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Abstract

Breast and prostate cancer are the most well-characterized cancers of the type that have their
development and growth controlled by the endocrine system. These cancers are the leading causes
of cancer death in women and men, respectively, in the United States. Being hormone-dependent
tumors, antihormone therapies usually are effective in prevention and treatment. However, the
emergence of resistance is common, especially for locally advanced tumors and metastatic tumors,
in which case resistance is predictable. The phenotypes of these resistant tumors include receptor-
positive, ligand-dependent; receptor-positive, ligand-independent; and receptor-negative, ligand-
independent. The underlying mechanisms of these phenotypes are complicated, involving not only
sex hormones and sex hormone receptors, but also several growth factors and growth factor re-
ceptors, with different signaling pathways existing alone or together, and with each pathway possibly
linking to one another. In this review, we will discuss the potential mechanisms of antihormone-
therapy resistance in breast and prostate cancers, especially focusing on the similarities and
differences of these two cancers. We will also discuss novel agents that have been applied in clinical
practice or with clinical potential in the future.
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Introduction

The endocrine system is critical for growth, matura-

tion, and coordination of the human body. However,

malignancies can also arise from the organs influenced

by endocrine-system-secreted hormones. Among these

malignancies, the most widely studied are breast cancer

and prostate cancer. Apart from skin cancers, breast

cancer and prostate cancer are the primary diagnosed

cancer and secondary cause of cancer death in women

and men, respectively, in the United States (Jemal et al.

2004). These two types of cancer are not only similar in

their epidemiological patterns but also possess similar

pathological entities. Both of them are hormone-

related cancers. They depend on specific steroid

hormone receptors, such as estrogen receptor (ER),

progesterone receptor (PR), and androgen receptor

(AR), to mediate hormone effects on the initiation

and progression of diseases. With the improvement of

diagnostic methodologies, the incidence of both cancer

types have increased, which is most likely attributed to

early diagnosis, but the cancer death rate of breast and

prostate cancers has continued to decline since 1992

and 1995, respectively (Jemal et al. 2003). However, to

date curative treatments for both advanced cancers

have not yet been established. Understanding the

underlying pathogenesis of disease progression is the

pivotal prerequisite for developing effective therapeutic

and preventive strategies of these two cancers.

Since ER and AR mediate the hormone effect on

tumor initiation and progression in breast and prostate

cancer, several selective ER modulators (SERMs;
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Katzenellenbogen and Katzenellenbogen 2002, Jordan

2003a, 2003b) and selective AR modulators (SARMs)

that specifically inhibit receptor function by means of

hormone deprivation or hormone blockade have been

applied in clinics as both therapeutic and preventive

strategies. Tamoxifen (TAM), the most commonly

used SERM, competes with estrogen having a higher

binding affinity to ER. Although TAM-binding ER

can also translocate into the nucleus, the TAM–ER

transcription complex is incomplete and insufficient to

initiate downstream target gene transcription which is

required for estrogen-dependent tumor growth (Piccart

et al. 2003). Flutamide (FLU) and bicalutamide are

both pure antiandrogen agents; they inhibit androgen

from binding to AR and its subsequent translocation

(Brogden & Chrisp 1991). In order to get maximal

androgen blockade, antiandrogen agents usually com-

bine gonadotropin-releasing hormone (GnRH) agonist

to suppress the compensatory-elevated luteinizing

hormone (LH) and follicular-stimulating hormone

(FSH; Labrie et al. 1993).

About 75% of breast cancer patients are ER- or

PR-positive. TAM is the most frequently used drug as

an adjuvant therapy for ER- and/or PR-positive breast

cancer patients (Kiang & Kennedy 1977, Early Breast

Cancer Trialists’ Collaborative Group 1998, Fisher

et al. 1998, Schiff et al. 2000).

After a 5-year administration of adjuvant TAM, the

proportional recurrence reduction was 47%, and

the corresponding mortality reduction was 26% (Early

Breast Cancer Trialists’ Collaborative Group 1998).

TAM can also be used as a first-line therapy for meta-

static breast cancer patients if their tumors are hormone

receptor-positive and can be used as a chemoprevention

agent for high-risk patients (Fisher et al. 1998).

