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Abstract

The mechanism design approach to student assignment involves the theoretical, empirical, and

experimental study of systems used to allocate students into schools around the world. Recent

practical experience designing systems for student assignment has raised new theoretical questions

for the theory of matching and assignment. This article reviews some of this recent literature,

highlighting how issues from the field motivated theoretical developments and emphasizing how

the dialogue may be a roadmap for other areas of applied mechanism design. Finally, I conclude

with some open questions.
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1 Introduction

In the last decade, there has been a great deal of activity and excitement among economists who

study the design of systems used to assign students to schools. Theory has matured to a point where

economists have been able to advise a handful of U.S. school districts on their allocation procedures

and hundreds of thousands of students have been assigned to schools via new mechanisms. Moreover,

the initial evidence suggests that these mechanisms are improvements over previous alternatives.

The potential for mechanism design and matching theory to illuminate the practical design of

student assignment systems was brought to light by Abdulkadiroğlu and Sönmez (2003). This article

summarizes features of some public school choice plans in the U.S., describes desiderata for assignment

mechanisms, and proposes two alternative mechanisms. These alternative mechanisms are adaptations

of widely-studied mechanisms in the literature on matching and assignment markets, dating back to

seminal contributions by Gale and Shapley (1962) and Shapley and Scarf (1974).

After Abdulkadiroğlu and Sönmez (2003) was published in June 2003, a reporter for the Boston

Globe contacted the authors. The Globe published an article describing flaws with Boston’s student

assignment system. The newspaper article also explained how alternatives might share features of

the system used to assign medical students to residency programs in the United States, known as the

National Residency Matching Program or NRMP (Cook 2003). Around the same time, in May 2003,

Alvin E. Roth was contacted by officials at the New York City (NYC) Department of Education, for

advice about their high school admissions process. As part of the Children’s First Initiative, the mayor

and chancellor centralized the organization and governance of the New York City’s public schools.

One major change was the creation of over one hundred new small high schools, which dramatically

increased the supply of choice options. Although the district had experimented with various forms of

school choice for decades and had developed procedures to assign students to schools, many aspects of

the plan were problematic and generated widespread dissatisfaction (Herszenhorn 2004). Some NYC

officials were aware of the NRMP, which had been reformed in the mid-1990s (Roth and Peranson

1999), and contacted Roth wondering whether similar ideas could be employed to place high school

students.

The result was a collaboration involving Atila Abdulkadiroğlu, myself, Alvin Roth, and Tayfun

Sönmez in various combinations, to assist Boston and NYC in aspects of the design of their new

mechanism. Confronting aspects of the existent theory with real-world challenges led to new theoretical

problems and issues. The initial article of Abdulkadiroğlu and Sönmez (2003), together with practical

developments in Boston and New York City, ushered in a new decade of research on the mechanism

design approach to student assignment.

The purpose of this article is to review some of these developments focusing on the interplay
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between work in the field designing mechanisms and theory. At the outset, I want to emphasize that

this article is not a comprehensive literature review. Rather, I focus on a subset of issues that have

been motivated from field experiences and hence only a subset of contributions. As with most selective

surveys, my own papers probably get more attention than they deserve.

The organization of this article is as follows: Section 2 provides background on school choice and

describes the canonical model. The next three sections describe theoretical issues which arose from

practice, related to how students are prioritized at schools (Section 3), market size (Section 4), and

heterogenous levels of sophistication (Section 5). Section 6 concludes with some open questions.

2 Background

2.1 Rationale for school choice

School choice is a popular and widespread education reform in urban districts.1 Most U.S. states

have open enrollment policies and there are estimates that the total enrollment in these plans is

greater than enrollment in charter schools and voucher programs (Holme and Wells 2008). In a choice

plan, families express preferences over what schools their children may want to attend. Using this

information, the district assigns children to schools according to various objectives. In residence-based

or neighborhood school assignment systems, families express their preferences over schools through

their choice of residential location. Critics of neighborhood school assignment challenge that only

wealthier families are able to purchase the rights to better schools for their children. As a result,

neighborhood school assignment may lead to school segregation and has the potential to perpetuate

inequalities. School choice, on the other hand, may weaken the link between the housing market and

schooling options and lead to more equitable educational opportunities.

The origins of school choice in the United States can be traced back to the history of school

desegregation. Despite the legal end of segregation in public schools following the Supreme Court

ruling in Brown v. Board of Education in 1954, in the subsequent decades many urban districts

continued to be de facto segregated. As a result, throughout the 1970s and 1980s, school districts

implemented mandatory busing plans under court supervision. One of the most controversial busing

plans was in Boston Public Schools. In 1974, Federal Judge W. Arthur Garrity ruled that the school

committee “knowingly carried out a systematic program of segregation.” He required Boston follow

Massachusetts law requiring any school with a student enrollment that was more than half white be

1This review focuses primarily on U.S. choice plans, although plans for various secondary and post-secondary schooling
options are widespread around the world. See, e.g., Balinski and Sönmez (1999) on Turkish college admissions, Burgess,
Greaves, Vignoles, and Wilson (2009) on secondary school admissions in England, Lavy (2010) on middle school choice
in Tel-Aviv, Israel and Chiu and Weng (2009) on college admissions in China.
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balanced by race. In 1975, Harvard Education School Professor Charles Willie served as a court-

appointed master in the case. For the next fifteen years, in a series of court proceedings, the Boston

school committee and Judge Garrity wrestled with the appropriate way to assign students to school.

School assignment became an intense political struggle and the city even erupted in violence at various

points. Throughout the period, there was a drop in enrollment in Boston’s public schools, and this

trend was common in other urban districts as wealthier families left urban districts for the suburbs

(Baum-Snow and Lutz 2010, Boustan 2010).

Mortified observing Boston’s experience with desegregation, residents and public officials in nearby

Cambridge envisioned a system of open enrollment as a “pre-emptive strike” against court-ordered

busing (Fiske 2002). In March 1981, the district abolished all neighborhood zones and adopted a

comprehensive school choice plan where a student could apply to any school in the city. Given his

experience in Boston’s desegregation case, Willie was retained as a consultant and chief architect of

Cambridge’s controlled choice plan, one of the first plans in the nation. With this test case in hand,

Willie together Michael Alves developed a choice plan for Boston Public Schools, following the last

Garrity ruling in 1988 (Alves and Willie 1987). Both Cambridge and Boston’s plan used race as a

factor to obtain balance at schools. The initial principles of the choice plan aspired towards having

schools of choice, which were also diversified, in that there was a balanced distribution of students

across racial, ethnic, and socioeconomic characteristics. Controlled choice was advertised as a reform

plan which brought together choice, diversity, and school improvement.

The typical goals of choice plans start with allowing families to express their preferences over

schooling options. In a comprehensive choice system, families can apply to any school in the district

and do not have a default school. In more limited choice systems, families have a default school,

and can opt out through a choice application. District objectives in student placement are numerous.

