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Abstract

High speed dislocations have long been identified as the dominant feature governing the plastic response of crystalline
materials subjected to high strain rates. They allegedly control deformation and failure response of industrial processes
in a large range of applications, including machining, laser shock peening, punching, drilling, crashworthiness, foreign
object damage,etc. Despite decades of study, achieving a consensus on the role and influence high speed dislocations
have on the materials response observed at the macro-scale by the means of rigorous mechanistic grounding remains
elusive. This article reviews both experimental and theoretical efforts made to address this issue in a systematic way.
The lack of experimental evidence and direct observation of high speed dislocations means that most work on the matter
is rooted on theory and simulations. This article offers a critical review of the competing theoretical accounts of high
speed mechanisms, their underlying hypothesis, insights, and shortcomings. It explores the role that the speed of sound
plays in the modelling of high speed dislocations, the way dislocations are modelled in the elastic continuum and how
this approach can be used to study plasticity at high strain rates. The role atomistic models of dislocations have played
in clarifying high speed motion mechanisms, and how they have led to the development of dislocation velocity-stress
relations describing dislocation mobility is then also discussed. The article also reviews modelling efforts aimed at
describing high speed dislocation mobility, and how different proposed physical mechanisms believed influence the
motion. The article closes with an overview of the current state of the art and suggestions for key developments needed
to improve our fundamental understanding in future research.

1 Introduction

What happens to a dislocation when it moves at velocities comparable to the speeds of sound of the material in which it
propagates? Moving dislocations dominate the plastic deformation of crystalline materials[1]; thus, an adequate answer
to this question would enable a better understanding and a more accurate physical modelling of many dislocation-
mediated processes, where high speed dislocations are thought to be present. Such processes include moderate and high
strain rate plasticity[2, 3], adiabatic shear banding[4], dynamic fracture[5], and many others. In turn, these mechanisms
are known to dominate the mechanical response of industrially relevant processes, such as e.g. foreign object damage in
the aerospace industry, machining[6], forging[7], laser shock peening[8] and wear[9]. Unfortunately, the field of high
speed dislocation dynamics has been at the centre of debates and controversies since it was first posed in 1949[10, 11],
and remains a research area with many mysteries and a salient absence of physical consensus. This is not due to a lack
of effort: there have been attempts to tackle this from various viewpoints and employing many different methodologies,
from continuum level elastodynamics to molecular dynamics. However, none of them have been able to provide a
definitive, undisputed answer to the question posed above for two reasons.
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First and foremost is the absence of experimental evidence caused by the technical challenges involved in generating
and tracking dislocations at speeds of the order of kilometres per second. Admittedly, some related empirical results
exist, such as the observation of supersonic cracks [12], twins [13] and dislocations in plasma crystals [14]. As
will be discussed in section 2, these results notwithstanding, the direct experimental observations of fast moving
dislocations in metals have been limited to velocities below about one third of the shear wave speed of the material
[15, 16, 17, 18, 19, 20, 21], the lower boundary of the velocity regime of interest.

The second reason for the enduring uncertainty in this field stems from the multiplicity of theoretical and computational
methods that have been employed to study fast moving dislocations. Without the guidance of unambiguous experimental
evidence, advances in the field have been necessarily left to theoretical models and computer simulations. Generally
speaking, the former take the form of linearly elastic continuum models at microsecond and micrometer time and length
scales, in which the atomic nature of matter is neglected. These were some of the oldest and most successful models
in micro- and defect mechanics [22, 1]. However, as will be shown in section 3, it quickly became apparent that the
assumed description of the dislocation core, which needs to be added explicitly in these models, had significant impact
on the derived results.

This motivated the atomistic1 modelling of gliding dislocations, which will be discussed in section 4. These models
captured the interaction between the dislocation and the lattice explicitly and, as such, complemented their continuum
counterparts. The earliest atomistic models[23, 24, 25] were not given much consideration as they were limited to
arguably oversimplified systems due to computational cost limitations. Furthermore, they contained instabilities at
speeds below about half of the shear wave speed of the material which remained unexplained[24, 26, 25]. These
instabilities were interpreted to mean that low velocity dislocation motion was impossible (cf. section 4.1). With
the advent of the non-equilibrium molecular dynamics method, more realistic atomistic simulations were performed.
Nowadays, computational resources are such that these simulations can be performed with plausible interaction
potentials and adequate system sizes. However, they have so far not provided the field with the conclusive mechanistic
understanding it yearns for because observations in these computer experiments showed little transferability to seemingly
equivalent simulations, as will be discussed in section 4.

The study of high speed dislocations is motivated by the perceived need to explain physical phenomena where it has
long been speculated that high speed, perhaps even supersonic, dislocations play a significant and necessary role. The
paradigmatic example of this is shock loading: as stated for instance by Stroh[27] ‘. . . it seems unlikely that dislocations
move with so high a velocity, except possibly at the very highest strain rates, which may occur in explosive loading.’
Early attempts at explaining the plastic relaxation of a shock front, such as the Smith-Hornbogen model[28, 29], did
indeed require dislocations to travel at supersonic speeds to trail the advancing shock front2. However, given that models
such as the one proposed by Smith and Hornbogen failed to correctly predict the observed dislocation densities[2] and
that by then supersonic dislocations were already seen as contentious[30], these attempts were quickly superseded by
more sophisticated accounts[31, 32, 33, 34] that shifted the cause of plastic relaxation in shock loading from moving
dislocations to dislocation generation behind the front[30]. These models were more consistent with the observed
increase in dislocation density behind the shock front[31, 35, 36, 34, 30], whilst simultaneously requiring dislocations to
move at subsonic speeds[34]. Thus, supersonic dislocations sparked remarkable research aimed at explaining physical
phenomena by, paradoxically, explicitly seeking to avoid them. What also transpired is a lack of physical motivation for
high speed dislocations: if they are not needed in shock loading, what are they for?

In fact, another important reason to study high speed dislocations is the description of dislocation mobility. Theoretical
studies of high speed dislocations, which are experimentally unreachable, allow to define ‘stress-velocity’ mobility laws,
which concern the theoretical relationship between the kinematic state of the dislocation (e.g., its glide speed v, or its
acceleration) and the applied stimuli that drive the motion, usually captured via the Peach-Koehler force[37, 38] as a
resolved shear stress τ acting on the dislocation. Mobility laws are particularly important because the macroscopic
plastic flow is understood to be proportional to the average speed of dislocations[39]. As will be discussed in section 5,
the emphasis the field places on whether the speeds of sound are a limiting speed to dislocation motion largely reflects
the desire of reaching an adequate mobility law at high speeds, rather than explain specific macroscopic phenomena.
Many of the theoretical discrepancies afflicting the field are also reflected in the search for a universally valid mobility
law.

In this review, we will argue that the state of the field is such that we are still debating how fast moving dislocations
should behave on a qualitative level. In section 2, the experimental evidence surrounding high speed dislocations is
reviewed. Section 3 concerns continuum level models of high speed dislocation. Atomistic models are discussed in
section 4. Section 5 discusses the many physical aspects affecting the description of high speed dislocation mobility.

1The term atomistic is used as a shorthand for "on the atomic scale" throughout.
2The Smith-Hornbogen dislocations are supersonic because they move obliquely at an angle θ behind the front, so they must

reach speeds of cl/cosθ to keep up with the front.
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(a) Moving dislocation etch pits in LiF. Reproduced with permis-
sion from Gilman[47].
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(b) Schematic of the motion of dislocations in an etch pit experi-
ment. After [47].

Figure 1: Movement of dislocation etch pit in LiF under the application of an external stress pulse.

Section 6 closes the review with the conclusions and provides a critical outlook, particularly emphasising three areas in
which progress is still needed to resolve long-standing issues in this fascinating research field.

2 Experimental evidence

The first experimental evidence of dislocations in motion was provided by Leibfried in 1950 [40]. In creep tests he
showed that the experimental sample extended by about 0.1µm over timescales of about a second. Subsequently, he was
able to ascribe this observation to moving dislocations [41], allowing him to estimate dislocation speeds of the order of
1m/s.3 Subsequent studies also relied on indirect evidence, particularly from the growth of slip bands in aluminium
[42, 43], reporting average dislocation speeds of no more than 200m/s [43]. Slip band growth has subsequently been
used to estimate dislocation speeds, e.g., in bcc Fe [44], Fe-Si[45], or bcc Mo[46].

In the late ’50s, direct evidence of dislocation mobility was provided by Gilman and Johnston [48, 15]. In their
experiments of selective etching in LiF, Gilman and Johnston tracked the position of surface etch pits before and after a
stress pulse had been applied on the sample (see fig.1). Whilst prior experiments could only infer dislocation speeds as
averages over time and a large number of dislocations, selective etching enabled Gilman and Johnston to obtain the
average speed of individual dislocations as the ratio between the distance moved by the pits and the duration of the
stress pulse. By repeating the experiment at different applied stress levels, Gilman and Johnston constructed direct
empirical evidence relating the applied stress to the average speed of individual dislocations[49], and of dislocation
generation rates[49]. Their original results in LiF probed dislocation speeds spanning more than 10 orders of magnitude.
They suggested the presence of a linear regime at low speeds and that velocity tended to saturate with increasing
stress. Further selective etch experiments in the next decades replicated these results in a vast number of materials,
under different temperature ranges and under irradiation conditions [50]. Materials tested in this way include the
metals W [51], Fe [44, 52], Fe-C [53], Fe-Si [16, 54, 55], Al [56], Cu [57, 58, 59, 60], irradiated Cu[61], Al-Cu alloys
[17, 21, 57, 62], Ni [63], Pb [64], Mg [65], Zn [66, 67, 68, 59, 69, 70, 71, 72], Nb [73, 74, 75], α-Ti [76], In [77], K
[52], Mo [65, 78, 79], Ag [80], and a number of ceramics and semiconductors, including pure Ge [81] and Si [82, 83],
LiF [48, 84, 85, 86], BeO [87], KCl [88], NaCl [89], KBr [90, 91], InSb [82, 92], GaAs [93], GaSb [82], InP [94], GeSi
[95, 96]. In Si, particular focus was placed on studying the mobility of dislocations under various temperatures and
doping conditions, often with seemingly contradictory results [82, 97, 98, 99, 100, 101, 102, 103, 104, 105]. By the
1960s most in-situ measurements of dislocation had progressed to using X-ray microscopy [103, 106, 107].

In parallel to the development of the selective etching technique, Granato and Stern [108] developed an alternative
approach to estimating the drag coefficient of a moving dislocation based on the attenuation of sound waves in metals.
This approach, commonly called the stress relaxation technique, built on theoretical work by Read [109] and Koehler
[38]. The former associated the attenuation of stress waves to the presence of dislocations [109]. The latter then
showed that this attenuation was inversely proportional to damping of the vibrations of pinned dislocation segments due
to a drag-like force[38]. This ‘drag-like’ force fdrag is linearly proportional to the dislocation segment’s own speed
fdrag = d · v, with d the drag coefficient[1]. Granato and Stern measured the attenuation rate and estimated values for

3This speed represents the collective average of the drift speed of the many dislocations involved in dislocation creep. Individual
dislocations may move much faster than 1m/s, but be held at obstacles for significant periods of time.
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Figure 2: Classical representation of the three regimes of motion experienced by a glissile dislocation. For low speed
and stress levels, dislocation motion is thermally activated (e.g., via the kink-pair mechanism[1]). Eventually the
applied stress level overcomes the Peierls barrier τP , and the free glide regime is reached. As the dislocation’s speed
approaches the transverse speed of sound, dislocation speed is expected to saturate towards in the so-called ‘relativistic’
regime. Figure adapted from [138].

this drag-like force [108]. Using this technique, the ‘canonical’ values of the linear drag coefficients of a number of
materials were obtained, including LiF [110], NaCl [111], KCl [110], Cu [112, 108, 110], Cu-Mn alloys [110], Al[19],
Pb [113], Cd [114], Ta [115] and solid He [116, 117].

Dislocation velocity can also be measured using in-situ transmission electron microscopy (TEM), although this tends to
limit the scope of the studies to extremely low average speeds (of the order of 10−6m/s), often for groups of dislocations.
Therefore, the approach is particularly suitable to study the kinetics of dislocation motion and the activation of different
glide mechanisms under varied loading conditions. For instance, Shih et al. [118] measured speeds of 50nm/s for
dislocations subjected to a constant strain rate in α-Ti, which increased to 70nm/s under the presence of hydrogen.
Equally, Caillard [119, 120] reported average speeds of the order of 100nm/s for screw dislocations in pure Fe achieved
by in-situ straining of the samples. A wide range of studies of this type exist, e.g. [121, 122, 123, 124, 125, 126],
mostly focused on descriptions of glide in specific crystallographic orientations (see for instance [127, 128, 129, 130])
at very low, often unreported, speeds. Scanning electron microscopy (SEM) techniques have also been employed in a
similar fashion, leading to equally low estimates of the average speeds [131].

Other experimental techniques have also been used to estimate dislocation velocities, usually relying on indirect
evidence. For instance, Schaarwächter and Ebener [132] and Maass et al. [133] proposed using acoustic measurements
to study the velocity of dislocation avalanches. Such indirect methods appear best suited to study effects related to
work hardening and stage II-III plasticity [134], as they estimate velocities of the order of 1m/s in dense networks of
dislocations. Taking advantage of the magnetoplastic effect, Kim et al. [135] were able to estimate dislocation speeds in
Zn. Similar indirect measurements of dislocation mobility, based on correlating the macroscopic response with crystal
plasticity laws reliant on dislocation drag expressions valid at very low speeds have been performed under restrictive
loading conditions[136, 137]. These are discussed in greater detail in section 5.

