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Background and purpose: Radioresistance remains a significant challenge in tumor
therapy. This systematic review aims to demonstrate the role of long non-coding RNA
(lncRNA) in cancer radioresistance/radiosensitivity.

Material and methods: The electronic databases Pubmed, Embase, and Google
Scholar were searched from January 2000 to December 2021 to identify studies
addressing the mechanisms of lncRNAs in tumor radioresistance/sensitivity, each of
which required both in vivo and in vitro experiments.

Results: Among the 87 studies identified, lncRNAs were implicated in tumor
radioresistance/sensitivity mainly in three paradigms. 1) lncRNAs act on microRNA
(miRNA) by means of a sponge, and their downstream signals include some specific
molecular biological processes (DNA repair and chromosome stabilization, mRNA or
protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-
related pathways, epithelial-mesenchymal transition (EMT), cellular energy metabolism)
and some signaling mediators (transcription factors, kinases, some important signal
transduction pathways) that regulate various biological processes. 2) lncRNAs directly
interact with proteins, affecting the cell cycle and autophagy to contribute to tumor
radioresistance. 3) lncRNAs act like transcription factors to initiate downstream
signaling pathways and participate in tumor radioresistance.

Conclusion: lncRNAs are important regulators involved in tumor
radioresistance\sensitivity. Different lncRNAs may participate in the radioresistance with
the same regulatory paradigm, and the same lncRNAs may also participate in the
radioresistance in different ways. Future research should focus more on
comprehensively characterizing the mechanisms of lncRNAs in tumor radioresistance
to help us identify corresponding novel biomarkers and develop new lncRNA-based
methods to improve radioresistance.
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INTRODUCTION

Radiotherapy is a standard treatment for many malignant
tumors. About half of tumor patients receive this treatment,
including radical, adjuvant, and palliative radiotherapy
(Delaney et al., 2005; Schaue and McBride, 2015). Some
tumors are sensitive to radiotherapy, which can achieve a
radical cure. Some malignant tumors can be cured by a
combination of radiotherapy, surgery, and chemotherapy.
Besides, radiotherapy can also improve the quality of life and
prolong the survival of patients with advanced tumors. The
impact of radiotherapy on tumors is a complex process
encompassing multiple factors and mechanisms. During
radiotherapy, radiation can directly act on biologically active
macromolecules, such as DNA and enzymes, causing
abnormalities in their structure and function. It can also cause
ionization and excitation of water molecules, producing free
radicals and resulting in secondary damage to biological
macromolecules (Nascimento and Bradshaw, 2016). In
addition, radiation may have a secondary effect by affecting
neurohumoral disorders, changing the permeability of cell
membranes and blood vessel walls, and causing toxemia
(Sharma et al., 2001; Wang et al., 2018).

While radiotherapy improves the prognosis of tumor patients,
tumor cells exhibit varying degrees of resistance to it. The cancer
radioresistance directly affects the effectiveness of radiation
treatment on tumors, which is closely related to the poor
prognosis in patients. Accordingly, tumor cells may possess
mechanisms of radiotherapy resistance. However, the
molecular mechanisms of radiation resistance of tumor cells
remain poorly understood. Obviously, these mechanisms are
complex and require more extensive characterization.

The long non-coding RNA (lncRNA) is a type of non-coding
RNA with a length greater than 200 nucleotides. They
participate in various cellular processes and are involved in
the development of diseases (Mercer et al., 2009). It has been
estimated that the human genome encodes more than 28,000
different lncRNAs (Tragante et al., 2014). Generally, the
expression of lncRNA is typically lower than that of protein-
coding genes and is highly tissue and time specific (Derrien
et al., 2012). Evidence suggests that lncRNA can participate in
multiple biological processes of tumor cells through various
mechanisms, such as signal molecules, decoy molecules, guide
molecules, scaffold molecules, and RNA sponges (Yang et al.,
2014). More recent evidence indicates that lncRNA can
modulate radiotherapy response by regulating key signal
pathways, including DNA damage repair, cell apoptosis, cell
metabolism, and autophagy (Podralska et al., 2020). However,
to the best of our knowledge, no systematic review has been
published to summarize the mechanisms of lncRNA in cancer
radiotherapy resistance.

This study aimed to systematically review the literature and
summarize the mechanism by which lncRNA contributes to
cancer radioresistance/radiosensitivity. These findings may
provide new insights for improving the efficiency of tumor
radiotherapy, discovering new therapeutic targets, and
translational medicine in the future.

MATERIAL AND METHODS

This research strictly followed the PRISMA (Preferred Reporting
Items for Systematic review and Meta-analyses) (Moher et al.,
2009). This study was a systematic review and did not directly
involve the issue of humans, so the review of the Institutional
Review Board (IRB) was exempted.

