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Dopamine agonists such as bromocriptine and cabergoline are the predominant

treatment drugs for prolactinoma by inhibiting prolactin secretion and shrinking tumor

size. However, the pathways of either dopamine or its agonists that lead to the death

of cells are incompletely understood and some are even conflicting conclusions. The

main aim of this paper is to review the different pathways of dopamine and its agonists

in prolactinomas to help to gain a better understanding of their functions and drug

resistance mechanisms.
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INTRODUCTION

Pituitary adenomas (PAs) are common intracranial neoplasms. Typically, PAs are classified as
either clinically non-functioning PAs or functioning PAs with characteristic clinical and endocrine
symptoms, such as acromegaly and hyperprolactinemia or Cushing disease (1, 2).

Prolactinomas are the most common type of functioning PAs, which can cause headache,
visual dysfunction, hypopituitarism, and hyperprolactinemia (3). The clinical features of
hyperprolactinemia include impotence in males and oligo/amenorrhea in females (4, 5). The
normalization of serum prolactin (PRL) levels and shrinkage of tumors are among the major goals
of treatment in patients with prolactinomas (6). Dopamine agonists (DAs), such as bromocriptine
(BRC) and cabergoline (CAB) are the first-line drugs for the treatment of patients with idiopathic
hyperprolactinemia and prolactinomas (3, 7). The lactotroph adenoma cells express dopamine
receptors, and DAs effectively suppress prolactin secretion and shrink the tumor by binding the
cell-surface dopamine receptors in most patients (7, 8). This suggests that a “gene-network” may
exist to regulate the activation of dopamine receptors, and may be involved in the mechanism of
action of DAs for the treatment prolactinomas.

Although, two main DAs, namely BRC and CAB, have been approved as first-line drugs for
the treatment of patients with hyperprolactinemia, a minority of patients with prolactinoma were
resistant or intolerant to BRC, but responded adequately to CAB (9, 10). Currently, a better
understanding of the pathophysiology of prolactinomas and the precise mechanisms of action
of DAs in prolactinomas is greatly needed, especially considering that different pharmacological
compounds act on lactotroph cells through different intracellular molecular pathways.

In this review, we summarize the current research advances on different pathways and
mechanisms of dopamine and DAs effects on prolactinoma cells to help accelerate future research
in this field (Figure 1).
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FIGURE 1 | The pathways of dopamine and dopamine agonists in prolactinomas.

DOPAMINE AND DOPAMINE RECEPTORS

Multiple in vitro and in vivo studies have demonstrated that
dopamine is an effective inhibitor of PRL secretion (11, 12), PRL
gene expression and lactotroph cell proliferation (13). It can also
induces the apoptosis of lactotroph cells (14).

Based on the functions of the dopamine receptors, they can
be divided into D1-like receptors, such as D1 and D5, and D2-
like receptors including D2, D3, and D4. The two DA receptor
families play different roles. For example, D1-like receptors
can induce the production of cyclic adenosine monophosphate
(cAMP) and activate cAMP-dependent protein kinase (PKA)
(15). Conversely, D2-like receptors (D2, D3, and D4) can reduce
the accumulation of cAMP through interaction with Gi/G0
proteins (16). The activation of D2 receptors can also inhibit PRL
secretion by decreasing the cell calcium levels through the G13
protein (17), but the activation of D1 receptors instead stimulates
PRL secretion by stimulating vasoactive intestinal peptide (VIP)
secretion (18, 19).

There are two isoforms of D2R produced by alternative
splicing, namely the short and long isoforms (D2S and D2L)
(13), which differ by only 29 amino acids derived from an
additional exon in D2L, encoding the third intracellular loop of
the receptor (20). D2S and D2L receptors are hypothesized to
have distinct functions in the mitogen-activated protein kinase
(MAPK) pathways (21). The pituitary size and PRL levels were
found to be reduced in mice overexpressing D2S compared
to wild type (WT) or D2L overexpressing mice (22). These
observations suggest that dopamine effects on lactotrophs are
mediated through the D2S receptor isoform and is an estrogen-
dependent process. The decrease of D2S expression may play a
part in D2R agonist resistant prolactinomas (21). In the pituitary
gland, the expression level of D2L is much lower than that of D2S
(20).

Most researchers use rodent or murine tumor cell lines
to study dopamine functions in the pituitary and PAs (22,
23). In particular, studies on the rodent GH3 pituitary cell
line have contributed significantly to the understanding of
mechanisms of dopamine-induced apoptosis (23, 24). The
receptors for VIP, thyroid-stimulating hormone (TRH) were
found in GH3 cells, but no dopamine receptors (25). Many
studies have demonstrated that GH3 cells do not express
functional D2 receptors (26, 27). Indeed, some studies suggested
that dopamine-induced apoptosis could not occur in the
GH3 cell line unless it was transfected with a functional
D2R (26).

