The wingbeat frequency also changed substantially during the

manoeuvres, as indicated by the duration of upstrokes and

downstrokes (Fig.4C, Fig.7). The moths increased their flapping

frequency during the initial pitch up following the stimulus.

However, the moths reduced their flapping frequency when pitching

down, especially at small pitch angles. The reason for these changes

was not clear and may relate to the moth’s initial urgency in

responding to the stimulus followed by a slow return to feeding.

The overall wing kinematic patterns, as described by wing tip

trajectories (Fig.8), changed during different phases of manoeuvre.

However, compared with the changes in �, other aspects of wing

kinematics varied more widely among moths and among left and

right wings. As can be seen in Fig.8, wing deviations during ventral

reversals were generally higher during pitching up than during

pitching down; during dorsal reversals, they were lower during

pitching up than during pitching down. Collectively, the stroke plane

was slightly tilted backward when pitching down and forward when

pitching up. There was no clear indication of changes in mean wing

stroke position, which were observed previously in the pitching

manoeuvres of some species (Taylor, 2001).
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Fig.8. Measured wing tip trajectories for a pitch manoeuvre from each of

the four hawkmoths: (A) moth 1, (B) moth 2, (C) moth 3 and (D) moth 4.

The trajectories during hover, pitch up and pitch down are shown in blue,

red and green, respectively. The wing base (blue dot) and COM (red dot)

are also shown. Left and right wing trajectories were plotted together

without distinction.
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Note that in addition to the body frame wing kinematic changes

described above, the wing kinematics relative to the global frame

were significantly altered by body translational and pitch

velocities.

Aerodynamic force and torque

Instantaneous pitch torque and fore/aft and lift forces for each set

of the experiments are shown in Fig.9. The results using hovering

wing kinematics are shown in blue. We find that during the second

half of downstroke and the first half of upstroke, pitching up torques

are created and the pitching down torque are mostly created during

the first half of downstroke and second half of upstroke. The

downstrokes are responsible for most of the lift generation, as

expected (Willmott and Ellington, 1997).

In the first set of robotic wing experiments, the magnitude of

variation in mean rotation angle (add) was varied from –12 to

12deg; the instantaneous and stroke-averaged results are shown in

Fig.9A and Fig.10A, respectively. For positive add, the AOA is

increased during downstroke and decreased during upstroke. The

force measurements are consistent with the changes in AOA in that

both lift and forward force are enhanced during downstroke and

reduced during upstroke. The pitch torque is greatly enhanced during

the second half of the upstroke and reduced during the second half

of downstroke, resulting in a net pitch-up torque. Similarly, negative

add results in a net pitch down torque, as expected. Fig.10Ai shows

that the stroke-averaged pitch torque increases linearly with add

except for add greater than 8deg, where further increases in add

do not result in increases in pitch torque. This saturation point

(add8deg) is also the best fit to the observed wing motion in the

moths’ pitching up phase (Fig.6D). Additionally, the net force in

B. Cheng, X. Deng and T. L. Hedrick

fore/aft direction varies with add because of asymmetry in drag

between upstrokes and downstrokes (Fig.10Aii). For example,

positive add results in a backward force as well as a pitch-up torque.

This is consistent with the observed coupling between pitching up

and backward motion during the initial phases of the manoeuvre.

We can estimate how much acceleration is produced by the

observed variation of wing rotation using the results above. For

instance, the mean acceleration for moth 1 during pitching up is

approximately 8�10–3degms–2. Assuming that add ranges from 4

to 8deg during pitching up and wingbeat frequency increased by

10% (compared with that in hover), we estimated that the

acceleration produced ranges from 3.5 to 6.1�10–3degms–2, which

is lower than the observed acceleration, but can provide more than

50% of the total. Therefore, this suggests that moths may rely on

some other kinematic changes to produce the additional pitch torque

(see ‘Discussion’).

In the second set of robotic-wing experiments, we investigated

the effect of body translation on aerodynamic forces and torques.

