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ABSTRACT. The flow of valley glaciers is examined in the light of recent laboratory experiments on the behaviour 
of ice under load. Simple expressions are given for the velocity distributions in some cases of laminar flow, and the 
modification of a pure laminar flow theory necessary to explain the formation of transverse crevasses and thrust 
planes is considered. The paper ends with some remarks about the formation of crevasse patterns on the surfaces of 
glaciers. The statical equilibrium of a circular ice cap is discussed in an appendix. 

RESUME. L'ecoulement des glaciers dans les vallees est examine a la lumiere des experiences recentes en labora
toire sur le comportement de la glace soumise a une compression. Des expressions simples sont donnees pour la 
distribution des vitesses dans quelques cas de courants laminaires. On considere ensuite les modifications a apporter 
a une theorie sur les courants purement laminaires pour expliquer la formation des crevasses transversales et des 
plans de glissement. Cette communication se termine pa~ quelques remarques concernant les figures formees par 
les crevasses sur la surface des glaciers. L'equilibre d'une calotte circulaire de glace est discute dans un Appendice. 

I. THE MECHANICAL PROPERTIES OF ICE 

Present knowledge of the mechanical properties of ice suggests a re-examination of the theory of 

the flow of long valley glaciers. It has sometimes been assumed that ice under stress behaves like a 

very viscous Newtonian liquid: in other words, that for ice, as for a liquid, there is a proportional 

relationship between rate of strain (velocity gradient) y and shear stress T, as shown by curve B in 

Fig. I (p. 83), a.lthough the coefficient of viscosity for ice is much greater than for a normal 

liquid.'*' Unfortunately, this assumption, although mathematically simple, does not represent the 
real behaviour of ice very well. A constant viscosity is not observed with other polycrystalline 

materials such as metals, and it would be surprising if ice were an exception. In fact the matter 

seems now to have been put beyond doubt by careful laboratory experiments carried out by Mr. 

J. W. Glen.ll He finds that, just as with a metal, applying a sustained constant stress (he actually 

applies a uniaxial compressive stress) to a specimen of ice causes it to deform permanently, and that 

after a few hours (the "transient" period) the rate of deformation settles down to a steady value. 

If the experiment is repeated with different values of the stress, the relationship between shear 

stress T and the rate of shear strain y in the specimen is given by a curve of the general shape shown 

at A in Fig. 1. At low shear stresses the rate of strain is small; for higher shear stresses, however, 

the rate increases very rapidly, so that a small increase of stress produces a large increase in strain

rate. This is the type of curve, then, on which a theory of glacier motion should be based. 

In a glacier the state of stress is not uniaxial, as in Glen's experiments, but triaxial, and in 

particular there is a hydrostatic pressure acting deep in the ice. The pressure reaches about 

30 atmospheres in the Mer de Glace and 300 atmospheres or more in the Greenland ice cap. It has 

been suggested by Streiff-Becker, by Haefeli and by Demorest that this pressure may make the ice 

more deformable at depth, that is, reduce the shear stress needed to produce a given rate of strain. 

There seems to be no direct experimental evidence on the behaviour under shear stress of ice or 

any other polycrystalline substance already subjected to a high pressure and very near the melting 

point, and I think one should keep an open mind on what might occur. It may be remarked, how

ever, that a pressure effect is not observed in metals far from the melting point, and that with 

liquids the viscosity is substantially independent of pressure. The present discussion is founded on 

the assumption that any pressure effect is negligible in ice. Should the existence of such an effect 

be later proved by experiment the necessary modifications of the expressions in Section 2 would be 

simple; the changes that would occur in the results of Section 3 are not so obvious. (See also 

Journal of Glaciology, Vol. 2, No. II, 1952, p. 52- 53.) 

• A paper containing several very apposite and simple calculations on glacier mechanics, not only with this assump
tion but also allowing for a change of viscosity with depth, was given by J. W. Evans 1 in 1913. 
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A possible effect of hydrostatic pressure on the shear stress necessary to produce a given rate of 

deformation should be distinguished from the diminishing slope of Glen's curve A in Fig. I of this 

paper, which might be described as a lowering of viscosity with increasing shear stress. 

