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Background. Glioma is the most common primary intracranial tumor in adult patients. Among them, glioblastoma is a highly
malignant one with a poor prognosis. Flavonoids are a class of phenolic compounds widely distributed in plants and have many
biological functions, such as anti-inflammatory, antioxidant, antiaging, and anticancer. Nowadays, flavonoids have been applied
to the therapy of glioma; however, the molecular mechanism underlying the therapeutic effects has not been fully elaborated. 0is
study was carried out to explore the mechanism of selected active flavonoid compounds in treating glioma using network
pharmacology and molecular docking approaches.Methods. Active ingredients and associated targets of flavonoids were acquired
by using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Swiss TargetPrediction platform. Genes
related to glioma were obtained from the GeneCards and DisGeNETdatabases. 0e intersection targets between flavonoid targets
and glioma-related genes were used to construct protein-protein interaction (PPI) network via the STRING database, and the
results were analyzed by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed and displayed by utilizing the Metascape portal and clusterProfiler R package.
Molecular docking was carried out by iGEMDOCK and SwissDock, and the results were visually displayed by UCSF Chimera
software. Results. Eighty-four active flavonoid compounds and 258 targets overlapped between flavonoid targets and glioma-
related genes were achieved. PPI network revealed potential therapeutic targets, such as AKT1, EGFR, VEGFA, MAPK3, and
CASP3, based on their node degree. GO and KEGG analyses showed that core targets were mainly enriched in the PI3K-Akt
signaling pathway. Molecular docking simulation indicated that potential glioma-related targets-MAPK1 and HSP90AA1 were
bounded more firmly with epigallocatechin-3-gallate (EGCG) than with quercetin. Conclusions. 0e findings of this study
indicated that selected active flavonoid compounds might play therapeutic roles in glioma mainly through the PI3K-Akt signaling
pathway. Moreover, EGCG had the potential antiglioma activity by targeting MAPK1 and HSP90AA1.

1. Introduction

Glioma, originated from the neuroepithelium, accounts for
40%∼50% of brain tumors and is one of the most common
primary intracranial tumors; among them, glioblastoma is a
highly malignant one with poor clinical outcome [1]. Ex-
tensive studies have shown that flavonoids have a good
therapeutic effect on glioma [2–4]; however, the underlying
therapeutic molecular mechanisms of flavonoids on glioma
are not stated clearly. Hence, a systematic exploration of the

molecular mechanisms of flavonoids on glioma is critical.
Network pharmacology is an emerging interdisciplinary
discipline and has been applied to comprehensively analyze
the functional mechanisms of traditional Chinese medicine
[5]. It is also used to reveal the active ingredients of natural
medicine treating glioma [6].

In this study, we tried to systematically identify the
molecular mechanisms of flavonoids’ antiglioma effects
based on findings from network pharmacology and mo-
lecular docking. 0e flowchart of this study is shown in
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Figure 1. Our work portrays the ground view of antiglioma
molecular mechanisms of flavonoids, which provided active
compounds and therapy targets curing glioma.

2. Materials and Methods

2.1. Screening Active Ingredients and Predicting Related
Targets. TCMSP (https://tcmsp-e.com/) is a unique systematic
pharmacology platform for Chinese herbal medicines and is
characterized by exploring relationships between compounds,
targets, and diseases. TCMSP has been utilized to screen active
flavonoid ingredients [7]. Flavonoids are categorized according
to their molecular structures into flavones, flavonols, iso-
flavones, chalcones, flavones, and anthocyanidins [4], as shown
in Table 1. Key parameters were taken into account, such as oral
bioavailability (OB), drug-likeness (DL), and blood-brain
barrier (BBB). OB is a measurement of the proportion of drugs
entering the blood circulation. DL indicates the potential of a
compound to be developed into a therapeutic drug with respect
to its physical and chemical properties. BBB impedes drug
distribution between blood and brain [8], which is a very
important parameter in the treatment of glioma. In general,
one compound is considered permeable across the BBB when
its BBB permeability is larger than −0.30. Active flavonoids
were acquired by the following criteria: OB≥ 30%, DL≥ 0.18,
and BBB≥−0.3 [9, 10]. Active compounds of flavonoids re-
ported publicly in recent five years were also taken into analyses
from 1st January 2016 to 30th May 2021. 0e active flavonoids
were confirmed by PubChem (https://pubchem.ncbi.nlm.nih.
gov/). 0e structures of compounds saved in SDF format were
used to predict potential targets of active molecules by using
Swiss TargetPrediction platform (http://www.
swisstargetprediction.ch/), and the species were set as
“Homo sapiens” and the probability was set larger than 0. All
the targets from UniProt database (https://www.uniprot.org/)
were in standardized format.