The instantaneous and stroke-averaged results are summarized in

Fig.9B and Fig.10B, respectively. We found that translational

velocity alters force and torque production in a manner similar to

that resulting from changes to wing rotation angle, but with greater

magnitude. For example, backward translation reduces the forces

during downstroke and enhances those during upstroke, whereas the

pitching up torques in the second half of downstrokes and upstrokes

are greatly reduced and enhanced, respectively. Therefore, backward

translation creates a large pitch down torque, which prevents further

pitching up motion during phase II and adds to the pitching down

motion during phase III. The stroke-averaged torque increases

linearly with the translational velocity over the range investigated
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Fig.9. Instantaneous aerodynamic forces

and torques (single wing), measured

from the robotic flapper. Pitch torque (Ai,

Bi and Ci), fore/aft force (Aii, Bii and Cii)

and lift force (Aiii, Biii and Ciii) are each

plotted for three different experimental

cases: (A) changing wing rotation, where

add equals –8 (green), 0 (blue) and

8deg (red); (B) fore/aft translation (at

60deg pitch angle), where advance ratio

equals –0.2 (green), 0 (blue) and 0.2

(red); and (C) pitch rotation, where

angular velocity equals –30 (red), 0

(blue) and 30degstroke–1 (green). The

fore/aft and lift forces for all the cases

are calculated assuming 35deg pitch

angle at hover.
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(Fig.10B). Notably, this is independent of the stroke plane

orientations, all of which produce similar results. This property is

critical in the assumption that Kx
 (the slope of the line in Fig.10Bi)

is constant for all pitch angles, because during the manoeuvres, the

pitch angle (thus, the stroke plane orientation) varies continuously.

Finally, Kx
 was found to be 69.0mNms; this value was used in the

dynamic model. Note that in other studies (e.g. Taylor and Thomas,

2003; Sun and Xiong, 2005), Kx
 is often referred to as the stability

derivative Mu, the dimensionless value of which is 1.3 based on the

above measurement of Kx
. Body translation also causes significant

counter-force in the opposite direction of translation, termed flapping

counter-force (FCF) (Cheng and Deng, 2011). It results from the

asymmetric drag or thrust production between upstrokes and

downstrokes, depends linearly on the translational velocity and helps

to slow down the rapid backward body movement of the moth. This

counter-force (described by Xx) can be estimated based on the slope

of the line in Fig.10Bii, which is equal to 5.3mNmsmm–1; the

dimensionless value is 1.9.

Finally, in the third set of robotic-wing experiments, the effect

of pitch rotation about the wing base was investigated (Fig.9C,

Fig.10C). Notably, because pitch rotations at the rates observed in

the manoeuvres change force and torque production much less than

do the observed body translations, the counter-torque in the pitch

direction, M�, is very small. The additional portion of pitch torque

M�
+, which is caused by translation of the stroke plane due to

different positions of wing base and COM, can be estimated using

Eqn 19. Using an Mx
+ value of 1.3, M�

+
is calculated to be 0.22, and

the dimensional value is 983mmmNmsrad–1. The pitch counter-

torque calculated above is still small compared with those in the

yaw and roll directions (Zhang and Sun, 2009; Cheng and Deng,

2011), and therefore may have a limited effect on the overall flight

dynamics.

Flight stabilization

Body motions during pitch manoeuvres were quite similar among

these four sequences analyzed (Fig.5). The averaged body

–6

–4

–2

0

2

4

6

–60

–40

–20

0

20

40

–15 –10 –5 0 5 10 15

15
30
45
60
Fitted

Angular velocity (deg stroke–1)

–40 –20 0 20 40

ψadd (deg)

Ai Aii

Ci

Bii Pitch angle

Aiii

Ciii

Biii

Cii

Advance ratio

–0.4 –0.2 0 0.2 0.4

Bi

Pitch torque

  
Lift force variationFore/aft force

C
h
a
n
g
in

g
 w

in
g
 r

o
ta

ti
o
n

P
it
c
h
 r

o
ta

ti
o
n

F
o
re

/a
ft

 t
ra

n
s
la

ti
o
n

 (
m

N
 m

m
)

(m
N

)

(m
N

)

–15 –10 –5 0 5 10 15 –15 –10 –5 0 5 10 15
–6

–4

–2

0

2

4

6

–6

–4

–2

0

2

4

6

–6

–4

–2

0

2

4

6

–6

–4

–2

0

2

4

6

–6

–4

–2

0

2

4

6

–60

–40

–20

0

20

40

–60

–40

–20

0

20

40

–0.4 –0.2 0 0.2 0.4 –0.4 –0.2 0 0.2 0.4

–40 –20 0 20 40–40 –20 0 20 40

Fig.10. Stroke-averaged aerodynamic forces and torques (single wing) from the robotic flapper. Pitch torque (Ai, Bi and Ci), fore/aft force (Aii, Bii and Cii)

and lift force variation from that in hover (Aiii, Biii and Ciii) are each plotted for three different experimental cases: (A) changing wing rotation, where add is

varied from –12 to 12deg; (B) fore/aft translation at different pitch angles (15, 30, 45 and 60deg), where advance ratio is varied from –0.3 to 0.3; and (C)

pitch rotation, where angular velocity is varied from –30 to 30degstroke–1. The fore/aft and lift forces for cases A and C are calculated assuming 35deg

pitch angle at hover; those for case B are calculated in the direction of translation with respective to different pitch angles.