For the purpose of calculation it is convenient to express curve A analytically. Glen finds that 

for polycrystalline ice with random crystaIIographic orientation a power law gives a good fit over 

the range of stresses T= o·8 to 5'5 bars '*': 

. - (~)'/I )' - B . (I) 

where Band n are constants. (This law was suggested by Perutz.2) For ice at -1 '5° C., if y is 
expressed as shear strain per year and T is in bars, B = I·6z and n= 4'I, but the values of the con

stants depend rather sensitively on the amount of bubbliness in the ice and on the temperature. In 

this formula both T and y are always to be taken as positive. 

B 
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2. LAMINAR FLOW 

Fig. I. Relations between the 
rate of strain y and the applied 
shear stress T: A, ice (after 
Glen); B, liquid of constant vis
cosity; C, simplified flow law 
used in section 4 

A liquid of constant viscosity obeys the law (I) with the value of n= I. With the more general 

flow law we are in a position to attempt a recalculation of the distribution of velocities within a 

valley glacier on the same lines as Somigliana's calculation 3 for n= I. 

(a.) (6) (c) 

Fig . 2. Laminar flow down an 
inclined plane 

The simplest case to start with is that of flow down a uniform plane slope (Fig. 2a, above). 

Axes are taken as shown, with the origin on the surface and Ox down the line of greatest slope. 

Oz is horizontal and perpendicular to the plane of the diagram. It is assumed for the moment that 

the lines of flow are everywhere parallel to the bed and that conditions are the same on all sections 

perpendicular to Ox. The shear stress on a layer at a depth d, which is measured perpendicular to 

the surface, is 

Txy= pgd sin IX 

• I bar= 106 dynes / cm.~1 K g . l cm.~1 atmosphere . 
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where p is the density, assumed constant, g is the acceleration due to gravity and rJ. is the angle of 

the slope. y in (I) is here du/dy, where u is the velocity. It then follows, by integration, that the dif

ference between the velocity Uo of the top layer and the velocity of the layer at depth d is given by 

K . n d + Uo - U = -- sIn rJ.. n 1 

n+I 
(2) 

where K=(ifF 
The relative velocity between the top and bottom layers is thus 

K . n h 
UO -Ub=-- sIn rJ.. nTl 

n+I 

where Ub and Tb are respectively the velocity and the shear stress on the bed, and h is the total 

depth measured perpendicular to the bed. 

cp, the volume passing through any cross-section in unit time, for unit thickness in the z direc

tion, is given by a further integration: 

T ~ 
2h. 

0 (,lo 1--r -
u 

a6 

Z 

\ 

] 

K . 
CP = Ubh+-- sin" rJ. • hn+% (4) 

n+2 

x 
Fig . 3. Laminar flow in an infinitely deep 
channel of finite width . Plan view 

One sees from equation (2) that if K, n, rJ. and Uo are given one can calculate the velocity at any 

required depth. For the physical problem, on the other hand, we may regard cP, K, nand rJ. as given. 

Equation (4) does not enable h to be found, though, because Ub is not yet determined. One could 

have the same cp for different values of h, as indicated in Fig. 2b (p. 83). 

The physical properties of ice used in the calculation so far do not allow a prediction of how 

fast the glacier slips on its bed. All we can calculate are differential velocities within the ice. There

fore, on these assumptions, one cannot predict the depth of a glacier from a knowledge of its surface 

velocity and slope; the two cases indicated in Fig. 2C (p. 83), for instance, could not be dis

tinguished. On the other hand it would evidently be possible to find an upper limit for the depth, 

and if cp were known as well as the surface velocity and slope, the depth could be deduced. 

3. EFFECT OF THE VALLEY SIDES 

We now have to ask what effect the sides of the valley will have on these results . One may first 

notice that exactly the same equations (2), (3) and (4) apply to an infinitely deep, narrow glacier 

(Fig. 3, above), if the symbols are given the meanings: 

uo = velocity on the central plane, 

U = velocity at a distance d from the central plane, 

ub = velocity at the edges, 

rJ. = slope of the surface, as before , 

h = the half width. 