Although TAM is effective as an adjuvant and chemo-

preventive agent, there is still a significant proportion

of patients who develop breast cancer or relapse breast

cancer even after taking TAM, and the emergence

of resistance in metastatic breast cancers is usually

not preventable (Muss 1992). In prostate cancer, the

majority of cases are AR-positive and androgen-

ablation therapy by surgery, medicine, or combination

is mandatory to those patients with locally advanced

prostate cancer or metastatic disease. However, the

response to hormone therapy is temporary and relapse

is eventually inevitable. Chemoprevention is consid-

ered to be particularly important to reduce incidence of

prostate cancer because of its diagnosis in elderly men,

and even a modest delay in the neoplastic development

could result in a substantial reduction in the incidence

of this clinically detectable disease. Unlike breast

cancer, chemoprevention for prostate cancer has just

emerged and under evaluation. A recent prostate

cancer prevention trial has been done to show that

finasteride, a 5a-reducatase inhibitor that inhibits the

conversion of testosterone to a more potent androgen,

dihydrotestosterone, has a chemopreventive effect for

prostate cancer development (Thompson et al. 2003).

However, in this study they point out that finasteride

also increases the risk of high-grade prostate cancer.

This result implies that hormone deprivation for

prostate cancer may promote the phenotypic progres-

sion of those tumor cells that are able to survive the

acute period of the therapy. The selection pressure

driven by hormone therapy seems play the same roles

in both breast and prostate cancer.

The phenotypes of these resistant/relapsed tumors

can be roughly categorized into: (1) receptor-positive,

hormone-dependent, but resistant to or even stimulated

by the first-line antihormone agents; (2) receptor-

positive, hormone-independent; and (3) receptor-

negative, hormone-independent. Several mechanisms

have been proposed for these phenotypes. However, a

common scenario is that once the tumor develops

resistance to antihormone therapy it will become

more aggressive and correlate with poor prognosis.

Therefore understanding the mechanism of resistance

emergence and the methods to overcome the resistance

is critical for the treatment of hormone-therapy-

resistant tumors. In this review, we will discuss the

similarities and differences between breast cancer and

prostate cancer in the development of hormone

resistance and the therapeutic options (Table 1).

Sex hormone — sex hormone
receptor-modulating mechanisms

In human beings, secretion of sex hormones is

controlled by the hypothalamus-pituitary-sex gland

axis. For premenopausal women, ovaries produce

almost all of the estrogen, and the primary estrogen

produced is 17b-estradiol; for postmenopausal women,

peripheral tissues, such as the adrenal gland, peripheral

adipose tissue, and even the breast itself are the main

organs producing estrogen. In men, the testes produce

the majority of circulating testosterone, which is

converted into the more powerful dihydrotestosterone

(DHT) by 5a-reductase in target organs. A small

portion of testosterone is produced by adrenal glands.

Although the secretion of testosterone will decrease

during aging, testes are still the major source of

androgen in the elderly (Table 2).

Both ER and AR belong to the steroid nuclear

receptor superfamily. The basic domain structures of
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the nuclear receptor superfamily include an N-terminal

region with the activation function 1 (AF-1) domain,

a DNA-binding domain (DBD) with two zinc-finger

structures, and a hinge region and ligand-binding

domain (LBD) at the C-terminus (Fu et al. 2003). The

LBD includes the activation function 2 (AF-2) domain

and 12 a-helices that project away from the hormone-

binding groove in the absence of ligand. Without ligand

binding, ER/AR associates with chaperone proteins,

heat-shock proteins (Hsps), and the immunophilin

complex.After ligand binding, receptors dissociate from

chaperone proteins, and form homodimers or hetero-

dimers that can bind to the estrogen- and androgen-

response elements in the promoter regions of target

genes. This will release corepressors and recruit

coactivators, thereby forming a transcriptional complex

and initiating target gene transcription (Feldman &

Feldman 2001, Osborne et al. 2001, Isaacs et al. 2003)

There are two ER genes on different chromosomes,

ER-a on chromosome 6q25.1, and ER-b on chromo-

some 14q22-25. ER-a is usually the dominant isoform

and correlates with most of the prognostic factors in

breast cancers (Fuqua et al. 2003). Both proteins have

compatible binding affinities for estradiol and similar

binding domains for ligand and DNA; they also

have two transcriptional domains, AF-1 and AF-2. The

transcriptional function of AF-1 and AF-2 is tissue-

and promoter-specific. The transcription function of

AF-1 is ligand-independent, and it is closely related to

the phosphorylation status of ER, and can be induced

by mitogen-activated protein kinases (MAPKs),

growth factors and oncogenes (Fu et al. 2003), while

Table 1 Resistance mechanism and corresponding therapeutic countermeasures

Receptor

Ligand

dependence Resistance mechanism Therapeutic countermeasures

ER-/AR-positive Positive Receptor amplification Total hormone ablation by antihormone agent