2.2. Determination of Glioma-Related Targets and Common
Targets with Active Components. Glioma-related targets
were retrieved by using the GeneCards (https://www.
genecards.org/) and DisGeNET (https://www.disgenet.org/
home/) databases with the keyword “glioma.” Flavonoid
targets and glioma-related genes were imported into Venny
2.1 (https://bioinfogp.cnb.csic.es/tools/venny/) to acquire
common targets as the potential targets for further analyses.

2.3. Network Construction of Common Targets. A protein-
protein interaction (PPI) network was constructed using the
STRING platform (version 11.5, https://string-db.org/), and
“Homo sapiens” and Medium Confidence (0.4) were set. All
the information derived from the STRING database was
then imported into Cytoscape software (version 3.8.2) for
visual display.

2.4. GO Function and KEGG Pathway Enrichment Analyses.
GO is wildly used to study gene functions, including the
biological process (BP), molecular function (MF), and cell

component (CC) [11]. KEGG (http://www.kegg.jp/) is an
integrated database of genomic, chemical, and system
functional information and is extensively used to capture
significantly enriched biological pathways [12]. 0e com-
mon targets of flavonoid-glioma were imported into the
Metascape portal (http://metascape.org/gp/index.html/) for
enrichment analysis. 0e top 20 GO and KEGG pathway
enrichment analysis results were visualized by clusterProfiler
R package as the histogram or bubble graph with p< 0.01
[13].

2.5. Molecular Docking. 0e most potential pathway and its
related genes of flavonoids treating glioma were obtained.
0en, these targets with themost promising ingredients were
reconfirmed by using molecular docking. Crystal structures
of related proteins were obtained from the RCSB Protein
Data Bank (PDB, https://www.rcsb.org/) with high resolu-
tion and score, water was removed, while hydrogens were
added by MGLTools software (version 1.5.6). Verified
compounds in.mol2 format were acquired from the TCM@
Taiwan database (https://tcm.cmu.edu.tw/). Molecular
docking was carried out using iGEMDOCK software (ver-
sion 2.1) with default parameters. We selected the most
potential proteins which had the lowest energy and deter-
mined their docking ligands using the SwissDock platform
(http://www.swissdock.ch/docking/). 0e results were vi-
sually displayed by UCSF Chimera software (version 1.15).

3. Results

3.1. Active Ingredients of Flavonoid. According to the
TCMSP database, 55 compounds were screened out with the
thresholds of OB≥ 30%, DL≥ 0.18, and BBB≥−0.3 (Table 2).
Twenty-nine compounds were ruled out due to the afore-
mentioned screening conditions, but they have been re-
ported to have antiglioma properties in previous studies
[2, 3, 14–65]. We added them into our study to decipher the
whole view of flavonoids’ antiglioma molecular mechanism.
As a result, a total of 84 active compounds were selected for
further analysis. Quercetin, epigallocatechin-3-gallate, iso-
liquiritigenin, genistein, apigenin, kaempferol, and luteolin
had 154, 140, 124, 97, 80, 63, and 57 targets, respectively. It
revealed that these seven flavonoids probably played sig-
nificant roles in curing glioma (Table 3).

3.2. Overlapping Common Targets of Flavonoid-Glioma.
After exclusion of duplicated data, 5086 and 3097 glioma-
related targets were identified from GeneCards and Dis-
GeNETdatabases, respectively, and 569 candidate targets of
active flavonoids were integrated from Swiss TargetPre-
diction. Two hundred and fifty-eight intersection targets
were obtained among these three gene sets and were used for
further analysis (Figure 2).

