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Although chemotherapy can improve the overall survival and prognosis of cancer patients,

chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability

to environmental alters in clinic. To determine more possibilities for cancer therapy, recent

studies have begun to explore changes in the metabolism, especially glycolysis. The

Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to

metabolize glucose anaerobically rather than aerobically, even under normoxia, which

contributes to chemoresistance. However, the association between glycolysis and

chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance

remains unclear. This review describes the mechanism of glycolysis-induced

chemoresistance from the aspects of glycolysis process, signaling pathways, tumor

microenvironment, and their interactions. The understanding of how glycolysis induces

chemoresistance may provide new molecular targets and concepts for cancer therapy.

Keywords: chemoresistance, Warburg effect, tumor microenvironment, signaling pathway, transporters and key

enzymes of glycolysis

INTRODUCTION

As a disease with a low cure rate, cancer is accompanied not only by abnormalities in proliferation,
metastasis, and invasion but also by metabolic disorders (1, 2). In 1924, OttoWarburg first indicated

that cancer utilizes glycolysis to provide adenosine triphosphate (ATP), nucleotide, lipid, and amino

acid for the growth of cancer cells even under aerobic conditions; this phenomenon is called the

Warburg effect (3). There is a significant difference in the usage of glucose between cancer and

normal cells. Rapid proliferation of cancer cells and the abnormal structure and function of

vascularization both lead to imbalance in the intake and consumption of oxygen, resulting in

hypoxia, which drives cancer cells to choose glycolysis for energy supply (4, 5). At the same time,
abnormally activated oncogene signaling pathways and the tumor microenvironment make cancer

cells choose glycolysis as their primary energy source even under normoxia, which means pyruvate

is mainly converted into lactate to play its role in energy source, rather than being incorporated into

the tricarboxylic acid cycle (TCA cycle) (Figure 1) (6). Recently, more and more studies have

proven that while being the energy source of cancer cells, glycolysis is also involved in the activation

of oncogenes such as phosphatidylinositol 3-kinase (PI3K) and hypoxia inducible factor-1 alpha
(HIF-1A) shift in the tumor microenvironment such as hypoxia and acidosis (7–10).

Although recent years have seen a slight decline in cancer mortality, it remains an urgent

national health problem and the second leading cause of death in the United States (11).

Frontiers in Oncology | www.frontiersin.org September 2021 | Volume 11 | Article 6980231

Edited by:

Sara Granja,

University of Minho, Portugal

Reviewed by:

Khalid Omer Alfarouk,

Alfarouk Biomedical Research LLC,

United States

Ramandeep Rattan,

Henry Ford Health System,

United States

*Correspondence:

Zhimin Fan

fanzm@jlu.edu.cn

Specialty section:

This article was submitted to

Cancer Metabolism,

a section of the journal

Frontiers in Oncology

Received: 20 April 2021

Accepted: 11 August 2021

Published: 03 September 2021

Citation:

Liu C, Jin Y and Fan Z (2021) The

Mechanism of Warburg Effect-Induced

Chemoresistance in Cancer.

Front. Oncol. 11:698023.

doi: 10.3389/fonc.2021.698023

REVIEW
published: 03 September 2021
doi: 10.3389/fonc.2021.698023

https://www.frontiersin.org/articles/10.3389/fonc.2021.698023/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.698023/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:fanzm@jlu.edu.cn
https://doi.org/10.3389/fonc.2021.698023
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.698023
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.698023&domain=pdf&date_stamp=2021-09-03


Chemotherapy is one of the main treatments of cancer and is

usually performed as neoadjuvant and adjuvant therapy (12, 13).
Although chemotherapy can improve the overall survival and

prognosis of cancer patients, chemoresistance remains a clinical

obstacle that needs to be overcome due to the diversity,

heterogeneity, and adaptability to environmental alters in

clinics (14, 15). Chemoresistance is caused by multifactor

interaction, and its mechanism can be summarized as
mutation in drug targets and metabolism, apoptosis inhibition,

activation of intracellular survival signaling pathways, enhanced

deoxyribonucleic acid (DNA) repair, immune escape of cancer

stem cells (CSCs), epigenetic alteration, and aberrant metabolism

(16–18). A previous study on chemoresistance focused more on

gene mutation and external factors. In recent years, cancer
metabolism has become a new research hotspot (19, 20).

Increasing studies have proven that glycolysis inhibition can be

a novel method to improve chemoresistance (21–23).

Although the relationship between cancer metabolism and

chemoresistance is clear, the causal relationship between them

remains controversial. Therefore, systematically understanding

the causal relationship between cancer metabolism and
chemoresistance may provide new ideas for scientific research

and clinical treatment. This review aimed to discusses the

mechanism of glycolysis-induced chemoresistance from the

aspects of glycolysis process, signaling pathways, and tumor

microenvironment and their interactions, which will bring new

insights for research and clinical therapy on chemoresistance.

KEY PROCESS OF GLYCOLYSIS

Glucose transporter (GLUT) located on the cytomembrane is

encoded by the SLC2 gene and divided into three categories and

14 subtypes, namely, Class 1 (GLUTs 1–4 and 14), Class 2

(GLUTs 5, 7, 9, and 11), and Class 3 (GLUTs 6, 8, 10, 12, and
HMIT), which uptake glucose into the cytoplasm and

participates in respiration, metabolism, and proliferation in

cancer (24, 25).

GLUT1 has a high affinity for glucose and is highly presented

in erythrocytes, endothelial cells, and cancer cells among the

GLUT subtypes (26–30). Cancer cells depend on ATP

contributed from aerobic glycolysis for survival, and often have
an overexpression of GLUT1 for sufficient glucose uptake (25).