THEJOURNALOFEXPERIMENTALBIOLOGY



4102

kinematics (N4) predicted by the dynamic model using fitted

coefficients are shown in Fig.11. In general, the dynamic model

output closely fit the experimental recordings at an approximate Kx,

K� and K of 7.2mNmsmm–1, 7490.4 mmmNmsrad–1 and

113.4mmmNrad–1, respectively; the dimensionless values (Kx

+
, K�

+

and K
+
) are 2.5, 1.7 and 0.9, respectively. The fitted coefficients

for individuals are listed in Table3, revealing some among-

individual variation but close fits between the data and the model

in each case.

We then compared these values from the closed-loop PD

controller analysis to the open-loop coefficients recovered from the

dynamically scaled flapper. For example, the open-loop Xx

+
was 1.9

whereas the equivalent closed-loop term, Kx

+
, was 2.5, indicating

that the moths relied largely on the passive FCF to slow down their

B. Cheng, X. Deng and T. L. Hedrick

body translation. However, the closed-loop K�
+

(1.7) was much larger

than the open-loop M�
+
, which was almost negligible; therefore, K�

is approximately equal to K�
a
. This suggests that active modulation

of wing kinematics to reduce the pitching velocity is critical in flight

stabilization.

Next, we examined the moths’ closed-loop flight stability by

calculating the eigenvalues and the corresponding eigenvectors of

the linear system (Eqn 20) (Table4). We found that the closed-loop

moth has three modes of motion. Mode 1 is marginally stable with

respective to the position x. This is expected because we did not

assume any control of the x position. Mode 2 is exponentially stable,

and it is characterized by an in-phase coupling of x and �b.

Therefore, in this mode, the moth moves backwards when it is

pitching up and forwards while pitching down. As has been shown,

a backward motion creates a pitch-down torque, which acts to slow

down the existing pitch-up velocity while a forward motion creates

a pitch-up torque; this leads to a stable subsident motion. This mode

also has an out-of-phase coupling of �b and b, which means that

the angular velocity is always in the correct direction to return the

pitch angle to its hover equilibrium. This is also mostly true for

Mode 3, which has a near out-of-phase coupling of �b and b.

However, Mode 3 is oscillatory and less stable than Mode 2. Also,

Mode 3 has a near (but not completely) out-of-phase coupling of

x and �b; therefore, the translational velocity mostly acts to

increase the existing pitching velocity.

The passive (open-loop) dynamics, i.e. dynamics with Kx

a
, K�

a
and

K equal to zero, were similar to those derived earlier (Sun and

Xiong, 2005; Cheng and Deng, 2011). Without active control, Mode

2 is still exponentially stable, but Mode 3, which is stable and

oscillatory in closed-loop dynamics, becomes unstable and

oscillatory where the phase difference between �b and b is smaller

than 90deg. This indicates that during most of the oscillation cycle,

pitching velocity tends to pull the pitch angle away from its hover

equilibrium.

To better demonstrate the effect of PD feedback control, we

calculated the eigenvalues of the system for different combinations

of K�
+

and K
+
, and generated stability contours (Fig.12). These show

that Mode 2 is always stable, and its stability is greatly enhanced

by increasing pitching velocity feedback (derivative feedback, K�
+
;

Fig.12A). Interestingly, the unstable oscillatory Mode 3 can be made

stable without any proportional feedback (K
+
) by providing velocity

feedback (K�
+
) >1.5 (Fig.12B). However, stability is weak in this

case, even with very large K�
+
. The addition of pitch angle feedback

allows Mode 3 to have relatively strong stability in the presence of

velocity feedback. In addition, maximum stability is achieved for

K�
+

at approximately 2.5; further increases in K�
+

will reduce

stability.

Effect of sensory latencies

Here we investigate the effect of sensory feedback delays on flight.