Search Strategy
The databases Pubmed, Embase, and Google Scholar were used
for literature search. The search period for the literature was set
from 1 January 2000 to 31 December 2021, and the language was
restricted to English.

This study adopted the strategy of combining Pubmed mesh
term and free words to determine the search terms, such as
“neoplasms”, “cancer”, “tumor”, “RNA, long noncoding”, “long
non-coding RNA, “lncRNA”, “radiotherapy”, “ionizing
radiation”, “ionizing”, “radiation”, “radioresistance”, and
“radiosensitivity”. The search strategy based on Pubmed was
shown in Supplementary Table S1.

Exclusion and Inclusion Criteria
Two researchers (Wenhan Wu and Shijian Zhang) independently
searched and screened the literature using inclusion and exclusion
criteria. We excluded irrelevant records based on the titles and
abstracts and carefully evaluated the full text of the remaining
documents. If there was a dispute between the two researchers, a
third researcher (Jia He) would resolve the matter independently,
and a consensus would be reached. Where possible, the original
authors were contacted for more detailed data.

Inclusion Criteria
1) Human tumor subjects; 2) the expression of lncRNA and
cancer; 3) availability of data for both in vitro cell lines and animal
studies; 4) lncRNAs involvement in cancer radioresistance/
radiosensitivity and their specific mechanism.

Exclusion Criteria
1) Only including vitro cell lines or animal studies; 2) review,
editorial, and case reports; 3) incomplete data or uncertain
mechanism.

Data Extraction and Data Items
The literature included in this study has analyzed the relationship
between lncRNA and cancer radioresistance/radiosensitivity in
specific tumors, and determined their corresponding mechanism.
We extracted the following data from each article: author,
publication date, title, type of tumor and radiotherapy,
involved lncRNAs and their expression levels, type of cell line,
and corresponding mechanism of lncRNA.

RESULTS

Study Search and Characteristics
A diagram illustrating the literature search and selection process
was shown in Figure 1. In the initial search, we identified a total
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of 5,653 potentially relevant documents. After removing
duplicate publications, 1,668 studies remained. Based on the
inclusion and exclusion criteria, we then carefully reviewed the
abstracts of these studies and excluded 1,098 records, including
reviews, meta-analyses, case reports, and other unrelated studies.
We further evaluated the full text of the remaining 570 studies
and excluded 483 studies. Because these excluded studies lacked
in vivo or in vitro data, or their data was unclear. Finally, A total of
87 articles were included in this study.

Supplementary Table S2 listed the lncRNAs involved in
cancer radioresistance/radiosensitivity and their concise
mechanisms. The sources of cancer included bladder cancer
(Tan et al., 2015; Jiang et al., 2017), breast cancer (Liu et al.,
2019a; Zhang et al., 2019a; Wang et al., 2019; Qian et al., 2020;
Zhang et al., 2020a), cardiac cancer (Jia et al., 2019), gastric
cancer (Jiang et al., 2020; Lu et al., 2020; Xiao et al., 2020),
cervical cancer (Jing et al., 2015; Li et al., 2018a; Han et al., 2018;
Gao et al., 2019; Zhao et al., 2019; Wang et al., 2020a; Ge et al.,
2020), colorectal cancer (Liu et al., 2020a; Liu et al., 2020b; Li
et al., 2021; Liang et al., 2021), esophageal cancer (Li et al., 2017;
Chen et al., 2018a; Zhang et al., 2019b; Wang et al., 2020b; Cheng
et al., 2020; Liu et al., 2021a; Sun et al., 2021; Yang et al., 2021),
glioblastoma (Li et al., 2018b; Ahmadov et al., 2021; Li et al.,
2022), glioma (Yang et al., 2016; Zheng et al., 2016; Wang et al.,
2020c; Wang et al., 2020d; Tang et al., 2020; Zheng et al., 2020;