Furthermore, overexpressed GLUT1 is significantly associated

with poor differentiated cancers, positive lymph node metastasis,

larger tumors, and worse overall survival and disease-free survival

in cancer (31). Cancer is accompanied by an abnormal activation

of PI3K, HIF-1A, RAS, MYC, and other pathways that activate
nuclear factor kappa B subunit (NFkB) and mechanistic target of

rapamycin kinase (mTOR) by facilitating GLUT1 overexpression

and participate in cell proliferation, metastasis, and chemotherapy

resistance (28, 30–32). Acetaldehyde dehydrogenase enhances

stemness and paclitaxel resistance via GLUT in endometrial

cancer (27); Ajuba, which belongs to the Ajuba LIM family,
serves as adaptor proteins that have the ability to connect cell

adhesion and nuclear signaling overexpression inhibits cisplatin

FIGURE 1 | Glycolysis in cancer: cancer cells choose glycolysis as their primary energy source even under normoxia, which means pyruvate is mainly converted into

lactate to play its role in energy source, rather than being incorporated into the TCA cycle. GLUT1 is responsible for transporting glucose, and MCTs are responsible

for transporting lactate. ②, phosphohexose isomerase; ④, aldolase; ⑤, triose phosphate isomerase; ⑥, glyceraldehyde 3-phosphate dehydrogenase;

⑦, phosphoglycerate kinase; ⑧, phosphoglycerate mutase; ⑨, enolase.
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efficiency via Yes‐associated protein (YAP)/GLUT1/B-cell

lymphoma-extra-large (BCL-xL) in breast and gastric cancer

(33); Wnt1-inducible signaling protein 1 inhibits mitochondrial

activity and upregulates GLUT1 through the YAP1/GLUT1

pathway to enhance glycolysis and induces chemoresistance in

laryngeal cancer, as well as in prostate, lung, colorectal, and breast
cancer (34). A collaboration between GLUT1 inhibitors and

chemotherapeutic drugs significantly facilitates apoptosis and

chemosensitivity in breast cancer, oral squamous cell carcinoma,

and laryngeal cancer (29, 32, 35), and mannose-conjugated

platinum complexes are effective in cancer targeting mediated by

GLUT1 (36). Resveratrol presents anticancer effects by inhibiting
GLUT1 via the protein kinase B (AKT)/mTOR-dependent

signaling pathway and targeting “classical” tumor-promoting

pathways, such as PI3K/AKT, signal transducer and activator of

transcription (STAT)3/5, and mitogen-activated protein kinase

(MAPK), which enhance glycolysis via the upregulation of

glycolytic enzymes and glucose transporters (37). As an
inhibitor of glycolysis, 2-deoxyglucose (2-DG) competes with

glucose to bind to GLUT1, and reverses chemoresistance in

breast and prostate cancer (38–40). In summary, GLUT1

induces chemoresistance via itself or advocating other signaling

pathways and contributes a new direction for clinical diagnosis,

treatment, and prognosis of cancer.

GLUT3, which mainly presents in the nervous system, has a
higher affinity for glucose than GLUT1 and exhibits the highest

turnover rate among all GLUT family members (41, 42).

GLUT3 is overexpressed in various cancer cells, such as

glioblastoma (43), ovarian cancer (44), gastric cancer (45, 46),

and non-small cell lung cancer (46), due to its high glycolytic

efficiency. GLUT3 upregulation in glioblastoma ensures
survival under restricted glucose conditions and increases

cancer cell invasion that is not recapitulated by GLUT1 (43).

S t u d i e s h a v e r e p o r t e d t h a t GLUT3 a ff e c t s t h e

neovascularization processes to counteract the antiangiogenic

effect of temozolomide (TMZ) in glioblastoma (47). Tripartite

motif 66 upregulates TMZ resistance via the C-MYC/GLUT3

signaling pathway in glioblastoma (48). DNA damage-
inducible transcript 4 decreases TMZ efficacy in glioblastoma

through GLUT3-mediated cancer stemness (49). YAP

promotes the proliferation and migration of colorectal cancer

cells via the GLUT3/Adenosine 5’-monophosphate (AMP)-

ac t i va ted pro te in k inase s igna l ing pa thway (50) .

Overexpression of YAP1 in gastric cancer cells can skew
macrophage polarization to M2-like phenotype and induce

GLUT3-depended glycolysis program, which further creates

an immunosuppressive milieu to promote 5-fluorouracil (5-

FU) resistance (45). Transcription factor 4 downregulation

sensitizes melanoma cells to vemurafenib by inhibiting

GLUT3-mediated glycolysis (51). Atorvastatin overcomes

tyrosine kinase inhibitor (TKI) resistance via GLUT3
inhibition in non-small cell lung cancer (46). Melatonin

promotes cisplatin-induced apoptosis via the downregulation

of GLUT3 in hepatocellular carcinoma (52). GLUT3 can evolve

as a new therapeutic target in the future; additionally, combined

deletion of GLUT1 and GLUT3 may achieve better results (53).

GLUT12, which was first discovered in human breast cancer cell

line michigan cancer foundation-7 (MCF-7), is limited to insulin-

sensitive tissues, skeletal muscle, fat, and heart in normal human

adult tissues (54, 55). Recent studies have found that GLUT12 is

expressed in rhabdomyosarcomas, oligodendrogliomas,

oligoastrocytomas, astrocytomas, and breast and prostate cancer
(56, 57). Overexpression of GLUT12 in breast and prostate cancer

is associated with cancer development and characteristic glycolytic

metabolism observed in malignant cells (55, 58, 59). This effect may

be mediated through P53, estradiol and epidermal growth factor

(56, 60). GLUT12 could serve as a new therapeutic target due to its

targeted expression on cancer cells. For example, microRNA let-
7a-5p (miR let-7a-5p) inhibits the proliferation, migration, and

invasion of triple-negative breast cancer via GLUT12

inhibition (60).