The passive pitch damping M�
+

is assumed to be 0.3 (dimensional
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Fig.11. Comparison between measured (averaged kinematics, N4) and

predicted body kinematics. The fitted coefficients (Kx
+
, K�

+
and K

+
) are (2.5,

1.7, 0.9) for the zero delay case; (4.3, 2.2, 1.0) for 1 and �0.25; and

(4.9, 3.7, 1.6) for 2 and �0.5. Kx
+1.3, which is calculated from the

measured torques in the experiments (Fig.9Bi) with b
h35deg.

Table 3. Fitted coefficients in the dynamic model using individual and averaged (N4) body kinematics

Moth K�
+

K
+

Kx
+

1 1.00 (0.98, 1.03) 0.89 (0.87, 0.91) 2.89 (2.64, 3.14)

2 1.55 (1.51, 1.60) 0.84 (0.82, 0.87) 2.98 (2.82, 3.14)

3 1.18 (1.16, 1.21) 0.79 (0.78, 0.81) 2.67 (2.05, 3.30)

4 3.42 (3.31, 3.53) 1.35 (1.29, 1.4) 2.11 (1.81, 2.41)

Mean kinematics 1.69 (1.67, 1.71) 0.89 (0.88, 0.90) 2.53 (2.26, 2.81)

95% confidence intervals are presented in parentheses.
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value at 1329mmmNmsrad–1). The results are shown in Fig.13.

In particular, the predictions by the dynamic model using fitted

coefficients for (, �) of (1, 0.25) and (2, 0.5) are plotted in Fig.11

together with the results for no sensory delays. From Fig.13A,B,

we can see that, in general, increasing pitch angle delay causes both

pitch angle and velocity feedback to be stronger, as indicated by

increasing K
+

and K�
+
; however, increasing pitch velocity delay

reduces both angle and velocity feedbacks. In general, for pitch angle

sensory delays of less than one wingbeat, the fitted coefficients were

similar to those from the no-delay case.

Finally, we investigated system stability given sensory delays by

using the coefficients obtained from the no-delay, medium-delay

and large-delay cases. The RMS error of pitch angle was calculated

for each case (Fig.14). We found that, in general, the system can

tolerate more sensory delay in pitch angle than in pitch velocity.

This is especially apparent in coefficients obtained from the

medium-delay and large-delay cases (Fig.14B,C), where tolerance

to angle delay is substantially increased but tolerance to velocity

delay is reduced. The stability is generally greater with shorter

delays. However, interestingly, a small amount of velocity delay

can enhance the stability (e.g. when <2 and �<0.6; Fig.14B).

DISCUSSION

In this study we combined measurement of free-flight recordings

of startled hawkmoths (i.e. closed-loop, actively controlled flight

behaviour) with open-loop or passive control coefficients measured

in a dynamically scaled flapper to reveal how these animals produce

and control a flight manoeuvre.

Source of manoeuvring pitch torque

We found that the hawkmoths produced pitch torques via bilateral

changes to the mean spanwise rotation angle of the wing, a

mechanism similar to the unilateral changes to the mean wing angle

of attack reported for fruit flies performing yaw turns (Bergou et

al., 2010). This is a somewhat unexpected mechanism, as changes

to the mean wing position with respect to the COM have previously

been implicated in the pitch manoeuvres of insects (e.g. Ellington,

1984). One possible explanation is that, as discussed in Taylor

(Taylor, 2001), while creating pitch torque, this method may shift

the total force vector in the opposite direction of pitching (e.g. pitch-

up torque coupled with a forward tilt of force). In contrast, bilateral

changes to the mean rotation angle shift of force to the same direction

of pitching (e.g. pitch-up torque coupled with a backward tilt of

force; Figs9, 10). In the current flight scenario, in which the moths

were executing a rearward evasion manoeuvre, a pitch-up torque

and backward tilt of force is more effective than a pitch-up torque

and forward tilt of force on producing such manoeuvres.

As indicated earlier, the variation in mean rotation angle alone

was not enough to produce the pitch torque required to manoeuvre.

The additional torque was likely provided by a mix of additional

mechanisms. For instance, moths also changed the wing

stroke/deviation angles at stroke reversals and stroke plane

inclination angles relative to the body. These changes might create

both pitch and linear accelerations. However, those changes were

more varied among moths than those in mean rotation angle and

were sometimes inconsistent between the left and right wings of

the same individual. Therefore, they are difficult to quantify and

analyze systematically. Another possible source of pitch torque is

abdominal flexion, which could result in net torque by changing

the location of the animal’s average COM with respect to the centre

of pressure on the wings (below).