2.1 The three regimes of dislocation motion

The aim of mobility experiments is to establish a relationship between the applied stress τ and the observed average
dislocation velocity v̄. This relationship or ‘mobility law’ (see section 5 for more details) has commonly been represented
with a power law of the form v̄ = Cτm where C is a constant[2, 139]. This power law is entirely phenomenological,
and has no physical basis; indeed, some authors have favoured other fittings laws(cf.[47, 140]). Although results
display vast variability between different materials, temperatures, and alloying conditions, a general consensus arose
demarcating three ‘mobility’ regimes characterised by the power law’s fitting exponent m (cf. [2, 47]) and depicted in
fig.2. For low applied stresses, the power law exponent would be very large, considerably above m > 1 [139, 2]. This
regime was ascribed to the thermal activation of motion[47, 138, 141]. As is shown in fig.3 for dislocations in KCl
crystals of different levels of purity [88], the exponent m would decrease with increasing stress, eventually reaching
a quasi-linear regime where m ≈ 1. This regime is the ‘viscous drag regime’ we discuss in the sequel. At the upper
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Figure 3: Mobility data for dislocations in KCl crystals of different purities, adapted from Lubenets and Startsev [88].
The data shows a clear change in the mobility as the free glide regime is reached.
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Figure 4: Selection of experimental data for the dislocation mobility in fcc Al at different temperatures, as reported
by Parameswaran et al. [56]. The data has been fitted with a power law, that renders τ = 0.146v̄1.197 for 298K,
τ = 0.066v̄1.247 for 77K, and τ = 0.02v̄1.46 for 30K. An alternative data set may be found in Gorman et al. [19].
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end, for high stresses and high speeds, the exponent was often reported to take values considerably below m < 0.1.
For instance, Gilman reported values of m = 0.05[84] for LiF; Stein and Low gave values of m = 0.022− 0.028 for
Fe-Si[16]. At these high stresses, relativistic effects (see below) were said to dominate the motion[47, 140, 2].

The extraordinary non-linearities found for low and high speeds (m≫ 1 and m≪ 1, respectively) were often taken at
face value [48, 16] and reported [139, 140, 2], despite the fact that non-linear scaling of that order is exceedingly rare
[142]. This seems to suggest that this is the result of the inappropriate fitting via a power law of otherwise accountable
physical behaviours. For instance, in studying the rate for kink-driven dislocation motion under applied stresses,
Fitzgerald [143] has shown that the rationale for low speed non-linearities is to be found in the rate behaviour of the
motion under small loads: exponential behaviours were being fitted with power laws. In the high speed regime, building
on the approach introduced by Alshits and Indebon [50, 144], Blaschke [145, 146] has shown that the velocity of
high speed dislocations saturates due to dislocation-phonon interactions, which result in an effective drag coefficient
inversely proportional to powers of a rational function dependent on dislocation speed.

The m ≈ 1 quasi-linear regime observed by Gilman and Johnston for LiF was corroborated by most subsequent
experimental work. For instance, fig.4 shows etch-pit data obtained by Parameswaran et al. [56] for the mobility of
dislocations in fcc Al at different temperatures. In this data set, the power law fit produces exponents m of order
unity, consistent with the linear viscous regime measured in other materials. The existence of this regime agreed
with theoretical work suggesting the existence of a ‘drag’ force proportional to the dislocation speed that dominated
dislocation motion in the free glide regime [1] (see fig.2).

The presence of this drag force had been recognised early on by Leibfried [40], who was the first proponent of the
phonon scattering effect that is thought to arise during the unobstructed glide of dislocations [138]. According to
Leibfried [40], a phonon that would be transported unimpeded through a perfect lattice will be inelastically scattered by
the dislocation’s own elastic field, resulting in an energy loss that manifests as the dislocation glides in the form of a
viscous drag acting on the dislocation. A considerable number of additional dispersion mechanisms have been proposed
that may explain or contribute to explaining dislocation drag. These are discussed in greater detail in section 5.

The non-linear regime found at higher stresses in experiments was attributed to ‘relativistic’ effects [140, 47], because
elastodynamics predicts that, in analogy to relativistic particles approaching the speed of light, the elastic energy of
dislocations approaching at speeds close to the transverse speed of sound, ct ought to diverge. This would entail a
saturation in the τ ∝ v̄m law as b̄ approaches ct (see section 3.3). In practice however, the speeds of dislocations in
experiments where mobility laws have been determined are much less than those of the relativistic regime. In-situ
experimental observations at speeds above ≈ 0.3ct is, to the authors’ knowledge, non-existent. The highest speeds
reported come from Flinn and Tinder’s work on etched LiF[147] and from Kumar and Clifton’s[148] studies of slip
band growth in LiF, where dislocations reaching ≈ 1100m/s are reported. Even at such speeds, the ‘relativistic’
Frank-Eshelby dislocation we discuss in detail in section 3.3 behaves almost like an elastostatic dislocation, as its
elastic energy is only ≈ 1.05 times that at rest. The attribution of the observed non-linear regime to ‘relativistic’ effects
appears spurious, and its explanation remains unclear.

Hitherto, in-situ studies of dislocation motion remain limited to low and moderate dislocation velocities. The number
of crystalline systems that have been studied is limited, and many commonplace alloys of practical interest lack
experimental studies of dislocation mobility, even at low speeds. The challenges for direct measurements of high speed
dislocations are many: the loading rates at which they are expected to occur are accessible only through set-ups such as
Hopkinson bar [149, 150], plate impact [151] or laser shock experiments [152] where in-situ microscopy is difficult.
Equally, the required temporal and spatial resolution pushes current imaging capabilities to its limits, particularly for
supersonic dislocations. Thus, most information about dislocation motion in the free glide and ‘relativistic’ regimes
comes from theory and simulation.

3 Continuum models of gliding dislocations

The earliest models of high speed dislocations were founded on the continuum theory of linear elasticity. The speeds of
sound play a central role in linear elastodynamics, where they represent the speeds at which information propagates
in the form of (elastic) waves (cf.[153, 154]). The modelling of high speed dislocations in linear elasticity comes
to depend critically on these speeds, because they entail that a dislocation travelling as fast as sound would require
an infinite elastic energy. Thus, in elastodynamics the speeds of sound are commonly regarded as limiting speeds
to dislocation motion – i.e., speeds that no dislocation may overcome. More sophisticated or physically insightful
models produced subsequently tend not to regard the speeds of sound as limiting speeds (see section 4), even though
for historical reasons the early insights offered by elastodynamics still dominate the way high speed dislocations are
approached (e.g., ‘high speed’ dislocations are typically those moving at speeds approaching the transverse speed of
sound, q.v.[155, 156, 157, 158, 159]).
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This section aims to explain the whys and wherefores of these limiting speeds: why are the speeds of sound said to
be limiting speeds to dislocation motion? What caveats are to be found in these models? What physical implications
do they have? The crucial step to answer these questions is the derivation of the elastodynamic fields of moving
dislocations.

3.1 General characteristics of the linear elastodynamic models of moving dislocations

All treatments of the elastodynamic fields of dislocations begin with their governing equation – the conservation of
linear momentum – which, in terms of the displacement field in a linear elastic solid, are typically written as the
Navier-Lamé equations[153],

1

2
Cijkl (ui,jj(x, t) + uj,ij(x, t)) = ρüi(x, t) (1)

with repeated index denotes summation, ui is the displacement vector, ρ the density, Cijkl the elastic constant tensor,
and f,j ≡ ∂jf .

For an isotropic solid it takes the form[154, 160]

(λ+ µ)uj,ji(x, t) + µui,jj(x, t) = ρüi(x, t) (2)

where λ and µ are Lamé’s first parameter and the shear modulus, respectively, and ρ the density. Using the Kelvin
potentials ~ψ ≡ ψ and φ, the governing equations of linear elastodyamics can be uncoupled into two separate,
monochromatic waves[161]:

∇2φ =
1

c2l

∂2φ

∂t2
, ∇2ψ =

1

c2t

∂2ψ

∂t2
(3)

where
u = ∇φ+∇×ψ ui = φ,j + ǫijkψk,j (4)

and

ct =

√
µ

ρ
, cl =

√

λ+ 2µ

ρ
(5)

are respectively the transverse and longitudinal speeds of sound, the speeds at which elastic fields propagate. This
implies that in elastodynamics, information about a defect travels at well-defined, finite speeds.

3.2 The Frank-Eshelby dislocation: the uniformly moving Volterra dislocation in the steady state

The equation of motion for the displacement field of the uniformly moving Volterra screw dislocation in an isotropic
continuum was first formulated in 1949 by Frank [10]. Frank started from eqn.2, which for the antiplane motions
involved in the glide of screw dislocations, takes the form[154]:

µ∇2uz(x, y, t) = ρ
∂2uz
∂t2

(6)

subjected to the boundary condition
uz(x, 0, t) = BH(x− vt) (7)

which models a Volterra screw dislocation with Burgers vector (0, 0, B) gliding along the x-axis at uniform speed v.

Frank’s problem is a particularly simple case of the more general class of ‘self-similar’ solutions known to exist in
PDEs (cf.[162, 163, 164]). In this case, the spatial and temporal variables x and t appear in the boundary condition
(eqn.7) in terms of x− v · t, which leads to solutions of eqn.6 of the form

uz(x, y, t) = uz(x− vt, y) (8)

This was explicitly achieved by Frank[10] by introducing a Galilean transformation to the independent variables

x 7→ X ≡ x− vt, y 7→ Y, t 7→ T (9)

In this particular case, this transformation group not only leads to a similarity solution, but reduces the number of
independent variables from 3 to 2. Indeed, applying eqn.9 to eqn.6 reduces the problem to an analogue to the elastostatic
problem:

1

γ2t

∂2uz
∂X2

+
∂2uz
∂Y 2

= 0, uz(X) = BH(X), (10)

7
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Figure 5: The σyz shear stress field of Frank’s steady state screw dislocation[10], at different values of Mt = v/ct. As
may be seen, the solution tends to contract in the direction perpendicular to the motion as Mt → 1.

the solution to which is the static field of a screw dislocation (q.v.[1]), which once the Galilean transformation is undone
is of the form:

uz(x, y, t) =
B

2π
arctan

[
y

γt(x− vt)

]

(11)

where γt = (1− v2/c2t )
−1/2 is a Lorentz factor with ct the transverse speed of sound in the medium rather than the

speed of light.

Eshelby also used a Galilean transformation to derive the equivalent solution for the uniformly moving Volterra edge
dislocation[11]. Because the salient features of both solutions are analogous, we shall refer to this model as the
‘Frank-Eshelby’ (FE) dislocation.

As is well-known[163, 165], solutions of the form eqn.11 (i.e., of the form of uz(x, y, t) = uz(x− vt, y)), describe a
plane wave or traveling wave of velocity v and profile uz in the x direction. This travelling wave only serves to model a
uniformly moving dislocation that has moved in this manner ever since t→ −∞. This arguably does not happen in
reality, where at the very least a dislocation will accelerate from rest. The interest of the FE solution lies in that, as other
self-similar solutions, it is an ‘attractor’(cf.[166],p.51) for the transient motions of the dislocation, which would be
modelled with a different set of boundary conditions (see section 3.3) and have far more contrived analytical solutions.
Thus, it may be regarded as the steady state solution that a transient motion would tend to. As a result, the main purpose
of the FE dislocation is not in accurately modelling dislocation motion, but in identifying the formation of singularities
after the effects of the transient motions have faded.
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One of the main properties of self-similar solutions is that the energy is a constant of the motion[163] – to put it
otherwise, the traveling wave does not radiate energy. Frank for instance showed that the elastic energy E associated
with the uniformly moving screw dislocation is[10]

E = γtE0 (12)

As may be seen in eqn.12, as v → ct, then γt → ∞, whereupon a strong singularity appears to arise when the screw
dislocation moves at the transverse speed of sound. Eshelby’s[11] analysis for edge dislocations shows that their elastic
energy is equally invariant, and that it diverges both at ct and cl.

This singularity was evocative of relativistic particles approaching the speed of light, a connection not missed by
Frank and Eshelby[10, 11]. It naturally lead to the conclusion that the speed of sound is a limiting speed for moving
dislocations, as it would require an infinitely large energy to accelerate dislocations beyond these velocities of infinite
elastic self-energy [11]. In addition, Eshelby also discovered a “radiation free state” affecting edge dislocations gliding
with velocity

√
2ct, for which the required driving force to maintain uniform motion of the dislocation was zero [11].

Eshelby was quick to draw attention to the fact that the route to this state seemed to be obstructed by the hard barrier for
gliding edges at ct.

The divergence as v → ct also manifests itself in the stress fields of the dislocation, which for the screw dislocation are
given by[10]

σxz = −µB
2π

y

y2 + γ2t (x− vt)2

σyz =
µB

2π

γt(x− vt)

y2 + γ2t (x− vt)2
(13)

Clearly, as v → ct both stress fields tend to vanish. Interestingly however, as v → ct, they both contract along the x
direction. This is shown in fig.5, where it may be seen that this contraction is barely noticeable until around v ≈ 0.75ct,
but very marked for dislocations gliding with speeds very close to ct. To Frank and Eshelby[10, 11], this was evocative
of the Fitzgerald contraction that relativistic electric charges are known to display[165].

Thus, the singularities observed at the speed of sound appeared to be in complete analogy to the divergences that arise
in the fundamental equations of special relativity as a particle’s velocity approaches the speed of light. They were
quickly ascribed to a ‘relativistic’ effect[167, 168], a loose terminology that has become pervasive in the literature.4. In
fact, the relativistic picture of dislocation dynamics was formally laid out by Eshelby in 1953 using an “electromagnetic
analogy” which attempted to describe the dynamics of dislocations in the language of electrodynamics[169]. However,
it was shown later that the equivalent Lorentz force was irrelevant for moving dislocations [170, 22] (see also section 5).
Only then was it accepted that the analogy between electromagnetism and dislocation theory was inappropriate.

Nevertheless, the notion that relativistic effects somehow govern dislocation motion was reinforced by Cottrell[167],
Weertman[171], Hirth and Lothe[1], Teodosiu[172] and Gilman[47], amongst others, who reworked Frank and Eshelby’s
original derivations, preferring to explicitly invoke a Lorentz transformation instead:

x 7→ X ′ ≡ x− vt
√

1− v2

c2t

, y 7→ Y ′, t 7→ T ′ ≡
t− x v

c2t
√

1− v2

c2t

(14)

For v = constant, the Lorentz transformation reduces eqn.6 to

∂2uz
∂X ′2

+
∂2uz
∂Y ′2

= 0, uz(X
′) = BH(X ′/γt), (15)

The solution is again eqn.11.