DOPAMINE REDUCE PRL AND INDUCE
APOPTOSIS OF PITUITARY ADENOMA
CELLS

In cells expressing either transfected or endogenous D2R
receptors, the p38 MAPK or extracellular-signal-regulated kinase
(ERK) were shown to be involved in the process of dopamine-
induced apoptosis (22, 26). However, it should be noted that
there are many conflicting reports about the regulation of the
ERK pathway by the D2S receptor and it could be a cell type-
dependent process. Previous research found that in non-neuronal
cells, dopamine-D2 receptors stimulate ERK activity and cell
proliferation (28). However, in neuroendocrine cells, such as
GH4-rD2S, the phosphorylation of ERK was inhibited by D2S
receptors (29). Another study found that in normal rat pituitary
cells, ERKwas inhibited by D2R (30). There is another hypothesis
suggesting that the regulation of the ERK pathway by dopamine is
a dynamic process, whereby the activated ERKmay be reduced by
dopamine to antagonize the stimulation thus leading to changes
in gene expression and cell growth (30).

Frontiers in Endocrinology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 768

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Liu et al. Molecular Network of Prolactinomas

Different from these findings, another study demonstrated
that the apoptosis induced by dopamine is promoted through the
dopamine transporter (DAT) instead of D2R (23). In contrast,
based on this assumption, in a co-culture experiments with a
specific DAT inhibitor and dopamine, the apoptotic response was
not attenuated, thus indicating that dopamine-induced apoptosis
is not mediated through the DAT (31). Nevertheless, in GH3
cells which do not express D2R, an increase in apoptosis was
observed with increasing time and concentration of dopamine
(23, 31). Although no activation of any of the analyzed MAPKs
was observed within 0.25–24 h, including p38-kinase, JNK, and
ERK which is different from BRC challenged cells (23, 31). These
observations indicate that dopamine may also induce apoptosis
through other receptors and pathways.

Some studies indicated that the apoptosis of lactotrophs
induced by dopamine is also an estrogen-dependent process
(21). Studies on PRL cells found that it is not sufficient
for D2S to induce apoptosis by dopamine, and estradiol-
dependent activity is also needed. Estradiol can also increase the
phosphorylation of p38 MAPK induced by dopamine. Despite
this, the phosphorylation of p38 is induced by D2S activation
regardless of the presence or absence of estradiol (21). Based
on these findings, estradiol seems to be necessary but not
sufficient for p38 MAPK phosphorylation to induce apoptosis in
lactotrophs. The expression of p53 was also found to be increased
by estradiol in anterior pituitary cells (32). As p53 is a target of
p38 MAPK, the estradiol on anterior pituitary cells may induce
p53 activation by increasing p38 MAPK phosphorylation (33).

DOPAMINE AGONISTS

BRC and CAB are the two main DAs used as first-line
treatment for prolactinomas, including microprolactinomas,
macroprolactinomas, and giant prolactinomas. They can inhibit
PRL secretion and shrink tumors effectively.

BRC was the first dopamine agonist used in clinical practice.
It is a D2 receptor agonist, as well as D1 receptors antagonist.
BRC is a semi-synthetic ergot derivative which binds to the D2R
of anterior pituitary cells, especially on lactotrophs. The secretion
of PRL is decreased by BRC through the stimulation of Na+, K+-
ATPase activity and/or cytosolic Ca2+ elevation, which further
inhibit the production of cAMP (34).

CAB has a higher affinity and selectivity for D2 receptors
compared with BRC. In most people, CAB is more effective and
has a longer half-life than BRC. It is also better-tolerated and
has fewer side effects. For patients who are resistant or not very
responsive to BRC, CAB has been proven to be effective (10).
Besides prolactinomas, CAB is also effective for other types of
PAs, such as acromegalic and ACTH-secreting adenomas (35).
Accordingly, it is a valuable medicine for PAs.

The effect of CAB on reducing the size of prolactinomas is also
mediated through the activation of the D2R (D2S) of anterior
pituitary cells and is estrogen-dependent. Studies have found
that ERK and phosphatidylinositol 3-kinase (PI3K) signaling is
oppositely regulated by D2S and D2L, with D2L inhibiting both

pathways, and D2S stimulating both pathways once activated by
CAB (36).