Hexokinases (HKs) are located in the cytoplasm phosphorylate

intracellular glucose, which is the first rate-limiting step of

glycolysis. There are four subtypes of HKs: HK1, HK2, HK3,
and HK4, which are encoded by different genes on different

chromosomes. HK1 generally exists in normal tissues, and HK2

is highly expressed and facilitates chemoresistance in various

cancers (61–65).

HK2 transfers from the cytoplasm to the outer mitochondrial

membrane and combines with voltage-dependent anion channel

to display a series effects of anti-apoptosis and chemoresistance:
(1) mitochondrially bound HK2(MitoHK-II) is in close

proximity to the intramitochondrial ATP and consequently

promotes glycolysis (66); (2) MitoHK-II inhibits apoptosis by

precisely inhibiting or closing mitochondrial permeability

transition pores (mPTPs), and then inhibiting the release of

cytochrome c and other apoptotic factors (67); (3) MitoHK-II
prevents the opening of mPTPs by inhibiting reactive oxygen

species(ROS) accumulation and providing cellular protection

against Ca2+ overload (61); (4) MitoHK-II competitively

inhibits BCL2-associated X (Bax) binding to the mitochondria

and transfers Bax back to the cytoplasm, thereby inhibiting

apoptosis (62); and (5) when extracellular microenvironment is

not conducive to the growth of cancer cells, such as during
hypoxia, and in the presence of chemical drugs, HK1 ensures

energy supply of glycolysis and HK2 inhibits the release of

apoptotic factors via MitoHK-II (61, 68–70).

HK2 is also related to other cancer-associated factors. The

PI3K/AKT/mTOR pathway facilitates the combination of HK2

and the outer mitochondrial membrane, which maintains a high
metabolic rate, stemness, and promotes proliferation, invasion,

metastasis, and chemoresistance of cancer (71, 72). In contrast,

HK2 develops protective autophagy and inhibits cell apoptosis

through the PI3K/AKT/mTOR pathway or the MAPK kinases

(MEK)/extracellular regulated protein kinases (ERK) pathway of

chemotherapeutic drugs (61), such as cisplatin in ovarian cancer

(61, 73). P53 rebuilds the chemosensitivity of cisplatin by
binding to the promoter region of HK2 in epithelial ovarian

cancer (74). The long noncoding RNA-Suppressing Androgen

Receptor in Renal Cell Carcinoma (lncRNA-SARCC) restores

the sensitivity of osteosarcoma to cisplatin via miR-143 by

targeting HK2 (75). MiR-125b recovers 5-FU and cisplatin
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sensitivity in various cancers by binding to HK2 mRNA (76–79).

3-Bromopyruvate (3-BrPA), a small molecule analog to lactate, is

a potent inhibitor of HK2 and not only induces the cytotoxic

effects of chloroethylnitrosoureas and reduces the synthesis of

biomacromolecules required for DNA repair in gliomas (80) but

also promotes cisplatin sensitivity in non-small-cell lung cancer
overexpressing tripartite motif-containing 59 (TRIM 59), which

results in a high glycolysis rate and cisplatin resistance via the

regulation of phosphatase and tensin homolog deleted on

chromosome ten (PTEN)/AKT/HK2 (81). HK2 induces

chemoresistance by binding to the outer mitochondrial

membrane or interacting with other cancer-associated factors,
which can be a new target for cancer therapy.

Phosphofructokinase (PFK), located in the cytoplasm, is divided

into two subtypess: PFK1 converts fructose 6-phosphate into

fructose-1,6-bisphosphate, which is the second rate-limiting step

in glycolysis, and PFK2, also called 6-phosphofructo-2-kinase/

fructose-2,6-biphosphatase (PFKFB), converts fructose-6-
phosphate to fructose-2,6-biphosphatase. PFKFB can regulate

glycolysis via fructose-2,6-biphosphatase, which is recognized as

an essential allosteric activator of PFK1 (82–84). PFKFB has four

subtypes, namely, PFKFB1, PFKFB2, PFKFB3, and PFKFB4, of

which PFKFB3 exhibits apical kinase activity and is overexpressed

under various signals such as hypoxia, estrogen receptor, RAS

activation, and P53 deletion in cancer, which promotes glycolysis
flux in cancer metabolism (83, 85–87). Overexpression of PFKFB3

in cancer contributes to cyclin-dependent kinases, leading to the

phosphorylation and degradation of Cip/Kip protein p27, thereby

facilitating the cell cycle, enhancing cell proliferation, and inhibiting

apoptosis (88). As a downstream component of vascular endothelial

growth factor, PFKFB3 enhances angiogenesis and endothelial
migration by regulating tube formation and directional migration

of the filamentous and lamellar feet of the endothelium (83, 84, 89)

and promotes blood vessel branching by inhibiting the pre-stalk

activity of Notch signaling (90), thereby weakening the effect of

antiangiogenic therapies and promoting the exchange of lactate

between the cells in the tumor core and edge to meet their

requirement of energy source (91).
PFKFB3 not only contributes to the proliferation, metastasis,

and angiogenesis of cancer but also induces the resistance of liver

cancer cells to sorafenib through the PFKFB3/HIF-1A positive

feedback loop (92). Inhibition of PFKFB3 suppresses defensive

autophagy induced by oxaliplatin and recovers cytotoxicity of

oxaliplatin in colorectal cancer (93). Although cisplatin can induce
PFKFB3 acetylation (K472) and hinder its nuclear localization

signal activity, accumulation of PFKFB3 in the cytoplasm

facilitates glycolysis to counteract the effects of cisplatin (94).

Antiangiogenic therapies combined with the inhibition of

PFKFB3 not only recover the normal vascular barrier function

and blood perfusion but also result in metabolic changes in

endothelial cells or vascular leakage, further impairing the
delivery of chemotherapeutic drugs (85, 95). MiR-488 not only

inhibits the proliferation and glycolysis of prostate cancer (96) but

also inhibits oxaliplatin/5-FU resistance and glycolysis of

colorectal cancer by targeting PFKFB3 (97). Liposomes co-

loaded with PFKFB3 shRNA plasmid significantly upregulate

the cytotoxicity of docetaxel in non-small cell lung cancer (98).

