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Abstract. It is shown that a dynamical system subject to both periodic forcing and random 
perturbation may show a resonance (peak in the power spectrum) which is absent when 
either the forcing or the perturbation is absent. 

The word resonance is usually applied in physics to cases in which a dynamical system, 
having periodic oscillations at some frequencies wi, when subject to a periodic forcing of 
frequencies near one of the wi, shows a marked response. The classical example is that 
of the forced harmonic oscillator. 

In this Letter we investigate the possibility of resonance in dynamical systems which 
(in the absence of forcing) nave a continuum power spectrum, or in other words behave 
stochastically. In this case the dynamical system has motion on all time scales. 

We will show that for such systems there can also be a cooperative effect between the 
internal mechanism and the external periodic forcing. We shall call this effect stochastic 
resonance. We point out that this is a rather new phenomenon for stochastic dynamical 
systems and it is likely to have interesting applications. 

To make clear our result we begin with an example in which a complete analytical 
theory can be developed. We describe the effect of stochastic resonance for the 
Langevin equation: 

dx=[x(a-X2)]dt+&dW (1) 

where W is a Wiener process. When a < 0 the deterministic part of equation (1) has 
only one stable solution. At thehifurcation point a changes sign, and for a > 0 there are 
two stable solutions x1,2 = d a  and an unstable one x = 0. We want to study the 
statistical properties of equation (1) subject to a small periodic forcing, i.e. 

dx = [ x ( a  - x 2 ) + A  COS at] dt + E  d W. ( 2 )  
We shall show that for E E (e1, E Z ) ,  where ~1 and e2  will be estimated below, the system 
described by equation (2) has a large peak in the power spectrum corr_esponding to a 
nearly periodic behaviour of x ( t )  with period 21r/ f l  and amplitude 2Ja. 

First of all let us recall the most important statistical properties of equation (1) for 
a > O .  Due to the random white noise, the solution of equation (1) jumps at random 
times between the two stable steady states. Let us call . r l ( y )  and ~ 2 ( y )  the exit times 
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from the basins of attraction of the points x1 = -& and x2 = & respectively, i.e. 

T l ( y )  = inf(t: x ( t )  = 0 and x(0) = y E (-CO, o)), 
T’(Y) = inf(t: x ( t )  = 0 and x(0) = y E (+CO, 0)). 

Let us define M‘, = ( ( ~ , ( y ) ~ ) )  with i = 1, 2 and Mh = 1. The M k ( y )  satisfies a differen- 
tial equation (Gihman and Skorohod 1972): 

with boundary conditions MA (0) = 0 and M :  (0) = 0. Using saddle point technique, we 
can estimate the solutions of equations (3). In particular, for M :  ( y )  and M :  ( y )  we 
obtain 

M :  ( y )  = M :  (-&)E (.rr/uJ2) exp(a2/2-E2) (4) 

Note that because of the symmetry we have 

M :  (Ja) = M :  (4;). 
From equations (4) and ( 5 )  we see that the variance of the exit time is nearly equal to the 
mean exit time. It follows that no significant peak can be shown by the power spectrum 
of x. 

Let us now discuss the property of equation (2). We are interested in the case where 
A is small compared with u ~ ’ ~ .  To understand the physical effect of the periodic forcing 
we being by discussing equation (2) for t = 0 and for t = CL/.rr. In other words, we discuss 
the two time-independent stochastic equations 

(6) 

(7) 

Like equation (l), equations (6) and (7) have two stable fixed points and one unstable 
fixed point. However, there is no longer symmetry between the exit times from the two 
basins of attraction. Let us call x :  the fixed points of equation (6) and x‘i the fixed points 
of equation (7). Using the same technique leading to estimates (4) and ( 5 ) ,  we obtain 

dx = [X(U - x ’ ) + A ] d t + ~  d W, 

dx = [X (U - x ’) - A]dt + E d W. 

where ~ ( x ; )  and v ( x ) f )  are the mean exit times from the basin of attraction to which xi 
and x ) f  belong. We can now understand the qualitative behaviour of equation (2). Let 
us suppose we start at t = 0 with x = x i .  As time passes, the probability to exit from the 
basin of attraction increases, and it reaches a maximum for t = r/CL. If we call T the 
mean exit time to exit from the basin of attraction, it follows that 

Y ( X y )  < T < /.L (Xi). 
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Now if 

