
Proceedings of the 1995 IEEE International Conference on Robotics and Automation
1945–1951, May 1995
doi: 10.1109/ROBOT.1995.525549
1995 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE

The mechanics of undulatory locomotion: the mixed
kinematic and dynamic case

James P. Ostrowski∗ Joel W. Burdick† Andrew D. Lewis‡ Richard M. Murray§

1995/03/01

Last updated: 1998/03/02

Abstract

This paper studies the mechanics of undulatory locomotion. This type of locomo-
tion is generated by a coupling of internal shape changes to external nonholonomic
constraints. Employing methods from geometric mechanics, we use the dynamic sym-
metries and kinematic constraints to develop a specialised form of the dynamic equations
which govern undulatory systems. These equations are written in terms of physically
meaningful and intuitively appealing variables that show the role of internal shape
changes in driving locomotion.
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1. Introduction

A significant body of research has been developed in the area of robotic locomotion.
However, prior studies have been focused either on a particular set of assumptions or
a particular robot morphology. For example, numerous investigators have studied and
demonstrated quasi-static, multi-legged locomotion (see [Song and Waldron 1989]). Begin-
ning with [Raibert 1986], hopping robots have received considerable attention (see [Berke-
meier and Fearing 1992, Koditschek and Bühler 1991]). Bipedal walking and running
has also been an active area of study (see [Kajita and Tani 1991, McGeer 1990]). Other
researchers have considered and implemented various forms of “snake-like” locomotion
schemes (see [Chirikjian and Burdick 1991, Hirose and Umetani 1976]) and investigated the
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geometry of amoeba swimming through a viscous fluid (see [Shapere and Wilczek 1989]).
However, to date there exists no unifying methodology for analysing or controlling robot
locomotion. Ultimately, we seek a mechanics theory and a control theory for robotic loco-
motion which is uniformly applicable to a broad class of locomotory problems. This paper
introduces a unifying mechanics principle for undulatory locomotion .

Definition: Undulatory locomotion is the process of generating net displacements
of a robotic mechanism via a coupling of internal deformations to an interaction
between the robot and its environment.

Common biological examples of undulatory locomotion include worms, snakes, amoeba, and
fish. In this paper, we limit these interactions to those modelled by nonholonomic kinematic
constraints. This restriction allows us to model a rich class of systems and results in enough
structure to make the problem tractable. We believe that the framework presented here
will provide the basis for an undulatory locomotion control theory, and will ultimately be
extended to a large class of locomotory systems.

This work has several goals and contributions. First we show that locomotion prob-
lems can naturally be cast in the framework of principal fibre bundles. Second, using
this structure, we derive a specialised form of the dynamical equations for mechanical sys-
tems with Lagrangian symmetries and nonholonomic constraints (which are characteristic
of many undulatory locomotors). Third, we show how these results lead to a simple and
appealing insight into undulatory locomotion. Finally, we show that the framework pre-
sented here is in fact a superset of prior work on the mechanics of wheeled nonholonomic
vehicles and free-floating satellites.

The results in this paper draw significantly from recent results in Lagrangian mechanics
due to Koiller [1992] and Bloch, Krishnaprasad, Marsden, and Murray [1996]. We also note
that the role of connections in problems of locomotion has been explored in [Kelly and
Murray 1994], where results were developed regarding mechanics and control in the case of
purely kinematic constraints.

2. Mechanics

It is always possible to divide a locomoting robot’s configuration variables into two
classes. The first class of variables describes the position of the robot. We define this to
be the displacement of a coordinate frame attached to the moving robot mechanism with
respect to a fixed reference frame. Since robots move in Euclidean space, the set of body
frame displacements is SE(n), n ≤ 3, or one of its subgroups — i.e., a Lie group. The
second class of variables defines the internal configuration, or shape , of the mechanism.
We require only that the set of all possible shapes be described by a manifold, M . Hence,
the Lie group, G, together with the shape space, M , form the total configuration space of
the system, which we denote by Q = G×M . A given configuration is denoted by q ∈ Q.