Currently, increasing number of studies onmolecular inhibitors of

PFKFB3 are further exploring the possibility of clinical therapy,

such as 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO),

PFK, and PFK-158. PFK-158 has entered a phase 1 clinical trial

(clinicaltrials.gov #NCT02044861) (84).
Pyruvate kinase (PK) detected in the cytoplasm produces

pyruvate and ATP, which is the last rate-limiting step of

glycolysis. PK encoded by PKM and PKLR gene is separated

into four subtypes, namely, PKL, PKR, PKM1, and PKM2. PKL

and PKR exist in the liver and erythrocytes, while PKM1 and

PKM2 generally exist in normal tissues and cancer cells (99, 100).
PKM2 is the major isoform in cancer, which can shuttle between

the cytoplasm and nucleus, and engages in proliferation, anti-

apoptosis, metastasis, chemoresistance and other processes in

cancer (101–103). For example, lncRNA XIST/miR-137 axis

induces glycolysis and 5-FU/cisplatin resistance in colorectal

cancer by elevating the PKM2/PKM1 ratio (104).
The mechanism of PKM2-induced chemoresistance can be

summarized in two aspects: PKM2 located in the cytoplasm

facilitates glycolysis and metabolism, and when phosphorylated

in the nucleus, PKM2 is displayed as a protein kinase regulating

gene expression. PKM2 promotes not only glycolysis but also the

production of glycolysis intermediates and enters the glycolysis

branch pathway, such as the pentose phosphate pathway, which
suppresses ROS accumulation and induces cisplatin resistance in

esophageal squamous cancer (105). PKM2 can inhibit ROS

accumulation and oxidative stress-induced apoptosis by binding

to BCL2 protein on the mitochondrial membrane (100).

Especially, miR‐122 inhibits docetaxel resistance of prostate and

hepatocellular cancer and 5-FU resistance of colon cancer by
targeting PKM2 (106–108). Exosomes derived from

chemoresistant cancer cells can transfer ciRS-122 across the cells

and facilitate glycolysis to reduce oxaliplatin sensitivity in

chemosensitive cells by inhibiting miR-122 and upregulating

PKM2 in colorectal cancer (109). On the other hand, studies

have confirmed that the inhibition of PKM2 can increase the

susceptibility of cancer cells overexpressing ATP-binding
cassette (ABC) transporters to ATP depletion, thereby inhibiting

glycolysis, inducing apoptosis, and increasing chemosensitivity

(107–111). Phosphorylated PKM2 has three main functions:

(1) PKM2 facilitates oncogene transcription and cancer

proliferation by activating b-catenin, cyclin D1, and C-MyC

(101, 112); (2) P53 and PKM2 in the nucleus can phosphorylate
each other to form a cascade to protect against external stress

(100); and (3) PKM2 can inactivate P53 by inhibiting P38-MAPK

and induce gemcitabine resistance in pancreatic cancer (113).

Interestingly, although most studies have confirmed that the

inhibition of PKM2 can significantly upregulate chemosensitivity

(114, 115), some studies have suggested that the inhibition can

induce chemoresistance (103, 116, 117). Thus, the ability of PKM2
to induce chemoresistancemay be in accordance with the cell type,

cycle, state, and so on, which needs more exploration in the

future (118).

Lactate dehydrogenase (LDH), which is located in the

cytoplasm, catalyzes the conversion of pyruvate to lactate, which
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is the end-product of glycolysis. LDH is composed of three

monomeric subunits: LDHA, LDHB, and LDHC, which can

constitute six kinds of tetrameric isoenzymes (119, 120). LDHC

specifically exists in male germ cells (119), whereas LDHA and

LDHB are mainly present in the skeleton muscles/liver and heart,

respectively (121). In addition, LDHA is highly expressed and
facilitates chemoresistance in various cancers (122–125).

The mechanism of LDHA-induced chemoresistance can be

summarized as follows: First, as a direct target of the HIF-1A and

C-MYC oncogenes (126), LDHA promotes biosynthesis and

glycolysis, ensuring energy supply and proliferation of cancer

cells. The peroxisome proliferator-activated receptor-c coactivator-
1b promotes cell proliferation and tumor growth through LDHA-

mediated glycolytic metabolism in multiple myeloma (127).

Circular RNA circUBE2D2 accelerates glycolysis and sorafenib

resistance via the miR-889-3p/LDHA axis in hepatocellular

carcinoma (128). Family with sequence similarity 83 member D

promotes glycolytic capacity and gemcitabine resistance through the
Wnt/b-catenin/LDHA pathway in pancreatic adenocarcinoma

(129). Second, LDHA is involved in cancer invasion and CSC

phenotype through the acidic microenvironment maintained by

lactate output (130). When LDHA is highly expressed,

mesothelioma becomes more aggressive (131). LDHA is

significantly related to octamer-binding transcription factor 4,

which plays a key role in the self-renewal of embryonic stem cells
in gastric cancer (132). Human coilin-interacting nuclear ATPase

protein generates sufficient lactate to maintain an acidic

microenvironment for invasion and CSC phenotype via LDHA in

colorectal CSCs (133). Third, LDHA inhibits apoptosis by

protecting the cancer cells from ROS damage and promoting the

expression of antiapoptotic proteins (134–136). Catechin increases
mitochondrial ROS, enhances apoptotic cell death, and reduces 5-

FU resistance in gastric cancer via LDHA inhibition (137). LDHA

inhibition results in increased mitochondrial pathway apoptosis via

ROS production and elevated levels of Bax, cleaved poly (adenosine

diphosphate-ribose) polymerase, cleaved caspase-9, cytoplasmic

cytochrome C, and superoxide anion in breast cancer (138).