Increased circulating hormone and GnRH agonist

Increased endogenous hormone Aromatase inhibitor (BC)

Receptor hypersensitivity Fulvestrant (BC)

Changing ratio of coregulators MAPK-pathway inhibitors

Chemotherapy

SERM

SARM

ER-/AR-positive Negative Receptor mutation Hsp90 inhibitor

Crosstalk with other growth Anti-EGFR antibodies (IMC-C225, ABX-EGF)

factors and receptors Anti-Her-2 antibodies (trastuzumab, 2C4)

and receptors Tyrosine kinase inhibitors

Bypass receptors (gefitinib, OSI-774, CI-1033, PKI166, GW572016)

Emodin

E1A

Bcl-2 antisense

Chemotherapy

ER-/AR-negative Negative Loss of receptors Chemotherapy

BC, breast cancer; EFGR, epidermal growth factor receptor; Hsp, heat-shock protein; MAPK, mitogen-activated protein kinase.

Table 2 The major hormone source and antihormone therapy agents of breast cancer and prostate cancer

Breast cancer Prostate cancer

Major sex hormone 17b-Estradiol DHT

Major source of sex hormone Premenopause: ovary Majority: testis

Postmenopause: peripheral adipose

tissue, adrenal gland, breast

Minority: adrenal gland

First-line antihormone agents TAM FLU

Aromatase inhibitor GnRH agonist

Chemoprevention agents TAM Finasteride

Aromatase inhibitor
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AF-2 is completely ligand-dependent (Kato et al.

2000). AF-1 and AF-2 of ER can activate transcription

independently or synergistically. ER-a and ER-b have

opposite effects on transcription initiated by AP-1,

SP-1, or cAMP-response elements (CREs; Paech et al.

1997, Castro-Rivera et al. 2001, Liu et al. 2002).

Especially in a low-estrogen environment such as in

cases of aromatase-inhibitor treatment, the inhibitory

effect of ER-b could become more prominent as

an antitumor mechanism (Jordan 2003a). Thus com-

pounds that are antagonists for ER-a may be agonists

for ER-b at these sites. However, the function and

prognostic significance of ER-b is still not clear (Hall &

McDonnell 1999, Palmieri et al. 2004, Speirs et al.

2004). For those breast cancer cells with ER expres-

sion, the ratio between ER-a and ER-b may change

during carcinogenesis, it may also serve as an impor-

tant marker in predicting the response to certain

kinds of specific selective estrogen-modulator therapy

(Dotzlaw et al. 1999). In contrast to ER, no AR isoform

has been found to date. Without ligand binding, ER

mainly stays in nucleus but the majority of AR stays

in cytoplasm. Upon ligand binding, the AR homo-

dimer will translocate into the nucleus. In addition,

androgens can stabilize AR protein level 6-fold com-

pared to the level without ligand binding. However,

estrogen binding will accelerate ER degradation. These

biological differences between ER and AR could be

used as different targeting strategies (Table 3).

Mechanisms of resistance

There are several mechanisms that have been proposed

to be responsible for the emergence of hormone

resistance in breast cancers and prostate cancers. These

resistance mechanisms can occur at the pre-receptor

level, such as a change in the hormone level, at the

receptor level, or at the post-receptor level. Based on

the three major phenotypes mentioned above, we

summarize several possible mechanisms for the devel-

opment of resistance (Figure 1). These events can occur

alone or together, dependent on the individual case,

and therefore the next step of therapy after the em-

ergence of resistance should depend on the underlying

mechanism for the resistance.

Receptor-positive, ligand-dependent

Enhancing receptor expression

Long-term hormone deprivation may select for cancer

cell clones that enhance the expression of receptors

to compensate for the low-level ligand environment. In

long-term estrogen deprivation of MCF-7 cells, ER-a
was found to be upregulated 4–10-fold (Santen et al.

2003). The same situation was reported for ER-b from

clinical samples (Speirs et al. 1999). In prostate cancer

AR gene amplification is rarely found in primary

cancer; after androgen-ablation therapy, approximately

30% of tumors become androgen independent due to

an increase of AR expression (Feldman & Feldman

2001). Additionally, the gain of AR gene copies in

primary prostate cancer due to X-chromosome poly-

somy was observed (Ropke et al. 2004). This may due

to the selective effect that comes from the low level of

androgen after androgen ablation, which favors clonal

expansion of cancer cells expressing a higher level of

AR. These tumors are still hormone-dependent, and

they may respond to second-line therapy with total

hormone ablation.