Some districts guarantee students transportation to schools and, as a result, wish to minimize costs

of busing by ensuring that students do not travel too far from their homes. Moreover, a district may

want to maintain neighborhood cohesion, allowing any children from a given neighborhood to attend

the same school. Another common objective involves allowing children from the same family – siblings

– to attend the same school. Finally, many districts desire balance across racial, socio-economic, and

ability dimensions across their schools. Willie argued that racially-diverse schools have a positive

impact on student achievement, and others have argued for the achievement benefits of socioeconomic

balance (Kahlenberg 2001).2

School choice advocates argue that choice is a way to inject competition from the marketplace into

the regulated public school sector. Demand-side pressure from families would generate competitive

2There is some empirical literature studying these types of effects. See, e.g., Angrist and Lang (2004), Card and
Rothstein (2007), and Hanushek, Kain, and Rivkin (2009).
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pressure to improve schools. A key condition for “regulated” competition to realize market-based

improvement is that supply-side responses are flexible. In a choice plan, administrators would have

information on what schools were preferred and could make programming decisions based on this

information. This, in turn, leads to better matches between students and schools, and incentives for

schools to improve to attract students.

With so many competing objectives, it is not surprising that some of the goals of choice plans

came into conflict and existing plans reflected compromises. In the 1980s, the Cambridge plan, for

instance, evolved into a system where families register by choosing up to four schools. The district

had a computer system which tried to assign student to their top choices, up to school capacity and

making sure not to violate the district’s goals on racial and ethnic composition. In some years, the

district made slight changes to guidelines on balance and in other years, with the opening and closing

of school options, plans were modified to allow entry at earlier grades or changes in neighborhood

boundaries. The current Cambridge plan now allows families to rank three out of twelve choices and

uses sibling, residential location, and income to guide assignments. Many plans evolved in a similar

manner, tweaking initial designs.

There have been two major developments related to school choice policies in the last decade.

First, by the early 2000s, many districts came out of court-ordered desegregation plans. Districts

such as Chicago Public Schools and San Francisco Unified Public School District wished to keep

choice options given that parts of the infrastructure had developed under desegregation, and parents

had some experience expressing choices. This development led to the creation of choice plans with

different features reflecting the historical legacies of desegregation in particular cities.

The second major development has been elimination of race as a factor in school assignment. Be-

ginning with a highly publicized case involving racial preferences at Boston Latin School, McLaughlin

v. Boston Sch. Committee (1996), the Boston School committee dropped race as a factor in their

choice plan in 1999. Cambridge followed suit in 2000 and replaced race with an income-based criteria.

A few years later the U.S. Supreme court broached the subject of racial preferences in two cases,

Parents Involved in Community Schools Inc. v. Seattle School District and Meredith v. Jefferson

County (Ky.) Board of Education. In 2007, the Court decided that the Seattle and Louisville plans

were unconstitutional because of the way they used race-conscious criteria to achieve diversity. In

a 5-to-4 decision, Chief Justice Roberts famously wrote that “the way to stop discrimination on the

basis of race is to stop discrimination on the basis of race.” The dissenting argument claimed that

the decision would strip local communities of the tools they need and have used to prevent resegre-

gation of public schools. This ruling left a number of districts to modify their plans without using

race as a factor. Districts adapted by using socio-economic criteria for student placement, redrawing
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attendance zones, or selecting sites for new schools. Throughout, the design of choice plans involved a

compromise between the competing objectives of giving choice, having a fair procedure, and ensuring

that the demographic composition of schools are not too far out of balance.

2.2 The canonical school choice model

The school choice model consists of I students and N schools. There are three main features:

1. preferences of students P = (P1, ..., PI)

2. a vector of school capacities q = (q1, ..., qn)

3. school priorities π = (π1, ..., πn).

The student preferences express a strict rank ordering over schools; this ranking need not be

complete. Denote the weak ordering for student i by Ri. The school capacities express how many

seats are available at each school. The school priorities encode information on how applicants are

ordered, or prioritized, at schools. The school choice problem is sometimes denoted by the pair (P, π).

I call this model the canonical model because it was the first model proposed by Abdulkadiroğlu and

Sönmez (2003) and subsequent developments have involved enriching it in various ways.

Problems of assignment are often categorized into two classes: one-sided and two-sided. In one-

sided problems, there is a set of agents and objects. The agents have preferences over the objects

and may also have existing priorities, or claims, over the objects. The normative properties of the

allocation are evaluated from only their viewpoint. In two-sided problems, in contrast, both sides

of the market express preferences over each other. As a result, evaluation of the properties of the

allocation may depend on preferences from both sides of the market. The school choice model falls in

between these two extremes.

In many U.S. school choice plans, as in one-sided problems, schools do not express preferences

over students. Rather, district administrators prioritize applications at schools using some exogenous

criteria. One such criteria is neighborhood or walk-zone priority. In Boston’s school choice plan, for

instance, elementary school applicants obtain walk-zone priority if they reside within 1 mile of the

school. In other districts, schools construct an ordering of students, as in two-sided problems. In

Chicago, for instance, students applying for admissions to selective high schools take an admissions

test. The nine schools then order students by their test score. Schools also evaluate applicants using

criteria other test scores than to determine their strict rank ordering over applicants. In New York

City’s high school admissions process, some schools use 7th grade attendance and grades together

with interviews at schools to determine their ordering. In some choice plans, there are both schools
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that use exogenous criteria and schools that actively rank applicants. High school admissions in New

York City is a prominent example of this hybrid case.

The outcome of a school choice problem is a student assignment, or matching µ : I → S, where µ(i)

indicates the school assignment of student i. There are two properties of assignments which feature

centrally in the student assignment literature. A matching µ is Pareto efficient if there is no way

to improve the allocation of a student without making another student worse off. It is important to

note that this definition does not take the school’s perspective into account in the welfare judgement.

A matching µ is stable if there is no student-school pair (i, s) such that

i) student i prefers school s to her assignment µ(i), and

ii) there is another student j with lower priority than student i assigned to s under µ.

This pair is called a blocking pair. In the canonical model, this concept is sometimes referred to as the

elimination of justified envy rather than stability. The reason is that the canonical model is phrased as

a one-sided problem, while the traditional interpretation of stability is based on strategic interpretation

related to the possibility of re-contracting among matched pairs as in a two-sided problem. Under the

one-sided interpretation, stability embodies a notion of fairness: a student should not envy another

school over her assignment, and have a higher claim to that school. To keep things simple, I will use

the term stability keeping in mind these two potential interpretations. A matching µ is student-

optimal if it is stable and no other stable matching that is better for some students, and no worse

for all students.

A mechanism ϕ is a systematic procedure to construct a matching for each school choice problem.

That is, it is a function which maps each school choice problem (P, π) to a matching. Let ϕ(P, π) denote

the matching produced by mechanism ϕ for problem (P, π). Let ϕ(P, π)(i) denote the assignment of

student i in this matching.

A mechanism ϕ is strategy-proof if truth-telling is a dominant strategy for all students. That is,

no matter the report of the other students, a student can do no better than reporting her preference.