Gao et al., 2021; Tian et al., 2021), head and neck squamous cell
cancer (Li et al., 2020a), laryngeal cancer (Cui et al., 2019; Tang
et al., 2019; Tang and Shan, 2019), nasopharyngeal cancer (Jin
et al., 2016; Wang et al., 2017; Ma et al., 2018; Yi et al., 2019; Han
et al., 2020a; Han et al., 2020b; Wang et al., 2020e; Zhong et al.,
2020; Wang et al., 2021a; Liu et al., 2021b; Guo et al., 2021),
hepatocellular cancer (Chen et al., 2018b; Song et al., 2019; Yang
et al., 2020a; Jin et al., 2021; Yu et al., 2021), lung cancer (Chen
et al., 2015; Wu et al., 2017; Xue et al., 2017; Liu et al., 2019b;
Wang and Hu, 2019; Yang et al., 2019; Brownmiller et al., 2020;
Han et al., 2020c; He et al., 2020; Hou et al., 2020; Yu et al., 2020;
Wang et al., 2021b; Liu et al., 2021c; Jiang et al., 2021; Zhang
et al., 2021), medulloblastoma (Zhu et al., 2021), melanoma (Cui
et al., 2021; Liu et al., 2021d), neuroblastoma (Yang et al., 2020b;
Mou et al., 2021), prostate cancer (Chen et al., 2018c; Ma et al.,
2020; Xiu et al., 2020), renal cell cancer (Zhou et al., 2021), and
thyroid cancer (Li et al., 2020b; Chen et al., 2021). Out of the 87
studies, a total of 11 types of lncRNA have been independently
reported in at least two articles to participate in cancer
radioresistance/radiosensitivity, including lncRNA HOTAIR
(n = 7), lncRNA GAS5 (n = 5), lncRNA PVT1 (n = 4),
lncRNA TUG1 (n = 4), lncRNA NEAT1 (n = 3), lncRNA
DGCR5 (n = 2), lncRNA FAM201A (n = 2), lncRNA
KCNQ1OT1 (n = 2), lncRNA LINC00958 (n = 2), lncRNA
MALAT1 (n = 2), and lncRNA XIST (n = 2).

FIGURE 1 | Flow chart of literature search and selection.
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Mechanism of lncRNA Contributing to
Cancer Radioresistance/Radiosensitivity
Acting on miRNA by Acting as a Sponge to Regulate
Downstream Signals
Among the lncRNAs identified in this study, the majority acted as
competitive endogenous RNA (ceRNA) in regulating cancer
radioresistance/radiosensitivity. The fundamental mechanism was
that lncRNA acted on microRNA (miRNA) by acting as a sponge to
regulate downstream signals. In our study, the downstream signals
that were regulated by the lncRNA/miRNA paradigm and mediated
cancer radioresistance/radiosensitivity mainly included some
specific molecular biological processes and some signaling
mediators that regulate various biological processes (Figure 2).
These specific molecular biological processes mainly included
DNA repair and chromosome stabilization, mRNA or protein
stabilization, cell cycle and proliferation, apoptosis-related
pathways, autophagy-related pathways, epithelial-mesenchymal
transition (EMT), and cellular energy metabolism. Those
signaling mediators primarily included transcription factors,
kinases, or some important signal transduction pathways, which
often promoted tumor radioresistance\sensitivity through various
mechanisms. It is worth noting that a total of six lncRNA\miRNA
downstreammechanisms were not fully elucidated, representing the
direction of further research (Wu et al., 2017; Xue et al., 2017; Jia
et al., 2019; Tang et al., 2019; Jiang et al., 2020; Jin et al., 2021).

Molecular Biological Process 1: DNA Repair and
Chromosome Stabilization
DNA double-strand break (DSB) is the most common cellular
damage induced by ionizing radiation. If it is not repaired
correctly, it may cause chromosomal abnormalities and even
cell death. There is growing evidence of the role of lncRNA in

DNA repair and chromosome stabilization viamiRNA. In gastric
cancer, lncRNA LINC01436 was reported to upregulate
radioresistance through miR-513a-5p/APE1 axis (Lu et al.,
2020). APE1 (DNA-(apurinic or apyrimidinic site)
endonuclease) is a protein with multiple functions. It usually
participates in DNA damage repair through the DNA base
excision repair (BER) pathway (Wierstra, 2013). There was
evidence that the lncRNA LINC00958 enhanced
radioresistance via miR-5095/RRM2 in cervical cancer (Zhao
et al., 2019). RRM2 (ribonucleotide reductase regulatory
subunit M2) catalyzes the conversion of ribonucleotides to
deoxyribonucleotides, which is the rate-limiting enzyme for
DNA synthesis or repair, and plays a crucial role in tumor cell
DNA synthesis and proliferation (Zhong et al., 2016). In
colorectal cancer, lncRNA lnc-RI enhanced radioresistance
through miR-4727-5p/LIG4 (Liu et al., 2020b). LIG4 (DNA
ligase 4) is a DNA ligase, which is essential for V(D)J
recombination and DNA double-strand break (DSB) repair
through non-homologous end joining (NHEJ) (Gu et al.,
2007). In esophageal squamous cell cancer, lncRNA FAM201A
was reported to upregulate radioresistance via miR-101/ATM
axis (Chen et al., 2018a). ATM (ATM serine/threonine kinase) is
an essential component of the response to DNA damage and the
maintenance genome stability, which is the main repair protein
involved in double-strand break (DSB) homologous
recombination repair (HRR) induced by ionizing radiation
(Qin et al., 2019). Besides, lncRNA NORAD was reported to
upregulate esophageal squamous cell cancer radioresistance via
miR-199-a1/EEPD1 (Sun et al., 2021). EEPD1 (endonuclease/
exonuclease/phosphatase family domain containing 1)
participates in DNA repair and maintains genome stability by
promoting end excision and homologous recombination repair