Metformin facilitates apoptosis via LDHA inhibition in
cholangiocarcinoma cells (139).

LDHA inhibition can significantly restore the sensitivity of

chemotherapy drugs: LDHA knockdown sensitizes oral

squamous cell carcinoma cells (122) and breast cancer cells

(140) to Taxol and lung cancer cells to low doses of paclitaxel

(141) via siRNA/shRNA. MiR‐34a re-sensitizes colon cancer
cells to 5-FU (142), miR-329-3p sensitizes osteosarcoma cells

to cisplatin (143), and miR-7 sensitizes gastric cancer cells to

cisplatin (144) all via LDHA inhibition. Recently, increasing

studies have begun to explore LDHA inhibitors, which can be

divided into three categories, represented by oxamate, 3-

dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-

1carboxylic acid(FX11), and N-hydroxyindoles (NHI) (145). As
an analogue of pyruvate, oxamate inhibits LDHA by competing

with substrates and overcomes cetuximab resistance in Ewing’s

sarcoma (146). FX11 inhibits LDHA by competing with

nicotinamide adenine dinucleotide (NADH) and induces

oxidative stress and necrosis in human lymphoma and

pancreatic cancer xenograft models (134). NHI competes with

pyruvate and NADH and overcomes gemcitabine resistance in

pancreatic cancer and hypoxic mesothelioma cells (147, 148).

Monocarboxylate transporters (MCTs), which are located on

the cytomembrane, are encoded by the SLC16 gene and divided

into 14 members that share the same basic structure, of which
only the membrane-bound proton-coupled isoforms, MCT1,

MCT2, MCT3, and MCT4, transport lactate through the

plasma membrane (149, 150). MCT1 has a ubiquitous

distribution, whereas MCT4 presents in highly glycolytic

tissues (149). Both of them are highly expressed and

responsible for the transportation of lactate in cancer cells
(151), such as glioblastoma multiforme (152), head and neck

cancer (153), and viral-driven lymphomas (154). MCT1 and

MCT4 also play indirect roles in angiogenesis, invasion,

malignant dissemination, and chemoresistance by regulating

and interacting with CD147 (155–157).

MCT1 can transport lactate in both directions, and MCT4
mainly promotes the excretion of lactate from the cell (158),

which induces chemoresistance; this can be summarized as five

aspects: (1) lactate produced by cancer-associated fibroblasts

(CAFs) is extruded through MCT4 and captured by cancer

cells through MCT1, which promotes malignant proliferation

and aggressiveness and reduces the effects of platinum-based

chemotherapy in urothelial bladder cancer (159); (2) hypoxic
cancer cells produce and transport lactate to oxygenated cancer

cells adjacent to blood vessels via MCT1 and MCT4, which

ensures the overall survival of the malignant glioma (160);

(3) MCT1 and MCT4 avoid cell death due to intracellular

acidification and maintain an acidic microenvironment by

promoting lactate efflux in breast cancer (161), colorectal
cancer (162) and glioblastomas (163); (4) MCT1 and MCT4

enhance lactate metabolism and inhibit ROS-dependent

cellular apoptosis in colorectal cancer (164) and non-small cell

lung cancer (165); and (5) MCT1-driven lactate import as a key

process of the reverse Warburg effect favors stemness properties,

which is a hallmark of chemoresistance in pancreatic

adenocarcinoma (166) and glioblastoma (167).
MiR-124 sensitizes breast cancer cells to Taxol via MCT1

inhibition (168). Curcumin reverses chemoresistance in hepatic

cancer cells via MCT1 inhibition (169). Co-inhibition of MCT1

and MCT4 can exert a better effect (170). A-cyano-4-hydroxy-

cinnamic acid (ACCA), as a small-molecule inhibitor of MCTs,

inhibits invasiveness and induces the necrosis of malignant
glioma (171) and sensitizes colorectal cancer cells to cisplatin

(172). In short, MCTs can also be a new target for further

exploration. AZD3965 has been applied as a potent MCT1

inhibitor in various phase I/II clinical trials (173).

INTERACTION BETWEEN SIGNALING
PATHWAYS AND GLYCOLYSIS

The PI3K/AKT signaling pathway typically activated in cancer is
not only involved in cellular processes such as inflammation,

autophagy, and tumor formation but also related to cancer
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metabolism (9, 20, 174). Activated AKT prevents the transport of

pyruvate into the mitochondria for the TCA cycle and switches

cancer metabolism from oxidative phosphorylation to aerobic

glycolysis by triggering GLUTI expression, stimulating

phosphofructokinase activity, phosphorylating HK2, and

inhibiting PKM2 activity (175). Meanwhile, the PI3K/AKT
pathway increases energy supply by regulating aerobic glycolysis,

which enhances the ability of ABC transporters to excrete drugs

(10). The AKT/mTOR signaling pathway maintains homeostasis

of glycolysis, induces drug-resistant cells to overexpress C-MYC,

directly stimulates glucose uptake, and enhances glycolysis (20,

176). Proteins and hormones in distinct cancer can utilize PI3K to
promote glycolysis. For example, Ubiquitin-specific protease 6 N-

terminal-like protein sustains chronic AKT phosphorylation and

GLUT1 stability fueling aerobic glycolysis in breast cancer (177);

TRIM32 promotes the growth of gastric cancer cells by enhancing

AKT activity and GLUT1 expression (178). Studies have discussed

that PI3K-induced glycolysis may be responsible for the formation
of chemoresistant phenotypes of cancer cells (20), and the

inhibition of glycolysis by interrupting the PI3K signaling

pathway can automatically improve chemoresistance. Serine/

threonine kinase 35 induces chemoresistance of colorectal

cancer cells toward 5-FU, partially due to its role in inducing

glycolytic process by regulating AKT (179). The overexpression of

Helicobacter pylori-secreted Cytotoxin-associated gene A protein
contributes to 5-FU resistance by enhancing glycolysis in gastric

cancer via the activation of the AKT pathway (180); Copines-1

enhances oxaliplatin resistance of colorectal cancer cells by

activating the AKT/GLUT1/HK2 signaling pathway (181).