More formally, for all players i, for all Q−i (arbitrary reports of students other than i), for all P̂i

(arbitrary report of player i),

ϕ((Pi, Q−i), π)(i)︸ ︷︷ ︸
assignment of i, when report truth

Ri︸︷︷︸
is at least as preferred as

ϕ((P̂i, Q−i), π)(i)︸ ︷︷ ︸
assignment of i, for arbitrary report

.

Strategy-proofness is a strong requirement because it simplifies the preference submission problem of

participants to one where their best possible response does not depend on the reports of others.
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2.3 Mechanisms

Three mechanisms have been closely studied for the school choice problem. The first is a mechanism

based on the student-proposing deferred acceptance algorithm of Gale and Shapley (1962). For (P, π),

the mechanism works as follows:

Step 1) Each student proposes to her first choice. Each school tentatively assigns its seats to its proposers

one at a time following their priority order. Any remaining proposers are rejected.

In general, at

Step k) Each student who was rejected in the previous step proposes to her next choice. Each school

considers the students it has been holding together with its new proposers and tentatively assigns

its seats to these students one at a time following their priority order. Any remaining proposers

are rejected.

The algorithm terminates either when there are no new proposals, or when all rejected students

have exhausted their preference lists. Gale and Shapley show that a mechanism based on this algorithm

produces the student-optimal stable matching. Dubins and Freedman (1981) and Roth (1982) show

that truth-telling is a dominant strategy for students.

The next mechanism defined by Abdulkadiroğlu and Sönmez (2003) is an adaptation of Gale’s top

trading cycles (TTC) described in Shapley and Scarf (1974). First, assign a counter for each school

that keeps track of how many seats are still available at the school. Initially set the counters equal to

the capacities of the schools. Given the counters and (P, π), the mechanism works as follows:

Step 1) Each student points to her favorite school. Each school points to the student who has the highest

priority. There is at least one cycle. Every student can only be part of one cycle. Assign every

student in a cycle to the school she points, and remove the student. The counter of each school

in a cycle is reduced by one and if it is zero, remove the school.

In general, at

Step k) Each remaining student points to her favorite school among the remaining schools, and each

remaining school points to the student with the highest priority. There is at least one cycle.

Every student in a cycle is assigned the school she points to and the student is removed. The

counter of each school in a cycle is reduced by one and if it is zero, remove the school.

The procedure terminates when either all students are assigned a school or unassigned students have

exhausted their preference lists. In the original Shapley and Scarf version of TTC, agents are endowed
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with objects, but many variations of TTC are possible.3 In this adaptation with counters, the priorities

of students are traded among themselves starting with the highest priority students. The mechanism is

strategy-proof as a direct mechanism (Abdulkadiroğlu and Sönmez 2003, Roth and Postlewaite 1977).

It also produces an assignment which is Pareto efficient.

The third mechanism is the Boston mechanism, named after the system used in Boston until 2005

by Abdulkadiroğlu and Sönmez (2003). The mechanism works as follows:

Step 1) Only the first choices of the students are considered. For each school, consider the students who

have listed it as their first choice and assign seats of the school to these students one at a time

following their priority order until either there are no seats left or there is no student left who

has listed it as her first choice.

In general, at

Step k) Consider the remaining students. Only the kth choices of these students are considered. For

each school with still available seats, consider the students who have listed it as their kth choice

and assign the remaining seats to these students one at a time following their priority order until

either there are no seats left or there is no student left who has listed it as her kth choice.

Variations of this mechanism are common in many other school districts. This mechanism has the

drawback that it is not strategy-proof for students. as we illustrate in the following example.

Example: Consider a problem with three students i1, i2, and i3 and three schools s1, s2, and s3, each

with one seat. Student preferences, P , are:

i1 : s2 − s1 − s3

i2 : s1 − s2 − s3

i3 : s1 − s2 − s3,

and priorities, π, are:

s1 : i1 − i3 − i2
s2 : i2 − i1 − i3
s3 : i3 − i1 − i2.

Under the student-proposing deferred acceptance mechanism, the matching produced is

µDA =

(
i1 i2 i3

s1 s2 s3

)
.

3See, for instance, Abdulkadiroğlu and Sönmez (1999), Papai (2000), and Pycia and Unver (2009).
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In this matching, none of the students obtain their top choice. The matching is not Pareto efficient,

but since there are no blocking pairs, it is stable.

Under the top trading cycles mechanism, the matching produced is

µTTC =

(
i1 i2 i3

s2 s1 s3

)
.

This matching is Pareto efficient and both student i1 and i2 obtain their top choice. However, student

i3 and school s1 form a blocking pair, so the matching is not stable.

Under the Boston mechanism, the matching produced is

µBOS =

(
i1 i2 i3

s2 s3 s1

)
.

This matching is Pareto efficient, but student i2 and school s2 form a blocking pair, so the matching

is not stable. Moreover, had student i2 reported that s2 was her top choice, she would have received

an assignment there, which demonstrates that the mechanism is not strategy-proof.

While the first two mechanisms are strategy-proof, the third mechanism is not. This raises the

question: are the student-proposing deferred acceptance mechanism and top trading cycles mechanism

the only two strategy-proof mechanisms for the school choice problem? Another important mechanism,

a serial dictatorship, is also strategy-proof for this problem. This mechanism places the students into a

queue and then processes students in order of the queue. If the ordering of students is drawn at random,

then the mechanism is called a random serial dictatorship. The first student obtains her top choice, the

second student obtains her top choice among schools with available seats, and so on. This mechanism

is Pareto efficient and strategy-proof, but does not consider the priorities in any natural way. It is

important to note, however, that there is no rigorous criteria where a serial dictatorship involves more

instances of creating blocking pairs than the TTC mechanism, though recent work by Abdulkadiroğlu

and Che (2010) provides a particular characterization of TTC that is relevant for the school choice

problem.4 Their characterization can be interpreted as showing the particular way in which TTC

respects the student who has the highest priority for a school: if she is not assigned to that school,

then she is assigned somewhere she prefers at least as much. While there are some characterizations

of the class of efficient and strategy-proof mechanisms together with additional axioms, e.g., Papai

(2000), and Pycia and Unver (2009), a characterization of all strategy-proof mechanisms remains

elusive.

4Earlier characterizations of TTC have focused on environments where agents are endowed with objects. See Ma
(1994) and also Sönmez (1999).
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Another issue highlighted by these examples is that the student-proposing deferred acceptance

mechanism is stable, but not efficient, while the top trading cycles mechanism is efficient, but not

stable. It is natural to ask for a weaker requirement: is there an efficient and strategy-proof mechanism

which also produces a stable outcome whenever it exists? Kesten (2010) shows that this is not possible,

highlighting a general tension between Pareto efficiency and stability. His paper advocates for an

efficiency-adjusted deferred acceptance mechanism. Another question is under what conditions are

stability and efficiency compatible. Ergin (2002) provides a set of necessary and sufficient conditions

on priority structures for which an efficient mechanism is also stable.