Increased circulating hormone

TAM binds to ER, and FLU binds to AR to

antagonize sex hormones in the tumors; however, they

also bind to the receptors in pituitary gland and hypo-

thalamus, which may interrupt the negative-feedback

pathways of sex hormones. As a result GnRH is

secreted continuously, ultimately producing a hyper-

stimulatory effect on the ovaries or testes resulting in

oversecretion of estrogen or androgen. This may

explain the elevated estradiol levels that were noted

in some premenopausal breast cancer patients after

TAM administration (Ravdin et al. 1988). To over-

come this problem, GnRH analogues can be combined

with antihormone agents to reach total estrogen or

androgen ablation (Robertson & Blamey 2003).

Table 3 Comparison of ER and AR

ER AR

Expression before treatment 75% >90%

Mutation as the cause of resistance <10% 30%

Location before ligand binding Nucleus Cytoplasm

Isoform ER-a/ER-b No isoform

Dimer formation after ligand binding Homo-/heterodimer Homodimer only

Stability after ligand binding Accelerated degradation More stable
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Increased endogenous hormone

In females, estrogen production can be converted from

androgen by aromatase in the breast. The transcrip-

tional control of aromatase is different between normal

tissue and breast cancer tissue (Harada et al. 1993).

Increased aromatase expression and activity have been

noted in breast tumors compared to peritumor tissues

(Goss & Strasser 2002). This increased production of

aromatase comes from the interaction between breast

cancer cells and associated fibroblasts and inflamma-

tory cells in the adjacent stroma. Breast cancer cells

synthesize prostaglandin E2, and inflammatory cells

produce not only prostaglandin E2 but also interleukin

6 (IL-6), IL-11, and tumor necrosis factor a (TNFa),
all of which stimulate fibroblasts to produce aromatase.

This mechanism is related closely to cyclooxygenase 2

(COX-2; Johnston & Dowsett 2003). Also in long-term

estrogen-deprived breast cancer cells, aromatase

activity increases adaptively (Yue et al. 1999). Both

of these cases lead to higher local estrogen concentra-

tion and can overcome the effect of anti-estrogen

agents. This may explain in part why aromatase

inhibitors elicit a better clinical response than TAM

in clinical studies (Wong & Ellis 2004).

In males, long-term androgen-ablation therapy may

select prostate cancer cells with higher 5a-reductase
activity, which can produce more DHT from adrenal

androgen, thus providing a higher intracellular DHT

level to compensate for the low level of circulating

testosterone (Navarro et al. 2002). Men of African

descent, who have the highest incidence of a poly-

morphism in the gene of 5a-reductase in which a valine

residue at codon 89 is substituted by a leucine, have

been reported to have higher 5a-reductase activity and

Circulating estrogen levelE

GFRGFR
IL-6 R

A Intracellular androgen

PI3K

Akt

STAT3

MAPK
cascade

Ras

IL-6 a.IL-6 exerts its action through signal transducers
b.IL-6 enhance Her-2 autophosphorylation

a. ER amplification
b. Mutation
c. Hypersensitive  

a. AR amplification
b. Mutation 
c. Hypersensitive  

Estradiol/androgen-independent 
phosphorylation of  ER/AR by 
growth factors signaling pathways  

ER

HSPs

ER

HSPs

ERE
ERER

E E PP
CoactivatorsCorepressors

R
Co-A

ARE

A A PP
Co-A Coactivators

Breast Cancer Prostate Cancer

Cytoplasm
Cytoplasm

NucleusNucleus

Bypass pathway
a. Antiapoptotic gene (Bcl-2,

Bcl-xL, NF-κB..)
b. Mutation of tumor suppressive 

gene (PTEN..)

Bypass pathway
a.

a. Antiapoptotic gene (Bcl-2,
Bcl-xL, NF-κB..)

b. Mutation of tumor suppressive 
gene(BRCA1, BRCA2..)

Bypass pathway
a.

ER

HSPs

ER

HSPs

AE

AR

HSPs

AR

Figure 1 Summary of several mechanisms that have been proposed to be responsible for the emergence of hormone

resistance in breast cancers and prostate cancers. These mechanisms make up the three phenotypes. A androgen, AR

androgen receptor, ARE androgen responsive element, Co-A coactivator, E estrogen, ER estrogen receptor, ERE estrogen

responsive element, GFR growth factor receptor, IL-6 interleukin 6, IL-6R interleukin 6 receptor, PI-3K phosphatidylinositol

3-kinase, R corepressor, STAT3 signal transducer and activator of transcription 3.

