
The Mechanics of Collaboration: Developing Low Cost
Usability Evaluation Methods for Shared Workspaces

Carl Gutwin' and Saul Greenberg'
'Department of Computer Science, University of Saskatchewan

2Department of Computer Science, University of Calgary
gutwin@cs.usask.ca, saul@cpsc.ucalgary.ca

Abstract
We introduce a conceptual framework that articulates
the mechanics of collaboration for shared-workspace
groupware: the low level actions and interactions that
must be carried out to complete a task in a shared
manner. These include communication, coordination,
planning, monitoring, assistance, and protection. The
framework also includes three general measures of these
mechanics: effectiveness, eficiency, and satisfaction.
The underlying idea of the framework is that some
usability problems in groupware systems are not
inherently tied to the social context in which the system
is used, but rather are a result of poor support for the
basic activities of collaborative work in shared spaces.
We believe that existing low-cost evaluation methods-
heuristic evaluation, walkthroughs, user observations
and questionnaires- can be modified to include this
framework in a way that helps a groupware evaluator
uncover these usability problems.

1. Introduction

With the increasing connectivity of the internet, the
increasing power of the world-wide web, and the
increasingly distributed nature of organizations, multi-
user computer systems (groupware) are becoming
increasingly common. Despite this growth, many
groupware systems have serious usability problems. At
best, working in groupware is awkward and frustrating
compared to face-to-face collaboration.

There are many reasons for this poor usability. We
have only sketchy knowledge of how people collaborate,
and translating what we do know into effective designs is
difficult. As well, the effort involved in assessing
prototypes and final systems is onerous because there are
no simple but effective evaluation techniques for
groupware. In this paper, we will concentrate on this
evaluation problem. In particular, we will propose a
conceptual framework that will help us develop discount
usability evaluation techniques that can be readily
applied to the iterative development cycle (design,
implementation, and evaluation) of groupware.

0-7695-0798-9100 $10.00 0 2000 EEE

Traditionally, researchers and developers consider
groupware evaluation a difficult problem, especially
when compared to the relative ease of evaluating single-
user systems. An oft-cited factor is that groupware
acceptance is far more likely to be affected by social
factors such as organizational culture, differences in
personalities, and group dynamics (e.g. [7]). These
combine to make the task of understanding group
interaction a \Nicked problem' [5]. Consequently,
traditional experimental and laboratory methods that
remove the software from its context of use may obtain
simplistic results that do not generalize well to real-world
situations.

As an alternate to the laboratory, many groupware
researchers now advocate the use ethnographic and
sociologic methods that explicitly consider culture and
context (e.g., [10,16]). While these methods have been
successfully applied to real situations, they tend to be
expensive and somewhat limited. They demand
considerable time and evaluator experience. They work
best at the beginning of design (to uncover and articulate
existing work practices) and at the end (to evaluate how
systems already deployed in the work setting are used).
Because they are unsuited for rapid prototype evaluation,
they are rarely appropriate for iterative design.

We agree that contextual considerations are extremely
important. However, we also believe that there is
pragmatic value in a complimentary perspective.
Specifically, we claim some groupware usability
problems are not strongly tied to social or organizational
issues, but rather are caused by insufficient or
mismatched support for the basic activities of
collaboration. These activities, which we call the
mechanics of collaboration, are the small-scale actions
and interactions that group members must carry out in
order to get a shared task done. Examples include
communicating information, coordinating manipulations,
or monitoring one another.

The activities that form these mechanics of
collaboration are particularly important in shared-
workspace groupware, where the group task involves
objects, artifacts, and tools in a visual workspace. In

98

systems like this, if a group is unable to communicate
effectively and efficiently about the task, or is unable to
smoothly and easily coordinate their actions,
performance and satisfaction are likely to suffer. The
mechanics of collaboration are by and large separate
from organizational politics or group dynamics, and
usability problems in the mechanics can therefore be
discovered and ironed out during iterative design.
Although appropriate support for the mechanics of
collaboration will not guarantee a systemk suitability in
the real world, failure to support them will almost
certainly guarantee its demise.