Downregulation of Krüppel-like factor 5 can inhibit hypoxia-

induced cisplatin resistance in non-small-cell lung cancer, and
its mechanism is via the inhibition of HIF-1a-dependent
glycolysis through the inactivation of the PI3K/AKT/mTOR

pathway (182). Knockdown of the transcription factor Forkhead

box 6 can inhibit glycolysis of hepatocellular carcinoma cells and

reduce their paclitaxel resistance via inhibiting the PI3K/AKT

signaling pathway (183).

HIF-1 is a nucleoprotein secreted under hypoxia that acts as a
transcription factor to regulate angiogenesis, endothelial cell

migration (184), erythropoiesis (9), and innate immunity (185).

HIF-1 induces the conversion from oxidative phosphorylation to

aerobic glycolysis in cancer under normoxia (186). Abnormally

stimulated HIF-1 functioning as a transcription factor inhibits

mitochondrial activity and promotes glycolysis and cancer cell
growth by facilitating the expression of glycolysis transporters and

key enzymes such as GLUT1, HK2, FBP, PKM2, and LDHA (187–

189). Especially, HIF-1 regulates oncogene expression (190); on the

contrary, oncogene signaling pathways such as PI3K/AKT, MAPK/

ERK, STAT3, and nuclear PKM2 can activate HIF-1 under

normoxia (186). Sphingosine kinase 1 contributes to doxorubicin

resistance and glycolysis of osteosarcoma by advocating HIF-1a
expression (191). Human equilibrative nucleoside transporter 1

restores the chemosensitivity of gemcitabine by inhibiting

glycolysis and glucose transport mediated by HIF-1a in

pancreatic cancer (192). Glycolysis engages in chemoresistance

induced by HIF-1 through different mechanisms: (1) HIF-1

switches metabolism from oxidative phosphorylation to glycolysis

and leads to mitochondrial dysfunction; decreased accumulation of

ROS elicits the inhibition of apoptosis, which disturbs the capability

of chemotherapeutic drugs and facilitates chemoresistance (190,

193, 194); (2) Tumor-associated macrophages (TAMs) secrete

vesicle-packaged HIF-1a-stabilizing IncRNA to inhibit HIF-1
degradation, promote glycolysis, and induce docetaxel resistance

in breast cancer. Lactate production of glycolysis enhances HIF-1

expression through the ERK pathway, forming a positive feedback

loop to induce chemoresistance (195) and (3) HIF-1 activates

carbonic anhydrase IX (CAIX) to maintain normal intracellular

pH in response to vinorelbine, thereby preventing cell apoptosis. As
a transmembrane protein neutralizing intracellular acidosis, CAIX

is induced by HIF-1 and is related to glycolysis in lung cancer (196).

Chemotherapy combined with HIF-1 inhibition upregulates the

sensitivity of chemotherapeutic drugs. For example, HIF-1

knockdown significantly improves chemosensitivity to cisplatin in

prostate and ovarian cancer (197, 198). Baicalein deteriorates
hypoxia-induced 5-FU resistance in gastric cancer by suppressing

glycolysis and the PTEN/AKT/HIF-1 signaling pathway (199).

Ascorbate combined with cisplatin increases ROS production and

alters glycolysis and mitochondrial function by decreasing the HIF-

1 activity, which further restores cisplatin sensitivity of

osteosarcoma (200).

MYC is a group of oncogenes including C-MYC, L-MYC andN-
MYC that is generally upregulated and amplificated in cancers

(201). MYC functioning as a transcription factor directly

upregulates GLUT, HK2, and PKM2 expression and inhibits

mitochondrial respiration and activity (189). Especially, MYC

upregulates genes that play an essential role in metabolic

reorganization equally under normoxia and hypoxia (176, 202).
Besides acting as a downstream factor of HIF1, C-MYC has a

synergistic effect with HIF-1 on inducing glycolysis by promoting 3-

phosphoinositide dependent kinase-1 and HK2 and inducing

angiogenesis, leading to hypoxia adaptation, internal environment

stability, and chemoresistance in cancer (202, 203). In addition,

various proteins and molecules in cancer use C-MYC to promote

glycolysis and induce chemoresistance: the epigenetic factor protein
arginine methyltransferase 5 is an epigenetic enzyme that leads to

increased C-MYC levels and subsequent enhancement of

proliferation and glycolysis in pancreatic cancer (204); miR-155

positively regulates glucose metabolism via C-MYC in breast cancer

(205); P21-activated kinase 2 (PAK2) utilizes the PAK2/C-MYC/

PKM2 axis and induces camptothecin/etoposide resistance in head
and neck carcinoma (206); gankyrin arrives glycolysis to promote

tumorigenesis, metastasis, and sorafenib/regorafenib resistance by

activating b-catenin/C-MYC signaling in human hepatocellular

carcinoma (207); increased aerobic glycolysis mediates adriamycin

resistance, which is related to excessive activation of the AKT/

mTOR/C-MYC pathway in leukemia cells; oxamate rescues

adriamycin sensitivity depending on the downregulation of
glycolysis instead of P-glycoprotein (P-gp) (208).

The key process of glycolysis is inseparable from

chemoresistance induced by oncogenes (Figure 2). On the one

hand, the PI3K, HIF-1, and C-MYC signaling pathways can

activate the expression of key glycolysis enzymes and
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transporters to ensure cancer metabolism and energy supply; on

the other hand, the key enzymes and transporters of glycolysis

can activate chemoresistance-related signaling pathways through

their own or other protein mediators. The complementary

synergistic effect of the key process of glycolysis and oncogene

signaling pathway strives possibilities for the survival of cancer
cells during chemotherapy.