FIGURE 2 | The mechanism of lncRNAs regulating ionizing radiation via miRNA.
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(Wu et al., 2015). In hepatocellular cancer, lncRNA ROR
upregulated radioresistance via miR-145/RAD18 axis (Chen
et al., 2018b). RAD18 (RAD18 E3 ubiquitin-protein ligase)
participates in the post-replication repair of UV-damaged
DNA. It plays a role in the duplication of damaged DNA in
filling the gaps of the daughter strands (Cotta-Ramusino et al.,
2011). In prostate cancer, lncRNA TUG1 enhanced
radioresistance through miR-139-5p/SMC1A axis (Xiu et al.,
2020). SMC1A (structural maintenance of chromosomes 1A)
is an important part of the functional kinetochore, which
helps correctly separate chromosomes during cell division. It is
also considered to have potential DNA repair functions (Yazdi
et al., 2002). In renal cell cancer, lncRNA LINC02532 upregulated
radioresistance viamiR-654-5p/YY1 axis (Zhou et al., 2021). YY1
(transcriptional repressor protein YY1) is a multifunctional
transcription factor and a core component of the chromatin
remodeling INO80 complex. It is involved in transcription
regulation, DNA replication, and DNA repair (Wu et al., 2007).

Molecular Biological Process 2: mRNA or Protein
Stabilization
During radiation-induced cellular stress, maintaining mRNA
and protein stability helps minimize cell damage and facilitate
cell survival. A study reported that the lncRNA HOTAIR
enhanced radioresistance in breast cancer through the miR-
449b-5p/HSPA1A axis (Zhang et al., 2020a). HSPA1A (heat
shock protein family A member 1A) can stabilize existing
proteins and mediate the correct folding of proteins in the
cytoplasm and organelles, thereby protecting tumor cells and
enhancing their recovery (Santos et al., 2017). lncRNA
LINC00511 also upregulated breast cancer radioresistance
via miR-185/STXBP4 axis (Liu et al., 2019a). STXBP4
(syntaxin binding protein 4) plays a role in translocating
vesicles from the cytoplasm to the cell membrane, which
has been shown to contribute to protein stability (Li et al.,
2009). In non-small cell lung cancer, lncRNA PVT1 induced
radioresistance through miR-424-5p/CARM1 (Wang and Hu,
2019), while CARM1 (coactivator associated arginine
methyltransferase 1) is involved in DNA packaging,
transcription regulation, pre-mRNA splicing, and mRNA
stability (Yang and Bedford, 2013). Moreover, the lncRNA
GAS5 was shown to enhance radiosensitivity through miR-
362-5p/SMG1 axis in thyroid cancer (Li et al., 2020b). SMG1
(serine/threonine-protein kinase SMG1) is involved in both
mRNA surveillance and genotoxic stress response pathways.
Its consumption leads to spontaneous DNA damage and an
increasing in sensitivity to ionizing radiation (IR) (Yamashita
et al., 2001).

Molecular Biological Process 3: Cell Cycle and Proliferation
The dysfunctional regulation of the cell cycle and proliferation is
also associated with cancer radioresistance/radiosensitivity. A
study reported that lncRNA SNHG12 enhanced
radioresistance in cervical cancer cells via miR-148a/CDK1
(Wang et al., 2020a). CDK1 (cyclin-dependent kinase 1)
promotes the transition from the G2 to M phase of the cell
cycle, thereby promoting the proliferation of tumor cells (Hirai

et al., 1995). lncRNA NEAT1 was also reported to enhance
cervical cancer radioresistance via miR-193b-3p/CCND1 axis
(Han et al., 2018). CCND1 (cyclin D1) is a highly conserved
cyclin, which is mainly involved in the transition of the G1/S
phase of the cell cycle by regulating CDK (Jares et al., 2007). In
glioblastoma, lncRNA RBPMS-AS1 downregulate radioresistance
via miR-301a-3p/CAMTA1 axis (Li et al., 2022). CAMTA1
(calmodulin-binding transcription activator 1) is a
transcription factor, which induces the expression of
natriuretic peptide A (NPPA), an anti-proliferative cardiac
hormone (Schraivogel et al., 2011). Besides, in nasopharyngeal
cancer, lncRNA PTPRG-AS1 enhanced radioresistance via miR-
194-3p/PRC1 (Yi et al., 2019). PRC1 (protein regulator of
cytokinesis 1) is a protein involved in cytokinesis. This protein
is present at high levels during the S and G2/M phases of mitosis,
but when the cell exits mitosis and enters the G1 phase, its level
drops sharply (Zhan et al., 2017a).