In this paper we develop a conceptual framework
defining groupware usability for shared-workspaces that
is based on the mechanics of collaboration. We describe
these mechanics, and propose that various single-user .
usability testing schemes can be applied to groupware by
having them assess support for the mechanics. We
believe that evaluating for these mechanics provides a
middle ground between the brittleness of controlled
experimentation and the expense of field techniques.
While not complete on their own, they will provide a
useful addition to the practitionerk toolbox.

2. Shared-Workspace Groupware

Groupware allows people to work together across
time and distance. An important class of groupware
systems is that of applications that support distant
collaboration though a shared w o r k s p a c e a medium
sized flat work surface where people collaborate by
manipulating visible tools and task artifacts.

Common applications in this class include shared
editors, drawing programs, and multi-player games. For
example, a shared design application could allow

Figure 1. An example shared-workspace groupware
system for creating and editing concept maps. A radar
overview [8] is visible at top left.

manipulate new parts for a manufacturing process.
Similarly, a group troubleshooting system could allow
expertise from many locations to be gathered together to
investigate a problem and explore possible solutions (e.g.

The group tasks that happen in these systems tend to
be of a few types. Based on McGrathk (1984) task
circumplex, tasks in shared workspaces usually involve:
0 creation of new artifacts,

organization of existing artifacts,
exploration of the space or of a set of artifacts,
construction of larger objects from component pieces,

0 the management of an autonomous system
represented in the workspace.

[191).

3. The Mechanics of Collaboration

For a collaborative task to be accomplished in a
shared workspace, a variety of activities must happen.
First, the actual execution of the task must occur- words
put on paper, objects placed in order, or parts fixed
together to form a whole. This part of the task is no
different for a group than it is for an individual, since the
same actions still have to happen if the job is to get done.
However, most group work involves another set of
entirely different activities as well. If we consider task
execution to be the taskwork, then this other set of
activities is the teamwork- the work of working
together- and a groupware system must support both
taskwork and teamwork if it is to be truly usable.

Teamwork can be further divided into two areas: the
social and affective elements that make up group
dynamics, and the mechanics of collaboration. Although
affective elements are important, we will not consider
them further here. This leaves us with the mechanics-
the things that groups have to do, over and above what an
individual has to do, in order to carry out a task.

From our previous research on shared-workspaces
(e.g., [9]) and from the literature (e.g., [1,20]), we have
identified seven major activities that comprise the
mechanics of collaboration.

Explicit communication. Group members intentionally
provide each other with information, and verbal and
written communication is a comerstone of collaboration.
In a visual workspace, however, the workspace and the
artifacts themselves are crucial supports to explicit
communication. In particular, people often use deictic
references (e.g. “this one”) in combination with pointing
to an artifact.

Consequential communication. In addition to explicit
communication, people also pick up considerable
information that is unintentionally “given off’ by others
as they go about their activities. This is called
consequential communication [171 and is also important

99

in smooth group operation. Two main types of
consequential communication involve information given
off by artifacts as they are manipulated by others (also
called feedthrough - [3]), and information given off by
the characteristic actions of a persong embodiment in the
workspace.

Coordination of action. People organize their actions
in a shared workspace so that they do not conflict with
others. Shared resources and tools require that turns be
taken, and some tasks require that actions happen in
particular orders. In addition, people also learn to predict
one anothers’actions and use those predictions to make
the group more effective or efficient. Symptoms of poor
coordination include people bumping into one another,
duplicating actions that another person has just
completed, or attempting to take shared resources at the
same time.

Planning. Some planning activities are too high-level
to be considered mechanics of collaboration, but others
happen repeatedly inside the shared workspace. For
example, people divide and redivide the task as they go
along, reserve areas of the workspace for their use, or
consider various courses of action by simulating them in
the workspace (e.g. indicating a path with a pointer
before construction begins).