Since we are working with mechanical systems, we will assume the existence of a La-
grangian function, L(q, q̇), on TQ, the tangent bundle of Q. In the absence of constraints,
the robot’s dynamical equations can be derived from Lagrange’s equations:

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
− τi = 0, (2.1)
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Figure 1. Two wheeled planar mobile robot.

where τ is a forcing function. In general, though, undulatory locomotion requires some type
of interaction with the environment, which we will model as a constraint. These constraints
can take many forms, including viscous friction, no-slip wheel conditions, and interaction
of a surface with a viscous fluid or air. Let us restrict our attention to constraints which
are linear in the velocities. Given k such constraints, we can write them as a vector-valued
set of k equations:

ωij(q)q̇
j = 0, for i = 1 . . . k. (2.2)

This class of constraints includes most commonly investigated nonholonomic constraints.
The constraints can be incorporated into the dynamics through the use of Lagrange

multipliers. That is, Eq. 2.1 is modified by adding a force of constraint with an unknown
multiplier, λ.

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
+ λjω

j
i − τi = 0. (2.3)

2.1 Example: Consider the two wheeled planar mobile robot shown in Figure 1. The robot’s
position, (x, y, θ) ∈ SE(2), is measured via a frame located at the centre of the wheel base.
The position of the wheels is measured relative to vertical and is denoted (ϕ1, ϕ2). Each
wheel is assumed to rotate independently and without slipping. The configuration space is
then Q = G×M = SE(2)× (S1 × S1). The Lagrangian for this problem is

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Jθ̇2 +

1

2
Jw(ϕ̇

2
1 + ϕ̇22),

where m is the mass of the robot, J is its inertia, and Jw is the inertia of each of the wheels.
The constraints defining the no-slip condition can be written as in Eq. 2.2:

ẋ cos θ + ẏ sin θ − ρ

2
(ϕ̇1 + ϕ̇2) = 0

−ẋ sin θ + ẏ cos θ = 0

θ̇ − ρ

2w
(ϕ̇1 − ϕ̇2) = 0.

(2.4)
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Figure 2. The simplified model of the Snakeboard.

The equations of motion can then be derived using Eq. 2.3. In this case, however, the
kinematic constraints provide an immediate way of determining the robot’s motion as a
function of internal shape changes since there are three constraints on the three dimensional
group of body displacements. If we make the standard assumption that the base variables
are controllable, then given the time evolution of ϕ1 and ϕ2, we can completely solve for the
motion of the robot using Eq. 2.4, which we rewrite in a slightly more revealing manner: cos θ sin θ 0

− sin θ cos θ 0
0 0 1

ẋẏ
θ̇

 =

 ρ
2(ϕ̇1 + ϕ̇2)

0
ρ
2w (ϕ̇1 − ϕ̇2)

 . (2.5)

•

That is, the motion in the group variables, (ẋ, ẏ, θ̇), is strictly a function of the internal
shape velocities (ϕ̇1,ϕ̇2).

2.2 Example: Next we turn to an example which will be used throughout the paper for the
purposes of illustration. The simplified model of the Snakeboard (c.f., [Lewis, Ostrowski,
Murray, and Burdick 1994]) is shown in Figure 2 and consists of a rigid body connecting two
sets of wheels whose rotations can be independently specified. Attached is a momentum
wheel which rotates about the centre of mass, thereby exerting a torque on the lower
portion of the board. The snakeboard’s position variables are (x, y, θ) ∈ G = SE(2),
and are determined by a frame affixed to its centre of mass. The internal shape variables
are (ψ, ϕb, ϕf ), and so the base space is S1 × S1 × S1 = M . The configuration space is
Q = G×M = SE(2)× S1 × S1 × S1. The Lagrangian is

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Jθ̇2 +

1

2
Jr(ψ̇ + θ̇)2 +

1

2
Jw

(
(ϕ̇b + θ̇)2 + (ϕ̇f + θ̇)2

)
. (2.6)

Control torques at the rotor and wheels are assumed, so

τ = (0, 0, 0, τψ, τb, τf ).
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The assumption that the wheels do not slip in the direction of the wheel axes determines
two constraints that can be written as linear functions of the velocities:

− sin(ϕf + θ)ẋ+ cos(ϕf + θ)ẏ + l cos(ϕf )θ̇ = 0

− sin(ϕb + θ)ẋ+ cos(ϕb + θ)ẏ − l cos(ϕb)θ̇ = 0.
(2.7)

•
Notice that for the snakeboard we no longer have enough kinematic constraints to

uniquely define the motion of the robot. For this reason, the simple technique of using
the constraints to solve for the robot’s motion as a function of shape changes that was
employed in the first example is no longer viable. The snakeboard’s dynamics must come
into play. Thus, we are relegated to using Eqs. 2.2 and 2.3 to define the robot’s dynamics
and explicitly solving for k unknown Lagrange multipliers. There are a number of drawbacks
to this approach. First, the system is equivalent to 2n+ k first order differential equations.
Second, physical intuition is often lost when eliminating the Lagrange multipliers. That is,
we do not have a relationship, such as Eq. 2.5, in which the effect of internal shape changes
on robot motion is readily apparent. Third, it is difficult to incorporate into Eq. 2.3 any
special features which might simplify the ensuing analysis. With these issues in mind, we
now embark upon an alternate approach in order to make use of the additional structure
given to us by the inherent symmetries found in problems of locomotion.

3. Mechanics with symmetries

3.1. Mathematical background. We begin by introducing some general mathematical con-
cepts, which will be illustrated by the snakeboard example. First, we show that locomotion
systems can be modelled on a principal fibre bundle and review some ideas that are
associated with them.

Recall the division of the configuration space, Q = G×M . Such a configuration space is
termed a trivial fibre bundle . G is called the fibre , andQ is said to be fibred over the base
space, M . Q is “trivial” because the product structure is global. In our context, the words
fibre and base are interchangeable with robot position and internal shape, respectively.
There are two natural projections which we will use. Given a point (g, r) ∈ G ×M = Q,
define these projections as π1 : Q→ G : (g, r) 7→ g and π2 : Q→M : (g, r) 7→ r.

The use of a Lie group will be important for describing the robot’s motion through its
environment. Formally, the displacement of the robot’s body fixed frame is considered as a
left translation . That is, if the robot’s initial position is denoted by g, and it is displaced
by an amount h, then its final position is hg. This displacement can be thought of as a map
Lh : G → G given by Lh(g) = hg for g ∈ G. The left translation induces a left action of
G on Q.

3.1 Definition: A left action of a Lie group G on a manifold Q is a smooth map Φ :
G ×Q → Q such that: (1) Φ(e, q) = q for all q ∈ Q, and e the identity element of G; and
(2) Φ(h,Φ(g, q)) = Φ(hg, q) for every g, h ∈ G and q ∈ Q. •
It will be useful to consider the left action as a map from Q into Q, with the element h ∈ G
held fixed. Notationally, Φh : Q → Q is given by (g, r) 7→ (Φ(h, g), r) = (hg, r). The lifted
action , which describes the effect of Φh on velocity vectors in TQ, is the tangent map of
Φh. This is the linear map, DqΦh : TqQ→ ThqQ (often denoted TqΦh).



6 J. P. Ostrowski, J. W. Burdick, A. D. Lewis, and R. M. Murray

3.2 Definition: LetM be a manifold and G a Lie group. A trivial principal fibre bundle
with base M and structure group G consists of the manifold Q = G×M together with the
free left action of G on Q given by left translation on the group variable: Φh(g, r) = (hg, r)
for r ∈M and h, g ∈ G. •
That is, our bundle configuration space has additional structure arising from the Lie group
component. This additional structure is important for the ensuing developments.

Example 2.2: (cont’d) The configuration space for the snakeboard is Q = G × M =
SE(2)× (S1 × S1 × S1), and a configuration is denoted q = (x, y, θ, ψ, ϕb, ϕf ). The action is
the left action of SE(2) on itself. Given h = (a1, a2, α) ∈ SE(2),

Φh(q) = (x cosα− y sinα+ a1, x sinα+ y cosα+ a2, θ + α,ψ, ϕb, ϕf ).