Closed-loop control inputs and stability

We revealed that, in the manoeuvres recorded here, the moths largely

relied on passive damping to control their rearward velocity,

demonstrated by the similarity of the open-loop coefficient Xx

+1.9

and closed-loop coefficient Kx

+2.5. In contrast, similar comparisons

of open- and closed-loop coefficients demonstrated that the moths

actively control their pitch orientation via proportional feedback

based on pitch angle and derivative feedback based on pitch angular
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Fig.12. Contour plots of dimensionless eigenvalues as

functions of K�
+

and K
+
. (A)2

+
, eigenvalue in the exponential

stable mode (Mode 2). (B)Re(3
+
), real part of the eigenvalue

in the oscillatory mode (Mode 3).

Table 4. Eigenvalues i
+

and eigenvectors i
+

of the linearized closed-loop dynamics

Mode 1 Mode 2 Mode 3

1 1
+ 1

+ 2 2
+ 2

+ 3 3
+ 3

+

0 0 x+ 1 –16.0 –0.57 x+ 3.2 –8.60±14.80i –0.31±0.53i x+ 2.18

x
+ 0 x

+ 0.39 (180deg) x
+ 0.28 (–103deg)

b
+

0 b
+

1.00 (0 deg) b
+

1.00 (0deg)

�b
+

0 �b
+

0.57 (180deg) �b
+

0.61 (120deg)

Eigenvalues i and �b are non-dimensionalized (indicated by superscript ʻ+ʼ) by flapping frequency n; x are non-dimensionalized by mean chord length c; and

x are non-dimensionalized by 2nRr2. The dimensional eigenvalue has the dimension of Hz, i.e. s–1.
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velocity, with derivative feedback predominating. These results

generally match our initial hypotheses developed from previous

studies, which report that hovering insect flight is unstable in open-

loop conditions (e.g. Sun and Xiong, 2005) and that angular

velocity sensors likely operate with lower latency than visual angular

position sensing (e.g. Sane et al., 2007; Sprayberry, 2009).

Our stability analysis also revealed that, given sufficient derivative

feedback, the moth could stabilize its pitch without use of

proportional feedback, but that incorporating both modes

substantially increased stability. Thus, although a D-only controller

might be sufficient in this case, the PD controller supported by the

data provides additional stability. PD controllers have also been

described for other animal locomotion tasks, including wall-

following in cockroaches (Cowan et al., 2006). However, P-only

controllers have been identified for some flight tasks, including

Drosophila forward flight speed control (Rohrseitz and Fry, 2011)

and locust pitch control (Taylor and Thomas, 2003). Our analysis

shows that a P-only controller would not be stable without

substantially greater open-loop pitch velocity damping (M��b) than

was found in the dynamically scaled flapper.

B. Cheng, X. Deng and T. L. Hedrick

Effects of latency on control coefficient estimates and

stability

In re-computing the closed-loop flight dynamics coefficients with

different assumed sensory delays, we found that increasing the

sensory delay parameters increased the magnitude of the coefficients

required for the best fit to the observed data (Fig.13). Plausible

sensory delays of one to two wingbeats in sensing pitch angle

increased the estimated linear velocity closed-loop coefficient Xx

+
,

pushing it beyond what would be provided by the open-loop

response, potentially changing our conclusion as to the necessity of

active control of linear velocity. However, we also found that

increasing the sensory delays above 1.5 wingbeats reduced the

quality of the fit to the experimental data (Fig.13D), suggesting that

actual sensory delays may be less than this.

The second part of our latency investigation – assessing the

stability of the closed-loop dynamics (using three different sets of

fitted coefficients) in the presence of sensory delay – showed that

the moth PD controller is rather insensitive to sensory delay,

particularly delay in the proportional component. When stronger

feedback control is used (corresponding to the coefficients fitted

with larger delays; Fig.14C), the PD controller becomes less

sensitive to the delay in proportional components but more sensitive

to the delay in derivative components. In this case, sensory delays

of up to 2.7 wingbeats in the proportional control input and 0.65

wingbeats in the derivative input still resulted in stable flight

behaviour, as might be expected for the flight control responses of

an animal that experiences varying visual sensory delays based on

light levels (Theobald, 2004).