Monitoring. Many of the other mechanics of
collaboration rely on the ability to monitor and gather
information about others in the workspace. Much of this
information is simply workspace awareness information
[9] : who is in the workspace, where they are working,
and what they are doing. In addition, there are situations
where people monitor one another more explicitly. For
example, in an apprenticeship situation, the expert must
monitor the activities and whereabouts of the novice
even if they are not always working in the same place.

Assistance. Group members provide help to one
another when it is needed. Assistance may be
opportunistic and informal, where the situation makes it
easy for one person to help another, or it may be
explicitly requested; either way, appropriate help
requires that people understand what others are doing
and where they are at in their tasks.

Protection. One danger in group work is that others
may inadvertently alter or destroy work that you yourself
have carried out. People must therefore keep an eye on
their own work, noticing what effects others’ actions
could have and taking actions to prevent certain activity.

4. The Mechanics & Groupware Usability

The mechanics of collaboration, and the concept of
teamwork more generally, allow us to state a definition
of groupware usability that goes beyond what is normally
included in single-user usability studies. We define

groupware usability as:
. . . the degree to which a groupware system supports
the mechanics of collaboration for a particular set of
users and a particular set of tasks [8].

This definition assumes that a groupware system is
already usable from a single-user perspective, and
concentrates specifically on usability aspects of group
interaction. From this definition, we can now begin to
consider ways of evaluating for the mechanics of
groupware specifically, and for groupware usability in
general. In particular, we believe that we can test for the
mechanics of collaboration by examining if a group can
perform them effectively, efficiently, and pleasantly (e.g.
[14]). Each is described in turn below.

Effectiveness considers whether the activity was
successfully completed, and the number and severity of
errors made during that activity. A usable groupware
system will not prevent the mechanics of collaboration
from taking place, and will not cause group members to
make undue errors in those activities.

Ef$ciency considers the resources (such as time or
effort) required to carry out the activity. A good
groupware system will allow the activities of
collaboration to proceed with less time and effort than
will a system with usability problems. Note that any
measures of efficiency must be carefully focused on task
activities, since groups often engage in off-task activities
that are not detrimental to the overall shared work.

Satisfaction considers whether the group members are
reasonably happy with the processes and outcomes of
each of the activities of collaboration. Satisfaction will
sometimes overlap with efficiency and effectiveness (that
is, problems in the other areas are likely to reduce
satisfaction).

Matching the seven mechanics of groupware against
these three criteria measures provides a conceptual
framework for evaluating groupware (see Table 1).

action
Planning

1 Monitoring I

I.._ ~

Table 1. The conceptual framework.
Using this framework, we will briefly revisit several

discount usability techniques originally developed and
successfully applied for evaluating singleware usability.
Others are also pursuing the goal of low-cost evaluation
techniques for groupware (e.g.[2]), and these efforts are

100

complementary. Our approach can be seen as a bottom-
up method that originates from a fixed set of face-to-face
collaborative behaviours rather from a top-down analysis
of groupware features and characteristics.

With each technique, we will ask if it could be used to
test if a group can perform a particular mechanical
activity effectively, efficiently, and pleasantly. We
caution that this discussion is quite preliminary, and we
have not yet evaluated these evaluation methods.

5. Revisiting Discount Evaluation Methods

Because we are interested in techniques that can be
done rapidly, we do not consider quantitative measures
that require experimental methods or extensive analysis
(e.g. performance measures or data-log analysis).
Instead, we rely on interface inspection techniques such
as heuristic evaluation and task-centered walkthroughs
(e.g., [13]), observational methods (e.g., [4]) and
subjective assessments by realistic participants (e.g.
[15,18]). We describe each below, and assume that an
evaluation of these interfaces from a single-user
perspective (perhaps done earlier or in parallel) have
already uncovered and repaired conventional usability
problems.

5.1 Heuristic evaluation

Heuristic evaluation is a widely-accepted discount
evaluation method for diagnosing potential usability
problems in user interfaces. It defines a particular
interface inspection process where several evaluators
examine an interface and judge its compliance with
recognized usability principles called heuristics’ [121.
Heuristics draw attention to usability problems often
found in single user systems, such as how feedback is
provided, how errors are minimized, how help is
provided, and so on. Non-compliant aspects of the
interface are captured iis interface bug reports, where
evaluators describe the problem, its severity, and perhaps
even suggestions of how to fix it.