From this the lifted action is easily computed as

DqΦh(vq) = (vx cosα− vy sinα, vx sinα+ vy cosα, vθ, vψ, vb, vf ),

where vq = (vx, vy, vθ, vψ, vb, vf ) ∈ TqQ is a point in the tangent space of Q at q. •
Associated with a Lie group, G, is its Lie algebra, denoted g. The Lie algebra can be

identified with TeG and generates G via the exponential mapping, exp : g → G (see [Abra-
ham and Marsden 1978]). The exponential mapping also associates with each ξ ∈ g a vector
field on G, and by extension on Q = G×M , called the infinitesimal generator , ξQ, given
by

ξQ(q) =
d

ds
(Φ(exp(sξ), q))|s=0. (3.1)

Each infinitesimal generator is tangent to the fibre, and the set of all such vectors at q ∈ Q
forms a subspace of TqQ called the vertical subspace,

VqQ = {ξQ(q) ∈ TqQ| ξ ∈ g}.
Eq. 3.1 takes elements of the Lie algebra and maps them to infinitesimal generators. It is
an isomorphism between g and VqQ. This implies that any vector vq ∈ VqQ can be written
as the infinitesimal generator at q of some Lie algebra element, i.e., vq = ξQ(q) for some
ξ ∈ g.

Example 2.2: (cont’d) The Lie algebra for SE(2) is denoted se(2), and the relationship
between an element, ξ = (a1, a2, α) ∈ se(2), and the corresponding infinitesimal generator
on TQ is given by

ξQ(x, y, θ, ψ, ϕb, ϕf ) = (a1 − yα, a2 + xα, α, 0, 0, 0).

The vertical subspace is given trivially by TG× {0}:
VqQ = {(vq, wq) ∈ Tπ1(q)G× Tπ2(q)M = TqQ|wq = 0}

= sp

{
∂

∂x
,
∂

∂y
,
∂

∂θ

}
.

(3.2)

•

3.2. Noether’s theorem. Conservation laws (e.g., conserved linear and angular momen-
tum) naturally arise when a Lagrangian remains invariant under the action of a Lie group,
as stated in Noether’s theorem (see [Abraham and Marsden 1978, Bloch, Krishnaprasad,
Marsden, and Murray 1996]):
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3.3 Theorem: (Noether) Let L be a Lagrangian which is invariant under the action of a
Lie group, G, (i.e., L(Φh(q), DqΦhvq) = L(q, vq) ∀h ∈ G, vq ∈ TqQ). Then, for all curves,
c(t) : [a, b] → Q satisfying Lagrange’s equations (Eq. 2.1), we have that

d

dt

〈
∂L

∂q̇
(ċ(t)); ξQ(c(t))

〉
= 0

for all ξ ∈ g. Equivalently, ṗ = 0, where p = ⟨∂L∂q̇ ; ξQ⟩ is the generalised momentum.

For the case in which G is SE(2) or SE(3), Noether’s theorem is equivalent to conserva-
tion of linear and angular momentum. However, undulatory locomotion relies on some type
of interaction with the environment. Unfortunately, conservation laws are not necessarily
preserved in the presence of the constraints which are inherent to undulatory locomotion.
The next section describes an extension to the classical theory that combines the effects of
symmetries and constraints.

3.3. Symmetries with constraints. Given the constraints as in Eq. 2.2, we can write the
constraint distribution (i.e., the set of all velocities that satisfy the constraints) as

Dq = {vq ∈ TqQ | ωijvjq = 0, ∀ i = 1, . . . , k}. (3.3)

The constraints are said to act vertically if the constrained fibre distribution ,

S = D ∩ V Q, (3.4)

is nonempty. Assuming this to be true, we have the following proposition, first developed
in [Bloch, Krishnaprasad, Marsden, and Murray 1996]. For proofs of this proposition and
those to follow, the reader is referred to [Bloch, Krishnaprasad, Marsden, and Murray 1996].

3.4 Proposition: Let L and D define a constrained system on Q = G×M whose Lagrangian
is G-invariant. If c is a curve which satisfies the Lagrange-d’Alembert equations (Eq. 2.3)
for a system with nonholonomic constraints (Eq. 2.2), then the following generalised mo-
mentum equation holds for all vector fields, ξcQ ∈ S:

d

dt
pc =

∂L

∂q̇i

(
d

dt
[ξc(c(t))]

)i
Q

+ τi

(
ξc(c(t))

)i
Q

(3.5)

where

pc =
∂L

∂q̇i
(ξc(c(t))iQ (3.6)

is the constrained momentum.