2.4 Important assumptions

The canonical school choice model makes a number of important assumptions that are worth high-

lighting. The student preferences, which are taken as given, are hedonic: students only care about

the school they are assigned independent of the other students who are assigned there. This rules

out forms of peer effects or consumption externalities in preferences, as in the case where groups of

students all wish to attend the same school only when each member of the group attends. In prac-

tice, preferences may depend on a student’s distance to the school, a student’s own academic and

demographic characteristics, and various aspects of school quality. Some aspects of school quality

may depend on the realized assignment such as the incoming grade’s peer group. On the other hand,

many aspects of school quality may be more certain at the time of application such as expenditure

per student, building facilities, course offerings, and the composition of students in higher grades.

The school priorities are expressed in terms of strict orderings, involving pairwise comparisons of

individual students. In practice, many districts have coarser criteria which are not strict orderings.

For instance, students with siblings at the school obtain a higher priority than students who do

not, but among students with siblings, all students are given equal priority. Expressing priorities in

terms of pairwise comparisons between students also rules out forms of complementarities for schools.

However, the model does allow for certain types of complementarities through suitable definitions of

what constitutes a school. Moreover, it is possible to enrich school preferences to a larger class than

simple pairwise comparisons to include substitutable preferences (Roth and Sotomayor 1990). For

example, in 2010, priorities at Chicago’s Gifted and Enriched Academic Programs (GEAP) worked as

follows: students are required to take an admissions test and were assigned to one of four tiers based

on an index of the socio-economic of their census tract geographic location. Half of the seats at a

program are assigned solely based on the score. The other half of the seats are split between the four

tiers. If there are not enough applicants in a given tier, the school admits students in the following

order: first the highest scoring student in the lowest remaining tier who had not yet been admitted,
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next the highest scoring student in the second lowest remaining tier, and finally the highest scoring

student in the other remaining tier. These preferences, though complex, can be accommodated by a

suitable generalization of the canonical model. Finally, as discussed above, in the canonical model,

school priorities are also taken as exogenous, while some districts have schools which actively rank

students.

In the canonical model, the information submitted by students is only ordinal and does not con-

vey information on preference intensities. This focus is sometimes defended on two grounds: (1)

mechanisms which elicit cardinal information may no longer be strategy-proof, and (2) submitting

cardinal information may be difficult for participants. For instance, Bogomolnaia and Moulin (2001)

defend their focus on ordinal mechanisms by writing (page 297) “it can be justified by the limited

rationality of agents participating in the mechanisms. There is convincing experimental evidence that

the representation of preferences over uncertain outcomes by vNM utility functions is inadequate.

One interpretation of this literature is that the formulation of rational preferences over a given set of

lotteries is a complex process that most agents do not engage into if they can avoid it.” Providing

theoretical foundations for restricting attention to mechanisms which only elicit ordinal preferences is

an open question. For interesting recent work in this direction, see Carroll (2011).

One recent development involves studying mechanisms which elicit some form of cardinal infor-

mation (see, e.g., Abdulkadiroğlu, Che, and Yasuda (2009)). Another feature of the information that

participants can convey in the canonical model is that it is not constrained in any way. This assump-

tion is in contrast to current practice in some districts, where there are constraints on the number of

choices that can be submitted.

Finally, the efficiency notions introduced for the canonical model utilize only the ordinal infor-

mation of students. That is, the objectives of the planner are only implicitly linked to productive

dimensions of the assignment such as whether students benefit from attending the school. For in-

stance, depending on the nature of peer effects, it may be better to group students of the same ability

together, but this may conflict with student preferences. Duflo, Dupas, and Kremer (2010) argue that

tracking students based on ability can generate test score gains based on experimental evidence. The

implications of peer effects on school choice are undeniably important, but are outside the scope of

this survey. Models incorporating these features will likely require the development of frameworks

which impose more structure on preferences and the nature of education production as in Epple and

Romano (1998).
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3 Coarse School Priorities and Efficiency

One of the first ways the basic model has been enriched is by examining the implications of coarse

school priorities. This issue obtained attention during the design of New York City’s High school

assignment process. In New York, there are over 600 high school programs, and 8th and 9th grade

students can apply to any program in the city. There are two main types of high school programs in

New York. The first are those who express a rank ordering over applicants as in screened or audition

schools. The second are schools that have fixed criteria to order students, such as limited unscreened

schools which give priority to first priority to students who attend information fairs or live in various

parts of the district. Abdulkadiroğlu, Pathak, and Roth (2005) and Abdulkadiroğlu, Pathak, and

Roth (2009) present more institutional details about schooling options in New York City.

During the course of the designing the new mechanism, policymakers agreed to two phases to

assign schools: the main round which involved both classes of schools and was to be based on student-

proposing deferred acceptance, and the supplementary round involving students who were unassigned

in the main round and remaining school capacities, where school orderings of students do not play a

role.5 In both of these rounds, students would be allowed to rank up to 12 school choices.

One practical issue was how coarse priorities should be turned into strict priorities at schools. This

issue was relevant for both rounds. During the course of the policy discussion, an official remarked:

I believe that the equitable approach is for a child to have a new chance with each [...] program.

[...] the fact is that each child had a chance. If we use only one random number, and I had

the bad luck to be the last student in the line this would be repeated 12 times and I would

never get a chance. I do not know how we could explain this to a parent.

This policy discussion motivated a reconsideration of the assignment mechanisms in the presence

of coarse priorities. To illustrate the issue, consider the earlier example, but now suppose that schools

s1 and s2 are indifferent between all applicants. That is, the priorities, π, are:

s1 : {i1, i2, i3}
s2 : {i1, i2, i3}
s3 : i3 − i1 − i2.

If the mechanism based on student-proposing deferred acceptance uses lotteries to convert these in-

differences into strict orderings, and the resulting orderings are as in the earlier example, then both

5Specialized high schools, such as Stuyvesant High School and Bronx High School of Science, are assigned through in
an earlier round based on a special admissions test.
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students i1 and i2 are assigned to their second choice, when they would be better off trading their

placements with one another. If the priorities at s1 had been strict, then one might justify preventing

this trade because student i3 forms a blocking pair with school s1 after the trade. However, this is

not a blocking pair when s1 is indifferent between applicants. Hence, the student-proposing deferred

acceptance mechanism does not always produce a student-optimal stable matching and allows for

efficiency loss.

Given that tie-breaking may have welfare consequences, one question raised by the quotation is

whether it is better for students to have school-specific lotteries or a single lottery draw. In Abdulka-

diroğlu, Pathak, and Roth (2009) we show that any student-optimal stable matching can be produced

by a single lottery draw, so that school-specific lotteries only add matchings which are not student-

optimal relative to a single lottery draw. These statements are from an ex post perspective, and there

is currently no known stronger ex ante argument for single versus multiple tie-breaking based on the

distribution of matchings.

These facts suggest a number of additional questions. First, with coarse orderings at schools,

is there a strategy-proof mechanism which produces a student-optimal matching? Erdil and Ergin

(2008) show that no such mechanism exists. Second, is it possible to construct mechanisms which are

student-optimal? Erdil and Ergin (2008) advocate one proposal, stable improvement cycles, which

finds a student-optimal stable matching in polynomial time. Next, is it possible to recover some

of the efficiency loss of the single-tie breaker version of the student-proposing deferred acceptance

mechanism? Abdulkadiroğlu, Pathak, and Roth (2009) consider this question and show that this

mechanism is on the efficient frontier. That is, suppose there exists a mechanism ϕ̃ which produces a

Pareto-dominating matching:

µ =

(
i1 i2 i3

s2 s1 s3

)
.