3.3. Common Targets Network Construction. 0ese 258 pu-
tative gene targets correlated with glioma were analyzed
using the STRING database. A total of 258 nodes and 4407
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Table 1: Main structure of flavonoids with their representative compounds.

Types Main structure Representative compounds

Flavones

o

o
Apigenin, luteolin

Flavonols

o

OH

o
Quercetin, myricetin

Isoflavones

o

o

Genistein, daidzein

Chalcones

o

Isoliquiritigenin, corylifolinin

Flavanones

o

o
Naringenin, hesperidin

Anthocyanidins
o+

Cyanidin, pelargonidin

Common Flavonoids

TCMSP database

Swiss TargetPrediction 
platform

Targets of flavonoids

Glioma

GeneCards and 
DisGeNET databases

Targets of glioma

OB+DL+BBB
Sreening

Target prediction

VENNY 2.1

Common Targets

STRING

GO 
function 
analysis

Network construction

Functional enrichment analyses

Molucular docking
Molucular docking

Cytoscape

KEGG 
enrichment

analysis

iGEMDOCK SwissDock
Chimera

Figure 1: Study flowchart of the molecular mechanism of flavonoids in treating glioma.
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edges were embodied with the average node degree 34.2.
0ese results were imported into Cytoscape software (ver-
sion 3.8.2) for further analysis. 0e network is shown in

Figure 3. 0e node color reflected the number of interacted
nodes, and the more nodes to one node linked with, the
deeper colored it became, as shown in Figure 4.

Table 2: Basic information on the main active flavonoids.