K and n have the same meanings as before. 
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A case intermediate between the very wide and the very narrow valley would be a bed formed 

from one half of a circular cylinder (Fig. 4, below). This is an easy problem to treat because the sur

faces of maximum shear are all half-cylinders parallel to the bed. Simple statics shows that the 

variation of shear stress T with depth is still linear but that the rate of increase is just half as rapid 

as with a very wide valley of the same slope. Thus 

T= tpgr sin IX 

where r is the di s tan~ e from the x axis of the point considered. Equations (2), (3) and (4) take the 

forms 

(1)" K uo-u= - - - sin" IX • r"+ 1 

2 n+l 
(2)' 

1 7TK(l)"+' Total rate of discharge=-7TR2ub+-+ - sin" IX • R n+3 
2 n 3 2 

~-

-:z: 
r 

;;! P 

Fig. 4. Flow in a channel formed from a half-cylinder Fig. 5. Diagram illustrating that the shear stress 
on the bed is pgh sin a rather than pgh sin {3, when 
( a - f3) is a small angle 

R is here the maximum depth, the radius of the cylinder. The same remarks about the possibility 

of finding, from a knowledge of uo, an upper limit to the depth, but not an exact figure, apply to this 

case equally. 

Somigliana, treating the case with n = l, was able to give an exact analytical solution for a bed 

whose cross-section formed a semi-ellipse, and he also made calculations for beds of more complex 

shape. Unfortunately, with the more general flow law (1) more complex cross-sections than a semi

circle do not readily lend themselves to exact analysis. We therefore have to resort to approximate 

methods. 

In a glacier of arbitrary but constant cross-section, flowing uniformly, one may find the average 

value of the shear stress, Ta-v, at the bed by simple resolution of forces. If the area of cross-section 

perpendicular to the bed is A and the perimeter of this cross-section is p, then, for unit length of 

valley, a force pgA sin IX due to the weight is balanced by a force TavP due to the resistance of the 

bed. Therefore 

Tav = pgi sin IX (5) 

(A lp is analagous to the " hydraulic radius" of a river valley or channel, but it should be noted that 

A andp are measured here not in a vertical plane but on a section perpendicular to the bed.) 

The values of A and p are not known for many existing glaciers . On the other hand, there are 

a number of glaciers whose depths are now known. Knowing the depth and width of a glacier 
one may make a good guess at the value of Alp. The procedure I have used (see also Koechlin4) is 

to put a parabola through the three known points, the lowest point on the bed and the two marginal 

points on the surface, to assume that the upper boundary of the cross-section is a horizontal line, 
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and hence to calculate A/p. One also needs to know a.:. But in real glaciers the slope of the bed is not 

always the same as the slope of the surface. So which slope should be taken in the formula? The 

following argument makes it plausible that the surface slope is the right one to use. For fuller 

arguments leading to the same conclusion see reference 5. 

Consider a wedge-shaped block of ice whose surface has a slope a.: resting on a slope of inclina

tion {3 (Fig. 5, p. 85). Provided (a.:-{3) is small the shear stress acting on the bed at the point P 

may be approximately calculated. By the argument used for the parallel-sided slab, the shear stress 

at P on a plane drawn parallel to the surface is pgh sin IX where h is the depth of P. Since the 

bed is near a plane of maximum shear stress, the shear stress on the bed itself will only differ from 

pgh sin IX by a small amount, particularly if (a.:-(3) is small, since (a.: - (3) is the angle through which 

one has to rotate the axes of reference of the stress tensor, IX and not (3 is therefore the angle to be 

used. 

The calculation of Tav using the data for sixteen Alpine glaciers collected by Mercanton 6 gives 

values of Tav ranging from 0·49 bars, for the Unteraar Glacier at 2100 m. in 1945-47 (the last in the 

list) , to 1.51 bars, for the Grenz Glacier at 2700 m. in 1948-49 (the fifth in the list). Considering 

the comparatively wide range of widths and depths involved and, particularly, the wide range of 

slopes, the spread of values of Tav is not very large-a result which might have been anticipated 

from the form of the curve A in Fig. I. 