Despite its initial popularity, there are good reasons to have reservations about the seemingly close connection between
special relativity and dislocation dynamics as there seems to be little physical motivation behind it. Elastodynamic
solutions are, after all, solutions to Newton’s equations of motion, and cannot be expected to obey the limiting premises
of special relativity. As we have discussed, the FE solution is just a traveling wave solution, which could be regarded as
the steady state solution to more general motions. Its main purpose is in successfully identifying singular behaviours.
The fact that the steady state field of a uniformly moving straight dislocation could be solved by applying a Lorentz
transform to the static equation is not in itself surprising because the governing equation takes the form of a wave
equation [10], which are Lorentz invariant [165, 163]. However, the introduction of the Lorentz transformation has

4See for instance Nabarro[140],p.491; or Hirth and Lothe [1], Ch.7; Meyers[2], Ch.13.
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a number of disconcerting implications. First, it appears to be unnecessary: a Galilean transformation achieves the
same solution. Second, the time dilation property attached to the Lorentz transformation seems extraneous in a classical
context, so much so that Hirth and Lothe [1] perfunctorily dismissed it as having ‘no deep significance’. After all, what
can a time contraction associated with the moving dislocation possibly mean? Third, this methodology ascribes the
same physical importance to the speed of sound in a medium as to the speed of light has in vacuum. This would lead
one to conclude that the speed of sound in any medium would be an insurmountable barrier, a conclusion which is
known to false: supersonic cracks, for instance, are empirically attested[12]. Finally, the application of methods borne
out of special relativity to dislocation dynamics tacitly assumes that the speed of sound is constant across all moving
reference frames; this cannot be true as sound necessarily propagates in a medium.[161]

3.2.1 Frenkel-Kontorova models

The FE relativistic dislocation finds an analogue in the Frenkel-Kontorova (FK) model of dislocation motion[173, 174].
In the FK model, the dislocation line or, more properly, the dislocation core, forms part of a one-dimensional chain of
atoms. Each atom has mass m, interacts with its two nearest neighbours via an elastic force of spring constant k, and
is subjected to a one-dimensional background sinusoidal potential energy of period λ and amplitude Λ. The moving
dislocation is represented by a soliton that propagates across the chain of atoms. If un denotes the displacement away
from the equilibrium position of the nth atom in the chain, then linear momentum conservation requires that[140]

k
∂2u2n
∂x2n

−m
∂2un
∂t2

= 2π
Λ

λ2
sin(2πun) (16)

This non-linear hyperbolic PDE is well-known to have steady state and self-similar particular solutions[163]. In
particular, if each soliton/dislocation moves with uniform speed v, then it becomes a plane wave un = un(xn − vt)
(see [163], p.176), and the equation can be reduced to steady-state (stationary) form[140]:

k

(

1− mv2

kλ2

)
∂2un
∂x2

= 2π
Λ

λ2
sin(2πun) (17)

which is the same equation as that in the stationary case. The solution to this equation is well-known[175]. Crucially, in
the steady state it entails a limiting speed

cFK =

√

kλ2

m
(18)

which happens to be the speed of small perturbations in the chain of atoms. Furthermore, the energy associated with an
individual soliton-dislocation in the chain is a constant of the motion, E = E0/

√

1− v2/c2FK with E0 the energy of
the dislocation at rest, so it diverges at v = cFK .

3.2.2 Shortcomings of self-similar models

That a traveling wave solution to a hyperbolic PDE displays singularities at the characteristic speeds of the medium is
unsurprising: these are embedded into the mathematical structure of the problem5. The speed of sound therefore arises
as an ad hoc limiting speed for linear elasticity. Indeed, the limiting speed of the FK model, cFK , is different to the
speeds of sound, but formally analogous.

In both the self-similar FE and FK solutions, the hard barriers to dislocation motion arise because the governing
PDE problem happens to be symmetric under a specific set of transformations. Crucially, the hyperbolic PDE that
governs both problems lacks dissipative terms[176], so they can develop shocks for perturbations travelling at the
PDE’s characteristic speeds[163]. Although shock waves are observed in solids as a matter of course (cf.[2, 177]),
which would suggest that the description provided by linear elasticity ought to be acceptable, an open question remains
as to whether additional dissipative mechanisms, or indeed the geometrical modelling of the dislocation core, play
a role that may facilitate the motion of high speed dislocation. The question therefore becomes whether or not the
underlying physics are correctly captured by either of these models, and whether the consequences of the symmetries in
the governing PDE would remain largely unchanged if the latter were broken.

For the FK model, it seems clear that the answer is no. The FK model is a highly idealised abstraction: it does not
include the elastic energy of the elastic continua on either side of the slip plane, and concentrates the misfit energy of
the dislocation’s core in the dislocation line itself, which is represented by a planar wave in the form of a compressive
soliton travelling through a 1D chain of atoms. Although the FK model has many uses in studying kink-driven drift
[178, 179], it can hardly represent adequately a dislocation in free glide.

5The energy of a travelling wave source moving at the characteristic speed cannot escape its source.
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For the FE model of a moving dislocation, the answer is also no, but in a more nuanced way. Some of the physical
approximations it entails are easy to identify: it relies on linear isotropic elasticity, so it will miss the non-linearities that
may be relevant at the core or under the predicted divergences at the speeds of sound[11]; the Volterra dislocation it
models has an infinitely thin core; it does not allow for dissipation or attenuation mechanisms in the dislocation motion;
it models a travelling wave, so the dislocation operates in a steady state it cannot escape – there is neither acceleration
nor deceleration.

Furthermore, both models fail to provide a feasible and universal model of dislocation mobility[169]: The relation
between the geometrical description of the elastic field of a dislocation and the mobility of a dislocation at large remains
far from clear, unless additional dissipative effects are accounted for. Indeed, under the application of a remote shear
stress, and in the absence of any other physical mechanisms at play, a dislocation converting all the work of an applied
stress into its elastic self-energy would reach the terminal speed of sound at applied stresses of less than 10 MPa, which
does not agree with experimental reality.[167]

3.3 Elastodynamic models of transient motion

The study of transient elastodynamic effects affecting moving dislocations arises as a way of providing a more complete
description of its elastodynamic fields, as well as a means of evaluating part of the energy radiated by the moving
dislocation, in the form of acoustic waves[180]. Initially, this seemed to be targeted at the drag force on dislocations,
which Leibfried[40] attributed to the ‘sound waves [that] are scattered by the dislocation structure’6.

As with the Frank-Eshelby problem, the transient problem of elastodynamic dislocation motion is governed by the
conservation of linear momentum (eqn.2), subjected to appropriate boundary conditions able to generate a transient
motion. The solution procedure of transient elastodynamic problems, which are inherently hyperbolic, can differ greatly
from their static, parabolic counterparts[163], and be of considerable sophistication[154, 153]. Building on the Green’s
function approach[181], Nabarro[182] paved the way for further developments in the field when he studied the injection
(‘synthesis’) of an infinitesimal dislocation loop in an elastodynamic continuum, an early application of Leibfried’s[183]
distributed dislocation technique[22, 184]. Nabarro’s solution is the fundamental solution (i.e., the Green’s function)
that would have to be convolved with the generally time-dependent shape function of the slip surface of a dislocation
loop to attain the actual elastic fields of a moving dislocation. Nabarro[182] used this fundamental solution to recover
the field of Frank’s uniformly moving screw dislocation.

The potential of the Green’s function approach was recognised by Mura[185], who derived to the authors’ knowledge
the first complete formulation of the displacement and velocity fields of an expanding dislocation loop. This solution
enables a general description of the elastodynamic fields of a dislocation loop, whether transient or in the steady state.
Mura’s solution is in effect the elastodynamic extension to Volterra’s formula for the field of a dislocation loop[1, 22],
and it serves to describe the transient elastic field of a generally non-uniformly moving dislocation loop. In its general
form, if S(t) denotes the time-dependent slip surface enclosed by the loop, it is[185, 186]

up(x, t) =

∫ t

−∞

∫

S(t′)

BiνjCijklGkp,q(x− x
′, t− t′)dS′dt′ (19)

where x ∈ R
3, Gij(x, t) is the dynamic Green’s function[181, 153, 22], Bi the loop’s Burgers vector, and νj the slip

surface normal.

Although it provides a complete representation of the fields of an arbitrarily expanding or contracting dislocation loop,
Mura’s dynamic formula (eqn.19) did not differ fundamentally from the basic insights of the Frank-Eshelby solution: it
too displays singularities at the speed of sound, suggestive that a transient treatment of motion also forbids supersonic
dislocations. It is also inherently difficult to handle. The convolution integral in eqn.19 depends on the arbitrary form for
S(t) [185] over each past time from t′ → −∞ to t′ = t. This indicates that the displacement field of a dislocation loop
at any particular time is determined by where it was at all previous times. This links to Eshelby’s famous dictum that
‘the dislocation is haunted by its past’[187]. Mura used eqn.19 to recover Frank’s solution for the uniformly moving
screw dislocation[188], and to investigate the fields of a vibrating screw dislocation[188, 189], a problem that had been
studied by Eshelby[190] in connection to internal friction in metals. Thus, it seemed that a full elastodynamic treatment
offered few new insights.

3.3.1 Geophysical models of moving dislocations

The introduction of aspects of the modern theory of dislocations to the study of seismological events in the late
1950s in seminal works by, amongst others, Steketee[191, 192] and Chinnery[193] stirred a great deal of interest in

6Our translation, [40].
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dislocations as dynamic, expanding objects. Seismological dislocations need not represent Volterra disregistries in a
classical crystallographic sense(cf.[194])7. Whereas the dynamic dislocation remained a largely specialist application in
dislocation theory, in seismology it quickly became an object of utmost importance to be able to understand faulting[195,
196]. The aim was often to provide theoretical models for the ‘primary’ or ‘pressure’ P waves and ‘secondary’ or ’shear’
S waves radiated by a seismological fault to infer the sources of seismological events[197, 196, 195]. These source
are modelled at different levels of refinement as distributions of force or moment couples[198, 194, 199, 195, 197],
dislocations[200, 201, 200], or more general extended defects[195]. In 1959 for instance, Knopoff and Gilbert[202]
achieved closed-form solutions to the elastic field of a finite straight edge dislocation, and provided an analysis of their
elastic fields similar to that derived later on by Markenscoff and Clifton[35]. That same year, Ang and Williams[203]
used the Cagniard-de Hoop technique[204, 205] to solve the field of a uniformly moving general fault. Furthermore,
independently from Mura[185], Dahlen[201] rigorously derived eqn.19 for the field of an arbitrarily expanding Volterra
dislocation loop, and provided a thorough study of the energetics involved in their expansion[206], which was missing
in Mura’s[185, 188] treatment.

Many of the developments in seismology in the 1960s and 1970s provided an almost complete treatment of the planar
elastodynamic dislocation. Building on Ang and Williams[203], Mitra[207] used the Cagniard-de Hoop technique
to obtain the closed-form solution to the fields of a uniformly moving screw dislocation that begins its motion from
rest. Based on previous work by Niazy[208] and by Boore[209], Boore and coworkers[210] derived the closed-form
solutions to the elastic fields of a uniformly moving edge dislocation that begins its motion from rest. Remarkably,
they already considered various generalisations to the problem, including the presence of free surfaces[210], and
suggested refined models of the dislocation ‘core’ via a Peierls-Nabarro regularisation[209] and ramp cores of different
kinds[210], showing that dislocations with finite-width cores avoided the singularities when the speed of sound was
reached. Mitra’s and Boore’s solutions were further generalised by Geller[211] to allow for non-Volterra slip functions
(see also [200]), thereby regularising the dislocation ‘core’. Three dimensional studies of what is sometimes called
‘Haskell’s rectangular fault model’[197], entailing the fundamental solution to an uniformly expanding rectangular
dislocation loop, were also studied to model earthquake sources[212, 200, 213, 214, 215].

Studies of this sort largely remained unknown in the micromechanics community, and the solutions reported here would
not be found in the micromechanics literature until the work of Markenscoff[216, 217]. The elastodynamic treatment of
dislocations offered in seismology explored a number of features relevant to high speed dislocations. For one thing, the
elastic fields of dislocations are being described as wave-like, propagating fields in finite times and displaying a host
of features typical of acoustic sources, including Doppler (‘Lorentz’) contractions[210, 218], Mach cones[218], with
strong asymmetries in the fields depending on the direction of motion, which were not present in the Frank-Eshelby
steady state dislocations. Finally, they showed that the singularities found at the speeds of sound were related to the
infinitely thin core of the Volterra dislocation, and could be avoided if the core had a finite width[209, 210].

3.3.2 Fully transient solutions to dislocation motion

Most of these features would finally be would finally be introduced into the micromechanics community in the early
1980s with the work of Markenscoff and coworkers[216, 217, 219]. In a series of articles, Markenscoff provided the
complete closed-form solutions to the elastodynamic fields of straight screw [216] and edge[217] dislocations, and
of loops[220]. These solutions, of considerable complexity compared to their elastostatic counterparts, describe the
non-uniform motion of dislocations, and when particularised to uniform motions, reduce to the solutions achieved
by Mitra[207] and Boore et al.[210]. The injection (creation) and non-uniform motion of dislocations requires an
additional set of elastodynamic solutions derived by Jokl et al.[221] for screw dislocations, and by Gurrutxaga-Lerma et
al.[222] for edge dislocations.

Similar to the seismological literature, the elastodynamic fields attained by Markenscoff and colleagues describe
dislocations as wave sources in a linear elastic medium. Figure 6 reproduces the stress field of an injected, uniformly
(a) and non-uniformly (b) moving edge dislocation. In both cases, the dislocation was injected at the origin at time
t = 0, and proceeded to move with (a) uniform speed and (b) a random speed between zero and the transverse speed of
sound over short time steps. In both cases, the elastic field consists of two wavefronts (propagating at the transverse
and longitudinal speeds of sound). However, even if the two dislocation are at the same final position in (a) and (b),
their fields differ from each very significantly. This is because of how they reached their final position differs. As a
result, the interaction of the elastodynamic dislocation with its surrounding are markedly different from that of the
elastostatic dislocation. If the edge dislocation is made to move at speeds approaching the transverse speed of sound, a
marked contraction of the fields is observed which indicates that, as with the Frank-Eshelby travelling wave solutions,
the elastic self-energy of the dislocation is expected to diverge at the sound barrier[35].