No. Molecule ID Molecule name Related targets OB (%) BBB DL
1 MOL000173 Wogonin 45 30.68 0.04 0.23
2 MOL003896 7-Methoxy-2-methyl isoflavone 43 42.56 0.56 0.20
3 MOL000392 Formononetin 39 69.67 0.02 0.21
4 MOL002714 Baicalein 37 33.52 −0.05 0.21
5 MOL005828 Nobiletin 35 61.67 −0.08 0.52
6 MOL001876 6-Methoxyflavone 34 34.56 0.49 0.18
7 MOL007879 Tetramethoxyluteolin 32 43.68 0.09 0.37
8 MOL000497 Licochalcone A 32 40.79 −0.21 0.29
9 MOL004957 HMO 27 38.37 0.25 0.21
10 MOL004835 Glypallichalcone 27 61.60 0.23 0.19
11 MOL013277 Isosinensetin 27 51.15 0.03 0.44
12 MOL002928 Oroxylin A 26 41.37 0.13 0.23
13 MOL004828 Glepidotin A 26 44.72 0.06 0.35
14 MOL001689 Acacetin 26 34.97 −0.05 0.24
15 MOL008206 Moslosooflavone 25 44.09 0.54 0.25
16 MOL004991 7-Acetoxy-2-methylisoflavone 25 38.92 0.16 0.26
17 MOL008239 Quercetin tetramethyl(3′,4′,5,7) ether 23 31.57 0.36 0.41
18 MOL005229 Artemetin 23 49.55 −0.09 0.48
19 MOL008400 Glycitein 23 50.48 −0.29 0.24
20 MOL012266 Rivularin 22 37.94 −0.13 0.37
21 MOL000507 Psi-Baptigenin 22 70.12 −0.27 0.31
22 MOL001803 Sinensetin 21 50.56 0.04 0.45
23 MOL000552 5,2′-Dihydroxy-6,7,8-trimethoxyflavone 21 31.71 0 0.35
24 MOL002927 Skullcapflavone II 21 69.51 −0.07 0.44
25 MOL011078 3′,7-dihydroxy-4′-methoxy-isoflavone 21 50.70 −0.09 0.24
26 MOL003758 Iristectorigenin (9CI) 21 71.55 −0.16 0.34
27 MOL003656 Lupiwighteone 21 51.64 −0.23 0.37
28 MOL012101 Mosloflavone 19 34.04 0.29 0.26
29 MOL002563 Galangin 19 45.55 −0.09 0.21
30 MOL004883 Licoisoflavone 19 41.61 −0.27 0.42
31 MOL005012 Licoagroisoflavone 18 57.28 0.09 0.49
32 MOL002915 Salvigenin 18 49.07 −0.03 0.33
33 MOL004848 Licochalcone G 17 49.25 −0.04 0.32
34 MOL002917 5,2′,6′-Trihydroxy-7,8-dimethoxyflavone 17 45.05 −0.11 0.33
35 MOL004884 Licoisoflavone B 17 38.93 −0.18 0.55
36 MOL004564 Kaempferid 17 73.41 −0.21 0.27
37 MOL005321 Frutinone A 16 65.90 0.46 0.34
38 MOL013279 5,7,4′-Trimethylapigenin 16 39.83 0.12 0.30
39 MOL002235 Eupatin 16 50.80 −0.26 0.41
40 MOL012108 Negletein 15 41.16 0.13 0.23
41 MOL008127 Ermanin 15 58.95 0.07 0.30
42 MOL005573 Genkwanin 14 37.13 −0.24 0.24
43 MOL005849 Didymin 13 38.55 −0.07 0.24
44 MOL000239 Jaranol 13 50.83 −0.22 0.29
45 MOL004598 3,5,6,7-tetramethoxy-2-(3,4,5-trimethoxyphenyl)chromone 12 31.97 0.08 0.59
46 MOL005842 Pectolinarigenin 12 41.17 −0.09 0.30
47 MOL000525 Norwogonin 12 39.40 −0.17 0.21
48 MOL004114 3,2’,4′,6′-Tetrahydroxy-4,3′-dimethoxy chalcone 11 52.69 −0.15 0.28
49 MOL002341 Hesperetin 9 70.31 −0.25 0.27
50 MOL006331 4′,5-Dihydroxyflavone 8 48.55 −0.03 0.19
51 MOL002398 Karanjin 5 69.56 0.62 0.34
52 MOL000242 7-O-Methyleriodictyol 5 56.56 −0.21 0.27
53 MOL002913 Dihydrobaicalin_qt 4 40.04 0.18 0.21
54 MOL002908 5,8,2′-Trihydroxy-7-methoxyflavone NA 37.01 −0.07 0.27
55 MOL002719 6-Hydroxynaringenin NA 33.23 −0.27 0.24
NA: not available.

4 Evidence-Based Complementary and Alternative Medicine



0e potential targets were AKT1, EGFR, VEGFA,
MAPK3, CASP3, SRC, HRAS, TNF, MAPK1, CCND1,
ESR1, HSP90AA1, and MTOR as their degrees were above
100 (Table 4). Node degrees were counted by Cytoscape. 0e
greater a node degree is, the more important biological
functions the node has in the PPI network (Table 5).

3.4. GOandKEGGPathwayEnrichmentAnalyses. GO terms
were enriched by the Metascape platform. 0e results
showed that BP terms enriched in glioma-flavonoids
overlapping targets mainly included peptidyl-tyrosine
phosphorylation and modification, response to oxidative
stress and oxygen levels. 0e top five enriched CC terms
were membrane raft, membrane microdomain, membrane
region, neuronal cell body, and transferase complex,
transferring phosphorus-containing groups. MF terms
displayed the intersection genes that were mainly enriched
in protein tyrosine kinase activity, protein serine/threonine
kinase activity, transmembrane receptor protein kinase
activity, transmembrane receptor protein tyrosine kinase
activity, and phosphatase binding (Figure 5).

KEGG pathway enrichment analysis of the 258 inter-
section gene targets was carried out by Metascape. 0e main
pathways among these genes included PI3K-Akt, Ras, HIF-1,
and Neurotrophin signaling pathways (Figure 6).