DAs Induced Pituitary Adenoma Cell Death
According to different criteria, such as morphological
appearance, immunological characteristics, enzymological
property and functions (37), programmed cell death (PCD)
can be classified into three main types (38). Type 1 is known
as apoptosis, in which cells display obvious morphological
appearance, such as cytoplasmic, nuclear shrinkage, and
chromosomal DNA fragmentation. The activation of caspases
is a central mechanism of apoptosis (39). Type 2 corresponds
to autophagic cell death (ACD), in which cells show regular
degradation and recycling of cellular components (40).
Mammalian target of rapamycin (mTOR) and PI3K pathways
are considered as primary autophagy regulatory pathways (41).
Microtubule-associated protein 1A/1B-light chain 3 (LC3) is
also associated with autophagy activation. A cytosolic form of
LC3 (LC3-I) is converted to an LC3-phosphatidylethanolamine
conjugate (LC3-II), which is associated with autophagic
vesicles (42). Type 3 is called paraptosis, which is a non-
lysosomal vacuolated degeneration (43, 44). The features
of paraptosis are cytoplasmic vacuoles, lack of apoptotic
morphology and independence of caspase activation and
inhibition (45).

BRC Induces Apoptosis

During treatment with BRC, typical apoptotic features were
found in GH3 and AtT-20 cell lines, such as fragmented nuclei
and condensed chromatin, which are indicative of apoptosis
(46). The proportion of tumor cells undergoing apoptosis also
increased with time (46). As an initial anti-apoptotic regulator,
which protect cells from apoptosis (47), the suppression of bcl-
2 was also observed in BRC-treated GH3 cells and AtT-20 cells
(46).

Studies in GH3 cells revealed that apoptosis induced by BRC
is regulated through the activation of certain MAPK pathway
members, such as p38-MAPK, JNK, and ERK (24, 31). P38
MAPK was found to be more closely associated with BRC-
induced apoptosis. However, inhibition of p38 MAPK did not
reduce the apoptotic effect of BRC (31). Accordingly, there
may be other mechanisms mediating the apoptotic response to
BRC and they should be studied to understand such a complex
regulatory process involving numerous factors (24, 46).

Additional studies in GH3 cells show that dopamine and BRC
utilize distinct intracellular pathways. BRC-induced apoptosis is
sensitive to the inhibition of JNK, whereas dopamine-induced
apoptosis is not. However, subsequently caspase-3/7 can be
activated by both of them (31). The activation of JNK precedes
cytochrome c release (31). In dopamine-treated cells the release
of mitochondrial cytochrome c was also observed but it was
preceded by an increase in reactive oxygen species (ROS) (23, 31).
Through engagement and co-activation of these pathways BRC
and dopamine ultimately synergistically induce cell death (31).
These findings have motivated us to study the effects of these
drugs in co-incubation experiments (31).
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CAB Induces Apoptosis

The CAB-induced apoptosis observed in PRL-D2S cells involved
the p38 MAPK pathways and could be reverted by a p38 MAPK
inhibitor (21). Another study inMMQ cells, a prolactin-secreting
clonal cell line that is responsive to dopamine, demonstrated that
CAB increased the expression of apoptotic related proteins, such
as PARP and cleaved caspase-3, indicating that the apoptosis is
caspase-dependent (42). However, in CAB-treated GH3 cells, the
PARP protein was not involved in the process of cell death (42).

DA-Regulated Paraptosis and ACD
Some studies have demonstrated that CAB and BRC not only
induce apoptosis but also non-apoptotic cell death (42, 48). The
autophagic degradation of organelles which precedes nuclear
destruction is an important characteristic of ACD (49). The
JNK pathway may also participate in ACD (50). Cytoplasmic
vacuolization in mitochondria and endoplasmic reticulum is
one of the morphological features of paraptosis, and do not
involve the lysosomal system (48). Paraptotic cells lack apoptotic
morphology (48). For apoptosis, an explicit mechanism is the
activation of caspases (39), but it is not involved in parapoptosis.
ERK1/2 has also been shown to promote cell death by paraptosis
in 293T cells and Hepa1c1c7 cells (45).

BRC Induces Parapoptosis and ACD

Protein kinase C δ (PKCδ) is also involved in tumor progression
of various tumor types and plays an important role in
the PCD of prolactinomas cells. A study in GH3B6 tumor
somatolactotrophic cells found that PKCδ may also contribute
to the apoptotic process (51). Also, a study on male rats found
that BRC caused mainly paraptosis instead of apoptosis with
the involvement of PKCδ, p38, and the ERK1/2 pathways. As
indicated by the absence of morphological features of apoptosis,
such as internucleosomal fragmentation and the production of an
unspecific smear compatible with necrosis, as well as the failure
to detect the active fragment of caspase 3 in the experiment (48).

