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Abstract

This paper presents a method for determining the possible
instantaneous motions of a sliding object during multiple contact
pushing. The approach consists of two components: a kinematic
analysis considering kinematic motion constraints, and a force
analysis considering force constraints on the motion. A new
representation of the support friction of a sliding object is
presented, and the results of the force analysis are independent of
the exact support distribution of the object. The analysis results
in a new manipulation primitive: stable rotational pushing.
This primitive may be used for precise placement operations
by pushing.

1. Introduction

One well-known approach to the problem of repositioning an
object is pick-and-place: grasp the object, carry it to the new
location, and disengage it. As Mason [12] notes, however,
pushing the object may be preferable if the initial and goal
locations share the same support surface. This avoids the
difficulties involved in grasping and releasing the object and
provides a solution for manipulators lacking the dexterity, size,
and strength necessary to grasp and lift the object. The ability to
precisely position objects by pushing can greatly extend a robot’s
manipulation capability.

Consider the example shown in figure 1. The rectangular
block is pushed (perhaps by a mobile robot) to the final location
by edge-edge contact. In order to plan a pushing operation like
this, two questions must be answered: 1) What directions can
the object be pushed while maintaining stable contact? and 2)
How should these motion constraints be used to plan a pushing
trajectory (possibly considering obstacles)?

In this paper we will develop the analytical tools to answer
the first question. We pose the pushing problem more generally
than it previously has been: Given multiple point contacts and an
arbitrary pusher motion, what is the set of all possible motions of
the sliding object? The answer to this question provides the next
step toward making pushing a more useful robotic capability.
Previous work on pushing has resulted in an increased repertoire
of robot actions, including stable translational pushing of sliding
objects [1, 2, 4, 5, 11, 15]. The analysis presented here allows us
to extend the class of stable motions of a pushed sliding object to
include rotations as well as translations. This new robot primitive
may be used to execute precise planar parts transfer tasks. Other
applications of the analysis will also be discussed.

Figure 1: A pushing trajectory to move the object from the initial
to goal location.

1.1. Definitions
The slider is manipulated by a pusher. The slider and pusher may
each consist of multiple rigidlyattached rigid bodies. The contact
configuration specifies the kinematic constraints imposed on the
slider by the pusher. In this paper, all contact configurations
may be reduced to a finite set of contact points (see figure 2).
The contact mode is given by the instantaneous motion of these
contacts. Each contact point receives one of four possible labels
indicating the motion of the slider relative to the pusher at the
contact point: s (sticking) if there is no relative motion, r (right-
sliding), l (left-sliding), and f (breaking free) if the contact is
broken. The contact mode is denoted by the concatenation of the
individual contact labels (see figure 3).

Friction forces are governed by Coulomb’s Law. At any
contact, ft � �fn, where ft is the tangential (frictional) force, fn
is the normal force, and � is the coefficient of friction. (For ease
of discussion, we will assume the static and dynamic coefficients
of friction are equal, although this is not strictly necessary.) At a
sticking contact, the force may lie anywhere within the friction
cone. At a sliding contact, the total force felt by an object lies
on the edge of the friction cone opposite the motion of the object
relative to the contacted surface.

Planar velocities will be described as an instantaneous rotation
about a center of rotation (COR) in the plane. We are not
concerned with velocity magnitudes in this paper; frictional
forces under Coulomb’s Law depend only on the direction of
contact motion, not its rate. Therefore, a velocity is completely
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Figure 2: Equivalent contact configurations.
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Figure 3: Four contact modes for initial edge-edge contact.

specified by the two coordinates of the COR and the sign of
rotation (clockwise [-] or counterclockwise [+]). This is called
a signed COR. Translational motions correspond to CORs at
infinity.

The motion of the pusher is given by a signed CORp; the slider
motion is a signed CORs.