3.5. Molecular Docking. 0e result of the KEGG pathway
enrichment analysis indicated that the PI3K-Akt signaling
pathway was the main pathway through which flavonoids
affected the glioma. Among the potential targets, AKT1,
EGFR, MAPK1, MAPK3, CCND1, MTOR, VEGFA, HRAS,
and HSP90AA1 were enriched in the PI3K-Akt signaling
pathway. We selected seven potential active molecules,

Table 3: Active flavonoids in the treatment of glioma reported in PubMed in recent five years.

No. Molecule ID Molecule name Related targets Annotation
1 MOL000098 Quercetin 154 [14–19]
2 MOL006821 Epigallocatechin-3-gallate 140 [20, 21]
3 MOL001789 Isoliquiritigenin 124 [22, 23]
4 MOL000481 Genistein 97 [24]
5 MOL000008 Apigenin 80 [25–29]
6 MOL000422 Kaempferol 63 [30]
7 MOL000006 Luteolin 57 [31–35]
8 MOL013179 Fisetin 46 [36]
9 MOL002008 Myricetin 38 [37, 38]
10 MOL005734 Eupatilin 31 [39]
11 MOL005814 Tangeretin 29 [40, 41]
12 MOL000417 Calycosin 22 [42]
13 MOL002560 Chrysin 19 [43, 44]
14 MOL002083 Tricin 18 [45]
15 MOL009297 Jaceosidin 16 [46]
16 MOL005811 Hepta-3 14 [47]
17 MOL000492 (+)-Catechin 11 [2]
18 MOL002881 Diosmetin 10 [3]
19 MOL005093 Diosmin 10 [48]
20 MOL005190 Eriodictyol 9 [49]
21 MOL013374 Ampelopsin 7 [50]
22 MOL004925 Vitexin 6 [51, 52]
23 MOL002931 Scutellarin 6 [53]
24 MOL005812 Naringin 5 [54, 55]
25 MOL007450 Silybin 2 [43, 56, 57]
26 MOL001790 Linarin 1 [58, 59]
27 MOL004425 Icariin 1 [60]
28 MOL002037 Amentoflavone NA [61–64]
29 MOL007285 Procyanidol C1 NA [65]
NA: not available.

GeneCards DisGeNET

2502
(42.4%)

258
(4.4%)

15
(0.3%)

142
(2.4%)

154
(2.6%)

2184
(37%) 640

(10.9%)

Flavonoids

Figure 2: Overlapping target genes between glioma and flavonoids.
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including quercetin, epigallocatechin-3-gallate, iso-
liquiritigenin, genistein, apigenin, kaempferol, and luteolin,
to dock with nine target proteins, and chose temozolomide
as the control. Lower binding energy indicates a stabler
conformation. We used the quantitative value of fitness to
evaluate the binding level. Fitness is the total energy of a
predicted pose in the binding site. 0e empirical scoring
function of iGEMDOCK is estimated as follows:
Fitness� vdW+Hbond +Elec. 0e vdW term is van der
Waal energy; Hbond and Elect terms are hydrogen bonding
energy and electrostatic energy, respectively [66].0e results
were visually displayed with a heatmap (Figure 7). It was
interesting to note that epigallocatechin-3-gallate (EGCG)
had a good bonding ability to most target proteins enriched
in the PI3K-Akt signaling pathway, while the opposite
pattern was observed for isoliquiritigenin. Experimental
studies show that quercetin could induce autophagy and
apoptosis in human neuroglioma cells through the PI3K-Akt
signaling pathway [67]. AKT1, MTOR, CCND1, and EGFR
are closely associated with autophagy and apoptosis in
glioma [68–70]. Our findings obviously showed that EGCG
had a better docking score to these proteins than quercetin.

For further research, quercetin and EGCG were selected in
this study to dock with MAPK1 and HSP90AA1 target
proteins individually due to their relatively lower energy
value in the molecular docking. 0e results of SwissDock
revealed that the estimated Gibbs free energies (ΔG) of best
binding modes of EGCG with two targeting proteins were
−9.27 kcal/mol and −8.53 kcal/mol, respectively, while the
binding energies of quercetin with two targeting proteins
were −8.23 kcal/mol and −7.95 kcal/mol, separately. In ad-
dition, EGCG had one backbone hydrogen bond (HB)
interacting with Glu33 of MAPK1, and the distance was
2.031 Å. One backbone HB bounded with Gly97 of
HSP90AA1 with a distance of 2.117 Å. 0e results displayed
by UCSF Chimera software were shown in Figure 8.