MICROENVIRONMENT INDUCED
CHEMORESISTANCE IN CANCER

In addition to gene mutation and metabolism change, cancer

often impacts the surrounding microenvironment, of which the
impact of metabolism on the microenvironment is more

significant. With the transformation of metabolism, the

microenvironment undergoes a series of adjustments such as

hypoxia (209), acidosis (20), and stromal cell formation (210–

212) to survival, which interact with glycolysis and induce

chemoresistance in cancer (Figure 3).
Solid tumors are produced without the existing vascular

system and can only exist by recruiting new blood vessels,

which are always inadequate and dysfunctional. Rapid growth

and proliferation usually lead to oxygen consumption and

hypoxia in most tumor beds (209, 213). Hypoxia can promote

glycolysis and stemness in hepatocellular cancer through

ubiquitin-specific protease 22 (214), melanoma cancer via

nodal signaling activity (215), and so on. Cancer triggers
metabolism, angiogenesis, and erythropoiesis to counteract the

disadvantages of hypoxia, of which HIF-1 is the central

regulatory mechanism of hypoxia that acts by upregulating its

downstream genes (216, 217). HIF-1 is the main transcription

factor that induces the expression of almost all genes encoding

glucose transporters and glycolytic key enzymes (218, 219),
which allows hypoxic cancer cells to absorb glucose more

efficiently, metabolize pyruvate to lactate, activate multi-drug

resistance gene, and induce chemoresistance (220, 221). Hypoxia

has synergistic effects with acidosis on inducing chemoresistance

by upregulating the expression of fatty acid synthase and

regulating lipid metabolism (209); it can induce acidosis by
selecting glycolytic cells, and acidosis can further select cells

with upregulated glycolysis and acidic resistance, thereby

choosing cells with survival advantages (222). Both these

negative factors facilitate the evolution of cancer and select

FIGURE 2 | Association between glycolysis transporter, key enzymes, and PI3K, HIF-1, C-MYC signaling pathways. PI3K, HIF-1, and C-MYC signaling pathways

can activate the expression of key glycolysis enzymes and transporters to ensure cancer metabolism and energy supply; at the same time, the key enzymes and

transporters of glycolysis can activate chemoresistance-related signaling pathways through their own or other protein mediators.

Liu et al. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer

Frontiers in Oncology | www.frontiersin.org September 2021 | Volume 11 | Article 6980237

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


cells with more survival advantages, which can retain genomic

instability and a mutator phenotype, have sustained
angiogenesis, and be resistant to apoptosis and chemotherapy

(8, 222). For example, CAIX, a pH regulator under hypoxia,

regulates the adaptation of hypoxia and acidosis by promoting

glycolysis and stemness in breast cancer (223).

Aerobic glycolysis in cancer produces numerous amounts of

lacttate, thereby cancer cells rapidly export lacttate via MCTs on

the cytomembrane, which maintains intracellular acid–base
balance and ensures aerobic glycolysis and lactate production to

be continued; thus, cancer cells sustain a special pH gradient,

which is more acidic extracellularly and more alkaline

intracellularly (212, 224–226). Acidosis-induced chemoresistance

can be summarized as follows: (1) Most chemotherapeutic drugs

are either weak bases or weak acids; only few of them are
zwitterions. Weakly basic drugs such as paclitaxel and

vincristine will be neutralized and protonated under extracellular

acidosis, making it difficult for them to pass through the

cytomembrane and function. Even if they pass through the

cytomembrane, they will be isolated into acidic vesicles of

lysosomes and lose their efficacy. Although weakly acidic drugs

increase their distribution in the interstitial fluid, they will become
inactive before reaching the target due to intracellular alkalinity.

This phenomenon is called the “ion trapping mechanism” (227–

231). Meanwhile, extracellular acidosis facilitates P-gp, ABC

subfamily B member 1 (ABCB1) and 2 (ABCB2) transporter,

and intracellular acidic vesicles to remove drugs out of cancer cells,

further inducing chemoresistance (224, 232–235). (2) Extracellular
acidosis promotes chemoresistance signaling pathways by

activating related proteins. For example, mild acidic stress not

only facilitates unfolded protein response (UPR) but also triggers
an adaptive UPR with progressive increase in glucose regulatory

protein 78 expression, which reduces the cleavage of caspase 7 to

induce sunitinib resistance in oral squamous cancer (212, 224);

extracellular lactate functions as an agonist for G protein-coupled

receptor 81 (GPR81) and promotes GPR81 upregulation of the

PI3K/AKT/mTOR pathway to inhibit apoptosis, promote stem

cell phenotype, inhibit immune response, and induce etoposide
resistance in non-small-cell lung cancer (234, 236). (3) Lactate

inhibits immune response in different ways: ① lactate directly

inhibits the cytotoxicity of perforin and granzyme; ② high

extracellular lacttate levels lead to the accumulation of

endogenous lacttate in T cells, thereby reducing the secretion of

pro-inflammatory cytokine; ③ lacttate indirectly weakens natural
killer (NK) cell function by recruiting monocyte-derived dendritic

cells (225); and (4) extracellular acidosis not only has synergistic

effect with hypoxia but also facilitates glycolysis of stromal cells to

produce lactate for fueling cancer cells, ensuring survival and

proliferation and preventing apoptosis (166).