1.2. Previous work
Mason was the first to analyze the friction mechanics of planar
sliding in the context of robotics [15]. One elegant result of his
analysis is a simple rule for determining the rotation sense of
a slider in contact with a point pusher, using only the location
of the slider center of mass, the contact point and normal, the
push direction, and the coefficient of friction between the pusher
and slider. Peshkin and Sanderson [16] extended Mason’s work
by determining bounds on the set of possible CORs. Goyal [8]
developed a three-dimensional limit surface in force-moment
space describing the relationship between the motion of a slider
and the total frictional support force.

Mason’s results have been used to find stable translational
pushes [1, 2, 4, 5, 11, 15] and guaranteed successful parallel-jaw
grasping strategies [4, 7] despite uncertainty in object location
and physical parameters. Peshkin and Sanderson applied their
results to planning a sequence of fences suspended over a
conveyor belt to eliminate position and orientation uncertainty
of a workpiece [17].

The style of analysis adopted in this paper is similar to that
used by Brock [3] and Mason [13]. In [3] the kinematically
possible motions of a grasped object are determined, and then
a force is applied to the object to cause it to slip in the grasp
in a desired manner. In order to synthesize a robot motion to
push a block along a wall, Mason [13] first finds the possible
contact modes and the implied frictional forces at the block-wall
interface and the wall-support interface. Using this information,
a pushing motion and contact is chosen such that the pushing
force can only be balanced by the contact mode corresponding
to the block sliding along the wall.

1.3. Problem statement
Given:

1. the geometry of a rigid planar slider on a horizontal support
plane,

2. the slider center of mass,
3. the pusher-slider contact configuration,
4. the coefficient of friction between the pusher and slider, and

5. the pusher motion CORp,

find all possible instantaneous slider motions.
This paper builds primarily on the work of Mason and Peshkin.

Whereas they considered the motion of a slider in point contact
with a pusher, this work finds all possible motions of a slider given
a pusher with an arbitrary motion and multiple point contacts.
Using this information, we can find the set of pusher motions
which maintain the pusher-slider contact configuration. These
motions may be continued indefinitely and can be used for planar
parts transfer operations. This type of push may be termed a
stable non-grasp; all possible frictional support forces can be
balanced by the pushing contact forces and stable contact is
guaranteed. We will briefly discuss the synthesis of stable non-
grasps.

Another application of the results of this paper is finding pusher
motions resulting in a unique slider contact mode other than
stable contact. This may be used to reduce uncertainty in the
slider position. As an example, consider a block in edge-edge
contact with a pusher. If we push at a sharp angle with low
contact friction, the block is guaranteed to slide along the pusher,
perhaps until it reaches a point where stable contact is guaranteed
(i.e., a mechanical stop).

1.4. Assumptions
1. Motions are slow enough that inertial forces are negligible.

This is the quasi-static assumption; frictional forces only
are considered.

2. All motions and forces are in a plane normal to the gravity
vector.

3. Friction forces conform to Coulomb’s Law.

4. The coefficient of friction is uniform between the slider and
support surface.

1.5. Approach
To solve the problem posed in section 1.3, we first perform a
kinematic analysis to determine the set of kinematically possible
CORs. This procedure takes as input the pusher-slider contact
configuration and the CORp and returns a set of contact modes
and the corresponding CORs regions. For each contact mode, the
next step is to determine the slider motions which are consistent
with the implied contact forces. This set of force possible CORs

is then intersected with the set of kinematically possible CORs.
If the intersection is null, this contact mode cannot result. If the
intersection is non-null, this contact mode may occur and any of
the CORs in the intersection could be the actual instantaneous
slider motion. The set of all possible instantaneous slider motions
is the union over all contact modes of the intersections of
the kinematically and force possible CORs. The approach is
illustrated in figure 4.