We can apply heuristic evaluation techniques to
groupware usability by replacing the current set of
heuristics by rephrasing those activities that comprise the
mechanics of collaboration’. For example, groupware
heuristics can now be statements such as ‘Frovide the
means for explicit communication” and “Allow people to
monitor and gather information about others in the
workspace”. The inspector can then judge the interface
by seeing if the means for groups to achieve a particular
heuristic is available; if the means are there, the inspector

’ We have also developed another set of heuristics based
on the Locales Framework that could be applied to
groupware [6].

can then ask if the group can use it effectively,
efficiently, and with satisfaction.

The high-level nature of these heuristics as well as the
small number of them (7) fits with Nielsenh (1994) view
of how heuristics should be crafted. As with conventional
heuristic evaluation, issues to consider include: how
inspectors can be trained to the nuances of these
heuristics; whether inspectors can use them effectively to
uncover interface problems; how many inspectors are
needed to discover the majority of interface problems,
and whether these heuristics actually cover a large
proportion of the usability problems typically found in
groupware.

5.2 Walkthroughs

Another inspection technique is based on the notion of
an interface walk-through. While there are many
variations of how to perform a walkthrough, in all of
them the inspector begins with a realistic and detailed
task description, a description of the user, and an
interface to evaluate. The inspector then halks through’
the interface step by step by imagining each action the
user would take while performing the task on the
particular system. During each step the inspector asks a
series of questions. In a task-centered walkthrough [l I]
the questions include:
1. Can you build a believable story that motivates the

userh actions?
2. Can you rely on the userk expected knowledge and

training about the system?
If the inspector believes that these questions cannot be

answered satisfactorily, then a potential interface
problem has been located. The inspector notes it,
assumes it has been solved, and goes on to the next step.

Other variations of walkthroughs ask different
questions, but almost all are concerned with how single
users understand the system and use it to achieve a
particular goal. In groupware, it may be possible to
perform a walkthrough by articulating tasks that exercise
the mechanics of groupware, and by asking questions
related to the criteria. For example, a detailed task
description would now include activities such as Saul
and Carl are modifying an architectural floor plan. They
examine the current floor plan, and discuss what needs to
be changed. Carl makes the living room two meters
larger. Saul sees this, and suggests that this would
compromise the amount of cupboard space.. . ’ For each
step in this process, the inspector would then ask:
1. Can the persodgroup perform the activity of

groupware implied by this step effectively i.e., does
the interface supply the means to do it?
Can it be performed efficiently i.e., is it believable
that the persodgroup would go through the effort

2.

101

required by this interface to perform this step?
Can it be performed with satisfaction i.e., is it
believable that the persodgroup would be motivated
to do this step, and would they be happy with the
outcome?

Of course, there are several issues. First, it is much

3.

easier to define a typical person’than it is to define a
typical group: The richness and variety of group
interactions makes them much harder to typify. Second,
we don€ know if the task descriptions that drive the
walkthrough can be expanded sufficiently to include not
only taskwork, but to articulate teamwork as well.
Finally, we expect that it will be harder for an inspector
to answer the three questions above because of the
difficulty of predicting particular group interactions.

5.3 Usability testing through observations

Observational user testing is done by observing how
people perform particular tasks on a system in a
laboratory setting [4]. The evaluator typically tries to
observe where people have problems performing a task,
and monitors peoplek talk to see where their conceptual
model of the system is at odds with the actual system
model. To get people to talk, the evaluator often asks
them to talk-aloud’i.e., to say what they are doing as
they are doing an action. Alternatively, the evaluator
would have two people perform a task together, and
monitor their speech for insights into what each was
thinking.