One way of proceeding further is to assume that the linear variation of Txy with depth that was 

found for a circular cylindrical bed and for a plane bed also holds for these more complicated cross

sections, and that the rate of increase of Txy with depth on the central vertical plane z = o is fixed by 

putting Tb, the actual shear stress on this part of the bed equal to Tav, as is also rigorously true for 

the cylinder and the plane. This assumption gives a formula analogous to (3) for the relative 

velocity of top and bottom 

I (Tb)n 
UO-Ub = n+1 13 It 

In theory, therefore, knowing the value of Uo one could predict the value of Ub. The calculation 

is not very reliable because the flow may not be laminar, as discussed in the next section, because 

the assumption of linearity for Txy may be at fault, because Tb may not be equal to Tav, and because 

the values of Band n are not yet precisely known for the temperatures and types of ice in the 

glaciers considered. Nevertheless, in spite of this formidable, and perhaps rather pessimistic, list of 

pitfalls, it is encouraging that when the calculation is made for the sixteen glaciers listed by Mer

canton, with the values of Band n found by Glen for - I ·SoC., the relative speeds of top and bottom 

always come out less than the observed surface velocities and give reasonable figures for the bottom 

velocities, ranging from 4 m. /yr. for the Arolla Glacier at 2210 m. in 1908--g (the second in Mer

canton's list) to 79 m./yr. for the RhOne Glacier at 2520 m. in 1945- 47 (the ninth in the list). If the 

calculation is done the other way round and used to predict an upper limit for the depth from the 

measured surface velocities, the calculated depth is always greater than the measured depth. 

From this discussion one point stands out. No satisfactory answer, without ad hoc assumptions, 

seems to have been given to the question of what ultimately determines Ub. But, until this question 

is answered, mathematical analysis may be able to explain the observed relative velocities within 

glaciers but it will not be able to predict at all the absolute velocities of movement. If Ub was found 

in practice to be much less than Uo the matter would be less serious. In fact this is by no means the 

case, and indeed it seems that sometimes the major contribution to the surface velocity comes from 

Ub and only a small part from differential movement within the ice. 

4. COMPRESSIVE AND EXTENDING FLOW 

In Sections 2 and 3 attention was restricted to pure laminar flow, in which all points move 

parallel to the bed. In such a state of flow the surfaces along which shearing takes place, in a di

ferential sense, are in all places parallel to the bed. On the central vertical plane, assumed here to 
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be a plane of symmetry, the stress components acting are Txy, ax, a y and a z. (Throughout this 

paper tensile stresses are counted as positive.) Txy increases linearly with depth and ax= alJ = a z= 

pgy cos IX- A, where A is the atmospheric pressure. The three normal pressures must be equal as 

they would otherwise cause a longitudinal or transverse extension or compression, which is contrary 

to the original assumption. The stress in the surface at z=o is therefore a pure hydrostatic pressure 

A. It follows that a pure laminar flow theory cannot include any explanation of transverse crevasses 

or shear faults on the central axis of a glacier. 

(}y 

l'Txy 

-iDt-<J% -~ 

y 

Fig. 6 . S tress distribution in compressive or extending flow of a parallel-sided slab on a slope of angle Q. I n the 
figure Q has been taken as corl 5 = I 1.3 0

• This diagram differs slightly f rom the one given in ref erence 7 in that 
the effect of atmospheric presSllre has been included by moving the curves f or "'" and " y an a1ll0ltnr A C=k) to 
rhe lefr 

T o explain these phenomena we need to study a more complex type of flow in which an excess 

longitudinal stress is allowed. The mathematics of this are rather more complicated, and in the 

exact analysis a difficulty is met similar to that mentioned for laminar flow, namely that of postulat

ing a suitable, and physically plausible, law to give the velocity or the shear stress on the bed. The 

difficulty is avoided, and the main features of the analysis are retained, if one assumes a simpler 

flow law. T he one chosen is shown by cu rve C in Fig. I. It is the special case of law (I) obtained by 

putting n infinite. This is equivalent to assuming that the rate of strain is very small up to a certain 

shear stress, k (c:::: I bar), and that shear stresses greater than this do not occur. (For n infinite, 

B = k.) As the flow theory based on this simplified law has already been published elsewhere 7 the 

details will not be given here but only some of the results . It was assumed that the effect of the 

drag of the valley sides was negligible, as would be the case in a very wide valley. It seems likely, 

though, that the main results apply on the vertical axial plane of any valley glacier. 