2. Kinematic analysis
This section outlines the method for determining the kinematic
constraints on the motion of the slider. First we employ
Reuleaux’ method to find the set of kinematically possible CORs

relative to the pusher. Given the CORp, the legal motions are
then mapped to a reference frame fixed in the support surface.
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Figure 5: Kinematically legal CORs and contact modes. Hatched
regions correspond to illegal CORs.

2.1. Reuleaux’ method
Reuleaux [18] describes a method for determining the
kinematically admissible instantaneous planar motions of a
movable object in contact with a fixed object. Each contact
normal divides the plane by the sense of legal rotation centers
for the movable object. Any movable object COR must have a
positive (counterclockwise) sense if it lies to the left of a contact
normal and a negative (clockwise) sense if it lies to the right. A
COR lying on the contact normal can have either rotation sense.
Any signed COR consistent with all contact normal constraints
is a kinematically legal motion.

The contact modes corresponding to the kinematically legal
motions are easily found. For a particular contact, a COR at the
contact point corresponds to sticking contact s. A COR at any
other point on the contact normal corresponds to either right-
sliding r or left-sliding l, depending on the sign of the COR.
Any other valid COR results in breaking contact f. An example
showing the full set of contact modes and corresponding CORs

regions is given in figure 5.

2.2. Combining velocities in COR space
If we consider the pusher to be the fixed object and the slider to
be the movable object, Reuleaux’ method finds the kinematically
possible motions of the slider relative to the pusher. Our real
goal, however, is to find the kinematically legal slider motions
relative to a reference frame fixed in the support plane. The slider
motion in this reference frame is a positive linear combination of
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Figure 6: Positive linear combinations of instantaneous CORs.
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Figure 7: Kinematically legal CORs (in a reference frame fixed
in the support plane) and associated contact modes for a given
CORp. The CORp is clockwise and all CORs in the lower right
quadrant are clockwise. All CORs in the upper left quadrant are
counterclockwise.

the pusher motion and the slider motion relative to the pusher.
The positive linear combinations of two planar velocities

represented by signed CORs has a simple graphical
representation. If the two CORs have the same sign, a positive
linear combination of these velocities corresponds to a COR of
the same sign somewhere on the line segment connecting the two
CORs. If the CORs are of opposite sign, the resulting COR must
lie somewhere on the line connecting the two, but not between the
two (i.e., on the external line segment). The sense of CORs on
the external line segment changes at infinity, which corresponds
to pure translation. See figure 6.

2.3. Admissible contact modes and slider motions
The entire space of kinematically legal slider velocities is found
by applying Reuleaux’ method and then incorporating the CORp

to map the set of legal CORs to the support plane reference frame.
Under this positive linear combination mapping, a single CORs

maps to a line segment, a line segment maps to a region, and a
region maps to another region.1 In general a signed CORs and a
signed CORp do not completely disambiguate the contact mode,
however; the relative angular velocities must be considered. A
(CORp, CORs) pair may correspond to multiple contact modes.

Figure 7 illustrates the set of kinematically legal CORs in the
support plane reference frame for the contact configuration given
in figure 5 and the clockwise (-) CORp shown. The CORs regions
for the ff contact mode are never mapped, since this contact
mode implies zero contact force and therefore zero slider motion
(under the quasi-static assumption). In this example, because all

1This mapping is actually a strictly positive linear combination. Line
segments are open-ended and regions do not include their boundaries.
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Figure 8: Moment-labeling representation of contact forces for
various contact modes.

pushing contacts are moving into the slider, any (CORp, CORs)
pair is either kinematically illegal or the contact mode and relative
angular velocities can be uniquely determined. In other words,
the CORs regions for different contact modes do not overlap.2

Also notice that if CORs = CORp the contact mode is ss. Finally,
since the set of CORs for any contact mode is a linear combination
of the CORp and the motions found by Reuleaux’ method, the
CORs regions corresponding to all contact modes meet at the
CORp.