Groupware evaluation would be similar, with the
exception that the evaluators would be trained to observe
and analyze the collaboration through a set of criteria
based on the conceptual framework presented in Table 1 .
This could be done either on-the-fly (perhaps noted on a
coding sheet), or after the fact (i.e., through video
analysis using video annotation software). For example,
the criteria for the first row of Table 1 (explicit
communicatiodeffectiveness, efficiency, satisfaction)
can be partially restated as:
Intelligibility and interpretability of spoken-written-
gestural communication:
a) Did the system make it difficult to hearhead what

others were sayindwriting?
b) Did the system make it difficult to understand what

others were sayindwriting?
c) Did the system make it difficult to gesture and refer

to items in the workspace?
d) Did the system make it difficult to see and understand

what others were pointing to?
Of course, there are several issues with this method.

First is the difficulty of acquiring suitable people for
observations: it is harder to schedule, and harder to
predict the expected group interaction. If the software

expects a certain level of intimacy between collaborators,
then the subject pool may be quite small. Second is the
difficulty of interpreting a scene based on these
questions. While people may be having problems, groups
are remarkably resilient at adapting their interactions to
succeed in even awkward collaborative situations.

5.4 User questionnaires

Several researchers advocate evaluation through
questionnaires that are filled in by the people using the
system (e.g. [15,l SI). This could be done after a usability
observation (as described above), where the participants
would complete the questionnaire. The evaluators could
then conduct a group interview to follow up both their
observations and the questionnaire answers, perhaps
including discussions of possible solutions to the
problems.

Similar to our other methods, we would create a
groupware questionnaire by organizing it around the
seven activities of collaboration. These include questions
that consider effectiveness, efficiency, and satisfaction in
each area. Since the data is largely subjective,
observations or answers should be used as indications
that problems may exist in a particular area rather than
definitive assessments; agreement between multiple
participants or observers, of course, is a stronger
indication of a problem.

The questionnaire would be similar to the ones used
by evaluators (Section 5.3) but rephrased to be answered
from the personk experiences. For example, the criteria
for the first row of Table 1 can be partially restated as:
Intelligibility and interpretability of spoken-written-
gestural communication
a) It was easy to hearlread what other people were

sayinglwriting
b) It was easy to understand what others were

sayindwriting
c) It was easy to gesture and refer to items in the

workspace
d) It was easy to see and understand what others were

pointing to
Issues here are similar to those discussed in Section 5.3.
Additional issues are that we have to pay particular
attention to the wording of these questions (both to make
them understandable and to reduce any implicit bias),
and that we cannot afford too many questions as this may
make people reluctant to answer them.

6. Conclusions

In this paper, we introduced a conceptual framework
for developing discount usability evaluation techniques
that can be applied to shared-workspace groupware. The

102

framework is based on support for the mechanics of
collaboration: the low level actions and interactions that
must be carried out to complete a task in a shared
manner. These include communication, coordination,
planning, monitoring, assistance, and protection. The
framework also includes gross measures of these
mechanics: effectiveness, efficiency, and satisfaction.
The underlying idea of the framework is that some
usability problems in groupware systems are not
inherently tied to the social context in which the system
is used, but rather are a result of poor support for the
basic activities of collaborative work in shared spaces.
We believe evaluation schemes based on this framework
will occupy a middle ground between brittle
experimental techniques and time-consuming field
techniques, where they will provide the kind of formative
information valuable in an iterative groupware
development process.

This is initial work. We have performed only limited
testing of how well particular evaluation methods can be
adopted to the framework in Table 1. In particular, we
have drafted a set of detailed questions to drive user
observations and user questionnaires, available from
www.cs.usask.ca/projects/hci/. Early indications are that
the scheme does provide people with a framework for
considering issues that they would have otherwise
missed. However, the questionnaires are still being
revised, particularly to reduce the number of questions
and to improve the clarity of the questions.

As our work matures, we plan to evaluate the various
groupware evaluation methods in two ways. First, a
particular testing scheme will be applied to a system with
known groupware usability problems; afterwards, we will
analyze how well evaluators using the scheme could
uncover particular problems. In this approach, the testing
scheme could also be compared with other evaluation
techniques; if a scheme can identify problems that other
methods cannot, then the scheme has some value.
Second, we will use the various schemes in the context
for which it was intended- iterative design of
groupware. We will observe its use on a realistic
development project, and determine whether the
development team finds the scheme to be useful in
improving the usability of the final product.
Acknowledgments. We gratefully acknowledge the
support of the National Institute of Standards and
Technology (NIST), Microsoft Research, and the Natural
Sciences and Engineering Research Council (NSERC).