To show that this mechanism is not strategy-proof, consider the economy where student i1 only prefers

school s2 and denote the new preference profile by Q. In the problem (Q, π), the student-proposing

deferred acceptance mechanism produces the matching

ν =

(
i1 i2 i3

i1 s2 s1

)
,

where student i1 is unassigned. If mechanism ϕ̃ dominates the student-proposing deferred acceptance

mechanism, it must also yield matching ν. But in school choice problem (Q, π), student i1 could

manipulate ϕ̃ by submitting the elongated preference list s1 − s1 − s3. This shows that ϕ̃ is not

strategy-proof.
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The fact that no strategy-proof mechanism Pareto dominates the student-proposing deferred ac-

ceptance mechanism places it on the efficient frontier of strategy-proof mechanisms. The lesson that

emerges is that incentives together with stability must necessarily entail efficiency loss.

Motivated by these theoretical results, Abdulkadiroğlu, Pathak, and Roth (2009) compare the

extent of efficiency loss using data from the field from the new systems in Boston and New York.

Table 1 reports the average number of students obtaining a choice on their rank order list averaged

over 250 draws of the random tie breaker. DA-STB is the outcome of the student-proposing deferred

acceptance mechanism with a single tie breaker, while DA-MTB is the outcome with school-specific

tie breaking. SOSM is a student-optimal stable matching computed by applying the procedure of

Erdil and Ergin (2008) with a cycle selection rule and with initial matching from DA-STB. When

there are indifferences, there may be multiple stable matchings, so in the table we select a particular

student-optimal stable matching which Pareto dominates the matching produced by DA-STB.

Table 1: Impact of Tiebreaking in New York City and Bostona

New York City Boston

Choice DA-STB DA-MTB SOSM DA-STB DA-MTB SOSM

(1) (2) (3) (4) (5) (6)

1 32,105.3 29,849.9 32,701.5 2,251.8 2,157.3 2,256.6

2 14,296.0 14,562.3 14,382.6 309.8 355.5 307.4

3 9,279.4 9,859.7 9,208.6 154.9 189.3 154.0

4 6,112.8 6,653.3 5,999.8 59.7 76.1 58.7

5 3,988.2 4,386.8 3,883.4 27.4 34.1 27.0

6 2,628.8 2,910.1 2,519.5 4.9 6.0 4.9

7 1,732.7 1,919.1 1,654.6 2.6 2.8 2.5

8 1,099.1 1,212.2 1,034.8 1.9 0.9 1.9

9 761.9 817.1 716.7 1.2 0.4 1.2

10 546.4 548.4 485.6 0.3 0.1 0.3

11 348.0 353.2 316.3 - - -

12 236.0 229.3 211.2 - - -

Unassigned 5,613.4 5,426.7 5,613.4 112.4 104.6 112.4

aThis table is based on data from the main round of the New York City high school admissions process in
2006-2007 for students requesting an assignment for grade 9 and from the Boston elementary school (grade
K2) admissions process in 2006-07. The table reports the number from 250 draws of a random tie-breaker.
Reproduced from Abdulkadiroğlu, Pathak and Roth (2009).

The first comparison is between DA-STB and DA-MTB. Even though both matchings are stable,

DA-STB has more students obtaining their top choice, though the magnitude of the difference is

larger in New York City, where about 2,000 more students obtain their top choice under a single
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lottery draw. Interestingly, fewer students are unassigned under DA-MTB than DA-STB, however.

The second comparison between DA-STB and SOSM provides one measure of the efficiency loss due to

the presence of indifferences. In New York City, about 1,500 could receive a better high school choice

in a student-optimal stable matching relative to the outcome produced by the single-tie breaking

version of the student proposing deferred acceptance mechanism. In Boston, on the other hand,

less than 7 students on average obtain an improved assignment in the student-optimal matching in

Boston. Abdulkadiroğlu, Pathak, and Roth (2009) conjecture that the main difference is that the

pattern of preferences in Boston is different than in NYC, due in large part to different geographic

and transportation situations, and to the fact that in Boston, the preferences are for younger children.

But these empirical results raise the need for quantitative results in matching theory that provide

guidance on what features of the student preferences and school priorities are responsible for these

differences.6 They also raise the question of what type of behavior is expected in mechanisms which

might improve on the student-proposing deferred acceptance mechanism.

The discussion on how to convert coarse priorities to strict priorities is also relevant for other

mechanisms. In particular, in the supplementary round in New York City, schools are indifferent

between applicants, so one approach might be to conduct school specific lotteries and then apply the

TTC mechanism. Pathak and Sethuraman (2010) show that this mechanism is equivalent to a random

serial dictatorship. Another mechanism might be to randomly endow each student with a school seat

and then let them trade. Abdulkadiroğlu and Sönmez (1998) show that this mechanisms is equivalent

to a random serial dictatorship. Hence, three mechanisms are the same for the special case when each

school is indifferent between applicants.

Given that two alternative mechanisms are equivalent to a random serial dictatorship, there has

been a renewed interest in understanding the efficiency properties of this mechanism. Bogomolnaia

and Moulin (2001) point out that a random serial dictatorship may produce a matching that is not

ordinally efficient. It may be possible to find a random assignment, which stochastically dominates

the random assignment produced by a random serial dictatorship. That is, for each student i, the

probability of receiving the kth choice is at least high under an alternative mechanism than the random

serial dictatorship for all k choices. They develop and analyze the probabilistic serial mechanism that

produces an ordinally efficient assignment, but is not strategy-proof. In Pathak (2007), using field

data from NYC’s supplementary round, I compare the empirical performance of the probabilistic serial

mechanism to a random serial dictatorship. I find that the difference between the two mechanisms

is relatively small, out of about 8,000 students just over 15 more students received their top choice

under probabilistic serial and about 50 more students receive a more preferred assignment.

6Erdil and Ehlers (2010) provide conditions on priorities under which the constrained efficient rule is efficient.
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This finding was one motivation for the study of Che and Kojima (2010), who provide conditions

under which the random serial dictatorship and probabilistic serial mechanism are asymptotically

equivalent. Their result implies conditions under which the inefficiency of random serial dictatorship

becomes small in large allocation problems. A nice feature of this result is that it is quantitative:

rather than illustrating existence of ordinal inefficiency, they show what conditions ensure that it is

quantitatively small. Another related paper is Kesten (2009), who shows the equivalence of random

serial dictatorship and probabilistic serial under a different set of assumptions. Manea (2009) considers

a different asymptotic notion: in his model, preferences are randomly generated and the object of

interest is the likelihood that the assignment from a random serial dictatorship is ordinally inefficient.

He shows that a random serial dictatorship is highly likely to produce an ordinally inefficient allocation.