Molecular Biological Process 4: Apoptosis-Related Pathways
Radiation-induced DNA damage may activate apoptosis-
related signaling pathways, and the anti-apoptotic
mechanisms of tumor cells are directly involved in
radioresistance. It has been reported that lncRNA GAS5
decreased radioresistance through miR-106b/IER3 in
cervical cancer (Gao et al., 2019). IER3 (immediate early
response 3) is controlled by many stimuli and cellular
conditions. It plays a dual role in tumor cell growth control
and apoptosis, depending on the cell type and related
conditions (Jin et al., 2015). In glioma, lncRNA NCK1-AS1
upregulated radioresistance via miR-22-3p/IGF1R axis (Wang
et al., 2020c). IGF1R (insulin-like growth factor 1 receptor)
binds insulin-like growth factors with high affinity. It has
tyrosine kinase activity. It is highly overexpressed in many
malignant tissues and acts as an anti-apoptotic agent (Yuan
et al., 2018). In laryngeal cancer, lncRNA HOTAIR enhanced
radioresistance via miR-454-3p/E2F2 axis (Cui et al., 2019).
E2F2 (E2F transcription factor 2) is a member of the E2F
transcription factor family and plays an inhibitory role in
p53-independent apoptosis induced by ionizing radiation
(IR) (Wichmann et al., 2010). In non-small cell lung
cancer, lncRNA CYTOR upregulated radioresistance via
miR-206/PTMA axis (Jiang et al., 2021), and PTMA
(prothymosin alpha) involved in inhibiting apoptosis (Malicet
et al., 2006).

Molecular Biological Process 5: Autophagy-Related Pathways
The autophagy pathway mediates the degradation of
dysfunctional organelles and promotes protein turnover,
thereby promoting radioresistance as a means of survival and
adaptation in the presence of ionizing radiation. In colorectal
cancer, lncRNA HOTAIR enhanced radioresistance via miR-93/
ATG12 axis (Liu et al., 2020a). ATG12 (autophagy-related 12) is
mainly involved in the formation of autophagic vesicles, and plays
a vital role in tumor maintenance and treatment resistance (Yun
and Lee, 2018). In lung adenocarcinoma, lncRNA KCNQ1OT1
was also reported to upregulated radioresistance viamiR-372-3p/
ATG5 and ATG12 axis (He et al., 2020).
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Molecular Biological Process 6: Epithelial-Mesenchymal
Transition
EMT is the process that epithelial cells transform into
mesenchymal cells and acquire the ability to migrate. The
acquisition of EMT in tumor cells is associated with
radioresistance and poor prognosis. lncRNA TUG1 has
been found to enhance radioresistance in bladder cancer via
miR-145/ZEB2 axis (Tan et al., 2015). ZEB2 (zinc finger E-box
binding homeobox 2) usually functions as a repressor of DNA
transcription in the nucleus and plays a crucial role in the EMT
of tumor cells (Fardi et al., 2019). In nasopharyngeal cancer,
lncRNA MINCR upregulated radioresistance via miR-223/
ZEB1 (Zhong et al., 2020), and ZEB1 (zinc finger E-box
binding homeobox 1) drives the induction of EMT by
activating stem cell characteristics, immune evasion, and
epigenetic reprogramming (Zhang et al., 2019c). In
neuroblastoma, lncRNA XIST was reported to enhance
radioresistance through miR-375/L1CAM axis (Yang et al.,
2020b). L1CAM (L1 cell adhesion molecule) is a glycoprotein
involved in cancer development, which plays a role in EMT
primarily through interactions with other cell adhesion
molecules, integrins, or growth factor receptors (Maten
et al., 2019).

Molecular Biological Process 7: Cellular Energy Metabolism
Changes in the metabolic pathways of tumor cells are considered
to be a hallmark of tumors, and these changes can lead to
radioresistance. In neuroblastoma, lncRNA LINC01410 was
found to upregulate radioresistance via miR-545-3p/HK2 axis
(Mou et al., 2021). HK2 (hexokinase 2) is located in the outer
membrane of mitochondria, participates in most glucose
metabolism pathways, and is thought to be involved in the
supply of tumor cells (Liu et al., 2019c). In melanoma,
lncRNA LINC01224 was reported to upregulate
radioresistance via miR-193a-5p/NR1D2 axis (Cui et al.,
2021). NR1D2 (nuclear receptor subfamily 1 group D member
2) acts as a transcription inhibitor and may affect cancer
carbohydrate and lipid metabolism (Yu et al., 2018).