The effects of sensory latency are also influenced by the strength

of open-loop damping. Different studies have reported varying

magnitudes for the open-loop pitch velocity damping coefficient

M�
+
. Using Eqn 19, we found M�

+
to be equal to –0.22, larger than

the –0.03 reported by Sun and Wang (Sun and Wang, 2007) for

Drosophila but smaller than the –0.62 reported by Gao et al. (Gao

et al., 2009) for hawkmoths. Note that because of the varying non-

dimensionalization schemes, we first re-dimensionalized the values

from these other studies and then non-dimensionalized them in the

scheme used here. The source of these differences in M�
+

is unclear,

but even the larger coefficients are still less than the closed-loop

K�
+

of 1.7 reported here, so the conclusion that the moths employ

active control based on pitch velocity remains unchanged. However,

larger values for M�
+

do further enhance the robustness of the PD

controller to sensory delay.

Abdominal flexion and pitch control

Our analysis treats the moth as a rigid body, but flying insects,

including M. sexta, are widely known to change their body

configuration in flight (e.g. Kammer, 1971). In these experiments,

the hawkmoths were observed to flex their abdomen in the body’s

longitudinal (xb–zb) plane. Specifically, abdominal flexion was
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closely correlated with pitch angle (at a lag of approximately 20ms

or 0.5 wingbeats), with the abdomen flexed upwards when the moth

was pitched upwards and downwards when the moth was pitched

downwards. Thus, it is likely that abdominal flexion plays a role in

producing the K closed-loop response, in conjunction with the

previously discussed changes in wing kinematics. However, the

exact effects of abdominal flexion on flight dynamics are less clear

and likely include both static and dynamic components. Statically,

the flexion may change the location of the COM in the longitudinal

plane; dynamically, the flexion causes relative motion between the

thorax and the abdomen, potentially helping to change the orientation

of the thorax and attached wings. The exact effects of abdominal

flexion and the contribution of static and dynamic effects on flight

control bear further investigation.

Future work

The general approach used here – the combination of open-loop

aerodynamic derivatives derived from mechanical or computational

fluid simulation and closed-loop flight behaviour recorded from

freely flying animals in a single study – will be extended to other,

more complicated manoeuvres and control problems. This may

require the application of non-linear control models to account for

within-wingbeat dynamics and coupling between yaw, pitch and

roll modes. It would also be interesting to examine cases where

animals fail to control their flight. For instance, hawkmoths without

antennae are observed to pitch backwards while hovering and then

fail to pitch forwards again in time to avoid crashing (Sane et al.,

2007). Extracting closed-loop coefficients from these events could

validate the open-loop models by showing that the dynamics of

uncontrolled flyers match those predicted by open-loop coefficients.

Experiments manipulating sensory latencies should also prove

informative by showing whether the moths alter their control

strategy to maintain a similar stability margin in different

circumstances.

LIST OF SYMBOLS AND ABBREVIATIONS
AR wing aspect ratio

c local wing chord length

c mean wing chord length

E Young’s modulus

EI flexural stiffness

F force

g gravitational acceleration

H(t) Heaviside function

Iyy body moment of inertia about the pitch axis

J advance ratio

K coefficient of proportional feedback of pitch angle

K� combined coefficient of passive damping and derivative

feedback of pitch angular velocity

K�
a

coefficient of derivative feedback of pitch angular velocity

Kx combined coefficient of passive damping and derivative

feedback of translational velocity

Kx

a
coefficient of derivative feedback of translational velocity

Kx
 coefficient of pitching torque resulted from body translation

l1 distance between wing base and centre of mass

M pitch torque

mb body mass

M� damping coefficient (stability derivative) due to pitch angular

velocity

n wing flapping frequency

R wing length

r1 and r2 non-dimensional wingspan locations

r2(s) non-dimensional radius of the second moment of wing area

Re Reynolds number

S wing area

t dimensional time

t dimensionless time

T simulation time

tw wing thickness

vb body translational velocity

vw mean wing flapping velocity

x body position in fore/aft direction

x body velocity in fore/aft direction

x body acceleration in fore/aft direction

X fore/aft force

Xx damping coefficient (stability derivative) due to translational

velocity

 wing stroke deviation

b body pitch angle

�b body pitch velocity

�b body pitch acceleration

b
h body pitch angle at hover

 fluid/air density

 torque

� pitch velocity delay

 pitch angle delay

 kinematic viscosity of the fluid

 wing stroke position

 wing flapping amplitude

 wing rotation angle

add magnitude of variation in mean rotation angle
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