That is, in the presence of constraints, momentum-like quantities exist, but they may not
be conserved. Eq. 3.5 determines how the momentum-like quantity, pc, evolves. The non-
conservation of momentum-like quantities is the key to dynamic undulatory locomotion. It
describes why the snakeboard can start from rest and build up momentum, even though no
external forces act on the system (see [Lewis, Ostrowski, Murray, and Burdick 1994]).
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Figure 3. Instantaneous centre of rotation

Example 2.2: (cont’d) An easy calculation shows that the snakeboard Lagrangian, Eq. 2.6,
is invariant with respect to the SE(2) group action. The wheel constraints of Eq. 2.7 can
be expressed as a constraint distribution:

Dq = sp{a ∂
∂x

+ b
∂

∂y
+ c

∂

∂θ
,
∂

∂ψ
,
∂

∂ϕb
,
∂

∂ϕf
},

where

a = −l[cosϕb cos(ϕf + θ) + cosϕf cos(ϕb + θ)]

b = −l[cosϕb sin(ϕf + θ) + cosϕf sin(ϕb + θ)]

c = sin(ϕb − ϕf ).

The vertical distribution was defined in Eq. 3.2, and so the constrained fibre distribution
is:

Sq = Dq ∩ VqQ = span{a ∂
∂x

+ b
∂

∂y
+ c

∂

∂θ
}.
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Note, the constrained fibre distribution physically corresponds to instantaneous rotations of
the snakeboard about a point where the two snakeboard wheel axes intersect (Figure 3).

This basis for S satisfies the necessary conditions given in Proposition 3.4. For the
snakeboard, the constrained momentum of Eq. 3.6 is computed as

pc = ⟨∂L
∂q̇

; (ξc)Q(q)⟩

= ⟨(mẋ,mẏ, Ĵ θ̇, Jrψ̇, Jwϕ̇b, Jwϕ̇f ); (a, b, c, 0, 0, 0)⟩
= maẋ+mbẏ + Ĵcθ̇ + Jrcψ̇ + Jwc(ϕ̇b + ϕ̇f )

= (mR2 + Ĵc)θ̇ + Jrcψ̇ + Jwc(ϕ̇b + ϕ̇f ),

where ξcQ ∈ S, Ĵ = J + Jr + 2Jw is the sum of the moments of inertia, and R is the radius
from the instantaneous centre of rotation to the snakeboard’s centre of mass (Fig. 3).
Thus, pc corresponds to the snakeboard’s angular momentum about the instantaneous centre
of rotation. If the front and back wheels were fixed, this momentum would be conserved,
as the wheels would provide a holonomic constraint forcing the snakeboard to rotate about
the fixed centre. For the snakeboard, the constrained momentum is one-dimensional. In
general we would derive momenta corresponding to each unconstrained degree of freedom
along the group orbit, i.e., the number of momenta would equal dim S. The generalised
momentum equation, Eq. 3.5, for the snakeboard is:

ṗc = mȧẋ+mḃẏ + Ĵ ċθ + Jr ċψ̇ + Jw ċ(ϕ̇b + ϕ̇f ) •

3.4. Constructing the connection. We now introduce a key concept in the theory of
principal fibre bundles which also has an important role in locomotion analysis.

3.5 Definition: ([Kobayashi and Nomizu 1963]) A connection is an assignment of a
horizontal subspace, HqQ ⊂ TqQ, for each point q ∈ Q such that

(i) TqQ = VqQ⊕HqQ,

(ii) DqΦhHqQ = Hh·qQ, for every q ∈ Q and h ∈ G, and

(iii) HqQ depends smoothly on q. •
Condition (1) implies that TqQ can everywhere be divided into a vertical subspace, VqQ,
and a horizontal subspace, HqQ. Connections are useful because of the following fact. The
horizontal subspace defined by the connection is everywhere isomorphic to the tangent space
of the base: HqQ ≃ Tπ2(q)M . The horizontal lift is the isomorphism which maps vectors
in Tπ2(q)M to the corresponding lifted vectors in HqQ ⊂ TqQ under this identification. The
horizontal lift, then, is the key to understanding the relationship between motion in the base
space (via tangent vectors on Tπ2(q)M) and motion in the total space, Q, where locomotion
is effected.