[I] Clark, H. (1996) Using Language. Cambridge University
Press, Cambridge.
[2] Drury, J., Damianos, L., Fanderclai, T., Kurtz, J.,
Hirschman, L., and Linton, F. (1999) Methodology for
Evaluation of Collaborative Systems. Technical Report

(version 4.0), The Evaluation Working Group of the DARPA
Intelligent Collaboration and Visualization Program.
[3] Dix, A., Finlay, J., Abowd, G., and Beale, R. (1993)
Human-Computer Interaction, Prentice Hall.
[4] Dumas, J.S. and Redish, J.C. (1993) A Practical Guide to
Usability Testing. Ablex, 1993.
[5] Fitzpatrick, G. (1998) The Locales Framework:
Understanding and Designing for Cooperative Work. PhD
Thesis, Department of Computer Science and Electrical
Engineering, The University of Queensland
[6] Greenberg, S., Fitzpatrick, G., Gutwin, C. and Kaplan, S.
(1999). Adapting the Locales Framework for Heuristic
Evaluation of Groupware. Proceedings of OZCHI'99
Australian Conference on Computer Human Interaction,
Wagga Wagga, NSW Australia, November 28-30.
[7] Grudin, J. (1990) Groupware and cooperative work:
Problems and prospects. In The Art of Human Computer
Interface Design, B. Laurel, Ed. Addison-Wesley, 171-185.
[8] Gutwin, C. and Greenberg, S. (1999). The Effects of
Workspace Awareness Support on the Usability of Real-Time
Distributed Groupware. ACM Transactions on Computer-
Human Interaction (TOCHI) 6 (3), 243-281.
[9] Gutwin, C. and Greenberg, S. (1999) A Framework of
Awareness for Small Groups in Shared-Workspace Groupware.
Research Report 99-2, Computer Science Department,
University of Saskatchewan.
[lo] Hughes, J., King, V., Rodden, T. and Andersen, H. (1994)
Moving out of the control room: Ethnography in system
design. In Proc CSCW94, ~429439, ACM Press.
[l l] Lewis & Reiman (1993) Task Centered User Interface
Design. From ftp.cs.ucolorado.edu/pub/cs/distribs/clewid
[12] Nielsen, J. (1994) Heuristic Evaluation. In Nielsen and
Mack (1 994)
[I31 Nielsen, J. and Mack, R. (editors) (1994) Usability
Inspection Methods. Wiley and Sons.
[I41 Olson, J. S., Olson, G. M., Storrosten, M., and Carter, M.
(1992). How a group-editor changes the character of a design
meeting as well as its outcome, Proc. CSCW92, Toronto,
Ontario, 1992,91-98.
[15] Ravden, S. and Johnson, G. (1989) Evaluating Usability
of Human-Computer Interfaces. John Wiley & Sons.
[I61 Rogers, Y. and Bellotti, V. (1997) Grounding blue-sky
research: How can ethnography help? Interactions, 4(3), 58-63.
[I71 Segal, L. (1995) Designing Team Workstations: The
Choreography of Teamwork, in Local Applications of the
Ecological Approach to Human-Machine Systems, P. Hancock,
J. Flach, J. Caird and K. Vicente ed., 392-415, Lawrence
Erlbaum, Hillsdale, NJ.
[181 Shneiderman, B. (1 997) Designing the User Interface.
Addison-Wesley, 1997.
[I91 Steves, M., and Knutilla, A. (1999) Collaboration
Technologies for Global Manufacturing, Proceedings of ASME
Symposium on Manufacturing Logistics in a Global Economy,
Nashville TN.
[20] Tang, J. (1991) Findings from Observational Studies of
Collaborative Work, International Journal of Man-Machine
Studies, 34(2), 143-160.

103