Signaling Mediator 1: Transcription Factor
Besides, the downstream targets of lncRNAs mediated by miRNA
and involved in tumor radioresistance/radiosensitivity also
included some transcription factors, kinases, or some
important signal transduction pathways. These regulated
downstream targets often have multiple biological functions in
tumor development. In gastric cancer, lncRNA TRPM2-AS
enhanced radioresistance via miR-612/FOXM1 axis (Xiao
et al., 2020). FOXM1 (Forkhead box protein M1) is a
transcription factor that controls the cell cycle and is involved
in repairing DNA breaks. FOXM1 stimulates cell proliferation by
promoting cells to enter the S and M phases. It also contributes to
angiogenesis, invasion, metastasis, and EMT in tumors (Wierstra,
2013). In head and neck squamous cell cancer, lncRNA
LINC00520 enhanced radioresistance via miR-195/HOXA10
(Li et al., 2020a), while In lung cancer, lncRNA LINC00483
upregulated radioresistance via miR-144/HOXA10 (Yang et al.,
2019). Also, in lung cancer, lncRNA LINC00461 enhanced

radioresistance via miR-195/HOXA10 (Hou et al., 2020).
HOXA10 (homeobox A10) is a DNA-binding transcription
factor that may regulate fertility, embryo vitality, and
hematopoietic lineage commitment. It is thought to be related
to tumor cell proliferation, migration, and invasion (Carrera et al.,
2015).

Signaling Mediator 2: Kinase
In breast cancer, lncRNA LINC00963 upregulated
radioresistance via miR-324-3p/ACK1 axis (Zhang et al.,
2019a). ACK1 (activated CDC42 kinase 1) is a serine/
threonine-protein kinase that contributes to cancer migration,
survival, and proliferation via regulating WWOX and AKT1
(Mahajan and Mahajan, 2013). In rectal cancer, lncRNA
EGOT enhanced radioresistance via miR-211-5p/ErbB4 axis
(Li et al., 2021). ErbB4 (erb-b2 receptor tyrosine kinase 4) is a
single-pass type I membrane protein with multiple cysteine rich
domains, a transmembrane domain, and a tyrosine kinase
domain. It is related to cell proliferation and differentiation in
tumors (Segers et al., 2020). In colorectal cancer, lncRNA
LINC00958 upregulated radioresistance via miR-422a/MAPK1
axis (Liang et al., 2021). While in glioma, lncRNA TPTEP1
downregulated radioresistance through miR-106a-5p/P38
MAPK (Tang et al., 2020). Moreover, in nasopharyngeal
cancer, lncRNA LINC00114 enhanced radioresistance via miR-
203/ERK/JNK signaling pathway (Han et al., 2020a). There are
three well-defined MAPK subfamilies in mammals: extracellular
signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK),
and p38 kinase. The activation of each MAPK signal follows a
three-layer kinase module, in which MAP3K phosphorylates and
activates MAP2K, and MAP2K phosphorylates and activates
MAPK. Once activated, MAPK controls a variety of cellular
responses, such as tumor proliferation, differentiation,
apoptosis, angiogenesis, and metastasis (Cargnello and Roux,
2011; Guo et al., 2020).

Signaling Mediator 3: Signal Transduction Pathway
In laryngeal cancer, lncRNA DGCR5 upregulated radioresistance
through miR-506/Wnt pathway (Tang and Shan, 2019), andWnt
pathway is one of the key cascades that regulate caner
development and stemness (Zhan et al., 2017b). Besides, in
lung cancer, lncRNA AGAP2-AS1 enhanced radioresistance
through miR-296/NOTCH2 axis (Zhang et al., 2021).
NOTCH2 (notch receptor 2) is a member of the Notch family.
The continuous Notch2 signal promotes tumor cell EMT while
avoiding apoptosis, and the increase of Notch2 expression is
related to the poor clinical prognosis of patients (Xiu and Liu,
2019).

Acting on Protein to Regulate Downstream Signals
In addition to regulating miRNAs, lncRNAs can also directly
interact with specific proteins to participate in cancer
radioresistance/radiosensitivity. In breast cancer, lncRNA
LINC02582 directly interacted with a ubiquitinase USP7,
which reduced the level of CHK1 protein, resulting in
radioresistance (Wang et al., 2019). In glioma, Linc-RA1 can
combine with H2B to stabilize the level of H2B K120
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monoubiquitination and inhibit the interaction between H2Bub1
and ubiquitin-specific protease 44 (USP44), thus regulating
autophagy and enhanced radioresistance (Zheng et al., 2020).
In non-small cell lung cancer, lncRNA linc-SPRY3 could bind to
IGF2BP3 (Insulin Like Growth Factor 2 MRNA Binding Protein
3), which leads to the destabilization of c-Myc and HMGA2, and
improves the radiosensitivity of tumors (Brownmiller et al.,
2020).