7Seismological dislocations need not have a quantised Burgers vector, may represent Somigliana dislocations, or even more
general shear and compressive faults.
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Figure 6: Elastodynamic σxy stress field component of an injected edge dislocation, from Gurrutxaga-Lerma et al.[222].
The dislocation was injected at t = 0 at the origin, and thereafter moved (a) with uniform speed; (b)with a random
speed between v ∈ (0, ct) each time step. The stress field is made up of two separate monochromatic waves: one due
to the longitudinal (‘P’) waves, which expands at cl and is demarcated by the outer wave front in (b); and one due to
the transverse (‘S’) waves, which expands at ct and is demarcated by the inner wave front. Figure reproduced from
Gurrutxaga-Lerma et al.[222] under CC BY 4.0.

3.3.3 Instabilities at the Rayleigh wave speed

Further theoretical aspects of high speed dislocations may be noted. In parallel to Markenscoff, Brock[223] derived
a closed-form solution to the elastodynamic fields of a non-uniformly moving edge dislocation, which he expressed
in terms of spatial derivatives rather than, as Markenscoff did, of time derivatives. In subsequent work, Brock[224]
generalised the problem of a moving dislocation to arbitrary (i.e., not necessarily rectilinear) trajectories, which amongst
other things enables the modelling of high speed climb, a solution that had previously been partially achieved by Burgers
and Freund [225] as the fundamental solution to the propagation of a mode I crack. Brock also derived elastodynamic
solutions for dislocation loops undergoing arbitrary motion [226].

In his analysis of the non-uniformly moving edge dislocation, Brock[223] noted that for dislocations gliding above the
Rayleigh wave speed, cR, there exists a reversal in the sign of the shear stress field that he linked to the presence of a
potential limiting speed at cR, below the transverse speed of sound.

The potential role of the Rayleigh wave speed as a limiting speed had already been noted by Weertman[227] in
relation to Eshelby’s solution to the uniformly moving edge dislocation. As with the elastodynamic case discussed by
Brock[223], the shear stress component of Eshelby’s solution also reverses signs for vd > cR. Weertman argued[227]
that in that case, like-signed dislocations would attract one another, and it would become energetically favourable for
them to cluster into groups of superdislocations. Weertman also showed[171] that a kinematic generation mechanism
became possible, whereby a single edge dislocation gliding above the Rayleigh wave speed would dissociate into two
like-signed dislocations and one unlike signed dislocation, conserving the total Burgers vector. Hirth and Lothe[1]
linked this kinematic generation mechanism with Frank’s[228] original ideas about the kinematic dislocation source, in
which a dislocation would be able to generate new pairs by resonating with a free surface.

According to Weertman, if the kinetic energy of a moving dislocation is large enough, it may nucleate 2 dislocations
of opposite sign [170] as sketched in fig.7, see e.g.[229, 171, 230, 231, 170, 1]. This may therefore be an important
source of dislocations in high strain rate (upwards of ∼ 106s−1) experiments and simulations [232]. At these strain
rates, homogeneous nucleation - the generation of dislocations in complete absence of other defects or sources - was
demonstrated to play an important role in both real [233, 234] and simulated shock experiments [235, 236, 237, 238,
234].

Although there are reasons to believe that this Rayleigh wave instability is a mathematical feature grounded in linear
elasticity, its significance remains an open matter of research, and it might affect the interactions of high speed
dislocations with free surfaces. In deriving the image forces for arbitrarily moving edge and screw dislocations in the
presence of a planar free surface, Gurrutxaga-Lerma et al.[232] showed that an edge dislocation being drawn towards
the free surface with speed greater than cR would experience a repulsive image force. Under these conditions, if a
dislocation were to be freely accelerated from rest under the sole action of the elastodynamic image force, it would never
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Figure 7: Schematic representation in three steps of the kinematic generation of edge dislocations according to
continuum theory [1]. The colour of the arrow indicates the force created by the dislocation with the same colour. The
vectors labelled FA represent the forces on B and C due to A, and similarly for FB and FC . Step 1 shows an edge
dislocation A travelling with a speed above the Rayleigh wave speed, which generates two nascent edge dislocations of
opposite sign (B and C), shown in step 2. From the interactions between the dislocations represented in stage 2, it can
be seen that this results in the final configuration consisting of a single dislocation C moving to the left, and a bound
dislocation pair A and B moving to the right.

reach the free surface, or would be reflected by it. Although the significance of this effect remains largely unexplored,
atomistic simulations by Li et al.[239] observed that high speed dislocations reaching a free surface were able to bounce
back into the bulk, which they associated with strain bursts observed in nanopillars compressed with very high stresses.

The elastodynamic treatment of the image forces by Gurrutxaga-Lerma and coworkers[232, 240] showed a number
of additional unexpected effects. The image force of a dislocation moving towards the free surface is dynamically
magnified relative to the elastostatic solution. As reported by Gurrutxaga-Lerma et al.[232], the magnification appears
to be very strong: a dislocation travelling at ≈ 100m/s sees its image force magnitude doubled within 1− 5ns. These
speeds and timescales are easily achievable in low strain rate applications. The significance of this effect remains
unexplored.

3.3.4 Regularising the dislocation core

After supersonic dislocations were first reported in molecular dynamics simulations[157], the apparent challenge to the
existing consensus (we call it apparent because both Eshelby[169] and various lattice dynamics models had already
discussed mechanisms whereby the transverse speed of sound would not constitute an upper limit on the speed of a
dislocation[241, 242]) stimulated a number of elastodynamic studies to explain the discrepancy.

The main concern centred on the dislocation core. In studying the Peierls-Nabarro model of a moving dislocation
Eshelby[169] noted that were the core to have a finite width, then ‘a supersonic dislocation is a formal possibility.’
Boore and coworkers [209, 210] had reached similar conclusions when regularising the core of a uniformly moving
seismological dislocation.

A first attempt at regularising the core via the Peirls-Nabarro (PN) model[243, 244] applied to high speed dislocations
was put forward by Weertman [245]. He investigated the role of the assumed force law across the cut plane in the PN
model for uniformly gliding screw and edge dislocations [245, 168, 170]. For screw dislocations he concluded that
they are limited by the shear wave speed of the material, in agreement with Eshelby before him [180]. For the edge
case however, Weertman argued that the traditional PN sinusoidal force law used by Eshelby was physically unsuitable
[245], and examined alternatives. In so doing, Weertman concluded that edge dislocations could overcome ct and that
the limiting velocity was to be found somewhere in the transonic regime [245] (i.e., for dislocaito speeds above ct but
below cl). However, like Eshelby before him, he too had to forgo definitive quantitative results admitting that these
would be sensitive to the exact detail of the assumed force law in the PN core model [245].

Markenscoff and coworkers[246, 247, 248] recognised that as in the elastostatic case, the elastodynamic solutions
contained a number of singularities directly related to the inadequate treatment of the core. They showed that if the core
were to be spread out over a finite width in a ramp-like manner, the sound barrier due to the Mach wavefront may be
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overcome[246, 247, 248]. Lazar treated the uniformly moving screw dislocation within an elastodynamic gauge theory
for dislocations which removed the usual divergences near the Volterra dislocation core [249]. He found no objections
to supersonic screw dislocations [249]. Equally so, Acharya and collaborators [250, 251], using a sophisticated large
strain formulation [252, 253], upheld the possibility of supersonic dislocations.

Finally, Pellegrini provided the most complete continuum treatment of high speed dislocation to date with a fully
elastodynamic treatment of the moving PN dislocation [254, 255, 256, 257]. Building on previous work by Pillon et
al. [258], he proposed a method to solve the dynamic Peierls-Nabarro equations which had been derived previously
but never solved due to their inherent mathematical complexity [169]. This so-called collective variable approach did
not constrain the core’s dynamics a priori, as was the case for most dynamic PN models before him. In contrast, the
dynamics of the core was solved for explicitly as part of the solution scheme [256, 257]. He ultimately concluded that
transient transonic motion for edge dislocations may be possible [257]. However, the model remained inconclusive
with regards to the possibility of uniform motion in the transonic (above ct but below cl) and supersonic (above cl)
regimes [257].

Further models aimed at regularising the dislocation’s core have been proposed [259, 260, 261, 262], favouring the
possibility of transonic motions. The theoretical impossibility of supersonic dislocations is, broadly speaking, attributed
to the use of linear elasticity[263, 253, 261] and the infinitely thin core of Volterra dislocations[264, 257, 249, 253].

3.4 Retardation effects and shock loading

When studying the influence of high speed dislocations, focus is usually placed on the way dislocation mobility itself is
affected at high speeds (e.g., [1, 265, 266, 267]). What the actual effect high speed dislocations have in the mechanical
response of materials has not received anywhere near the same level of attention. It is in fact common to treat the
fields of the moving dislocations elastostatically, even though the finite time taken for their elastic fields to propagate
may have significant physical consequences when dislocations move at high speeds. For instance, in developing a
3D methodology of discrete dislocation dynamics (see [268]), Zbib and coworkers [269] only considered dislocation
speeds to affect their mobility, where they were included via the inertial dislocation mass term developed by Hirth, Zbib
and Lothe[265] (see section 5). Similar treatments were given by Wang and coworkers[270, 271, 272]: the sole high
speed effect they considered was the ‘inertia’ affecting the equation of motion of dislocations, whilst the fields of the
dislocations themselves were treated elastostatically.

This 3D methodology was used by Shehadeh and coworkers[237, 273] to study shock loading in copper, where they
found that due to the strong increase in the dislocation density only about 1% of the dislocations were gliding at speeds
higher than ≈ 0.8ct, with the vast majority moving at speeds well below 0.2ct. Unsurprisingly, this led Kubin to
conclude that ‘this relativistic regime seems to be rather unimportant’([267],p.209). Most other observations, including
the formation of microbands[274, 275] could be attributed to the large strain rates and stresses associated with the
loading, rather than to any inherently ‘relativistic’ effect[267].

Similar conclusions regarding the ‘relativistic’ effect were reached in what paradoxically amounts to a far more
sophisticated account of dislocation plasticity, namely that provided Roos et al.[277, 276]. Adapting in this case the
plane strain dislocation dynamics formalism developed by Needleman and Van der Giessen[278], Roos et al.[277, 276]
accounted not only for high speed effects in the mobility law, but also in the elastic fields of the dislocations themselves,
which they modified to take the form of the uniformly moving edge dislocation’s derived by Eshelby[11]. As is
reproduced in fig.8, the study found that the main contribution to the global response was the inertia-like term that is
postulated to affect high speed dislocation motion (see section 5) and entails a finite acceleration time: in comparing the
elastostatic treatment to the dynamic treatment, the fields themselves appeared to lead to a statistically insignificant
differences in the macroscopic response (see fig.8). The most important effect was not due to the dynamic fields of high
speed dislocations, but to the finite acceleration time that dislocation inertia introduced into the model[276].

Gurrutxaga-Lerma et al.[222] brought to light further high speed effects affecting the plastic response of materials.
In [222], they modelled the plastic relaxation of shock waves using planar dislocation dynamics[278]. In this, they
followed Shehadeh and coworkers[273, 237], using the Needleman and Van der Giessen[278] dislocation dynamics
approach in plane strain, which is based on elastostatics. They observed that this treatment invariably violated causality.
In these simulations (reproduced in fig.9), they showed that, due to the vast numbers of dislocations generated behind the
shock front, the instantaneous propagation of their elastostatic fields throughout the entire system activated dislocation
sources ahead of the shock front, in direct contravention of causality. As the simulation progressed, the spurious
nucleation of dislocations ahead of the shock front became just as strong as the generation behind the front.

The material ahead of the shock front is unaware of it until the shock front reaches it. Only then should dislocations
be nucleated. This is the meaning of causality in the context of the plastic relaxation of an elastic shock wave. The
violation of causality turned out to be the major feature of the elastodynamic dislocation that had been overlooked
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Figure 8: The Stress-strain curve of the quasi-dynamic dislocation dynamic simulations performed by Roos et al.[276].
A strip of Cu was loaded at 106s−1 and 100K, and the stress hardening response under three conditions was compared:
conventional dislocation plasticity, with no inertia effects; ‘accelerated’ conventional dislocation plasticity, with a
mobility law containing a dislocation mass and inertia term; ‘relativistic’ dislocation plasticity, which includes both a
high speed mobility law and the dynamic fields of a uniformly moving dislocation derived by Eshelby[190]. This article
was published in Computational Materials Science, 20, Roos et al., A two-dimensional computational methodology for
high-speed dislocations in high strain-rate deformation, 1–18, Copyright Elsevier (2001).

Figure 9: The elastodynamic treatment of dislocations becomes necessary when the external stimulus triggering
dislocation activity (in the figure, a shock front depicted at two different instants in (a) and (b)) propagates at speeds
close to the speed of sound. In that case, an elastostatic account will invariably violate causality, and trigger factitious
effect such as the spurious nucleation of dislocations reported in this figure by Gurrutxaga-Lerma et al.[222]. Reproduced
from Gurrutxaga-Lerma et al.[222] under CC BY 4.0.
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hitherto, an effect that the treatment offered by Shehadeh et al.[237], Wang et al.[270] and Roos et al.[277, 276] failed
to capture because they used static or steady state dynamic solutions, which do not propagate.

The only way to avoid it would be to offer a fully elastodynamic account of the non-uniform motion of dislocations,
which Gurrutxaga-Lerma et al.[222] were the first to do. They used Markenscoff and Clifton’s, elastodynamic
solution for a non-uniformly moving edge dislocation[217], which they augmented with their own derivation of
the elastodynamic field accompanying the instantaneous creation of an edge dislocation. The result is a method of
considerable computational complexity, which these authors employed to study the attenuation of the dynamic yield
point[238], and the shielding of dynamic cracks[232]. Recently, Cui and coworkers [279] started extend this treatment
to 3D dislocations, using the formalism developed by Mura[185] in eqn.19 for closed loops.

The picture of plasticity that arises from an elastodynamic treatment of dislocation plasticity is very different from
the static treatments in textbooks. Dislocations interact with one another based on a retardation principle[222], so
that it takes a finite time for the elastic fields to travel from one point to another. Furthermore, the elastic field of a
dislocation now depends not only on its current location but on all its previous locations, as illustrated in fig.9. A
dislocation responds to the presence of a second dislocation only when sufficient time has passed for the field of the
second dislocation to reach it, in accordance with causality. The interactions are asymmetric: unlike the steady-state
and elastostatic solutions[1], Doppler-like magnifications appear ahead of the dislocation core, but not behind. Such
effects appear crucial in explaining the relaxation of a shock front[238], even though the dislocations generated at the
shock front travel at speeds well below ct. Screw and edge dislocations interact at different fundamental speeds: the
field of screw dislocations propagates at the transverse speed of sound, whilst that of edge dislocations travels at both
the longitudinal and transverse speeds. Thus for instance, plastic activity in a shock front travelling at the longitudinal
speed of sound cannot be influenced by the screw components.