3. Force analysis
Under the quasi-static assumption, the slider frictional support
force must always balance the pusher contact force. For each
contact mode returned by the kinematic analysis, the set of
possible contact forces is easily found. The force possible slider
motions are those which correspond to a frictional support force
that can be balanced by the possible contact forces.

3.1. Pusher contact forces
The set of possible contact forces may be found directly from the
contact mode and the coefficient of friction. At a s contact, the
force acting on the slider may lie anywhere within the friction
cone. The force acting on the slider at a r or l contact must lie on
the left or right edge of the friction cone, respectively. No force
may act at a contact point labeled f, as the contact is breaking at
that point. The total contact force is a positive linear combination
of the forces applied at each contact point.

Figure 8 shows the possible forces acting at each contact
for four different contact modes. The resultant sets of forces
are given by their moment-labeling regions [14]. Any applied
force must make nonnegative moment about the + region and
nonpositive moment about the� region. For the ss contact mode,
the regions disappear for a friction coefficient greater than 1. In
this case, the set of possible contact forces spans the force space.

3.2. Frictional support forces
We will use the following notation to describe frictional support
forces (from [15]):

2Note that it is possible for contact to be maintained at a pushing point
with a motion component opposite the contact normal. This results in CORs

region overlap for different contact modes.

R region of contact between the slider and support
plane

dA differential element of area of R
~x position of dA

p(~x) pressure at ~x (p(~x) � 0 for all ~x)
�s coefficient of friction between the slider and

support
~f frictional force vector
m signed magnitude of the frictional moment

Locating the origin of the coordinate system at the CORs, the
total frictional force ~f is given by

~f = ��ssgn( _�)k̂ �
Z
R

~x

j~xj
p(~x)dA (1)

where k̂ is the unit vector normal to the support plane and _� is
the angular velocity about k̂. The frictional moment about the
CORs is

mk̂ = ��ssgn( _�)k̂
Z
R
j~xjp(~x)dA (2)

Mason showed that during slider translation, the frictional
force directly opposes the motion and acts through the projection
of the slider center of mass onto the support plane. This point is
called the center of friction, or CF [15]. The frictional support
force always acts through the CF for translational motions
regardless of the form of the slider support pressure distribution
p(~x). Thus, for the special case of translational motion, the
support distribution reduces to a single point of support located
at the CF.

3.2.1. The effective center of friction

In this paper, we are interested in the frictional forces during
general slider motion, which includes rotation. Therefore we
will define the effective center of friction, or CFeff . The CFeff
for an arbitrary instantaneous motion plays an analogous role to
the CF for translations. For a known CORs and p(~x), the support
distribution may be treated as a single point at the CFeff .

To find the vector from the CORs to the CFeff (denoted ~c), we
first observe that the vector ~d in the direction of ~c (~d=j~dj = ~c=j~cj)
is perpendicular to ~f and is given by sgn( _�)k̂ � ~f , or

~d = �s

Z
R

~x

j~xj
p(~x)dA (3)

The magnitude of the moment is

jmj = �s

Z
R
j~xjp(~x)dA (4)

Noting that the magnitude of the frictional force is j~dj, we find
the length of the vector ~c:

j~cj =
jmj

j~dj
(5)

Combining the direction and magnitude information from
equations 3 and 5, the vector from the CORs to the CFeff is
given by

~c =
jmj

j~dj2
~d (6)

The distance from the CORs to the CFeff is always greater than
or equal to the distance from the CORs to the CF. Unlike the CF,
the CFeff is not constrained to lie within the convex hull of R.
Note also that ~c does not depend on �s or the sense of the CORs.



Figure 9: fCFeffg (shaded) as the CORs moves out along a ray.