Acting Like Transcription Factor to Regulate
Downstream Signals
Besides, lncRNAs can also act like transcription factors to
initiate downstream signaling pathways and participate in
tumor radioresistance/radiosensitivity. In esophageal cancer,
lncRNA MAGI2-AS3 can recruit the histone
methyltransferase EZH2 to the HOXB7 promoter region to
initiate H3K27me3 and repress HOXB7 expression, resulting
in enhanced tumor radiosensitivity (Cheng et al., 2020). In
nasopharyngeal cancer, lncRNA PVT1 can act as a scaffold for
the chromatin modifier KAT2A, recruiting the nuclear
receptor-binding protein TIF1β to activate NF90
transcription, thereby increasing HIF-1α and upregulating
radioresistance (Wang et al., 2020e). HIF-1α activates the
transcription of many genes that encode proteins involved
in cancer angiogenesis, glucose metabolism, cell proliferation/
survival, and invasion/metastasis (Semenza, 2003). In lung
adenocarcinoma, down-regulated lncRNA LINC00857
inhibited the expression of BIRC5 by inhibiting the
enrichment of NF-κB1 in the promoter region of BIRC5,
thereby enhancing radiosensitivity (Han et al., 2020c).

In addition, some studies have reported that lncRNAs could be
involved in tumor radioresistance/sensitivity through DNA
repair (Jiang et al., 2017; Li et al., 2018b; Zhang et al., 2019b;
Qian et al., 2020), cell cycle regulation (Jing et al., 2015; Li et al.,
2017), and EMT (Yang et al., 2016). However, the definite
biological behaviors of lncRNAs remain to be further explored.
Finally, we summarized the mechanism of lncRNA-induced
tumor radiosensitivity/resistance according to molecular
behavior of lncRNA, biological process/signaling mediator, and
downstream key molecule in Table 1.

DISCUSSION

Radiation therapy is one of the core methods of cancer
treatment. However, cancer radiation resistance often limits
the effectiveness of this treatment, and the mechanisms of
radioresistance remain largely unknown. With the
development of biotechnologies such as high-throughput
sequencing, bioinformatics analysis, and animal modeling,
lncRNAs have been shown to play critical regulatory roles
in tumorigenesis and progression (Yang et al., 2014). Their
role in tumor therapy resistance provided new insights for
identifying appropriate treatments for specific populations,
improving treatment resistance, and developing novel
therapeutic targets (Zhang et al., 2020b). Therefore,
exploring the detailed function of lncRNAs in tumor

radioresistance/sensitivity will allow us to identify
corresponding novel biomarkers and develop new lncRNA-
based methods to improve radioresistance to achieve precise
radiotherapy for patients. To the best of our knowledge, this
study is the first of its kind to systematically evaluate the
functions of lncRNAs in cancer radioresistance/sensitivity on
the basis of high-quality experimental evidence.

The mechanisms by which lncRNAs participate in tumor
radioresistance/sensitivity may mainly include three
categories. 1) lncRNAs act on microRNA (miRNA) through
a sponge, and their downstream signals include some specific
molecular biological processes (DNA repair and chromosome
stabilization, mRNA or protein stabilization, cell cycle and
proliferation, apoptosis-related pathways, autophagy-related
pathways, epithelial-mesenchymal transition (EMT), cellular
energy metabolism) and some signaling mediators
(transcription factors, kinases, some important signal
transduction pathways) that regulate various biological
processes. 2) lncRNAs directly interact with proteins to
participate in tumor radioresistance through affecting the
cell cycle and autophagy. 3) lncRNAs act like transcription
factors to initiate downstream signaling pathways and
participate in tumor radioresistance. Besides, the same
lncRNA may be involved in radioresistance\sensitivity by
different mechanisms in different tumors, such as lncRNA
HOTAIR, lncRNA GAS5, lncRNA PVT1, lncRNA TUG1,
lncRNA DGCR5, lncRNA FAM201A, lncRNA KCNQ1OT1,
lncRNA LINC00958, lncRNA MALAT1, lncRNA NEAT1, and
lncRNA XIST. This also revealed that lncRNAs may have
multiple potential mechanisms of action in tumor
radioresistance, and may act through multiple mechanisms
simultaneously. Some bioinformatics methods, such as RNA-
RNA binding, RNA-protein binding prediction algorithms,
will provide clues to comprehensively characterize the
biological behavior of lncRNAs (Rinn and Chang, 2012). Of
course, further experimental verification is still the top
priority.