The reason for the apparently different result is it is only about the existence of ordinal inefficiency

and not the extent of efficiency loss, as in Che and Kojima (2010).

4 Mechanisms and Market Size

The empirical study on NYC’s Supplementary round provided motivation for subsequent theoretical

developments. In a similar vein, empirical and simulation evidence on the performance of two-sided

matching models when there are a large number of participants played a key role in suggesting theo-

retical work on these topics.

In the main round in New York City, about half of the school districts submit rankings over

applicants. In such a setting, there is no strategy-proof mechanism for both students and schools

(Roth 1982). Returning to our example, suppose now that the schools order students in the following

way:

s1 : i1 − i2 − i3
s2 : i2 − i1 − i3
s3 : i3 − i1 − i2,

but now school s1 is one that ranks applicants, so her ordering is not from exogenous priorities. Under

the student-proposing deferred acceptance mechanism, the resulting matching is:

ν =

(
i1 i2 i3

s2 s1 s1

)
,

and school s1 is assigned her second-ranked student. If, instead, school s1 declared that student i2 is
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not acceptable and only ranked i1, the resulting matching is:

ν ′ =

(
i1 i2 i3

s1 s2 s3

)
.

School s1’s strategic rejection of student i2 results in her obtaining her top choice; this shows that

schools can manipulate the student-proposing deferred acceptance mechanism.

The presence of schools who actively rank applicants in New York City makes the canonical school

choice model closer to two-sided matching market models, surveyed in Roth and Sotomayor (1990). In

the labor market context, Roth and Peranson (1999) conduct a series of simulations on data from the

NRMP and on randomly generated data. In their simulations, very few agents could have benefitted

by submitting false preference lists or by manipulating capacity in large markets given the reports

of other agents. These simulations lead them to conjecture that the fraction of participants with

preference lists of limited length who can manipulate tends to zero as the size of the market grows.7

The first theoretical attempt to understand these findings is Immorlica and Mahdian (2005), which

focuses on one-to-one matching models. This paper is particularly innovative because a number of

subsequent papers have built on and extended some of its analytical tools. In Kojima and Pathak

(2009), we consider many-to-one matching markets with the student-proposing deferred acceptance

mechanism, where schools have arbitrary preferences such that every student is acceptable, and stu-

dents have random preferences of fixed length drawn iteratively from an arbitrary distribution. We

show that the expected proportion of schools that have incentives to manipulate the mechanism when

every other school is truth-telling converges to zero as the number of schools approaches infinity. The

key step in the argument involves showing that, when there are a large number of schools, the chain

reaction caused by a school’s strategic rejection of a student is unlikely to make a more preferred

student apply to that school. Loosely speaking, this means in the example it is unlikely that school

s1’s strategic rejection leads student i1 to apply to her in the course of the student-proposing deferred

acceptance mechanism under the large market assumptions.

Roth and Peranson (1999)’s simulations hold fixed the behavior of all other participants and con-

sider deviations by particular agents one-by-one. As such, they are not necessarily about equilibrium

implications. This consideration is where the theory pushes the envelope one step further. In Kojima

and Pathak (2009) we conduct equilibrium analysis in the large market. With an additional condition,

which we call sufficient thickness, we show that truthful reporting is an approximate equilibrium in a

large market that is sufficiently thick.

7Roth and Peranson (1999) also investigate the complications that couples create for two-sided matching markets.
Kojima, Pathak, and Roth (2010) build on large market techniques to student existence of stable matchings and incentives
of matching mechanisms in the presence of couples.
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The feedback from the field, where on the surface the potential for manipulation did not appear

to undermine systems based on the student-proposing deferred acceptance mechanism, to empirical

and simulation evidence left a challenge for theory: what conditions would ensure that manipulations

are unlikely. Kojima and Pathak (2009) take a step towards understanding these results, though it is

not yet known whether it is possible to tighten the rates of convergence. Nonetheless, this case also

illustrates the potential for the development of quantitative aspects of matching market design, where

empirical and simulation evidence feeds into theoretical developments.

5 Confronting Mechanisms with the “Real-World”

5.1 Levels of Sophistication

One important issue that emerges when designing and implementing actual mechanisms is that par-

ticipants may not behave according to the theoretical assumptions of the models. Roth and Ockenfels

(2002) summarize these considerations nicely in their description of online auctions: “In designing

new markets, we need to consider not only the equilibrium behavior that we might expect experienced

and sophisticated players to eventually exhibit, but also how the design will influence the behavior of

inexperienced participants, and the interaction between sophisticated and unsophisticated players.”

One challenge with this statement is having a defensible way to model unsophisticated players. In

student assignment problems, a natural approach is to assume unsophisticated players simply report

the truth even when it may not be in their best interest to do so. In studying the equilibrium properties

of the Boston mechanism, this approach finds support in based on data from laboratory experiments.

For example, Chen and Sönmez (2006), show that about 20% of subjects in a laboratory experiment

report the truth under the Boston mechanism. Recall that the major difficulty with the Boston

mechanism is that participants may benefit by submitting a rank order list that is different from their

true underlying preferences over schools. Loosely speaking, the Boston mechanism attempts to assign

as many students as possible to their first choice school, and only after all such assignments have been

made does it consider assignments of students to their second choices, and so on. If a student is not

admitted to her first choice school, her second choice may be filled with students who have listed it as

their first choice. That is, a student may fail to get a place in her second choice school that would have

been available had she listed that school as her first choice. If a student is willing to take a risk with

her first choice, then she should be careful to rank a second choice that she has a chance of obtaining.

If a mechanism is not strategy-proof, a natural direction is to analyze its equilibrium properties.

Assuming all players are sophisticated, Ergin and Sönmez (2006) characterize the set of Nash equilib-

rium of the preference revelation game induced by the Boston mechanism under complete information
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and strict priorities. Consider the previous example where student preferences, P , are:

i1 : s2 − s1 − s3

i2 : s1 − s2 − s3

i3 : s1 − s2 − s3,

and priorities, π, are:

s1 : i1 − i3 − i2
s2 : i2 − i1 − i3
s3 : i3 − i1 − i2.

It is possible to construct a Nash equilibrium where student i1 reports s1, student i2 reports s2, and

student i3 reports s3 as top choices. The resulting matching is

µNE =

(
i1 i2 i3

s1 s2 s3

)
,

which is the student-optimal stable matching. For this problem, it is the only Nash equilibrium

outcome, but more generally Ergin and Sönmez (2006) show that Nash equilibrium outcomes of the

Boston game are equivalent to the set of stable matchings. This result implies that the best possible

equilibrium outcome under the Boston mechanism is equal to the student-optimal stable matching,

an outcome that can be attained via a strategy-proof mechanism. Moreover, players need to have a

high degree of coordination to obtain this outcome.