It has also been reported that BRC may induce cell death by
ACD, as indicated by a higher conversion ratio of LC3-I to LC3-
II found inMMQ andGH3 cells compared with the controls (52).
BRC could also regulate the cell cycle as more cells were arrested
in the G0-G1 phase and there weremuch fewer cells in the S phase
compared with the controls. However, the precise mechanism
still remains to be elucidated (52). Several cell cycle regulators
may be important for such study, such as cyclin E/D1, p16/21/27,
etc. (5).

CAB Induces ACD

Several studies have demonstrated that autophagic and apoptotic
cell death may coexist in CAB-mediated tumor shrinkage, as a
result of the release of lysosomal enzymes (42, 53).

In MMQ and GH3 cells treated with CAB, a time-dependent
decrease in mTOR and AKT phosphorylation was found,
indicating that ACD is involved in CAB-treated cells through the
inhibition of the mTOR or AKT pathways (42). In addition, it
has been found that the AKT and mTOR pathways can regulate
cell survival and death by integrating signals from various stresses
and growth factors (54). mTOR has also been identified as a

negative regulator of ACD (55). The conversion of LC3-I to LC3-
II was also detected in GH3 andMMQ cells at early stages of CAB
treatment (42). By knocking-down certain proteins, such Becn1
and ATG5/7, which are essential for autophagy, it was confirmed
that CAB can induce ACD (42).

DISCUSSION

Prolactinomas are the most common pituitary tumors and
DAs have been shown to be highly effective in most cases.
Nevertheless, many patients, who do not respond satisfactorily to
DAs, are considered to be drug resistant (56, 57). The potential
mechanisms involved in such resistance are not completely
understood. Some studies found that less D2R mRNA was
expressed in prolactinomas patients who are resistant to DAs
compared to responsive patients (58). As another key receptor
in prolactinomas, the estrogen receptor also plays important
roles in tumorigenesis, metastasis and therapy (59), which should
be studied further. Some studies have found that DA-induced
apoptosis in lactotrophs is an estrogen and D2R dependent
process. Furthermore, in DA-resistant prolactinoma patients, the
D2L/D2S expression ratio has been found to be reduced (60),
which is contradictory to other studies (21, 61, 62). Noteworthy,
some studies found that the expression of D2S mRNA was
significantly different for invasive and non-invasive tumors (62),
thus researchers should pay more attention to the patients/cell
lines in the studies. Since D2L and D2S receptors have distinct
functions in MAPK pathways, more studies should be focused
on them, especially in cell lines transfected with D2R. Reduced
TGFβ1 activity is a common feature in the development of
prolactinoma, studies also found that the recovery of TGFβ1
activity emerges as a novel therapeutic target for the treatment of
DA-resistant patients (6). According to some studies, in diabetic
patients with different types of tumors, metformin showed a
survival benefit (63). There were two clinical cases showing that
the combination of BRC and metformin might be a new effective
therapy for DA-resistant prolactinomas patients (64). Ultimately,
there is a great need to explore the molecular mechanisms of
dopamine and DAs effects on prolactinomas in order to find a
better treatment.

It has been confirmed by many studies that apoptosis induced
by DAs is mediated through D2S, involve the activation of
the MAPK pathway and is an estrogen-dependent process.
However, studies in cell lines without dopamine receptors, such
as GH3, indicate that DAs can also induce apoptosis without
the activation of any of the MAPKs, suggesting that other
receptors may participate in the process. In BRC-treated GH3
cells, which do not have the D2R, apoptosis is induced and is
closely associated with the activation of p38MAPK. However, the
inhibition of p38MAPKhas no impact on the apoptotic response,
so other mechanisms may contribute to the apoptotic process,
which need to be explored.

Although some studies have demonstrated the involvement
of paraptosis or autophagic mode of cell death in BRC and
CAB treated cells, more evidence is still needed. Also, even
though CAB and BRC are both dopamine agonists, the signal
transduction pathways activated by the two drugs seem to be
different. It has been found that the inhibition of p38 MAPK
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can revert CAB-induced apoptosis, which is different from
BRC. Autophagy and apoptosis are also considered to coexist
in CAB-treated cells. Autophagy, paraptosis and apoptosis are
different cell deathmodes that share some regulators, thus further
studies should be concentrated on the detailed regulation of
DAs in prolactinoma. Finally, dopamine-induced oxidative stress
has been proposed as a potential mechanism of apoptosis and
neurotoxicity (65). Since it has been reported that dopamine
neurotoxicity can induce the death of neurons (66), more
attention should be paid to the cytotoxic mechanisms of
dopamine in pituitary adenoma cells.
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