4. Discussion

In recent years, flavonoids are widely used for antiglioma
treatment. 0e mechanisms of flavonoids are very complex
because they have multiple potential targets and active
components. Network pharmacology together with bio-
informatics has superiority in the systematic elucidation of
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Figure 3: PPI network of potential targets generated by STRING (258 nodes, 4407 edges).
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Figure 4: PPI network of common targets of flavonoids treating glioma. 0e node color was in proportion to the number of interacted
nodes, and the more nodes the node linked, the deeper color it showed.

Table 4: Potential active targets of flavonoids.

No. Uniprot ID Target name Protein name Degree
1 P31749 AKT1 RAC-alpha serine/threonine-protein kinase 155
2 P00533 EGFR Epidermal growth factor receptor 139
3 P15692 VEGFA Vascular endothelial growth factor A 136
4 P27361 MAPK3 Mitogen-activated protein kinase 3 134
5 P42574 CASP3 Caspase-3 128
6 P12931 SRC Protooncogene tyrosine-protein kinase Src 126
7 P01112 HRAS GTPase HRas 124
8 P01375 TNF Tumor necrosis factor 115
9 P28482 MAPK1 Mitogen-activated protein kinase 1 115
10 P24385 CCND1 G1/S-specific cyclin D1 112
11 P03372 ESR1 Estrogen receptor 112
12 P07900 HSP90AA1 Heat Shock Protein HSP 90-alpha 111
13 P42345 MTOR Serine/threonine-protein kinase mTOR 104
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the mechanism of TCM at the molecular level and repre-
sentation of interactions between active compounds, po-
tential targets, and various pathways.

In our study, potential targets of active components
analysis revealed that quercetin, EGCG, isoliquiritigenin,
genistein, apigenin, kaempferol, and luteolin interacted with
multiple targets in the network. 0ese findings showed that
they may play important roles in the treatment of glioma. As
reported, these seven active flavonoid compounds have distinct
ways of treating glioma. Quercetin, a flavonol, had the most
potential targets in this study. It plays antiglioma effects by
inducing cell apoptosis [17], inhibiting proliferation and mi-
gration [14], and modulating the inflammatory process [71].
Moreover, quercetin could affect human glioma cells through
the PI3K-Akt signaling pathway [72]. EGCG is a polyphenol
flavonoid, which is generally distributed in green tea and has
shown great properties in cancer prevention due to its safety,
low cost, and excellent bioavailability [73]. EGCG in high doses
(>40μmol/L) could suppress cancer cells by inducing apoptosis
and by inhibiting autophagic processes [74] and regulate ap-
optosis-related and autophagy-related proteins (caspase3,
caspase 9, Bax, LC3B II, and Beclin) [75]. MTOR is a key
regulator of autophagy, EGCG may enhance the phosphory-
lation of eNOS and mTOR via the activation of the PI3K-Akt
pathway [76]. Furthermore, it has the effects of antiglioma
through inhibiting proliferation and decreasing invasion of
glioma cells [77]. Isoliquiritigenin, isolated from licorice, has
been found to be a potent stimulator of cell differentiation and
has potential application for treating human brain glioma by
inhibiting proliferation and blocking angiogenic through
Notch1 and Akt signaling pathway, respectively [22, 23].
Genistein, an isoflavone in legumes and some herbal medi-
cines, suppresses the expression of matrix metalloproteinase 2
(MMP-2) and vascular endothelial growth factor (VEGF) to
serve antigiloma role [78]. Genistein sensitizes glioblastoma
cells to carbon ions through inhibiting DNA-PKcs phos-
phorylation and subsequently repressing the nonhomologous
end-joining and delaying the homologous recombination re-
pair pathways [24]. Apigenin, a flavone, has been shown to take
part in restoring the immune system and weakening the self-
renewal and invasiveness capacity of glioblastoma stem-like
cells (GSCs) [25, 29]. It was reported to inhibit the expression of
STAT3, AKT, and MAPK in the GSCs [26]. Kaempferol has
also been demonstrated to possess good antiglioma effects by
inducing reactive oxygen species (ROS) and subsequently leads
to autophagy and cell death [30, 79]. Luteolin is a flavone and