The connection is a general geometric structure that will enable us to describe how
internal shape changes create net robot motion. This is the generalisation and formalisation
of the intuitive procedure that lead to Eq. 2.5. As shown in the snakeboard, the kinematic
constraints, Eq. 2.2, are generally not sufficient to define the robot’s motion. It is necessary
to supplement the kinematic constraints with symmetry constraints, in the form of the
constrained momenta, in order to define a connection. In order to do so, we must make
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two assumptions regarding S. The first assumption, that the constraints be G-invariant, is
a natural one when dealing with locomotion. Like the Lagrangian, locomotion constraints
should not depend upon the robot’s absolute position and orientation, and so are expected to
be invariant with respect to the group. The second assumption is more technical in nature.
Let dimG = s. Then it is assumed that dim S = dimD − dimM = s − k. Intuitively,
this assumption implies that there are no constraints acting directly on the internal shape
changes.

Given these assumptions, the constrained momenta described in Proposition 3.4 give
the additional constraints necessary to construct a connection. Recall that Eq. 2.2 gives k
constraints, ωi(q)q̇ = 0, i = 1, . . . , k, on an s-dimensional group. Given our dimensional
assumption on S, we can choose a basis for S and hence develop s − k additional affine
constraint equations, ωk+1, . . . , ωs, from the constrained momenta,

ωk+ij q̇j = (pc)i =
∂L

∂q̇j
((ξc)k+iQ )j(q), (3.7)

where the (ξc)k+iQ form a basis for S, and hence each (ξc)k+i lies in g (but may vary pointwise
over Q). In order to establish an invariant horizontal distribution (i.e., satisfy condition (2)
of Defn. 3.5), we must show that Eq. 3.7 is G-invariant.

3.6 Proposition: Given a system with L and D G-invariant, and for which there exists
a G-invariant basis for S, X1, . . . , Xs−k, the constrained momentum given by (pc)i(vq) =
⟨∂L∂q̇ (vq);Xi(vq)⟩ is itself G-invariant, i.e., (pc)i(TqΦhvq) = (pc)i(vq), for i = 1, . . . , s− k.

The constrained momenta of Eq. 3.7 may then be appended to the kinematic constraints
of Eq. 2.2 in order to define the fibre equations:

ωq̇ = γ̃, (3.8)

where γ̃ = (0, . . . , 0, (pc)1, . . . , (pc)s) is an affine term stemming from the constrained mo-
menta developed in Proposition 3.4. The motion of an undulatory system must satisfy the
fibre equations.

Using the invariance of Eq. 3.8, we can separate the fibre equations into fibre and base
components. First, rewrite Eq. 3.8 as

ωg(g, r)ġ + ωr(g, r)ṙ = γ̃. (3.9)

Invariance of Eq. 3.8 means ωg(Φhg, r)DqΦh = ωg(g, r) and ωr(Φhg, r) = ωr(g, r). Setting
h = g−1 in the former relation gives ωg(g, r) = ωg(e, r)DqΦg−1 = ωg(r)g

−1, while the latter
relation implies that ωr is independent of g. It can also be shown that ωg(r) is invertible,
and so Eq. 3.8 becomes

g−1ġ = A(r)ṙ + γ(r)pc, (3.10)

where g−1 represents the lifted action applied to vectors tangent to the fibre, and γ(r)pc =
ω−1
g (r)γ̃.
Practically speaking, the fibre equations, Eq. 3.8, play the most central role in the

mechanics of undulatory locomotion. Formally, the connection is defined by setting γ̃ = 0
in Eq. 3.8. If γ̃ = γ = 0, then Eq. 3.10 describes the horizontal lift, i.e., the relationship
between base vectors in Tπ2(q)M and vectors in the full state space, TqQ.
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The relationship between the connection and the fibre equations can be interpreted as
follows. Recall that g−1ġ is an element of the Lie algebra, g, which physically corresponds
to the velocity of the robot’s body fixed reference frame (as seen by an observer in the body
frame). The connection (described by γ̃ = γ = 0 in Eqs. 3.8, 3.10) directly describes how
internal shape changing motions, ṙ, lead to robot motion, g−1ġ. However, the moving robot
may have built up some momentum due to previous motions. When there is no motion
in the base space (ṙ ≡ 0), the robot’s motion is driven solely by the momentum terms, γ.
Thus, the fibre equations determine the robot’s motion from the combination of built-up
momentum and internal shape changes. They are formulated in a way which makes explicit
each of these two contributions to locomotion.