The analysis shows that there are two possible sorts of flow. One sort gives a longitudinal stress 

ax which is compressive throughout the depth of the glacier (Fig. 6, above) and always more com

pressive than ay ; the other gives a longitudinal stress which, although compressive at depth, is 

tensile in an upper surface layer, and is always more tensile (that is, algebraically greater) than a y. 

The result is that in the firs t case the forward velocity of the glacier decreases as one goes down 

glacier , because the ice is being compressed, and in the second case the velocity increases because 

the ice is being extended. One could call the fi rst case "compressive flow" and the second "extend

ing flow." (In the paper referred to above I used the terms " passive" and "active" flow, borrowed 

from soil mechanics, to describe these states . I think the new terms are preferable as being more 

graphic and less likely to lead to confusion.) 
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An immediate result is that one could expect transverse crevasses to form during extending 

flow but not during compressive flow. When the effect of atmospheric pressure is taken into account 

(which is strictly necessary because it is of the same order of magnitude as k) the theoretical thick

ness of the zone of tensile stress is approximately (2k-A) /pgc::::k/ pg,-...JII m., but of course this 

figure is only to be thought of as giving a rough approximation. Crevasses might be expected to 

open up to about this depth. Their presence would then modify the stress distribution and they 

might propagate to greater depths. On the wall of a crevasse at a depth 2k/pg,-...J23 m., however, 

the pressure from above (A+2k) would exceed the lateral pressure, A, by 2k, which is the yield 

stress in compression, and so below this the crevasse would close up comparatively rapidly. 

Another distinction between the two types of flow can be made by considering the slip-line 

fields (Fig. 7, below). A slip-line field is represented by two families of curves drawn so that their 

directions at any point give the two perpendicular directions of maximum shear stress (that is, the 

two directions in which the tendency to shear is greatest). In both the present cases they are 

~ 
p' 

EXTENDING FLOW 

(a) 

COMPR£SSIV£ FLOW 

(6) 

Fig. 7. Slip-line fields and possible faults 

parallel and perpendicular to the bed at the bottom but they turn so as to emerge at 45 degrees 

to the surface. The curves are parts of cycloids, and the field in compressive flow is the mirror image 

of the field in extending flow. The importance of the slip-lines is that they show the directions in 

which the ice has the greatest tendency to fracture by shear. If the ice had no structure of its own 

one would expect that if shear fractures-faults-occurred, they would run along the directions of 

the slip-lines. Actually, of course, the ice is not equally strong in all directions and the laminar 

structure which every glacier possesses probably provides surfaces of weakness. One could say, 

therefore, that the closer any surfaces of weakness are to the slip-line directions, the more liable 

they are to give shear faulting. 

In practice, by chance, the banding in glaciers often tends to run roughly the same way as one 

set of slip-lines (PP' in Fig. 7) and this is probably why thrust planes are formed in glaciers with 

just about this shape. Shear displacement exactly along a slip-line would give the step shown at 

P' in the figure. Faulting along the orthogonal set of slip-lines is not seen so often, nor is the cor

responding faulting in the extending solution often observed. This may be because, first, it could 

be obscured on the surface by crevassing and, secondly, because the necessary slip-lines are not 

parallel to any structural surfaces of weakness. There may be a few examples of it, however, such 

as the one shown in Fig. 6 of reference 7. 

In the calculations with the simplified flow law, unlike those for laminar flow, which were made 

with the more realistic flow law, it is possible to allow for the effect of accumulation and ablation, 

and also for changes in the slope of the glacier bed. In fact, which type of flow occurs, compressive 

or extending, depends onjust these two factors . If cfo is the rate of discharge, as defined in Section 2, 

dcpfdx is the rate of addition of ice to the upper surface of the glacier. Positive dcfo /dx represents 

accumulation; negative dcfo/dx represents ablation. The second factor is measured by R, the radius 
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of curvature of the bed. If R is positive the bed is convex, and if R is negative the bed is concave. 

The criteria for the two types of flow may then be expressed as: 

Extending flow if (~: +~ cot et.) is positive. 

Compressive flow if (~: +~ cot et.) is negative. 