It is important to recognize the strong assumptions underlying this analysis: players have complete

information about the rank order lists and priorities of each another and all players can compute their

optimal strategies in the Boston mechanism. There are some sophisticated families who understand

the strategic features of the Boston mechanism and have developed rules of thumb for how to submit

preferences strategically. For instance, the West Zone Parents Group (WZPG), a well-informed group

of approximately 180 members who meet regularly prior to admissions time to discuss Boston school

choice for elementary school (grade K2), recommends two types of strategies to its members. Their

introductory meeting minutes on 10/27/2003 state:

One school choice strategy is to find a school you like that is undersubscribed and put it as a

top choice, OR, find a school that you like that is popular and put it as a first choice and find

a school that is less popular for a “safe” second choice.

This quote only indicates some sort of strategic sophistication. It would be interesting to understand

what types of evolutionary or learning rules would support the predictions of Nash equilibrium behavior
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in this setting. Alternatively, one could consider alternative equilibrium notions such as self-confirming

equilibrium to model this situation.

During the 2005 policy discussion about abandoning the mechanism, policymakers focused on how

under a strategy-proof mechanism if families have access to advice on how to strategically modify their

rank order lists from groups like the WZPG or through family resource centers, they can do no better

than by submitting their true preferences. Superintendent Payzant’s recommendation to change the

mechanism emphasized this feature and the BPS Strategic Planning team, in their 05/11/2005 dated

recommendation to implement a new BPS assignment algorithm, state:

A strategy-proof algorithm “levels the playing field” by diminishing the harm done to parents

who do not strategize or do not strategize well.

The model in Pathak and Sönmez (2008) has both sincere families who report the truth and

sophisticated families who best respond to the preference revelation game induced by the Boston

mechanism. We characterize the Nash equilibria of this game and compare the equilibrium outcomes

with the dominant-strategy outcome of the student-proposing deferred acceptance mechanism.

There are two main results. The first is a characterization of the equilibrium outcomes of the

Boston game as the set of stable matchings of a modified problem where sincere students lose their

priorities to sophisticated students. This result implies that there exists a Nash equilibrium outcome

where each student weakly prefers her assignment to any other equilibrium assignment. Hence, the

Boston game is a coordination game among sophisticated students.

Returning to our main example, suppose that student i2 is sincere, and hence reports s1−s2−s3 in

the preference revelation game of the Boston mechanism. Our characterization implies that i2 “loses

priority” at each school other than her top choice, and the Nash equilibrium outcome is simply the

set of stable matching with the following priorities:

πs1 : i1 − i3 − i2
π̃s2 : i1 − i3 − i2
π̃s3 : i3 − i1 − i2,

where i2 is ordered last at school s2 and s3. Since the set of Nash equilibrium outcomes of the Boston

game are equal to the set of stable matchings of this modified economy, the Nash equilibrium outcome

for the example is

µNE =

(
i1 i2 i3

s2 s3 s1

)
.

Sincere student i2 obtains her last choice, under the Boston mechanism, when previously she obtained
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her second choice as the Nash outcome, when she was sophisticated.

Next, we compare the equilibria of the Boston game to the dominant-strategy outcome of the

student-proposing deferred acceptance mechanism. We show that any sophisticated student weakly

prefers her assignment under the Pareto-dominant Nash equilibrium outcome of the Boston game

over the dominant-strategy outcome of the student-proposing deferred acceptance mechanism. In the

example, student i1 is assigned to s1 (her second choice) and student i3 is assigned to s3 (her third

choice), while under the Nash equilibrium of the Boston game both receive their top choice. When only

some of the students are sophisticated, the Boston mechanism gives a clear advantage to sophisticated

students provided that they can coordinate their strategies at a favorable equilibrium.

In our example, the Boston game has a unique equilibrium, but in general, there may be many

stable matchings and hence the equilibrium may no longer be unique. There is, however, evidence in

the literature which suggests that the size of the set of stable matchings may be very small in real-life

applications of matching models. Using data for years 1991-1994 and 1996 for thoracic surgery market,

Roth and Peranson (1999) show that there are two stable matchings each for years 1992 and 1993, and

one stable matching each for 1991, 1994 and 1996. One caveat of these computational experiments

is that the thoracic surgery market used the hospital-optimal stable mechanism in these years and

truth-telling is neither a dominant strategy for interns nor for hospitals under this mechanism. So

it is theoretically possible that the small number of stable matchings is an implication of preference

manipulation.

The same computational exercise is on firmer ground for school years 2005-06 and 2006-07 for

Boston Public Schools student admissions when a strategy-proof mechanism is used. The results of

these computational experiments are very similar to those of Roth and Peranson: At grade K2 for

school years 2005-06 and 2006-07, there is only one stable matching for either year. At grade 6 the

situation is not very different. For school year 2005-06 there are only two stable matchings, and among

more than 3,200 students only two are affected by the choice of a stable matching. For school year

2006-07 there are also two stable matchings, and among more than 2,900 students only three are

affected by the choice of a stable matching. The likely reason this occurs is that for most students the

factors which give a student higher priority at a Boston school (i.e. proximity and the presence of a

sibling) also makes it more preferable for the student.

These computational experiments suggest that while multiple equilibria is a theoretical possibility

under the Boston game, it likely affects a very small minority of students. Since the set of Nash

equilibrium outcomes is equal to the set of stable matchings of an augmented economy where sincere

students lose priority to sophisticated students. Using data for school years 2005-06 and 2006-07 and

admission to grade K2 and grade 6, Pathak and Sönmez (2008) ran computational experiments by
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randomly setting 20 percent of students to be sincere and the rest to be sophisticated. We calcu-

lated the student-optimal stable matching and the school-optimal stable matching for the resulting

augmented economy and repeated the same exercise 1,000 times to calculate how many students are

affected on average by the multiplicity of the Nash equilibria. We repeated the same experiment for

the cases where 40 percent, 60 percent, and 80 percent of the students are sincere respectively. Table

2 summarizes the results.

Table 2: Average Number of Students Receiving Different

Schools in Student-Optimal vs. School-Optimal Matchinga

Fraction of Sincere Students

20% 40% 60% 80%

2005-06

Grade K2 0.14 0.08 0.04 0.01

Grade 6 0.38 0.20 0.07 0.01

2006-07

Grade K2 0.03 0.01 0.00 0.00

Grade 6 0.24 0.14 0.05 0.01

aThis table is based on data provided by Boston Public Schools for Round 1 of their admissions process
in 2005-06 and 2006-07. From Pathak and Sönmez (2008).

Most of the time the augmented economy has a unique stable matching and more specifically no

more than 0.38 students (less than 0.013 percent of students) are affected on average by the multiplicity

of the Nash equilibria in each of the cases. Hence while the main result does not theoretically extend

to all equilibria, the computational experiments suggest that multiplicity may not be a significant

problem in our application.

What about sincere students in the new mechanism? In the example, the sincere student is better

off because she receives her second choice. However, this is not a general result, as Pathak and Sönmez

(2008) show. While no sophisticated student loses priority to any other student, some of the sincere

students may gain priority at a school at the expense of other sincere students by ranking the school

higher on their preference list. As a result, it is possible that a sincere student might benefit from the

Boston mechanism.
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This model and the computational experiments enrich the discussion of the rationale for chang-

ing the Boston mechanism. Even with players with heterogenous levels of sophistication, changing

the mechanism does not unambiguously benefit sincere students. Hence, under the assumptions of

the model, this policy change cannot be seen as a Pareto improvement even for this subset of play-

ers. Rather, the ‘levelling the playing field’ idea only indicates that sophisticated students lose their

strategic rents under the new mechanism.