However, the momentum terms in the fibre equations are themselves governed by the
generalised momentum equation, Eq. 3.5. For the case of undulatory locomotion, where
the constraints are assumed to be group invariant, it can further be shown that Eq. 3.5 is
also invariant with respect to the group action.

3.7 Proposition: Given a constrained mechanical system, define the function P c(q, q̇) =
∂L
∂q̇i

( d
dt(ξ

c(q))iQ) =
d
dtp

c,where ξcQ is a G-invariant vector field in S and ξc is the Lie algebra-
valued function over Q which generates ξcQ. As a function on TQ, P c is G-invariant. Thus,
for all g ∈ G,

P c(Φhq, TqΦhq̇) = P c(q, q̇).

Practically speaking, this proposition implies that Eq. 3.5 can always be expressed
strictly in terms of base variables and constrained momenta, i.e.,

ṗc = f(r, ṙ, pc). (3.11)

Example 2.2: (concl.) Combining the kinematic constraints and the constrained momen-
tum, the fibre equations are:

W (g, r)ġ −

 0
0

f(r)ṙ

 =

 0
0
pc

 ,

where

W (g, r) =

− sin(ϕb + θ) cos(ϕb + θ) −l cosϕb
− sin(ϕf + θ) cos(ϕf + θ) l cosϕf

ma mb Ĵc

 , (3.12)

f(r) = sin(ϕb − ϕf )(Jr, Jw, Jw).

The invariance of the constraints and the constrained momentum allows us to extract the
group variables from Eq. 3.12. Letting e denote the identity group transformation, we have

W (e, r)g−1ġ = − sinϕb cosϕb −l cosϕb
− sinϕf cosϕf l cosϕf

−2ml cosϕb cosϕf −ml sin(ϕb + ϕf ) Ĵ sin(ϕb − ϕf )

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


=

 0
0

pc − f(r)ṙ

 .
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Finally, we can write this as

g−1ġ = A(r)ṙ + γ, (3.13)

where

A(r) =
1

det[W (e, r)]
·

2l cosϕb cosϕf
l sin(ϕb + ϕf )
− sin(ϕb − ϕf )

 · f(r)

γ =
pc

det[W (e, r)]
·

2l cosϕb cosϕf
l sin(ϕb + ϕf )
− sin(ϕb − ϕf )

 .

The generalised momentum equation (Eq. 3.5) is

ṗc = mȧẋ+mḃẏ + Ĵ ċθ + Jr ċψ̇ + Jw ċ(ϕ̇b + ϕ̇f ).

Using the invariant form of the connection, it is possible to rewrite this equation solely in
terms of the base variables and the momentum:

ṗc =
1

2

d

dt

(
log (−detωg(r))

)
· (pc − f(r)ṙ) + ḟ(r)ṙ,

where ωg(r) = ωg(e, r) as defined in Eq. 3.9, and detωg(r) = −(mR2 + Ĵ)c which corre-
sponds to the inertia of the board about the instantaneous centre of rotation (see Figure 3).
Most importantly, however, notice that the dependence on the fibre variables has been
completely eliminated from the generalised momentum equation. •

3.5. Summary and limiting cases. In summary, by using a geometric approach, and by
using the symmetries and constraints which are natural to undulatory locomotion systems,
we have reduced the system of n second order ODE’s with k first order constraints (Eqs. 2.2
and 2.3) to a system of s first order (affine) constraints termed the fibre equations, s − k
first order generalised momentum equations (Eq. 3.11),

g−1ġ = A(r)ṙ + γ(r)pc

ṗc = f(r, ṙ, pc),

and a group of second order equations on the base space. This paper does not discuss
the “reduced dynamics” on the base space, as these dynamics are not as important for
the understanding of undulatory locomotion. Thus, the equations which are important to
understanding undulatory locomotion are reduced to two first order equations that make
explicit how internal shape changes and physical inertial lead to robot motion. We now
briefly consider special cases of these equations that have occurred in previous work. For ad-
ditional discussion of these ideas, the reader is referred to [Bloch, Krishnaprasad, Marsden,
and Murray 1996, Kelly and Murray 1994].