Thus, if there were no changes in the slope of the bed, R would be infinite everywhere, and so 

where d~ / dx was positive (accumulation area) extending flow would occur, and where dr/>/dx was 

negative (ablation area) flow would be compressive. At the other extreme, if there were neither 

accumulation nor ablation, dr/>/dx would be zero and it would then be the sign of R that decided 

the type of flow. A convex bed (R positive) would, give extending flow, while a concave bed 

(R negative) would give compressive flow. In general, both factors are present; Fig. 8 (p. 90) shows 

the result expected in an idealized glacier valley. (The upper diagram in the figure shows the 

velocity distribution for the simplified flow law; "for details reference should be made to the 

original paper.) 

The following table summarizes the matter: 

Compressive flow 

Upper layer in compression 
No crevasses 
Thrust planes 

de/> . Abl' dx negative. atlOn area 

R negative. Concave bed 

(
de/> + e/> ) . dx R cot IX n egative 

Conditions 

Extending flow 

Upper layer in tension 
Transverse crevasses 
(Other shear faults?) 

de/> .. A I' dx posltlve. ccumu atlOn area 

R positive. Convex bed 

(
de/> 4> ) . . 
dx +:n cot IX positive 

As mentioned at the beginning of this section, the theory just described, giving the two types 

of flow, is most easily developed for the simplified flow law with T constant. But it can be shown 

that, by using the observed curve A, and making a suitable generalization to take account of the 

three-dimensional state of stress and deformation, the principal qualitative features of the simpler 

theory remain: in particular, the upper tensile layer and the general shape of the slip-lines. 

I believe, therefore, that we ought to think of the flow of a glacier in a gently undulating, 

parallel-sided valley as a laminar flow of the simple type discussed in Section 2, to which is added 

a longitudinal extension or compression according to the curvature of the bed and according to 

whether there is accumulation or ablation at the surface. It is this last component of the motion 

that is related to the formation of thrust planes and transverse crevasses. 

5. THE THEORY OF CREVASSE PATTERNS 

The general explanation of the formation of crevasse patterns on glaciers was given in a fine 

paper by HQpkins 8 in 1862, which must have been one of the first applications of the general 

analysis of stress to the distribution of stress in a continuously deforming body. The principles 

used in this section are essentially the same as those employed by Hopkins, except for the introduc

tion of a result from the modern theory of plasticity. We neglect here the effect of atmospheric 

pressure, although strictly this is not permissible because its magnitude is comparable with that of 

the shear stress; the general effect of the pressure would be to reduce the area of crevasse fields. 
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Let us first assume (Fig. 9, p . 91) that, ifax is compressive on the surface of the glacier at the 

centre, it is also compressive, with much the same value, at other points of the surface right up to 

the margins; and, similarly, that there will also be regions where ax at the surface is tensile with 

much the same value right across the glacier. 

Accumu la tion 0 rea ~ " bl o lfon Q r ~Q 

<;' po, itivc ~ n'qolivc: 

5;9n o f R 

+ + 

E 'c:=£J 1-' _----==£'--_-', 1-1 ----,c=-----.JI I. £ I <-I _-",c_--,I [g]1 <-_-----'C"---_ -' 

Fig . 8. Longitudinal section of an ideal glacier valley. The sign of R and the type of flow are given at the bottom 
of the figure. The lower diagram shows the slip-line field; the upper diagram shows the velocity distribution calcu-
lated with ihe simplified flow law C i1l figure I • 

Ifax is compressive the ice will tend to expand sideways in the z direction. There are two 

extreme cases to consider. If the sides of the valley are sufficiently steep to prevent lateral expansion 

a transverse compressive stress a. will be set up, and the theory of plasticity 9 shows that a.=tax 
(both negative). Alternatively, the valley sides may be less steep and la.1 would be less than this, 

or even zero. The same would be true ifax were tensile: with steep valley sides transverse contrac

tion by general downward movement might not be possible and a transverse tensile stress a.=tax 
would be set up at the surface; or, alternatively, az might be less than this and even zero. 

In all cases 0 <Iazl <t laxl. 
The only shear component of stress on the surface is T u ' This is zero at the middle and in

creases, in absolute magnitude, towards the margins . The result obtained (for instance by using 

the Mohr circle construction 10) when Tzx is added to the other components, ax and az, is shown 

schematically in Fig. 9a, band c, p. 91. The lines show the direction of possible crevasses. They 

are drawn at all points where a tensile stress can exist. When ax= o (Fig. 9b) the principal axes of 

stress are everywhere at 45 degrees to the edge. One principal stress is tensile and the other is 

compressive, both being of magnitude ITzxl ; the tension, of course, decreases to zero at the centre. 