Stromal cells facilitate metabolism, invasion, metastasis, and

chemoresistance in cancer by paracrine signaling, and the
recruitment of immunosuppressive cells is the foundation of

tumor microenvironment, in which CAFs and TAMs have

representative functions (210, 211, 237). As cancer progresses,

cancer cells not only harness neighboring cells recruiting

glycolysis and glutaminolysis for both itself and for the

neighboring cancer cells via MCT1 and MCT4, which is called
the Reverse Warburg effect (91), but also promotes the

FIGURE 3 | Association between Warburg effect-induced chemoresistance and tumor microenvironment. Tumor microenvironment undergoes a series of

adjustments such as hypoxia, acidosis, and stromal cell formation to survival, which interact with glycolysis and oncogene PI3K, HIF-1 signaling pathways to induce

chemoresistance in cancer.
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differentiation of stromal cells into CAFs and TAMs to ensure

survival advantage. For instance, cancer cells induce the CAFs

phenotype by secreting microvesicle or extracellular vesicle,

which supply energy and promote proliferation, migration, and

resistance in nasopharyngea and oral squamous cancer (238,

239). Cancer cells diffuse excessive intracellular ROS into the
extracellular space (240), which causes strong oxidative stress

and facilitates the onset of CAFs phenotype in adjacent stromal

cells, further eliminating ROS and providing nutrients in turn via

MCTs (241). Studies have confirmed that CAFs promote a

glycolytic switch, ROS elimination in chronic lymphocytic

leukemia via a Notch/C-MYC signaling-dependent manner
under hypoxia (242, 243). Ovarian cancer cells release

cytokines that recruit and activate stromal fibroblasts and

immune cells, thereby perpetuating an interstitial inflammatory

state in the stroma that hinders the immune response and

facilitates cancer survival and propagation (244). Although

competition exists for oxygen and glucose between stromal and

cancer cells, both CAFs and TAMs can fuel cancer cells via the
Reverse Warburg effect under normoxia (210, 211). Meanwhile,

TAMs not only secrete vesicle-packaged HIF-1a-stabilizing
lncRNA to inhibit HIF-1 degradation, enhance glycolysis, and

induce chemoresistance in breast cancer (195) but also inhibit T

cell infiltration, resulting in decreased programmed death-ligand

1 expression in tumors, which compromises the tumor response
to various anticancer therapies (245).

CONCLUSION

Aerobic glycolysis is an important hallmark that distinguishes

cancer tissues from normal tissues; on the one hand, it interacts

with oncogenes PI3K, HIF-1, and C-MYC for inducing

chemoresistance by facilitating the overexpression of glucose

transporters and key enzymes of glycolysis and resistant

signaling pathways in different degrees, and on the other hand, it

acts synergistically with hypoxia and acidosis for advocating

oncogene signaling pathways and stromal cells on sustaining
energy supply and immune escape in cancer. Lactate, a product

of glycolysis, blocks the efficacy of chemotherapy drugs by

maintaining a hypoxic, acidic cancer microenvironment.

Although further studies are warranted to determine the exact

mechanism of the Warburg effect-induced chemoresistance,

studies on inhibitors targeting glycolysis transporters, key
enzymes, and signaling pathways are undergoing or have entered

clinical trials (Table 1). Therefore, the inhibition of aerobic

glycolysis in cancer may be a new idea for chemotherapy, which

provides a new possibility for clinical therapy.
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TABLE 1 | A list of glycolytic inhibitors targeting transporters, key enzymes, and signaling pathway in the glucose metabolic pathway.

Target Inhibitor Finding Reference

GLUT1 Resveratrol inhibiting GLUT1 via the AKT/mTOR-dependent signaling pathway (37)

2-DG competing with glucose to bind GLUT1, reverses chemoresistance in breast and prostate cancer (38–40)

GLUT3 Atorvastatin overcoming TKIs resistance via GLUT3 inhibition in non-small cell lung cancer (46)

Melatonin promotng cisplatin-induced apoptosis via downregulation of GLUT3 in hepatocellular carcinoma (52)

GLUT12 MiR let-7a-5p inhibiting triple-negative breast cancer proliferation, migration and invasion via GLUT12 inhibition (60)

HK2 MiR-125b recovering 5-FU and cisplatin sensitivity in cancer via binding with HK2 mRNA (76–78)

3-BrPA enhances cisplatin-sensitivity in non-small-cell lung cancer through the regulation of PTEN/AKT/HK2 (80, 81)

PFKFB3 MiR-488 inhibiting oxaliplatin/5-FU resistance and glycolysis of colorectal cancer via targeting PFKFB3 (97)

PFK-158 entering a phase 1 clinical trial (84)

PKM2 MiR‐122 inhibiting 5-FU resistance of cancer via targeting PKM2 (106–109)

LDHA Catechin reducing the resistance to 5-FU in gastric cancer via LDHA inhibition (137)

MiR‐34a, miR-329-

3p, miR-7

MiR‐34a resensitizes colon cancer cells to 5-FU, miR-329-3p sensitizes osteosarcoma cells to cisplatin, miR-7 sensitizes

gastric cancer cells to cisplatin all via LDHA inhibition

(142–144)

Oxamate inhibiting LDHA via competition with substrates and overcoming cetuximab resistance in Ewing’s sarcoma (146)

FX11 inhibiting LDHA through competing with NADH and inducing oxidative stress and necrosis in human lymphoma and

pancreatic cancer xenograft models

(134)

NHI competing with pyruvate and NADH, overcoming gemcitabine resistance in pancreatic cancer cells and hypoxic

mesothelioma cells

(147, 148)

MCT1 MiR-124 sensitizing breast cancer cells to taxol via MCT1 inhibition (168)

Curcumin reversing chemoresistance in hepatic cancer cells via MCT1 inhibition (169)

AZD3965 entering in various phase I/II clinical trials (173)

MCTs ACCA sensitizing colorectal cancer cells to cisplatin. (172)

HIF-1 Baicalein reversing hypoxia-induced 5-FU resistance in gastric cancer through the PTEN/AKT/HIF-1 signaling pathway (199)

Ascorbate restoring cisplatin sensitivity of osteosarcoma via decreasing HIF-1 activity (200)
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