A dichotomy arises between the elastodynamic field of a moving dislocation and its equation of motion. Whereas
the former is captured by the theory of elastodynamics with refinements such as regularisation of the core, the latter
involves a host of additional physics that is absent in elastodynamics, and which arises from the movement of the
dislocation through a dynamical crystal lattice, not through a continuum (see section 5).

3.5 The effect of anisotropy

High speed dislocations in anisotropic linear elastic media have received less attention than their isotropic counterparts.
Nevertheless, the main characteristics of the linear elastic anisotropic problem remain largely the same: there are
limiting velocities that correspond to the three speeds of sound, which in general depend on the direction of propagation
within the crystal. As in the isotropic case, the (generalised) Rayleigh wave speed may also play a role in reversing the
sign of the interactions between like-signed dislocations. Solutions to the uniformly moving ‘steady state’ problem were
achieved by by Sáenz [280] and Bullough and Bilby [281]. The main features of the solutions for the screw dislocation
suggest that a singularity exists at the shear wave speed, in this case given by

c∞ =

√

C44C55 − C2
45

ρC44
(20)

where C44, C45 and C55 are the elastic constants using the standard Voigt notation[282], and ρ the density. This
corresponds to the first transverse wave speed under antiplanar conditions (see [282, 283]).

This suggests that, in contrast with the isotropic case, the crystallographic orientation of the glide plane plays a crucial
role in the critical velocities of dislocation motion. This topic was examined in detail by Teutonico[284, 285, 286], who
first provided expressions for the elastic self-energy of the uniformly moving edge and screw dislocations in anisotropic
media[284] and for the displacement fields of the motion along arbitrary orientations[286]. Crucially, Teutonico found
that as in the isotropic case, anisotropic linear elasticity predicted limiting velocities at c∞ for screw dislocations. For
edge dislocations however, the limiting velocity would generally be the of the form[284]

c1 =

√

C66

ρ
(21)

Depending on the orientation, it is possible for C66 to be different from the largest C66, i.e., for the limiting speed c1 of
an edge dislocation in anisotropic media to be smaller than the corresponding transverse speed of sound[284].

Furthermore, in analogy to the Rayleigh wave instabilities we discussed in section 3.3, Teutonico [284, 286] examined
the presence of analogous ‘threshold’ velocities above which the sign of the shear stress field along the slip plane would
reverse. As in the isotropic case, he found no such threshold speed for screw dislocations, whereas for edge dislocations
he found that depending on orientation, the threshold velocity could be any between 0 and c1.
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Work by Weertman[287, 288] and collaborators [289] and by Teutonico[290] focused on performing similar analyses
for specific crystalline structures and orientations, similarly finding the values of the limiting and threshold velocities
for the steady state motion.

The steady state problem of a moving dislocation in an anisotropic medium was given a complete treatment by
Stroh[27], who using the approach he had originally developed for static dislocations in [291], examined both the
energetics and the general expression for the displacement fields and at the same time developed what is nowadays
known as the ‘Stroh formalism’, a powerful method for the analysis of particular solutions in anisotropic elasticity (see
[282, 283, 292, 293]). The results derived by Stroh for the uniformly moving anisotropic dislocation were used by
Barnett and Lothe [294, 295, 296] to examine the question of the existence and uniqueness of free surface waves in
anisotropic media.

Beltz et al.[297] generalised Lothe’s[298] and Brown’s[299] formulae for the self-force on a curved dislocation segment
to the steady state solution of the uniformly moving arbitrary dislocation. Similarly, using the approach originally
developed by Willis[300] to obtain the elastic field of an arbitrary dislocation segment in an anisotropic medium,
Mura[301] obtained the elastic field for the steady state motion of an arbitrary segment.

In turn, the transient solutions were fully achieved by Markenscoff and Ni for screw [302] and edge dislocations under
cubic and hexagonal symmetry[303, 304], and further generalised to arbitrary motions and general anisotropy by these
same authors [305]. The transient solutions also display the characteristic limiting speeds associated with the steady
state, which in elastic anisotropy these are not constant — they depend on the direction of propagation. However, as
in the isotropic case, the solutions describe the dislocations as wave sources, in this case radiated at the characteristic
speeds of sound of the medium, which are governed by its anisotropy. Thus, the energy released and the elastic field
profiles can be considerably different, and may display cusp-like wave fronts[305].

4 Atomistic models of gliding dislocation

Although the transient elastodynamic models reviewed in section 3.3 provide an accurate long range description of the
mechanical interactions between dislocations and other defects, the singularities at the cores of Volterra dislocations
and at the speeds of sound, and their lack of dispersive mechanisms (i.e., drag) suggest that linear elastic models fail to
recognise that dislocations are in a crystal lattice with sufficient accuracy.

Atomistic studies of high speed dislocations can be used to address three elements missed in linear elasticity: the dis-
creteness of crystalline materials, the coupling between dislocations and crystal lattice vibrations, and the anharmonicity
of interatomic forces. The crystal lattice introduces a length scale absent in continuum models, namely the smallest
separation of atoms. This is the minimum width of a dislocation core and its finiteness removes singularities in the
elastic field of the dislocation. The dislocation is coupled to the crystal lattice. As it glides it excites crystal lattice
vibrations, like running a finger along the keyboard of a piano. The radiation of vibrations is the principal reason why
dislocation motion is overdamped. In stark contrast to the FE continuum model of a dislocation gliding at a constant
speed, where no force is required to maintain its constant speed, in a crystal lattices it is stopped within a few lattice
vibration periods once the glide force on it is removed. The stiffnesses of bonds in the core depart significantly from
those in the bulk owing to the anharmonicity of atomic interactions. This keeps the stresses generated in the core finite
even though the strains may be very large, and it also affects the scattering of crystal lattice vibrations arriving at the
core, which also contributes to the drag on the dislocation.

4.1 Lattice dynamics models

The first atomic scale models of uniformly moving dislocations were lattice dynamics models. These describe the
reaction of a crystalline lattice, treated within the harmonic approximation, to a prescribed driving force [306, 307].
They therefore serve to capture discreteness effects, but not anharmonicities. Lattice dynamics models first emerged
in atomic scale investigations of point defects [308, 309, 310], and the method was successfully extended to treat
dislocations [311, 312, 313].

The oldest lattice dynamics studies of gliding dislocations were a family of related models called snapping bond
models [314, 23, 24]. These generated the required dislocation displacement jump, with magnitude equal to the Burgers
vector, by explicitly breaking and restoring atomic bonds across the glide plane [314, 23, 24, 241, 315, 25] – hence the
name. However, these were often simple models of Frenkel-Kontorova (FK) [174] type or of gliding dislocations in
square or simple cubic lattices. They allowed the dislocation–lattice interactions to be investigated directly [316, 317].
Furthermore, they allowed two atomistic drag mechanisms to be studied separately. A gliding dislocation suffers drag
from the scattering of pre-existing crystal lattice vibrations [318], a phenomenon referred to as phonon wind. On the
other hand, a dislocation generates lattice wave radiation as it glides through the lattice [314, 23, 24, 315, 25]. Together,
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Figure 10: The speed v of the dislocation, normalised to the shear wave speed ct, plotted against the resolved
shear stress τ , normalised to the ideal lattice strength τh, for uniformly moving screw dislocation in a simple cubic
lattice dynamics model with nearest neighbour interactions. The continuity jumps at low speeds denote fundamental
instabilities. Adapted from Ishioka [24].

these two effects constitute the phonon drag that eluded contemporary continuum models. Moreover, being able to
quantify these energy dissipation mechanisms also allowed the explicit derivation of precise relationships between the
dislocation’s velocity and the force required to maintain uniform motion. A representative example of such a mobility
law derived from a lattice dynamics model of a uniformly moving screw dislocation in a square lattice is shown in
fig.10 [24].

As shown in fig.10, in lattice dynamics models nothing of note occurs at the shear wave speed. As far as lattice
models were concerned, this was the end of the discussion as all related works were in complete agreement on this
[314, 23, 24, 241, 315, 25]. This suggested that the shear wave speed is given a particular status within elastodynamic
continuum models of gliding dislocations (cf. section 3) due to the highly simplified dispersion relations (ω = c(k̂)k)
they subsume [313]: Dispersion in the phonon spectrum invariably facilitates the avoidance of singularities encountered
in elastodynamics at the speeds of sound.

Lattice dynamic models display a second feature visible in fig.10: at velocities below approximately ct/3, these models
contained clear instabilities. These were investigated in great mathematical detail by Rogula [319, 320, 321]. They
were found to occur at dislocation velocities where both phase and group velocities of the excited lattice vibrations
were equal to the dislocation’s velocity. If such state was reached, the dislocation core is unable to evacuate energy in
any spatial direction, and the atoms at either side of the dislocation core enter resonance.

It is instructive to investigate the occurrences of these resonances in greater detail as this also reveals why supersonic
dislocations are a possible in harmonic lattice models. The governing equation of a harmonic lattice model is the
classical linear momentum conservation, with a viscosity term(cf. [310]):

M
∂2uiα(t)

∂t2
= −Diα,jβujβ(t)− 2MΓ

∂uiα(t)

∂t
(22)

where uiα is the αth component of the displacement of atom i, which are defined as the difference between the current
position riα and the perfect lattice position Riα of the atom α: uiα = riα −Riα. Equally, M is the mass of the atoms
in the lattice, and

Diα,jβ = Dαβ(ri, rj) =
∂2U

∂riαrjβ

∣
∣
∣
∣
{R0

i
}

is the force constant matrix of the harmonic lattice, measuring the interatomic forces, for ri the lattice position of atom
i relative to the perfect lattice positions R0

i . The parameter Γ is the strength of a viscous damping term, included to
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reduce the heating: physically it may be thought of as a means of capturing the energy transfer to degrees of freedom
excluded in the harmonic lattice model, such as electrons.

As eqn.22 is linear, its solution may be expressed in terms of the lattice Green’s function as follows[310]:

u(ri, t) =
∑

j

∫ ∞

−∞

dt′G(ri − rj , t− t′)fK(rj , t
′) (23)

where fK(rj , t
′) is any source term expressed as a Kanzaki force distribution[309, 313, 322]. By source term we mean

any boundary condition; because equation 22 is a force balance, we require the boundary condition to be expressed as a
distribution of forces acting on the atoms of the perfect lattice. In this case, these forces would have to be those that
when acting on the atoms of the perfect lattice generate the displacement field of a dislocation. This makes the forces be
Kanzaki forces[309, 25, 313, 322]. In the case of a uniformly gliding screw dislocation, the Kanzaki force distribution
that acts as a source term is given by[25, 313]

fK(rj , t) =
∑

β,j

BδzβΨijDiαjβH(vt− xi) (24)

where Ψij = ±1 if the particle i is above (below) the glide plane and j below (above), and 0 otherwise. Here, the
Kanzaki forces arise as force doublets (see [313]) acting on either side of the slip plane. This is because atoms on
either side of the slip plane experience equal and opposite forces that bring about the Burgers vector-sized relative
displacement across the slip plane. The gliding dislocation is thus a distribution of Kanzaki force dipoles moving along
the slip plane, the effect of which is to expand the region that has undergone the relative displacement across the slip
plane by the Burgers vector. This is what happens in the core of a gliding dislocation.

Eqn.22, is first expressed in Fourier space, where the convolution becomes a product. In Fourier space, the Green’s
function takes the form [323]

G̃αβ(k, ω) =
1

M

∑

b

ũα(k, b)ũ
∗
β(k, b)

ω2(k, b)− ω2 + 2iΓω
(25)

where ω(k, b) is the lattice wave dispersion relation, b the branch index, ~denotes a variable in Fourier space and ∗
indicates complex conjugation.

The inversion along the glissile direction leads to

uz(xi, t) = − 4B

kbyπM

∑

l>0,b,β

∫ kb
y

0

dky

∫ ∞

0

dkxFβl sin(kyyj) sin(kyy1)ũz(k, b)ũ
∗
β(k, b)×

×
{(

ω2(k, b)− v2k2x
)
sin [kx(xi − vt)] + 2Γvkx cos [kx(xi − vt)]

(kx + iǫ) [(ω2(k, b)− v2k2x)
2 + 4Γ2v2k2x]

− πδ(kx)

2ω2(k, b)

}

(26)

where kx, ky are the components of the Fourier space k vector, kby is the maximum value of ky found in the lattice’s
Brillouin zone[159].

In principle, the displacement field uz diverges if ω(k, b) = vkx and kx 6= 0. Note that if kx = 0 the numerator does
not diverge, so kx 6= 0 is also a necessary condition of resonance.

However, this is not a sufficient criterion for resonance. As studied at different levels of refinement by Rogula
[319, 320, 321], Atkinson and Cabrera[314], Ishioka[26], and Celli and Flytzanis[23], an additional requirement for
resonance is that the energy associated with the moving dislocation (not reproduced here) diverges at the same time as
the displacement field in eqn.26 does.

The dislocation’s energy in the harmonic lattice diverges only if the dislocation speed is equal to the group velocity of
the lattice[319, 320, 321]. In that case, the energy radiated by the dislocation cannot escape the dislocation core, and a
strong resonance is triggered.

Thus, whereas linear elasticity predicts singularities when v = ct, harmonic lattice models predict singularities when
the speed of a screw dislocation satisfies

∂ω(k)

∂kx
︸ ︷︷ ︸

vgroup

=
ω(k)

kx
︸ ︷︷ ︸

vphase

= v (27)

The speeds at which this condition is met are called breakdown velocities[25].
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Eqn. 27 helps understand why linear elasticity predicts divergences at the speed of sound. Let us assume a simple
‘elastic’ lattice: the dispersion relation in linear elasticity is ω = cik where ci = ct or ci = cl. This means that linear
elastic media are non-dispersive (cf.[324]). In linear elasticity the resonance condition (eqn.27) is met when

v =
cik

k
=
∂(cik)

∂k
= ci (28)

irrespective of the wavenumber. Thus, in a linear elastic medium, the speed of sound is the only possible breakdown
velocity.