The effect of a longitudinal compressive stress (Fig. 9a) is to swing the direction of maximum 

tensile stress more transverse to the line of flow, so that any crevasses would make angles of less 

than 45 degrees with the margin. The line of the crevasses should curve in the sense shown in the 

diagram, assuming ax constant across the surface. The existence of a tensile stress in this case, 

however, depends upon ITzxl reaching a certain value, and so the tendency to crevassing dies away 

towards the centre. If transverse expansion is prevented the necessary value of ITnl is lax/V21. 
A longitudinal tensile stress (Fig. 9c) will swing the direction of maximum tension towards the 

line of flow. The crevasses would therefore meet the edges at angles greater than 45 degrees, and 
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would curve across the glacier in the way shown. If, in this case, a transverse tensile stress (uz) 
were developed, there would be a central strip of the glacier surface where both principal stresses 

were tensile. This can only happen at places where Tzx is not too large, and so the strip may not 

extend to the margins. If transverse contraction were prevented the condition for both principal 

stresses to be tensile would be hxl<lux/V21. In this central strip one might expect to see 

crevasses not only transverse to the direction of flow but in many other directions as well; in parti

cular, crevassing would be possible in the longitudinal direction, as indicated by the broken lines. 

~--/~--J\ 
----- 1",",,1) 17i1 

~-----=;}I 
0:: co",?res.sillll 

(aj 

~. 0 

(6) 

Ux tenst'le 

(e) 

Fig. 9. The unbroken lines show the theoretical positions and directions of crevasses in three possible cases. The 
diagrams at the top indicate the stresses acting near the margin shown uppermost in the figure 

A longitudinal compressive stress could be caused by ablation or a concave bed as discussed in 

the last section, or by a narrowing of the glacier valley, or on the inside of the bend when a glacier 

changes direction. In a similar way a longitudinal tension could be set up by accumulation, a 

convex bed, a widening of the valley or on the outside of a bend in the valley. 

An examination of many photographs, including some hundred aerial photographs taken in 

Alaska by Mr. Maynard Miller, who was kind enough to lend them to me, shows that although 

crevasse fields are often highly complicated in their details the main features of many of them can 

be explained on the above lines. 
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APPENDIX 

PROFILE OF AN IDEAL CIRCULAR ICE CAP 

Orowan 12 and Hill 7 have considered the quasi-static equilibrium of an ice cap resting on a 

horizontal base. They used curve C of Fig. I (p. 83) as an approximation to the plastic behaviour of 

ice and treated the case where the ice cap was very long in one horizontal direction, so that plastic 

spreading took place entirely in the other horizo~tal direction ~t right angles. In such an ice cap 

each half of the theoretical surface profile in the direction of flow is approximately part of a 

parabola. The equation is 

h = V2hox . (A.I) 
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where h is the height at a distance x from the nearer of the two edges; ho= k j pg. If.k= I bar, 

hO= II·3 m . and so h= V z3x, where distances are measured in metres. The equation does not hold 

very near the centre or the edges of the cap. 

It is interesting to consider what would happen if the two horizontal axes of the cap were com

parable in length, and for this purpose we may take an ice cap that is circular in plan. 

Consider the small prism-shaped element of such an ice cap shown shaded in plan and elevation 

in Fig. 10 (below). The prism, which is of height h, is taken to be at a distance r from the centre 0 

o 88 .. $ .. 

Fig. I O . Ideal circular ice cap on a horizontal bed 

of the ice cap. If the ice is spreading out radially there is an inward component of force exerted by 

the floor on the base of the prism. If we assume a perfectly rough bed which exerts a constant 

shear stress k, the force is 
kr888r 

If h» ho, as will be true except very near the edges of the cap, the normal pressure on the vertical 

faces of the prism increases from approximately 0 at the surface to approximately pgh at the base. 