There have been studies on the relationship between
radiotherapy efficacy and lncRNAs as biomarkers for
radiotherapy patients, such as in non-small cell lung cancer
and glioma (Lin et al., 2020; Song et al., 2021). However, the
clinical application of lncRNAs as biomarkers of radioresistance
still faces huge challenges. First, in addition to collecting lncRNA
data from patients who have already received radiation therapy, it
is often necessary to collect lncRNA data from the control
(normal) population, which is often difficult to accomplish.
Organoids provide new insight into this dilemma, a method
that can closely mimic the physiology of humans in vitro
(Drost and Clevers, 2018). The expression levels of lncRNAs
change dynamically, and the sample obtained represents a
snapshot of the patient’s current state. However, radiotherapy
is often time- and dose-dependent; therefore, it is imperative to
investigate the time- and dose-dependent effects of lncRNAs on
tumor radiation resistance. In addition, lncRNAs are highly
tissue-specific, and it is also necessary to compare lncRNA-
specific changes in different organs after irradiation. Therefore,
a comprehensive understanding of the regulatory paradigm of
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lncRNAs in tumor radioresistance will help us to better screen
verifiable, detectable, highly sensitive, and highly specific lncRNA
biomarkers using novel biotechnologies.

Moreover, some lncRNA-based precision medicine clinical
trials have been carried out or are underway, such as lncRNA
MALAT1 (Amodio et al., 2018), lncRNA HOTAIR (Di et al.,
2017). Although there is currently no study of lncRNAs used in
clinical patients to improve radiotherapy resistance, studies
have shown that nanoparticles-meditated LncRNA AFAP1-
AS1 silencing to block the wnt/β-catenin signaling pathway
can effectively improve the radioresistance of triple-negative
breast cancer (Bi et al., 2020). Challenges remain until these
techniques can be applied to improve tumor radiation
resistance. First, due to the complex mode of function of
lncRNAs, this requires further comprehensive
understanding and assessment of the specific functions of
lncRNAs involved in cancer radioresistance. Second, the
design of the lncRNA delivery system still needs to be
further optimized to improve transfection efficiency, reduce
off-target effects, and prolong the half-life of lncRNA
degradation. Mastering the mechanism of lncRNA in tumor
radioresistance/sensitivity will help us to screen more suitable
biomarkers and therapeutic targets. This systematic review
provides convincing evidence for the mechanism by which
lncRNAs are involved in tumor radioresistance/sensitivity.
More fundamental and clinical research is needed in the
future to investigate how lncRNAs affect various aspects of
radioresistance/radiosensitivity, and to study the application
value of lncRNAs in radiotherapy.

CONCLUSION

In conclusion, this systematic review studied the mechanism of
lncRNA in cancer radioresistance/radiosensitivity. Themechanisms
by which lncRNAs participate in tumor radioresistance/sensitivity
may mainly include three categories. 1) lncRNAs act on microRNA
(miRNA) through a sponge, and their downstream signals include
some specific molecular biological processes (DNA repair and
chromosome stabilization, mRNA or protein stabilization, cell
cycle and proliferation, apoptosis-related pathways, autophagy-

related pathways, epithelial-mesenchymal transition (EMT),
cellular energy metabolism) and some signaling mediators
(transcription factors, kinases, some important signal
transduction pathways) that regulate various biological processes.
2) lncRNAs directly interact with proteins to participate in tumor
radioresistance through affecting the cell cycle and autophagy. 3)
lncRNAs act like transcription factors to initiate downstream
signaling pathways and participate in tumor radioresistance.
Different lncRNAs may participate in the radioresistance with
the same regulatory paradigm, and the same lncRNAs may also
participate in the radioresistance through different mechanisms.
More detailed studies on how lncRNAs are involved in tumor
radioresistance are urgently needed to help us screen more suitable
biomarkers and therapeutic targets. This will provide a rationale for
large-scale clinical validation and may ultimately improve tumor
radioresistance and patient prognosis.
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TABLE 1 | The summary of mechanisms by which lncRNAs contribute to cancer radioresistance/radiosensitivity.

Molecular behavior of lncRNA Biological process/signaling mediator Downstream key molecule

Acting on miRNA by acting as a sponge to
regulate downstream signals

DNA repair and chromosome stabilization APE1, RRM2, LIG4, ATM, EEPD1, RAD18, SMC1A, YY1
mRNA or protein stabilization HSPA1A, STXBP4, CARM1, SMG1
cell cycle and proliferation CDK1, CCND1, CAMTA1, PRC1
apoptosis-related pathway IER3, IGF1R, E2F2, PTMA
autophagy-related pathway ATG5, ATG12
epithelial-mesenchymal transition ZEB1, ZEB2, L1CAM
cellular energy metabolism HK2, NR1D2
transcription factor FOXM1, HOXA10
Kinase ACK1, ErbB4, MAPK
signal transduction pathway Wnt, NOTCH

Acting on protein to regulate downstream signals cell cycle and proliferation USP7, CHK1, c-Myc
autophagy-related pathway H2B, USP44

Acting like transcription factor to regulate downstream signals Induce or prevent transcription EZH2, HOXB7, H3K27me3, KAT2A, TIF1β, BIRC5
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