However, this condition is not met in real dispersive lattices. This is due to the convexity of the dispersion relation, and
the requirement that kx 6= 0. In particular, for a realistic dispersion relation in a crystal, the only wavenumber for which
the group velocity ∂ω(k)

∂kx
is the speed of sound (ct or cl) is kx = 0. However, this violates the necessary condition that

kx = 0 for a resonance to be triggered in eqn.26.

Hence, in a real crystal the resonance condition cannot be met at the speeds of sound. Thus, harmonic lattice models
predict that ‘nothing special’ will happen at the speeds of sound[159]. However, harmonic lattice models do contain
divergences at the resonant ‘breakdown velocities’, which in realistic models of a crystal tend to happen at relatively
high wavenumbers[324], i.e., at moderate and low dislocation glide speeds, and are heavily dependent on the material’s
specific dispersion relation ω(k).

These ‘breakdown’ resonances were problematic because they implied that for dislocations travelling at speeds below
approximately ct/3, their displacement field should diverge or at least contain regions with very large displacements.
This contradicts the small displacement assumption [314], in the form of the harmonic approximation, at the heart of
lattice models [50]. This sparked some high-profile criticism, most notably in Alshits [50] and Hirth and Lothe [1] (p.
208), the fact notwithstanding that the alternative, linear elasticity, is in fact a limiting case of the harmonic lattice[307].

These criticism weighted heavy on lattice models that were already becoming unfashionable due to their apparent
simplicity[50]. The simple cubic systems under consideration raised the question whether these models were at
all representative of dislocations propagating in real crystals. In particular, it was questioned whether many of the
unexpected results were not the result of the simplified lattice structures[325], whether the harmonic interatomic
interactions in these early lattice models were justified [26, 241, 326, 327] and whether the assumed uniform motion
was internally consistent within them [26, 328, 329, 242, 155, 50]. Additional problems may be found in these highly
simplified model of the dislocation. For instance, eqn.24 is the typical distribution of forces employed in lattice
models to model gliding screw dislocation. The core is just one bond length wide, and is assumed to remain the same
irrespective of the glide speed. This may be true when the core is spread in the slip plane, but fails to account for
the non-planar core in BCC metals[330], and assumes translational symmetry along the dislocation line, which omits
treating the kink mechanism of dislocation movement. Although some of the resonances entailed by eqn.27 appear to be
independent of the core structure itself [159], it is likely that some at least be cancelled, as is the case in elastodynamics.

In most cases, these limitations are an inevitable consequence of the desire to keep the models analytically soluble.
Using computer simulations of harmonic lattice models, it was argued that at velocities just below ct, uniform dislocation
motion seemed no longer possible [328, 242, 331] owing to the presence of further breakdown phenomena when
the dislocation speed reached 0.9 − 9.99ct. In addition, it was suggested that these breakdown velocities could be
critical or bifurcation points, and provide onset mechanisms for kinematic generation and twinning [242, 241]. In
particular [155, 325, 332, 331, 159], it has been suggested[155, 325, 159] that they provide a rationale for the kinematic
generation mechanism that Weertman[168] had associated with the Rayleigh wave speed in linear elasticity. In fact,
despite seemingly rejecting harmonic lattice models, Hirth and Lothe[1] used the results in [155] to support their view
that kinematic generation of dislocations exists.

These studies brought the existential question of supersonic dislocations to the fore once more, though for reasons
very different from the inertial arguments presented by continuum theories [328]. Fundamentally, they suggested that
supersonic motion was largely possible due to the discreteness in the lattice, rather than a consequence of non-linear
elastic effects. However, the occurrence of breakdown speeds was considered implausible, and harmonic lattice models
fell out of favour. The continuum perspective, whereby dislocations are able to glide impeded only by vibrational
and electronic excitations up to around ct/2 beyond which inertial effects were thought to dominate, remained the
consensus[1].

4.2 Molecular dynamics simulations

Lattice models were succeeded by the advent of the molecular dynamics (MD) simulations [333] as the required
computing power to simulate adequately sized systems with more realistic interatomic potentialsatomic interaction
potentials for metals [334, 335, 336, 337] became available, particularly starting in the mid 1990s.
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MD simulations possess the same same advantages as the lattice dynamics models compared to continuum models:
it allows detailed investigations of the dislocation–lattice interaction, although it remains a classical (non-quantised)
description of that interaction. Unlike harmonic lattice models, no assumptions are made about the structure of the
dislocation core, either when it is stationary or moving. The core does not have to be planar, and in some important
cases it is three dimensional[338, 330]. The dislocation does not have to move en masse maintaining translational
symmetry along the line, and it can move by a kink mechanism (see [1]).

Despite these improvements there are still significant limitations in MD simulations of any crystal defect. Although
the interatomic potentials avoid the harmonic approximation, they are still far from a solution of the many body
quantum mechanical problem of how atoms interact in solids. The vast majority of interatomic potentials have been
empirically constructed by fitting an assumed functional form to experimental data or data derived from density
functional calculations[339]. The atomic equations of motion in an MD simulation are Newtonian and hence the atomic
dynamics is classical[333]. This means that the interaction with, and generation of, lattice vibrations is unreliable at
temperatures below the Debye temperature where quantum statistics dominates. Finally, there are always concerns
about the system size and boundary conditions applied to the computational cell. Whereas in the harmonic lattice model
the gliding dislocation is modelled in an infinite crystal lattice, in an MD simulation it is either in a crystallite with free
surfaces or a large cell that is repeated periodically. The presence of free surfaces or periodic boundaries can influence
the simulation if the dislocation becomes aware of their presence through reflected waves or spurious interactions with
itself through periodic boundaries.

It was the seminal 1999 paper by Gumbsch and Gao [157] in particular which provided the spark that inspired a flurry
of subsequent MD studies of fast moving dislocations [340, 341, 342, 343, 344, 237, 345, 346, 272, 347, 348, 349,
350, 351, 352]. Although in 1995 Schiøtz et al.[156] had already reported the presence of transonic dislocations in
MD simulations of kinematic generation, this was the first MD simulation that focused on the existence of supersonic
dislocations [157] as shown in fig.11. Gumbsch and Gao’s results were in perfect agreement with the results offered by
older harmonic lattice models, and were subsequently confirmed in further MD simulations of dislocations in other
materials [340, 346, 347, 348, 350, 351]. Hitherto, it was widely accepted that the speed of sound was indeed a hard
barrier for dislocation motion, as the main counterarguments came from lattice dynamics models that were perceived to
be unreliable (cf. section 4.1). Hence, it is not surprising that this first observation of supersonic edge dislocations in
computer experiments caused a stir in the field. So much so that it also revitalised the interest in the topic within the
continuum elastodynamics community, inspiring some of the post-1999 elastodynamic studies reviewed in sections 3.3,
aimed at explaining this discrepancy.

The second driver behind MD studies of high speed dislocations was the need for dislocation mobility laws in the pure
glide regime [353, 354]. As explained in the Introduction, this mobility law is one of the main quantities through which
this atomistic - continuum divide is bridged. In the absence of experimental measurements, an obvious strategy to obtain
such a relation is to perform MD simulations of gliding dislocations from which a quantitative velocity-stress relation
to be used in DD simulations may be obtained [235, 355, 158, 346, 351, 352, 356, 345, 357, 358, 359]. Associated
instabilities affecting high speed dislocations concerning dislocation interactions at high speed have also been explored
[360, 361]. Figure 12 shows a typical result from these simulations: as the applied stress level is increased, the steady
state speed achieved in this case by an edge dislocation in fcc Al tends to saturate towards ct[351, 158], but does not
prevent transonic motion, which may display instabilities or ‘jumps’[158, 157]. Comparable MD simulations of screw
dislocations[158] suggest that this saturation plateau below ct may be narrower or non-existent for, easing the transonic
transition of screw dislocations. These findings reinforce the view that inertial effects condition the transition between
subsonic and transonic dislocations.

Finally, a third group of MD dislocation dynamics studies exist with the aim to understand the physics of the dislocation–
lattice interaction [325, 343, 345, 362, 363]. However, despite the physical richness inherent to modern MD simulations
it proved difficult to extract transferable, generally applicable, qualitative results from these [343, 345, 362]. So much so
that some took a step back and performed much simpler MD simulations, reminiscent of the lattice models discussed in
section 4.1 [325, 342]. The most notable result coming out of these studies was the observation of kinematic generation
of screw dislocations in square and hexagonal lattices, a process that can not be accounted for within linear elasticity
[325]. The kinematic generation of edge dislocations, allowed in elastic continuum theories as discussed in section 3.3.3,
had been confirmed in MD simulations by Schiøtz et al.[156]. In [159] (see fig.13), it was shown that in MD simulations
of screw dislocations in bcc W, kinematic generation occurred at the breakdown velocities predicted by equivalent
harmonic lattice calculations (≈ 0.24ct). Shock loading and other high strain rate processes can also be explored using
MD simulations; Hahn et al.[234] (see fig.14), Ruestes et al.[350] and others (see for instance [236, 364, 365, 366])
have used this method to explore the role dislocation generation and high speed motion play in relaxing a shock front.

Thus, MD simulations of increasing complexity and harmonic lattice models suggest that the sound barrier is not
insurmountable. Furthermore, a subset of the MD simulations also display instabilities in gliding dislocations may
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Figure 11: Observed average dislocation velocity for edge dislocations in MD simulations of tungsten [335, 336].
Solid circles indicate stable dislocation motion whereas open circles mark the average velocities at which the observed
motion was unstable and varied significantly throughout the simulation. Figure adapted from Gumbsch and Gao[157].

trigger a kinematic generation mechanism. The fact that both harmonic lattice models and MD simulations display both
features suggests that these effects are mediated more by the discreteness of the lattice rather than by anharmonicities.
This situation is reminiscent of the lattice trapping effect thought to control the propagation of brittle cracks, as opposed
to other non-linearities owing to the extremely high stresses expected the crack tip [367, 368, 369, 370]. It also gives
credibility to the existence of other associated instabilities, such as the kinematic generation of twins [371, 372], and
that the physical cause of the ‘debris’ observed behind fast moving screw dislocations in MD simulations [373] is
found in intrinsic instabilities of the dislocation line. Furthermore, because the lattice models fail to model the core as
anything other than atomic-thin layer[25, 159] yet they display these same two features observed in MD simulations, it
would appear that the role played by the dislocation core in facilitating supersonic motion or leading to instabilities is
secondary. This does not mean that the core is irrelevant. To the contrary, the energy radiated by the dislocation, which
manifests itself as a drag force, the energetics of dislocation glide and some of the instabilities observed (particularly in
edge dislocations with wide stacking faults, cf.[346, 348]) are all expected to be dependent on the core structure.

In many ways it is challenging to understand why MD simulations have not been able to resolve the outstanding issues
left by continuum theories. Today’s computational resources allow the simulation of systems containing hundreds of
millions of atoms [374] with interaction potentials with near density functional theory level accuracy that describe
dislocation core structures with assumed reliability [337, 375, 376]. Yet nowadays, we still do not talk about the
mobility law for a given dislocation topology in a material [354]. This is because so far an unequivocal picture of the
phenomenology of gliding dislocations has not emerged from the multitude of MD studies that have been undertaken
([340, 341, 342, 343, 344, 237, 345, 346, 272, 347, 348, 349, 350, 351, 352] i. a.). Assuming that the vast majority of
the MD simulations in the literature have been performed correctly, it is not at all obvious why this is the case.
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Figure 12: The stress-velocity curve of an edge dislocation in fcc Al at 216K, as observed in MD simulations by
Olmsted et al.[158] The linear ‘viscous drag’ regime is observed at low stress levels; dislocation speed then appears to
saturate as the dislocation approaches the first transverse speed of sound (about 3100m/s), which the simulation shows
is overcome at least to the transonic regime. Data adapted from Olmsted et al.[158].

Figure 13: MD simulation of a screw dislocation gliding at 760m/s showcases the presence of fundamental lattice
instabilities that lead to the dissociation of the dislocation via kinematic generation. Figure reproduced from Verschueren
et al.[159] under CC BY 4.0.
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Figure 14: Homogeneously nucleated dislocations in an MD simulation of shock-loaded Si at τ = 6.4GPa, performed
by Hahn et al.[234]. The dislocations thus nucleated were reported to achieve speeds in excess of 13km/s, and lead
within 4ps to significant plastic relaxation of the Si crystallite (shown in fig.b). Figure reproduced from Hahn et al.[234]
under CC BY 4.0.

5 Dislocation Mobility

The aim of most of the work we have reviewed is to achieve physical description of the mobility of high speed
dislocations. Dislocations move so as to minimise the potential energy of the material and any external loading
mechanism[187, 1]. In so doing, they experience a conservative force known as the Peach-Koehler (PK) force[37],
independent of the mathematical description of the dislocation itself. The energy released in moving is dissipated by the
lattice through a number of damping and attenuation mechanisms that manifest themselves in the form of a drag force.

A mobility law typically expresses a force balance between the PK force and a drag force:

fPK = fdrag(v, v̇, τ, T, . . .)

In accounting for high speed effects, the mathematical form of both sides of the equation must be addressed. The
PK force is subject to particular considerations under dynamic (time-dependent) loading. The drag force is primarily
informed by theory and simulation owing to the lack of direct experimental observation of high speed dislocations. It
may account for a number of physical mechanisms including inertia and phonon drag. These two terms are explained
in the following.

Why dislocation mobility matters. The importance of the mobility law cannot be overstated. It is one of the crucial
ingredients in dislocation plasticity, since the plastic response of materials is understood to be governed by slip mediated
by dislocations[377, 267]. Its importance may be understood through Orowan’s equation[39], which provides the
average (cf.[378, 379]) macroscopic plastic strain rate γ̇p:

γ̇p = Bρdv̄ (29)

where B is the Burgers vector’s magnitude, ρd is the density of mobile dislocations, and v̄ the average speed of the
moving dislocations. Clearly, knowledge of v̄ becomes crucial if a physically motivated expression of γ̇p is to be
found. The Orowan equation is the basis of many crystal plasticity models (see for instance [380, 381, 382]), where
a mobility law involving v̄ is usually embedded in some phenomenological way (see [383, 384, 385, 386, 387] for
different applications).

Dislocation mobility is also needed in discrete dislocation dynamics simulations [388, 353]. In discrete dislocation
dynamics simulations dislocation microstructures evolve through forces between dislocations calculated using elasticity
theory. Short-range interactions such as dislocation reactions are handled through rules supplied by the user, the mobility
law (along with dislocation generation[389]) being one.