The average pressure is thus tpgh. This results in a component of force acting radially outwards of 

tpgh2 8r88 - 8(tpgh2r88)=-pghr8h88 

The average pressure on the faces parallel and .perpendicular to the radial direction may differ by 

an amount of order zk, which would give an outward force of order zkh8r88. However, this is 

small compared with the term kr888r, provided h« r, and so we neglect it. 

Equating the radial forces to zero and proceeding to the limit we finD. that, approximately, 

dh k_~ 

dr pgh h 
. . (A.z) 

where ho< <h< <r. This integrates to the parabola, 

Where R is the radius of the cap, as the equation of the profile. The complete profile is thus part 

of the surface formed by rotating the parabola of Fig. 10 (p. 9z) about a vertical axis through O . 

By comparing equation (A.3) with equation (A.I) we see that the profile taken through the centre 

of a circular ice cap of diameter zR is identical with the transverse profile of a very long ice cap of 

width zR. 
It is perhaps surprising, at first sight, that the dimension transverse to the line of flow does not 

affect the profile, but the reason for this is clear when one considers a more general case.!3 It can 

be shown that the result just proved for a circular cap is merely a special case of a general theorem 

applicable to ice caps on uneven bases of irregular outline. The general theorem is that (I) seen in 

plan view, flow takes place in the direction where the downward slope of the surface is greatest; 

(z) the surface gradient (1. is connected approximately with the ice thickness h at each point by the 

equation 

ho 
(1. = -

h 
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For the circular ice cap on a horizontal bed, ~~ = -<J., and equation (A'4) is identical with (A.2). 

For an ice cap of irregplar shape resting on a horizontal bed the equation of the profile is evidently 

h=V2hos (A·S) 

where s is the distance from the edge taken along a line of flow. Equation (A.S) embraces both 

(A.I) and (A.3). The derivation of equation (A-4) and a discussion of its possible application to the 

Pleistocene ice-sheets and to Greenland are given in reference 13. 

MS. received ·z8 April 19S2 

REFERENCES 

1. Evans, J. W . The wearing down of the rocks. Presidentia l address to the Geologists' Association. PTOC. Geol. Ass., 
Vol. 24 , 19 13, p . 24' -300. 

2. P erutz , M . F . G laciology-the flow of glaciers. The Observatory , Vol. 70, ' 950, p . 64-65. 
3. Somigliana, C. S ulla profond;t a d e i g hiacciai. A lli della R eale Academia Nationale dei L incei, Rtmdiconti, Classe di 

Scienze fisiche, mate11latiche e natura/i . Vol. 30, Serie S, 192IJ 1
0 semestre, p . 29 1-96 , 323-27, 360-64 ; 2 ° semestre, 

p . 3-'7 · 
4. K oechlin , R . Les glaciers et leuT mecanisme, L ausanne: R ou ge et Cie., '944, p . 103. 
5. Nye, J. F. A com parison between the theoretical and the m easured long profi le of the U nteraar Glacier. J ourn. Glac., 

Vol. 2, No. 12, 1952, p . 103- 07 . 
6. M ercanton , P . L. Examen de quelq ues formules pour la predetermination d e l'epaisseur du glacier, a I'occasion d e 

sondages r ecents. Geofisica PUTa e applicata, Vol. 16 , ' 950, p. '70-'74. 
7. N ye, J. F. The flow of glaciers and ice-sheets as a problem in plasticity. PTOC. R oy. S oc., A , Vol. 207, '95 I, p . 554-72. 
8. H opkins, William. On the Theory o f the M otion of G lacie rs . Phil. Trans. , Vo l. 152,1 862, Part 11 , p . 677- 745. 
9 . Hill, R. The mathematical theory of p lasticity, Oxford: C la rendon Press, '950, p . 129. 

10. Nadai, A. Plasticity, New York : McGraw-Hill, 1931 , p . 44- 46. 
11. G len, J. W . E xp eriments on the d eformation of ice. J OUTll. Glac. , Vol. 2, No. 12, 1952, p . 1I1- 14. 
12. Orowan , E . Discussion. J ourn. Glac. , Vol. I , ' 949 , NO.5 , p . 23 1-36. 
13. N ye, J. F. A m ethod of calculating the thicknesses of the ice-sheets, N ature, V o l. 169, 1952, p . 529. 

https://doi.org/10.3189/S0022143000033967 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000033967