The mechanics of undulatory locomotion 13

Purely kinematic constraints

With a sufficient number of kinematic constraints, the system’s motion along the fibre is
fully constrained. In this kinematic case , the connection takes the simpler form:

g−1ġ = A(r)ṙ. (3.14)

Most commonly studied wheeled vehicles, such as Example 2.1, fall into this category.
Eq. 3.14 describes a system on the fibre with no drift — a case that has been extensively
studied in the literature on nonholonomic systems.

Pure symmetry constraints

There are no kinematic constraints in the cases of falling cats, satellites with rotors or
attached robot arms, and platform divers. However, all of these systems have inherent
Lagrangian symmetries, and therefore conserved momenta. In these cases, the fibre and
generalised momentum equations take the form:

g−1ġ = A(r)ṙ + β(g, r)µ

µ̇ = 0.

µ is the generalised momenta, and is constant. If µ = 0, these equations reduce to Eq. 3.14.
Using A(r) it is clear how internal shape changes lead to net reorientation of the system. The
use of fibre bundles and connections plays a primary role in understanding the mechanics
and control of systems with dynamic constraints.

4. Discussion

Undulatory locomotors have no jets, thrusters, tracks, or legs to generate motion. In-
stead, motion is generated by a coupling of internal shape changes to external constraints.
This paper has focused on systems with nonholonomic kinematic constraints. This class
of systems includes not only the snakeboard, but also the “active cord” mechanism of Hi-
rose and Umetani [1976], and any terrestrial undulatory robotic system that uses wheels
to provide motion constraints. Also, many of the snake and worm-like systems discussed
by Chirikjian and Burdick [1991] can be analysed using the techniques described here. Fish
and some other undulatory mechanisms seem to use a similar principle to generate move-
ment, but the constraints are more complicated than the ones considered in this paper. It
is possible that our framework can be extended to include these systems as well. Further-
more, the same basic process seems to exist in legged locomotion, though the discontinuous
nature of the dynamics makes it more difficult to analyse these types of systems from a
classical standpoint.

A key observation in this work is that the constraints inherent in undulatory systems
provide the means to determine motion as a function of internal shape change. When
kinematic constraints are not sufficient to uniquely determine the robot’s motion, dynamic
symmetries provide the additional constraints. of connections on principle bundles to de-
scribe the relationship between internal deformations and locomotive effect because the
connection encompasses much of the information which is essential to locomotion. Using
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these tools, we can parameterise the dynamics in terms of physically meaningful variables
of generalised momenta, internal shape, and motion of the robot reference frame.

While this paper introduced a useful framework for studying undulatory mechanics,
many open questions remain. Controllability of undulatory systems is a central issue that
remains unresolved. Given an initial configuration, q0, and a final configuration, q1, an
undulatory robot such as the snakeboard is said to be controllable if there exists a path
connecting q0 to q1 which satisfies the robot’s dynamical equations. Using a principle fibre
bundle framework, Kelly and Murray [1994] have recently derived a controllability test for
systems which are described by the kinematic connection of Eq. 3.14. We believe that
the formulation developed in this work will ultimately lead to an analogous controllabil-
ity test for more general classes of systems which include dynamic constraints. Beyond
the question of controllability lies the practical importance of developing motion planning
schemes to generate feasible, or perhaps optimal, paths for undulatory motion planning
problems. Finally, we wish to develop a better understanding of the concept of a “gait” in
undulatory systems. For example, in [Lewis, Ostrowski, Murray, and Burdick 1994] it was
shown that the snakeboard exhibits different “gaits” which generate motion. The geometric
interpretation of these gaits is still unclear.
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