5.1 The dynamic Peach-Koehler force

The PK force is a configurational force (cf.[390]), defined as the gradient of the Gibbs potential[391] or, equivalently,
through the static energy-momentum tensor[187] on the dislocation. It takes the well-known form[37, 1]

fPK
n = ǫnjmσijBiξm (30)
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for a dislocation of Burgers vectorBi, line direction ξm, subjected to a external stress field σij , and ǫnjm the Levi-Civita
symbol.

The validity of the PK force under dynamic conditions is not obvious. The derivation of eqn.30 relies on minimising the
static potential elastic energy[37, 1], so it does not account for the kinetic energy. Lothe[392] and Stroh[27] examined
this question, which was subsequently fully formalised by Mura[22]. They found that under dynamic conditions the
Peach-Koehler force consists of two separate components.

The first matches eqn.30. The second is a Lorentz term, named in analogy with the Lorentz force of
electrodynamics(Cf.[165]), and was examined in detail by Lund[393]. It takes the form[22]:

fLn = ρu̇iξ̇jBiǫjnhνh (31)

where νh is the vector normal to the slip plane. This Lorentz term is perpendicular to the direction of motion, so (as its
electrodynamic counterpart) it exerts no work[393]. Since the Lorentz force does no work it does not contribute to the
energy transfer to the crystal lattice when the dislocation moves. Therefore it plays no role in the balance between the
PK force and the drag force. The Lorentz term is a mathematical curiosity, and eqn.30 is the only relevant force under
dynamic conditions.

5.2 Phenomenological mobility laws

Phenomenological laws are simple fits to data relating the applied remote shear stress τ and the steady state velocity of
the dislocation. For low speeds, it is possible to produce phenomenological models from experimental data (see section
2); mobility laws for higher speeds typically rely on data extracted from atomistic simulations of the sort reviewed in
section 4.2.

Gilman[394] argued that the best fit to experimental data on the velocity-stress relation was of the form:

v = v0e
− d

τ (32)

where d is a constant drag coefficient, and v0 a limiting speed of the dislocation as the stress approaches infinity. In
subsequent work, he[47] proposed a sigmoid function to better model the expected saturation at the speed of sound[47],

v = v0(1− e−
d
τ ) (33)

When v0 = ct, eqn.33 saturates at the transverse speed of sound.

As an alternative that also saturates at the speed of sound, Gillis et al.[395, 396] proposed modifying the stress opposing
dislocation motion so as to reproduce the relativistic behaviour predicted by Frank[10] and Eshelby[190]. The model,
apparently originally due to J.W. Taylor (vid.[84]), modifies the drag coefficient to:

d =
d0

1− v2/c2t
(34)

where d0 is the drag coefficient for dislocation motion at low speeds. Different versions of this approach have been
introduced subsequently [395, 397, 398, 277, 399, 400, 401, 402], usually focusing on the exponent n of the term
(1 − v2/c2t )

n in the denominator in eqn.34 to produce better fits. Common values include n = 1/2[395, 398, 277],
n = 1[84, 354], and n = 3/2[403].

For the thermal activation and easy glide regimes[404, 405], power law relations have also been used:

v = v0

(
τ

τ0

)m

(35)

Here, m is the slope of the log v − log τ curve (e.g., see fig.3), reported to be m > 1 for high speed dislocations[2].
Suggested low speed values of m for a number of materials can be found tabulated in [139]. These relationships are
problematic for high speeds, both owing to the extraordinary non-linearities implied by m≫ 1, and because they fail to
capture the existence of a limiting speed to the motion of dislocations (cf.[2]).

5.2.1 Inertial forces

Inertial forces explicitly compute the contribution to stress opposing dislocation motion (i.e., the ‘drag’) due to the
changes to the dislocation’s self-energy as it accelerates. This ‘drag’ is usually referred to as ‘radiative damping’, and
can be estimated using elastodynamics [217, 406, 257] as the energy radiated by a moving dislocation in the form of
elastic waves.
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Almost invariably, the calculations of radiative energy losses lead to an inertial force of the form

finertia = m
dv
dt

(36)

where the factor m is generally called the (effective) mass of the dislocation [33, 407]. The dislocation’s inertial force
is not an inertial force in a Newtonian sense, since the mass of a dislocation must necessarily be dependent on velocity
in order to account for the radiative energy losses (cf. [408]). Indeed, the ‘mass’ can be given the general mathematical
form[409, 354]

m =
1

v

∂H

∂v
, (37)

where H is the self-energy of the dislocation. Most derivations of dislocation inertial forces focus on studying the form
of m. The resulting finertia has the effect of opposing only changes to the dislocation’s current speed.

5.2.2 The mass of a dislocation

As seen in eqn.37, calculating m requires finding the total self-energy H associated with an arbitrarily moving
dislocation. The dislocation mass m was originally defined ad hoc in direct analogy with special relativity as [10]

m =
m0

√

1− v2/c2t
(38)

where m0 is the mass ‘at rest’, deduced as m0 = E0/c
2
t , where E0 the elastic energy of a static dislocation (see [10, 1]).

This term appears physically sensible: it should be about the mass of an atom divided by a bond length. For Al that is of
order 10−16kg/m. The self-energy of a dislocation is of order 10−9J/m. Taking ct to be 3000m/s we get m0 = 10−16

kg/m.

Following Weertman[168], Hirth, Zbib and Lothe [409] gave an alternative definition of the mass of a dislocation
by using the self-similar elastic energy of the Frank-Eshelby moving dislocation. The lengthy expressions of this
self-energy can be found in [229, 409, 354]. For an edge dislocations this energy is[354],

Hedge =
µb2

πM4
t

ln

(
R

rc

)[

4
√

1−M2
l

M2
t

2
− 4

1−M2
t /2

1−M2
t

+ (39)

+
(1−M2

t /2)
2

2

(
√

1−M2
t +

6
√

1−M2
t

+
1

√

1−M2
t

3

)

+
M6

l

2M2
t

√

1−M2
l

]

where Ml = v/cl, and R and rc the dislocation’s outer and inner core widths, respectively (see [1]).

As can be seen in eqn.40, Hirth, Zbib and Lothe’s approach relies on the energy of a self-similar solution, which is
an invariant of the motion (see section 3.2). The steady state dislocation neither radiates nor can change its kinematic
state. Hence, employing a self-similar self-energy provides an unlikely model for dislocation inertia as it is generally
understood. The ensuing Hirth-Zbib-Lothe (HZL) dislocation mass (obtained by applying eqn.37 to the self-similar
expressions of H , q.v.[409]). For instance, for the edge dislocation it is given by:

medge =
µB2

4π
ln

[
R

r0

]
c2t
v2

[

−8γl −
20

γl
+

4

γ3l
+ 7γt +

25

γt
− 11

γ3t
+

3

γ5t

]

(40)

where γl =
√

1− v2

c2
l

, γt =
√

1− v2

c2t
. The HZL mass cannot be regarded as a true dislocation mass: at best, it provides

an informed estimate of the difference in elastic energy levels between two dislocations moving at different speeds[354].
Compared to more sophisticated accounts, it also appears to considerably overestimate the dislocations’ acceleration
times[354].

Clifton and Markenscoff[35], building on work by Freund[410], showed that the energy radiated by a uniformly moving
dislocation moving from rest at t = 0 was independent from the enclosing surface used to evaluate it.8 This enables a
simple estimate of both the energy and the associated mass of a dislocation. The energy radiated by the dislocation
through an arbitrary surface Sd that encloses its core is

Ḣ =

∫

Sd

[

σijnj u̇i +

(
1

2
σijui,j +

1

2
ρu̇iu̇j

)

vn

]

dSn (41)

8It must be noted that the same is not true for non-uniformly moving dislocations, which are subjected to a logarithmic
singularity[217].
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where σij , ui, u̇i are the particle stress, particle displacement and particle velocity fields, vn the dislocation velocity in
the direction normal to the surface normal ~n. Owing to the independence of Sd, it follows that

Ḣ0 = lim
Sd→0

Ḣ, (42)

which leads to the Markesncoff-Clifton (MC) inertial force:

finertia = −Ḣ0

v
(43)

The full expressions for Ḣ0 can be found in [217]. For an edge dislocation, it is given by

Ḣedge
0 = −µB

2

2π

1

t

[

12− 8M2
l

M2
t (1−M2

l )
1/2

− (2−M2
t )(6− 7M2

t )

M2
t (1−M2

t )
3/2

− 2

(

1− M2
l

M2
t

)]

(44)

The inertia force then follows from eqn.43. We must note that irrespective of the dislocation’s character, this Ḣ0 is
proportional to 1/t: it decays over time (see eqn.44). Crucially as well, eqn.44 (and its screw counterpart) become
singular at the transverse and longitudinal speeds of sound, which in this model remain limiting speeds.

The expressions above rely on the path independence for Sd, which can only be achieved for uniform motions. The
existence of an ‘inertial’ force when the motion is uniform is unlike the inertial behaviour expected in Newtonian
mechanics. The inertial force in the case of uniformly moving dislocations exists because the dislocation began its
motion from rest, so it necessarily radiates energy in the form of elastic waves, which arrived at retarded times on any
material point. An arbitrary surface Sd enclosing the core would detect a decaying energy flux over time, as information
about the dislocation’s new velocity propagates through the material; the presence of a net energy loss manifests itself
as an ‘inertia’ (eqn.43). To put it otherwise, it is because the material ‘remembers’ a time when the dislocation was not
moving that an uniformly moving dislocation experiences an inertia-like force.

In non-uniform motions, the problem of estimating finertia becomes one of considerable complexity. A number of
solutions have been proposed to produce a fuller account of inertia for that case. Markenscoff and Ni[264] were able
to achieve an exact closed-form solution of the energy radiated by a non-uniformly moving screw dislocation with a
ramp-like core (not reproduced here). This enabled them to reach a regularised expression of the dislocation mass for
screw dislocations that was non-singular at the transverse speed of sound, thereby allowing for transonic motions. An
analogous expression for edge dislocations is not yet available. Concurrently with prior work by Markenscoff[406],
this work showed the crucial role the dislocation core plays in preventing trans- and supersonic motion, and how its
regularisation (in this case via a fixed ramp) would affect the inertia term in the dislocation mobility law.

The issues surrounding the dislocation core, its width and its possible change with icnreasing speed had already been
hitned at by Eshelby[411]. A more complex account of the inertial force, which allows for both changes in the core width
with increasing dislocation speed as well as for radiative damping, was proposed by Pellegrini [256, 257] employing his
own dynamic Peierls-Nabarro formulation[254], and building on previous work by Pillon et al. [258]. Of considerable
mathematical complexity, Pellegrini’s inertial force (see eqn.40 in [257]) accounts for self-energy losses and the
variation in the core’s width. It remains to to date the most physically insightful inertial force available. Furthermore, by
regularising the core, it avoids singularities at the speeds of sound, allowing for supersonic motions[257]. Pellegrini’s
inertial model includes the radiative damping effect by construction, but the energy loss resulting from any other
damping effects must be included phenomenologically, or rely on alternative models.

5.3 Inertial mobility laws and dynamic drag

The inertial force provides the dislocation with an acceleration pathway, which is unavailable under phenomenological
drag forces. However, the acceleration time provided by inertial force estimates tends to be very brief. Using Frank’s
mass, Gilman[47] and Gillis and Kratochvil[396] estimated it to be of the order of 1ps, and inversely proportional to
the magnitude of any additional dissipative mechanism present[47]. Gurrutxaga-Lerma[354], exploring the relative
effect of the inertial forces described in section 5.2.2, also found that the inertial contribution vanishes in less than 10
ps as the dislocation approached it terminal velocity. The effect of the inertial term in determining the acceleration
time is crucial: fully time-dependent expressions of inertia such as those provided by Pellegrini[257], Pillon et al.[258],
or Markenscoff and Ni[264] tend to offer acceleration times that are about an order of magnitude smaller than those
attained via steady state dislocation ‘masses’ such as the HZL mass.[354] It therefore seems that inertia on its own is an
insufficient ingredient of dislocation mobility.

Furthermore, as noted by Gurrutxaga-Lerma[354], inertial forces vanish once the dislocation has accelerated, so their
terminal speed can only be established by balancing the PK force with some alternative dissipative mechanism. For this
reason, drag forces, usually proportional to the glide speed, appear as a constant companion to the inertial forces. These
forces account for non-inertial dissipative mechanisms, usually in a semi-phenomenological way.
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5.3.1 Sources of dynamic drag

The potential sources of non-inertial dislocation drag have been reviewed numerous times in the past by, amongst others,
Gilman[47], Nabarro[140], Meyers[2], Granato[412], Hirth and Lothe[1], Ninomiya[413], Alshits and Indebom[50],
Alshits[144], Nadgornyi [107] Galligan[414]. Table 1 summarises a (non-exhaustive) list of proposed drag mechanisms
relevant at high speeds.
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The relative importance of at least some of the mechanisms summarised in table 1 remains experimentally untested, and
the range of speeds and applied strain rate levels over which they become relevant, or indeed, whether they are relevant
at all, is a matter of ongoing research.

Some of them appear negligible even on theoretical grounds. For example, Weiner[432] concluded that thermoelastic
dissipation did not seem to entail vast amounts of energy dissipation, and Gurrutxaga-Lerma[448] found that because
the typical thermomechanical coupling constant in metals is small that volumetric changes entailed by fast moving
dislocations did not translate in any sizeable temperature increase nor heat flow.

Other sources of drag have a corpus of well-attested experimental evidence, such as phonon scattering by dislocations
(either elastic or inelastic), which can be measured in the acoustic attenuation displayed by the material (e.g., [112, 449,
450, 451]). Phonon scattering (elastic or inelastic) is believed to be the result of lattice anharmonicities[452] and the
flutter mechanism[426, 437, 453, 454, 318, 455, 428, 456, 457] caused by the emission of elastic waves by the (thermal)
vibrations of the dislocation line itself. The flutter mechanism predicts a drag contribution linearly proportional to the
dislocation’s speed[426, 437]. It appears to be important mainly at high temperatures, and most studies of the latter
have focused on the temperature dependence of the ensuing drag coefficient (q.v.[437, 458, 116, 1, 459, 460]). On
the other hand, the role of anharmonicities seems particularly testable at low temperatures. Anderson and coworkers
[461, 462, 429] for instance provided direct experimental evidence that at low temperatures, dislocations in LiF are
more effective at scattering slow phonons than fast ones. Moreover, as we discuss below, phonon scattering due to
lattice anharmonicities is amenable to theoretical studies accounting the effect high speed dislocations. The effect of
electron drag has also been estimated through indirect experimental evidence [463, 464, 135, 465].