I.L (X ; 1 3 r / n  and Y ( X ' i ) < <  r / n  (10) 
then T = r/n, while the variance of the exit time is of order v ( x ; I ) .  Therefore with 
probability near 1 the solution of equation (2) with initial condition x = x i  at t = 0 will 
jump to the point x = x i  at t = T/R. In the same way, it is possible to see that the 
solution will spend a time about r/n in the new basin of attraction and at t = 2r/n will 
jump to the point x = x i ,  In this case x ( t )  will jump between the two stable steady states 
nearly periodically in phase with the periodic forcing. According to equation ( lo) ,  we 
see that in order to satisfy the inequalities, the variance of the noise has to be confined in 
the interval ( E ~ ,  cZ) where E~ and e2  are given by 

c 1  = a (2:;;;;;J l/z, e Z  = a (2::$$3 l/*? 

where for E = c1, v ( x l )  = T/R and for E = E Z ,   xi) = r / R .  In other words for a given 
value of A, small compared with a3", the power structure of x ( t )  shows a peak at the 
frequency when E is confined between the values c 1  and E ~ .  This is what we call 
stochastic resonance. It has been recently applied by the authors to the study of climatic 
changes during the last 700 000 years (Benzi eta1 1981), (see figure 1). We believe that 
this mechanism can also be important for those systems showing Hopf bifurcation and 
stochastic forcing, as recently described by Graham (1980). 
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Figure 1. Numerical simulation of equation (2) with a = 1, A = 0.12, R = 27r/T = and 
E =0.25. Note that using equation (10) we obtain &I-0.18 and ~:!=0.31. Therefore 
E E ( E l ,  E * ) .  

We now discuss the stochastic resonance in a deterministic system whose solution is 
asymptotic to a strange attractor. It is well known that in this case the behaviour of the 
system is chaotic. The classical example is the Lorenz model described by 

1 = a ( y  - x ) ,  j t  = rx - y - x z ,  i = - b z + x y ,  

where a = 10, b = $ (Lorenz 1963). For r > r , =  24.74 the model shows chaotic 
behaviour. This model has been used by several authors as a prototype of the transition 
to chaos in deterministic dynamical systems, and it is a prototype for the transition to 
turbulence as well as laser dynamics (see Rabinovich (1978) for a detailed discussion). 
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We have studied the effect of a small periodic forcing A cosat  on the Lorenz model, 
in the form 

x = a ( y  -x), y=rx-y-xz+AcosSzt ,  2 = -bz +xy, (11) 

with A = 30 and Sz= 1. We have computed the Fourier transform x"(w) of x(t) .  For 
r > r, there is a marked peak in i,f(w)i' for w - Sz. In figure 2 we show l,f(w)12 as a 
function of r. As can be seen, for r > rc we have a sudden transition to the stochastic 
resonance. A detailed analysis of this effect will be given in a forthcoming paper. We 
hope that the phenomenon of the stochastic resonance will be observed in experimental 
studies. 

20  r r  30 
r 

Figure 2. Plot of ~ X ' ( W ) ~ ~ / N  against r for the Lorenz model equation (1 1). N is a normalising 
factor chosen arbitrarily. Note that for small value of r the periodic forcing is large enough 
to produce periodic oscillations between the two stable solutions. for increasing value of I ,  

the effect of the periodic forcing is decreased as r-3'2. The sudden jump of I X ' ( W ) ~ ~  near rc is 
due, therefore, to the transition to the stochasticity of the Lorenz model. 

The theory of the stochastic resonance for the Lorenz model cannot be developed 
analytically as in the case of equation (1). However, a qualitative discussion can be 
performed using recent investigations of Sutera (1980) and Zippelius and Lucke 
(1981). They studied the statistical properties of the Lorenz model subject to external 
white noise for both cases r < r, and r > rc. First of all they found that the Lorenz model 
does not significantly change its statistical properties for r > rc when subject to external 
white noise. Moreover they both found striking similarity between the two statistical 
properties for r < r c  and r>rc .  This observation suggests that the mechanism of 
stochastic resonance can be observed also for the Lorenz model stochastically pertur- 
bed by a white noise in the case r < r,. Therefore the theory developed for equation (1) 
can be applied in this case, with the necessary complication in estimating the mean exit 
times from the two basins of attraction. This could serve as a guideline in developing a 
theory of stochastic resonance for the case r > rc with and without stochastic pertur- 
bations. 
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