has an inhibitory effect on downstream signal molecules ac-
tivated by EGFR, particularly the Akt and MAPK signal
pathways [33, 80]. It induces a lethal endoplasmic reticulum
stress response and mitochondrial dysfunction in glioblastoma
cells by increasing intracellular ROS levels [31].

Immune factors have been considered as a significant
factor contributing to the development and progression of
glioma [81]. In the PPI network, most potential targets were
closely related to immunity, including AKT1, TNF, EGFR,
VEGFA, MAPK1, MAPK3, CASP3, SRC, HRAS, CCND1,
ESR1, HSP90AA1, and MTOR [82–87]. And these proteins
were regarded as core proteins in our study and might play
important roles in the therapeutic effect of flavonoids on
glioma. Recent studies have shown that luteolin decreased
the expression of immune-related genes including MMP9,
MAPK1, HSP90AA1, CASP3, ALB, EGFR, SRC, HRAS, and
ESR1. And among these genes, MMP9, MAPK1,
HSP90AA1, EGFR, SRC, and HRAS are confirmed in vivo at
the protein and mRNA levels [88].

To further indicate the potential mechanism of flavo-
noids in treating glioma, KEGG analysis discovered that
PI3K-Akt was the main signaling pathway. It is a classic
signal transduction pathway involved in cell proliferation,
apoptosis, migration, invasion, and angiogenesis in glioma
and plays an important role in the occurrence and devel-
opment of glioma [89]. 0e result of molecular docking
showed that EGCG had good bonding with MAPK1 and
HSP90AA1 in the PI3K-Akt signaling pathway. Relevant
studies confirmed that EGCG induces apoptosis, inhibits
proliferation, and decreases invasion of glioma cells via the
MAPK pathway in vivo [77]. Kim et al. also found that
EGCG induced the expression of MAPK1 in glioma cells
[90]. Heat Shock Protein 90 can promote oncogenesis since
it interacts and supports numerous proteins and is essential
for malignant transformation and progression. However, the
HSP90AA1 gene is not altered in a major of tumors
according to the Cancer Genome Atlas (TCGA) [91]. To
evaluate its role in the treatment of glioma, downregulation
of HSP90AA1-IT1 (HSP90AA1 intronic transcript (1) was
done, which could significantly suppress cell viability,
proliferation, EMT, invasion, and migration of glioma [92].
0us, there might be a correlation between HSP90AA1 and
glioma; however, there is no report about EGCG curing
glioma via targeting HSP90AA1.

Although there is an abundance of information and the
analysis process is complex, some useful and credible

Table 5: Docking score of targets with seven active ingredients (kcal/mol).

Target name PDB ID Apigenin EGCG Genistein Isoliquiritigenin Kaempferol Luteolin Quercetin Temozolomide
AKT1 6S9W −87.88 −104.05 −103.38 −84.38 −91.79 −94.33 −90.26 −101.62
EGFR 7AEM −96.74 −114.52 −106.53 −93.64 −100.48 −98.17 −95.28 −117.90
MAPK1 6RFP −97.85 −143.55 −98.34 −94.73 −96.12 −95.77 −106.79 −113.58
MAPK3 6GES −97.51 −102.29 −101.62 −94.60 −93.60 −99.52 −98.23 −107.29
CCND1 3AY5 −83.32 −96.44 −87.54 −83.87 −80.69 −86.00 −87.49 −90.09
MTOR 7JWE −99.64 −107.48 −90.22 −82.14 −89.54 −100.05 −96.34 −97.78
VEGFA 6D3O −84.52 −98.62 −85.47 −80.56 −85.32 −87.91 −86.79 −86.84
HRAS 4XVR −98.48 −97.18 −98.35 −77.91 −96.60 −99.33 −96.30 −104.24
HSP90AA1 4BQG −90.22 −123.19 −98.78 −92.72 −100.26 −94.73 −84.84 −98.88
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Figure 5: GO enrichment analysis of biological process (BP) terms, cellular component (CC) terms, and molecular function (MF) terms.
0e color of the bar is displayed in a gradient from red to blue according to the ascending order of the P adjust, while the length of the bar is
arranged according to the ascending order of the number of gene counts.