5.2 New Approaches to Incentive Constraints

In the 2009 Nemmers Prize lecture, Paul Milgrom argued that practical experiences implementing

auction mechanisms led him to reconsider the nature of incentive constraints for applied mechanism

design problems (Milgrom 2009). He argued that incentive-compatible mechanisms can have very bad

properties and in his view perhaps too much emphasis has been placed on incentives as constraints in

mechanism design.

For instance, Day and Milgrom (2007) consider package auctions, and consider an incentive metric

which is to minimize the incentives to misreport in core-selecting auctions. This notion is not based

on equilibrium, but it may highlight a potentially relevant consideration for the setting of a package

auction. Erdil and Klemperer (2010) argue, instead, that in core-selecting package auctions it may be

preferable to consider a bidder’s marginal incentive to deviate, rather than her maximal incentive to

deviate (the best possible deviation). Their argument is that the marginal incentive is not as sensitive

to other bidders’ behavior, and hence may be easier to calculate. This criteria leads them to advocate

the minimum revenue core outcome closest to some given point which does not depend on the winners’

bids unlike the proposals that consider distance to the Vickrey-Clarke-Groves payment (which depends

on winners’ bids).

In student assignment problems, it is also useful to consider other ways to think about incentive

constraints. In Pathak and Sönmez (2010), we explore a formalization of how easy a mechanism may

be to manipulate or “game.” We compare two direct mechanisms based on the following notion:

mechanism ϕ is weakly more manipulable than mechanism ψ, if whenever ψ can be manipulated,

ϕ can also be manipulated (even though the converse does not hold). This notion allows for both

a weak and strong version. In the strong version, the manipulating agent must be the same across

the problems, while in the weak version, the agent may be different. Like Day and Milgrom (2007),

this notion is not intended to be based on equilibrium. However, it has the benefit of an equilibrium

interpretation. In particular, an equilibrium reformulation of the weak notion is that ϕ is weakly more

manipulable than ψ, if whenever truth-telling is a Nash equilibrium of ψ it is also a Nash equilibrium

of ϕ.
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To provide one illustration of this general idea in the context of student assignment, we return

to a practical issue from New York City. One feature of their new mechanism is that it only allows

students to submit a rank order list of their top 12 choices. Based on the strategy-proofness of the

student-proposing deferred acceptance mechanism, the following advice was given to students:

You must now rank your 12 choices according to your true preferences.

For a student who has more than 12 acceptable schools, truth-telling is no longer a dominant strategy.

In practice, between 20 to 30 percent of students rank 12 schools. This issue was first theoretically

investigated by Haeringer and Klijn (2009). In general, there are many equilibrium outcomes, and

these depend on high levels of sophistication among participants.

In contrast, it is possible to show that the greater the number of choices a student can make,

the less vulnerable the constrained version of student-proposing deferred acceptance mechanism is to

manipulation. More formally, let GS be the student-proposing deferred acceptance mechanism, and

GSk be the constrained version of the student-proposing deferred acceptance mechanism where only

the top k choices are considered. In Pathak and Sönmez (2010) we show that if ` > k > 0, and there

are at least ` schools, then GSk is weakly more manipulable than GS`. This result provides a formal

criteria to encourage a district to relax constraints on rank order lists.

Policymakers seem to dislike the idea of “gaming,” presumably because it is costly and some

participants may be able to bear its costs more easily than others. Given the prevalence of this

sentiment, it is surprising that we have very few models of how gaming or manipulation is undesirable.

These intuitions may rest on procedural aspects of a mechanism, rather than the properties of the

outcomes of a mechanism. Understanding these dimensions of mechanisms will provide an important

bridge between mechanism design in theory and in practice.

5.3 Experiments

The other way theoretical developments have confronted the real-world is through experiments. Dur-

ing the initial meetings with the strategic planning team at Boston Public Schools, school officials had

studied the experiments in Chen and Sönmez (2006) closely. This experiment compares the perfor-

mance of students in the Boston mechanism, the student-proposing deferred acceptance mechanism,

and the top trading cycles mechanism. One nice feature of the experiment is that it is able to induce

participant preferences, so it can compare how these are related to submitted preferences. The exper-

iment finds that there is a higher degree of preference manipulation under the Boston than the two

alternatives, and this negatively impacts efficiency.
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Since this initial experiment, a flurry of additional experiments have been conducted. Many of

these experiments are intended to fill in areas where theory is silent or gives only weak predictions.

For instance, Calsamiglia, Haeringer, and Kljin (2010) investigate the performance of mechanisms

in the presence of constraints on the number of schooling options one can list. They are motivated

by theoretical work on this topic in Haeringer and Klijn (2009). Featherstone and Niederle (2008)

investigate the role of incomplete information in the Boston mechanism. They are motivated by

recent discussions highlighting how the Boston mechanism, though manipulable, may be able to elicit

preference intensity (see, e.g., Abdulkadiroğlu, Che, and Yasuda (2009) and Miralles (2008)).

6 Conclusion

In the last decade, problems related to student assignment have invigorated theoretical research on

matching and assignment models. The literature reviewed in this paper provide examples of how

field experience implementing mechanisms can motivate subsequent theoretical developments. While

impossibility results indicate that there is no student-optimal stable assignment when there are coarse

priorities, field evidence suggest that this may not significantly impact student welfare in Boston,

but impacts thousands of students in New York’s high school choice plan. The simulations of Roth

and Peranson (1999) showed that despite impossibility results on strong incentive properties of two-

sided matching mechanisms, market size may ameliorate strategic issues. Lastly, field evidence on

heterogenous levels of sophistication among participants in Boston motivated examining models where

players have varying understanding of the choice plan. This and subsequent work illustrated the

importance of considering procedural aspects of student assignment mechanisms in addition to the

conventional focus on the outcomes produced by mechanisms.

Roth (2002) advocates for the creation of an engineering-style branch of applied mechanism de-

sign. Each of the three cases described here – coarse priorities, market size, heterogeneous levels of

sophistication – are areas where theoretical developments can trace their origins to particular engi-

neering episodes. Their existence reinforces the argument for recording and creating a literature on

case studies of applied mechanism design.

Of course, many interesting questions remain. In particular, some of this work is part of an

emerging quantitative theory of matching market design, which moves away from impossibility and

knife-edge results. In a quantitative theory, comparative statics can inform how the magnitude of

certain issues may be depend on features of the environment and can provide guidance for these

situations. Another wide-open area involves building bridges between laboratory experiments and

evidence on actual play in mechanisms in the field. This work, however, is challenging since measuring
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true preferences in the field is considerably more difficult than in the lab. Finally, much remains to

be done to examine the effects of particular student mechanisms on outcomes beyond the assignment

such as student achievement and to broaden the scope of the design objectives to include the overall

organization of the educational system.
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