The implications of some of the drag mechanisms can sometimes be observed in the macroscopic response. For
instance, the electro- and magnetoplastic effects (q.v. [466]), whereby enhanced plastic flow is observed under strong
electromagnetic fields[467, 135, 468, 469, 470] or in pure superconducting states[471, 464, 472, 473, 474, 475, 476]
encountered at very low temperatures, have been associated with a relatively weak electronic drag and inertial effects
governing dislocation motion[136, 137]. Indeed, Granato and coworkers[136, 137, 477] argued was brought about
by inertial effects dominating dislocation motion because the dislocation would be underdamped in the absence of
a sufficient phonon density at such low temperatures. Remarkably, they were able to show that the maximum in the
dependence of the yield point with temperature found in superconducting states[478] could be explained via these
inertial effects.

Equally, phonon scattering seems to have noticeable macroscopic effects under dynamic loading conditions. Indeed,
it leads to a viscous-like drag force acting on the moving dislocation which may be expressed as[1] fdrag = d · vdis,
where the drag coefficient d can be shown to be proportional to temperature, d ∝ T [140, 114, 144]. This would suggest
that a material deforming in a regime where dislocations are under free glide would experience thermal hardening.
A considerably corpus of experiments carried out in the last two decades by Zaretsky and Kanel in a vast number of
metals[479, 480, 481, 482, 483, 484] loaded at strain rates above 106s−1 show that many cubic and hexagonal metals
do indeed display thermal hardening, giving further credence to a viscous drag-dominated dislocation mobility regime,
and to its physical relevance[485].

In the following, we comment on a number of dislocation drag mechanisms that can be estimated for high speed
dislocations.

Phonon and electron viscosities. Phonon and electron viscosity result in viscous drag-like coefficients that Mason
estimated to be, respectively[415, 420, 416]

dphonon =
B2

8πr20
η, and delect =

(BNee)
2

24πσe
(45)

where r0 is a nominal core cut-off radius, η the material’s phonon viscosity, Ne the number of electrons per unit volume,
e the electron charge, and σe the electrical conductivity.

Figure 15 reproduces the phonon and electron viscosities computed by Mason[421] for dislocations in Pb. The electron
viscosity is small except for very low temperatures, where electrical resistivity is very low[412, 2], whereas phonon
viscosity is relevant only at moderate and high temperatures.

Albeit qualitatively correct, Mason’s theory overestimates dislocation drag by one or two orders of magnitude[140],
particularly at low temperatures. Furthermore, this viscosity drag appears insufficient to account for high speed effects
without further modification, which we do in the sequel.

Thus, let us take Frank’s steady state solution for the displacement field of a screw dislocation:

uz =
B

2π
arctan

[
γty

x− vt

]

, u̇z =
B

2π

γtvy

(x− vt)2 + γ2t y
2

(46)
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Figure 15: Predicted drag coefficient in Pb due to electron and phonon viscosity. Adapted from Mason[486].

Following Mason[415], for a medium with a viscosity η, the rate of energy dissipation is

q̇ =
1

2
η

[(
∂u̇z
∂x

)2

+

(
∂u̇z
∂y

)2
]

(47)

Integrating over all R2 for x− vt and y, it is easy to show that the energy dissipated per unit length is

Q =
B2v2(1 + γ2t )η

8π

∫ ∞

r0

dr
r4

=
B2v2(1 + γ2t )η

24πr30
(48)

where r0 is a certain cut-off radius which Mason took to be about r0 = B/6[415, 416]. Following Mason[415], if we
equate Q = τ · v, we reach a drag coefficient of the form

drelativistic =
B2

24πr30

(
2−M2

t

)
η (49)

where Mt = v/ct is the transverse Mach number.

The form of eqn.49 suggests that the phonon viscosity’s contribution to the dislocation drag ought to decrease as the
dislocation approaches the speed of sound: a fast enough dislocation would not give time for the viscosity-inducing
phonons to relax back to equilibrium.

The effect of electronic drag, of considerable complexity, was reviewed by Alshits[144]. It is generally believed that
electronic drag is of importance only at low temperatures. Its magnitude is believed to be directly proportional to the
square root of the Fermi energy level EF in the metal[487, 144], As is shown in fig.15, it is believed electronic drag is
weak (of the order of 10−5Pa·s), but that it increases with decreasing temperature[488, 489, 113], because it is thought
to linearly dependent with the mean electron free path, that is expected to increase with decreasing temperature[144].
No expressions for high speed dislocations appear to be available, so we can only postulate that it follows a similar
relationship to that derived in eqn.49.

Phonon scattering. Starting with Klemens[425] and Carruthers[490], several researchers including Alshits and
collaborators[460, 459, 491, 427, 144], Li et al.[492], Blaschke[493, 145, 146] and Kim et al.[494] have worked on
sophisticated analytical estimations the magnitude of the drag coefficient due to phonon scattering by dislocations.
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These models usually rely on discrete and fully dispersive lattices, where the dislocation is modelled either as an explicit
disregistry or as a moving discontinuity, and the net energy radiated by the core and scattered through its interaction
with the lattice phonons are explicitly computed. Of considerable mathematical sophistication, all these theories seem
to support the view that at least transonic motion is possible, and provide informed estimates of the drag coefficient. In
particular, as shown by Blaschke et al.[146], at high speeds the drag coefficient can be estimated to take the form:

fdrag = d · v, dedge ∝
1

√

1−M2
t

, dscrew ∝ 1

ct
(50)

Full expressions of the drag are given in [493, 146]. We note that the drag coefficient of edge dislocations increases in
magnitude as the dislocation speed approaches ct, but that of screw dislocations does not, which qualitative matches
MD simulation data reviewed in section 4, whereby edge dislocations alone tend to display a saturation ‘plateau’ in the
mobility below ct. Nevertheless, in this account, the divergence of the drag term at the transverse speed of sound is
seemingly brought about by the use of the steady state elastic field of the Frank-Eshelby dislocation in its derivation,
which diverges at v = ct (see section 3.3), so it is unsurprising that the ensuing drag coefficient would display the
same asymptotic behaviour as ct is approached. Further analyses under anisotropic conditions have also been provided
by Blaschke[145], highlighting the importance of the character of the dislocation segment, and the crystallographic
orientation of the motion. In a less physically motivated model, Rosakis [495] proposed a semi-phenomenological drag
force that accounts both for phonon scattering and radiative damping, which also showed energy divergences at the
shear speed of sound.

The value of studying dislocation drag from a theoretical standpoint is in providing qualitative explanations of
the different phonon-dislocation mechanisms active and relevant at high speeds: the increased role of radiative
damping[494, 257] and phonon scattering effects[145, 144], for instance, as well as the importance of dislocation
character and slip directions[145, 146], are crucial insights offered by these theories. Phenomenological models rely
on constitutive assumptions that, as is the case with the hypothesis that a sound barrier for dislocations exists, remain
contentious or contestable. Theoretical models need not rely on such assumptions, and can be used to provide better
estimates of the mathematical form of the drag coefficient.

However, it is important to remark that both theoretical and experimental accounts of drag at high speeds remain largely
unexplored, as most studies have focused on low speed phenomena (see [144, 1]) that are more easily compared to the
existing body of experimental results (see section 2). It is hoped that the development of more sophisticated in-situ
imaging techniques will finally enable direct observation of high speed dislocations that may facilitate the testing of the
many theoretical assumptions embedded both in the modelling of the drag force and the inertial forces.

6 Conclusions and outlook

The interest in the study of high speed dislocations lies in their dominant role as the agents of plastic deformation under
‘extreme’ conditions; extreme here is used in the sense that the loading is considerably faster or more intense than in
conventional "static" plastic flow, and where high speed dislocations may be present. A vast number of phenomena can
be included in such category, such as plastic relaxation processes under shock loading[238, 496, 497, 387], dynamic
fracture[498, 499, 500, 501, 354] and crack growth under dynamic conditions[502, 503, 504], shear band formation
[505, 506, 507, 4], spallation [508, 509, 510, 511] and fragmentation[512, 513, 514, 515], dynamic contact[516, 517,
518], geophysical modelling of cracks and faults[519, 520, 521, 522]. These are all deformation and failure processes
typical of e.g. defence and aerospace applications, crashworthiness of vehicles, seismology, and precision manufacturing
processes.

Such applications would benefit from design rules and diagnosis techniques informed by a proper understanding of
the mechanics and physics of high speed dislocation. However, it is fair to conclude that after almost 70 years of
research into the phenomenology associated with fast moving dislocations, definitive conclusions remain elusive. This
probably stems from a complete lack of experimental evidence regarding high speed dislocations, which makes their
observation all the more necessary. It is to be hoped that in the near future, the new generation of synchroton light
sources (e.g.[523, 524]) will provide sufficient spatial and temporal resolution to enable in-situ observations of fast
moving dislocations. This will help settle the debate of whether dislocations can exceed the speed of sound, and pave the
way for a new generation of measurements of dislocation mobility that supersedes those currently in use, the theoretical
postulates of which, made in the 1960s and 1970s, are yet to be verified.

As argued in this review, the lack of experimental observation of high speed dislocations means that all that is known
about them is supplied by theory and simulations. The dominating theoretical approach relies on the linear theory
of elasticity, which a priori postulates that high speed dislocation motion saturates as the transverse speed of sound
is approached, with this speed an insurmountable barrier. As has been discussed, this result is heavily reliant on the
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symmetries embedded into the motion of a Volterra dislocation and of the governing equations of linear elastodynamics.
Even within this continuum framework, it is possible to build models where there is no apparent sound barrier: a
number of studies concerning the modelling of the dislocation core successfully show that the divergence at the speed
of sound vanishes upon mollifying the dislocation core.

The historical motivation for most of these models was Gumbsch and Gao’s [157] molecular dynamics simulations
of transonic (and supersonic) dislocation motion. Although these simulations seemed to contradict linear elasticity,
trans- and supersonic motion had already been shown to be possible in harmonic lattice models of moving dislocations.
However, under the harmonic approximation a number of breakdown velocities appear, in which the dislocation core
traps all energy it would otherwise radiate outwards. This leads to resonances and, potentially, to a kinematic generation
mechanism[155, 159] triggered at very specific speeds: namely, when the dislocation glides at the bifurcation between
the phase and group velocities of the dispersive lattice.

Although the harmonic lattice models provide a physical rationale as to why transonic and supersonic dislocations
ought to be possible, the breakdown velocities typically occur below ≈ 0.3ct, which made them the subject of much
criticism. This makes the results extracted from the far richer molecular dynamics simulations the preferred route
to study high speed dislocations. In these simulations, the system may be thermalised, and anharmonicities can be
included via physically richer interatomic potentials. As in harmonic lattice models, MD simulations may display
breakdown velocities leading to kinematic generation[159]. Paradoxically, this suggests that these two features of high
speed dislocations (supersonic dislocations and kinematic instabilities) are mediated by the discreteness of the atomic
lattice, not by anharmonicities. However, the dispersion of energy away from the core, which manifests itself in the
form of a drag force on the dislocation, will undoubtedly be governed by considerations beyond the mere discreteness
of the lattice alone.

Thus, although molecular dynamics studies provide a semi-empirical way of studying high speed dislocation motion,
to develop a general theory of high speed dislocation mobility has proven elusive. This is made all the more difficult
by the nature of the drag dislocation motion is subjected to, which entails a vast number of possible mechanisms
acting concurrently, from the elastic and inelastic scattering of phonons, to the radiation of elastic waves, . . .. In some
cases, for example, with the lack of electronic effects and electronic conduction, these mechanisms may fall beyond
the capabilities of molecular dynamics simulations. Equally so, MD models tend to be physically too rich, making
it difficult to distinguish the different phenomena that contribute to the dislocation drag. Without a clear distinction,
the resulting model of dislocation mobility would be entirely phenomenological, and devoid of the theoretical inputs
necessary to facilitate their transferability and generality to materials of a similar class. Given that phonon drag and
radiative damping are believed to dominate at high speeds, and that both phenomena are agreeable to study using
discrete lattice dynamics models, it seems possible to provide general qualitative insights into the dislocation–lattice
interaction, which has so far eluded the more physically rich MD simulations, that these models could complement.

Even then, molecular dynamics or similar atomistic studies may serve to provide a description of dislocation mobility,
but not so much of how such high speed dislocations behave collectively. Thus a long-standing question regarding high
speed dislocations remains: how do they interact with one another and with the medium, and how does their collective
response — the high speed dislocation plasticity — differ? As argued in this review, in studying this part of the problem
linear elasticity appears to be sufficient, for it serves to capture their long range interaction via the elastodynamic fields
of the dislocations. The resulting model of plasticity is dominated by inertial effects, with retardations and Doppler-like
magnifications in the interactions governing the plastic response. This constitutes a radically different paradigm of
plasticity to the one that is usually found in quasi-static plasticity. Some phenomena dominating the response of metals
subjected to high strain rates, such as the attenuation of the dynamic yield point[238] or the increase in the dynamic
fracture toughness[240], seem to be the result of this dynamic picture of plasticity. However, a number of long-standing
problems of static plasticity, namely the homogenisation of the collective response of dislocations and related statistical
effects, still need to be explored under the assumption that dislocations structures are not in static equilibrium any
more, and that interactions are based on a retardation principle. This constitutes an important shift in the approach to a
problem that is per se paved with difficulties and largely remains unsolved. As a first step, it would be desirable for
an elastodynamic analogue to the classical Orowan equation to be developed. This would at least provide a physical
rationale for the development of adequate phenomenological constitutive laws that account for inertial effects.

This brings us to conclude that, in our opinion, there are three main issues that remain to be tackled and resolved
by the many scientists and researchers who contribute to this field in the coming years. First, the development of
techniques that enable direct empirical observation of high speed dislocations. Second, the realisation of a physics-based
model of dislocation mobility that is transferable and general enough to be incorporated into design rules. Third, the
establishment of a reliable model of high speed dislocation plasticity.
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