Evidence-Based Complementary and Alternative Medicine 9



PD−L1 Expression and PD−1 Checkpoint Pathway in Cancer

Melanoma

Ras Signaling Pathway

Central Carbon Metabolism in Cancer

Prolactin Signaling Pathway

Cellular Senescence

Neurotrophin Signaling Pathway

Fluid Shear Stress and Atherosclerosis

MicroRNAs in Cancer

Chronic Myeloid Leukemia

Glioma

HIF−1 Signaling Pathway

Lipid and Atherosclerosis

AGE−RAGE Signaling Pathway in Diabetic Complications

Pancreatic Cancer

Endocrine Resistance

PI3K−Akt Signaling Pathway

Proteoglycans in Cancer

EGFR Tyrosine Kinase Inhibitor Resistance

Prostate Cancer

0 10 20 30 40 50

2.203415e−17
1.652561e−17
1.101707e−17
5.508537e−18
3.630475e−30

p.adjust

Melanoma

Central Carbon Metabolism in Cancer

Prolactin Signaling Pathway

PD−L1 Expression and PD−1 Checkpoint Pathway in Cancer

Chronic Myeloid Leukemia

Glioma

Pancreatic Cancer

Neurotrophin Signaling Pathway

HIF−1 Signaling Pathway

AGE−RAGE Signaling Pathway in Diabetic Complications

Endocrine Resistance

Fluid Shear Stress and Atherosclerosis

EGFR Tyrosine Kinase Inhibitor Resistance

Cellular Senescence

Prostate Cancer

Ras Signaling Pathway

Lipid and Atherosclerosis

Proteoglycans in Cancer

MicroRNAs in Cancer

PI3K−Akt Signaling Pathway

0.12 0.16 0.20
GeneRatio

Count
30
40
50

2.203415e−17
1.652561e−17
1.101707e−17
5.508537e−18
3.630475e−30

p.adjust
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conclusions have been drawn. Due to limitations of com-
pounds screening and accuracy of target prediction, the
results obtained in this study are general, and in vitro and in

vivo experiments are needed for verification. In short, our
study portrayed the ground view of flavonoids in the
treatment of glioma.
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Figure 7: Heatmap of molecular docking. Temozolomide was taken as the control. 0e red color represents a high docking score, and blue
represents a low docking score. 0e lowest value indicates the most stable conformation.
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Figure 8: 0e binding modes of EGCG with MAPK1 (a) and HSP90AA1 (b). Left panel: this area showed the best combination pocket of
EGCG with MAPK1 and HSP90AA1 proteins. EGCG and relevant residues were presented in stick representation. Right panel: this region
showed the hydrogen bonding with Glu33 in MAPK1 protein and Gly97 in HSP90AA1 protein. 0e distance of hydrogen bond interaction
was colored in pink, and the structure of EGCG was shown in circle and disk shape.
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5. Conclusions

0is study elaborated the mechanisms of active flavonoids
on antiglioma using network pharmacology and molecular
docking by constructing a compound‒target‒pathway
network. Active components have particular advantages in
curing glioma by targetingMAPK1,MAPK3, EGFR, MTOR,
AKT1, VEGFA, CCND1, HSP90AA1, and HRAS. In addi-
tion, EGCG can target HSP90AA1 and MAPK1 via the
PI3K-Akt signaling pathway. 0ese findings offered a re-
search foundation for further investigation of flavonoids on
antiglioma.
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