3.2.2. Indeterminacy of p(~x)

If we can evaluate equation 6 for a given signed CORs, the slider
motion and the frictional support force are completely described
by the CORs and the CFeff . Unfortunately, equation 6 depends
on the exact form of p(~x), which is generally not available as it
depends on the microscopic interaction of the slider and support
surface. We would like to find the set of CFeff resulting from any
possible p(~x) consistent with the known CF. This set, denoted
fCFeffg, is guaranteed to contain the actual CFeff . In other words,
due to the unknown p(~x), we cannot find the exact frictional
support force, but a set known to contain the actual force.

In order to find the fCFeffg for a given CORs, we use the
simplification adopted by Peshkin and Sanderson. (See [16]
for details.) The support region of the slider is modeled as the
smallest disk centered at the CF which contains the entire contact
region R. The disk model is a conservative approximation, as
the fCFeffg for the disk must be a superset of the fCFeffg for the
slider. Tighter bounds on the fCFeffg may be obtained, but we
will not address this issue here.

There is a simple closed-form expression for the fCFeffg and
its moment-labeling representation for the case of a CORs inside
the disk. For a CORs outside the disk, the fCFeffg and moment-
labeling representation may be found parametrically (see [10]
for details). Figure 9 shows the fCFeffg as the CORs moves out
along a ray from the CF. For a given CORs, the slider support
must reduce to a single point somewhere in the fCFeffg. The
intersection of the axes is the slider CF, and the slider may be any
shape within the disk. These figures may be rotated to obtain the
fCFeffg for CORs along any other ray.

It is important to note that the fCFeffg shrinks as the CORs

moves out along a ray from the CF. This implies that the set of
possible frictional support forces also shrinks. For a CORs near
the CF, the CFeff may lie almost anywhere in the plane. For a
CORs at infinity, the fCFeffg becomes a single point at the slider
CF. This is consistent with the fact that the support distribution
can be reduced to a single point at the CF for slider translations.

I

I

U

I

U

P

P

U

I

CCW

CW

CCW

CW

(a)

(b)

Figure 10: Force status of all motions for two example contact
modes.

3.3. Slider motion force status
We would like to know if a given CORs is force possible for
a particular contact mode. To answer this question, we must
determine if the set of possible frictional support forces for this
CORs is balanced by the set of possible contact forces. The
result is the force status of the CORs, which must be one of the
following three:

I None of the possible frictional support forces can be
balanced by the set of possible contact forces. This CORs

is force Impossible. This slider motion cannot occur for the
given contact mode.

U Some, but not all, of the possible frictional support forces
can be balanced by the set of possible contact forces. This
CORs may or may not be force possible, depending on p(~x).
The CORs status is Undetermined.

P All of the possible frictional support forces can be balanced
by the set of possible contact forces. This CORs is force
Possible.

The status of a CORs may be determined using geometric
intersection in the moment-labeling representation.



3.4. Force status for all motions
If p(~x) is known, we may construct the slider limit surface [8]
in three-dimensional force-moment space. The limit surface
completely characterizes the relationship between the motion
and frictional support force. The frictional load lies on the
limit surface during quasi-static motion, and the direction of
the slider motion is normal to the surface in three-dimensional
velocity space (two translational components and one angular
component). Thus, for a particular contact mode, if we construct
the convex hull of the pusher-slider contact forces in force-
moment space [6] and project it to the limit surface, the set of
normals to the intersected surface are the slider motions which
are labeled P. All other slider motions are labeled I.

This method of determining the force status of slider motions
is impractical, as it assumes a known p(~x). Instead, we can use
the weaker model of a known slider CF and bounding disk. One
price of using this weaker model, as we have already seen, is that
some motions will be labeled U.

In section 3.2.2 we observed that as the signed CORs moves out
along a ray from the CF to infinity, the set of possible frictional
support forces shrinks. This enables the use of binary search to
find the force status of all CORs of the same rotation sense along
a particular ray. A signed CORs moving along a ray from the CF
to infinity must either:

1. always be labeled I,
2. transition from U to I,
3. always be labeled P3, or
4. transition from U to P.

Any translation (CORs at infinity) is either labeled I or P, since
the fCFeffg reduces to a single point at the CF, implying a single
possible frictional support force.

The strategy for finding the force status of all slider motions
is to sample rays at angles from 0 to 2� and binary search for
the transition in force status, if there is one, along each ray.
Each ray should be searched twice, once for each rotation sense.
Adjoining ray segments with the same label are then merged into
regions.

Figure 10 shows two examples of this procedure. In 10(a),
there are two sticking contacts with parallel contact normals and
contact friction �c = 0:5. The force possible, impossible, and
undetermined slider motions are represented in two diagrams,
one for the plane of counterclockwise CORs and one for the
plane of clockwise CORs. If the exact p(~x) of the slider were
known, the U region would disappear and the boundary between
the P and I region would lie within the U region shown.

10(b) again shows two sticking contacts with parallel contact
normals and �c = 0:2. In this example, however, there is
no P region. Since no contact force can pass through the CF,
translation of the slider is impossible. This means that all CORs
at infinity are labeled I; therefore, no COR will be labeled P. In
fact, since any possible contact force must pass to the left of the
CF, the slider can only rotate clockwise.

If the set of possible contact forces is a single line of force,
the procedure described here will simply return the COR locus
found in [16]. The COR locus is a single region labeled U. The
U region in 10(b) is equivalent to the union of the COR loci for
all lines of force between the two contacts and inside the friction
cone.

3This only occurs when the set of possible contact forces spans the force
space. In this case, all CORs are labeled P.

4. Combined analysis
As described in section 1.5, the force P and U CORs regions
for each contact mode are intersected with the corresponding
kinematically possible CORs regions. If we do this for all contact
modes, the resulting intersection sets are guaranteed to contain
the actual instantaneous CORs.

The results of the analysis are most useful when only a single
contact mode can result, despite uncertainty in p(~x). When this
contact mode is sticking at all contact points, the push is called
stable; the contact configuration is maintained and the push may
be continued indefinitely. Examples will be given in the next
section.

5. Examples and experiment
5.1. Example 1: Stable pushing
A useful application of the preceding analysis is the identification
of the set of stable pushing operations for a given contact
configuration. In this example, the slider is a 9V battery lying
on its side. The pusher is a straight edge in aligned edge-edge
contact with the face of the battery opposite the terminals, and
the coefficient of friction between the pusher and slider is 1.0.

Because we are interested in finding the set of all stable CORp,
and not just the possible motions for a particular CORp, we defer
the kinematic analysis until later. Instead, we simply enumerate
the possible contact modes using Reuleaux’ method and find the
corresponding force P, U, and I CORs regions. Any guaranteed
stable CORp must lie in the P region of the ss contact mode. The
set of guaranteed stable pushes is all CORp in this P region for
which ss is the only possible contact mode.

For this example, all CORp in the ss P region are guaranteed
to be stable. The full proof cannot be given here for space
reasons, but figure 11 gives an example for a clockwise CORp

chosen in the ss P region. 11(a) shows the kinematically possible
motions and contact modes. Figure 11(b) shows the clockwise
P and U CORs regions for ss contact. By symmetry, the
counterclockwise regions are just a mirror image of these regions
about a vertical line through the CF. For two sample contact
modes, fr (figure 11(c)) and sf (figure 11(d)), the kinematically
possible and force U CORs regions do not intersect. In fact, this
is the case for all contact modes other than ss for any choice
of CORp in the ss P region. Once edge-edge contact has been
established, then, the slider will remain in stable contact as the
pusher rotates about any point in the ss P region. Complex stable
pushing operations may be executed by continuously changing
the CORp during the course of the push (as in figure 1), provided
the CORp always remains inside the ss P region. Note that the
force regions are drawn relative to the slider; they move with the
slider during its motion.

One-step planning

Planning one-step pushing operations about a constant CORp

is straightforward. Given initial and goal positions and
orientations, we simply find the CORtotal corresponding to the
total motion. If the CORtotal is a guaranteed stable CORp, the
pusher motion given by CORp = CORtotal will achieve the goal.

Figure 12 shows an initial configuration of the battery and three
goal configurations. Goal1 is guaranteed achievable by a one-
step pushing plan, since the CORtotal corresponding to the total
motion lies inside the stable CORp region. Goal3 is definitely
not attainable by a one-step push. Goal2 may or may not be
reachable by pushing about a constant CORp.
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Figure 11: Clockwise CORp is a guaranteed stable push.
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Figure 13: Experimentally stable clockwise CORp.

Experiment

In order to verify the validity of the physical assumptions, we
experimentally determined the stable CORp for the battery with
�c measured to be approximately 1.0. The experimental setup
consists of a turntable with a fence suspended over it. By placing
the battery in edge-edge contact with the fence and rotating the
turntable, the same relative motion is created as slowly rotating
the pusher about a CORp at the turntable axis. By changing the
x position of the battery on the fence and the y position of the
fence, the effective x and y position of the CORp is changed.

In this experiment, only the clockwise stable region is tested.
The dark lines superimposed on the analytical results represent
the experimentally stable CORp (figure 13). For CORp at these
locations, the observed contact mode was ss. These results agree
with the analysis. We expect the lines of stable CORp to cover
the P region but not reach into the I region. This is precisely
the case. It should be noted, however, that small disturbance
forces applied to the slider are sufficient to make CORp near the
boundary of the P region unstable.

5.2. Example 2: Contact synthesis
In the last example we found all stable motions for a particular
contact configuration. Here we look at the inverse problem:
Given a desired stable slider motion, how should the pusher
contact the slider?

To simplify the problem, we will only consider the case of a
fence pusher and a polygonal slider. The only possible stable
contact configuration is edge-edge contact. For each slider edge
we can calculate the region of guaranteed stable CORp as in
example 1. Given a desired slider motion, the robot would
use the contact configuration which contains this motion in its
guaranteed stable CORp region.

Figure 14 shows the force P regions (which are also guaranteed
stable CORp) for the given polygon and �c = 0:5. The edges
are numbered 1 to 4, starting with the horizontal edge and
proceeding counterclockwise. The regions labeled P1–P4 are
the guaranteed stable CORp regions for edge-edge contact with
edge 1–4, respectively. The I regions represent force impossible
motions regardless of the contact edge. This information could
be used to determine impossible slider trajectories for a pushing
control system [9].

6. Extensions
For general planar parts transfer, the planning of sequences of
stable pushes (or smoothly varying paths) is necessary. As
shown in section 5.1, one-step planning is trivial. In the
case where a one-step plan is either not stable for any contact
configuration or causes a collision between the slider and an
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obstacle, a path planner incorporating the nonholonomic stable
motion constraints is required. It can be shown that if a particular
contact configuration has at least two stable non-translational
CORp, the slider may be positioned and oriented arbitrarily in the
(obstacle-free) plane by pushing with this contact configuration.

This paper assumes a known pusher-slider contact
configuration. Due to sensing and control errors, however, it
is difficult for a robot to accurately achieve a particular contact
configuration. One solution is to use the mechanics of pushing to
decrease uncertainty in the contact configuration. For example,
a fence pusher may translate until a slider edge aligns with the
fence before executing a stable push.

To ensure analytical results which are robust in the real
world, the analysis should allow for some uncertainty in physical
parameters such as the coefficient of contact friction and the
location of the CF. The effect of this uncertainty is to enlarge the
force U regions.

The instantaneous analysis presented here could be coupled
with an integration procedure and the c-space obstacle
representing all possible pusher-slider contact configurations, as
in [5]. This would allow us to reason about finite slider motions,
and, in particular, to determine whether a slider perturbed from
a stable push would tend to return to the original configuration.
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