Endocrine-Related Cancer (2005) 12 511–532

www.endocrinology-journals.org 515Downloaded from Bioscientifica.com at 08/22/2022 10:44:41PM
via free access



have a particularly high incidence of prostate cancer

with poor prognosis (Ruijter et al. 1999).

Receptor hypersensitivity

Receptors may have congenital or acquired mutations

that change their sensitivity to ligands. A study of a

typical breast hyperplasia found that a mutation of

ER-a (Ala-908fiGly) affects the border of the hinge

and hormone-binding domains of ER-a and shows

increased sensitivity to estrogen. This mutation may

promote or accelerate the development of cancer from

premalignant breast lesions (Fuqua et al. 2000). Long-

term deprivation of estrogen, for instance with TAM

treatment, can induce hypersensitivity of breast cancer

cells to estradiol (Berstein et al. 2004). Such adaptive

hypersensitivity may go through a rapid, nongenomic

plasma membrane receptor-mediated pathway: estra-

diol binds to ER-a, then phosphorylates Shc, Shc

then binds to Grb-2 and SoS, resulting in the rapid

activation of MAPK through Ras, Raf, and MAPK/

extracellular-signal-regulated kinase (ERK) kinase

(MEK), and then the phosphorylation of AF-1 on

ER-a (Santen et al. 2003). Several agents can block this

pathway, including: aromatase inhibitors, which block

the estrogen production from the peripheral tissue; the

pure anti-estrogen fulvestrant (Howell 2001); farnesyl-

thiosalicylic acid, an inhibitor of GTP-Ras binding to

its membrane acceptor site (Berstein et al. 2003); and

the MEK inhibitor U0126 (Martin et al. 2003).

Upregulation of AR sensitivity to low-level androgen

was also found in a prostate cancer animal model

(Gregory et al. 2001b). Under androgen-ablation

conditions, AR from the recurrent prostate cancer was

highly expressed, with increased stability and nuclear

localization, making the tumor cells more sensitive to

the growth-promoting effect of DHT. The concentra-

tion of DHT needed for growth stimulation was four

orders of magnitude lower in androgen-independent

prostate cancer (AIPC) cells than in androgen-

dependent LNCaP cells. Also chronic activation of

Ras/MAPK signaling could cause or contribute to the

development of AIPC cells (Bakin et al. 2003).

Coregulator regulation in breast and
prostate cancers

In recent years a large number of nuclear and steroid

receptor coregulators, including coactivators and

corepressors, have been cloned and characterized

to regulate receptor-mediated transactivation. After

ligands bind their receptors, these coregulators are

recruited to the promoters of target genes through

protein — protein interaction, enhancing or reducing

the nuclear receptor-mediated transcription of respon-

sive genes (Klinge 2000). Coactivators are protein

complexes with intrinsic histone acetyltransferase

activity that affect transcription by modifying the

chromatin structure in a ligand-dependent manner;

corepressors are proteins associated with unligated

nuclear receptors that recruit histone deacetylase com-

plexes and inhibit transcription. The extent and direc-

tion of transcription of responsive genes are influenced

not only by the types of ligands, but also by specific

coregulators. The ratio of coactivators to corepressors

may also determine the direction of gene transcription.

As shown in Table 4, many coactivators have been

identified as enhancing the ligand-induced transcrip-

tional activity for both AR and ER. The most well-

characterized is the steroid receptor coactivator (SRC)

family, which contains SRC-1, transcriptional inter-

mediary factor 2 (TIF2), and Amplified in Breast

Cancer (AIB1)/SRC-3. Members of the SRC family of

coactivators typically interact with the LBD of nuclear

receptors through LXXLL motifs (where L is leucine

and X is any amino acid) that form a-helices. The

LXXLL domains of the coactivators interact with the

nuclear receptor partly through the hydrophobic

surface of the receptor AF-2 domain. The ER dimer

binds to SRC-1 through an interaction between the ER

LBD and the LXXLL motifs of SRC-1. SRC-1 and

TIF-2 interact primarily with the AR N-terminus and

possibly the DBD and this interaction, in contrast to

several other nuclear receptors, does not require the

coactivators to contact intact LXXLL motifs (Spencer

et al. 1997, Bevan et al. 1999, He et al. 1999). Although

the crystal structure of AR suggests that ligand-

binding induced LBD conformations similar to ER

and potentially generates a similar coregulator inter-

action surface, functional analyses of the full-length

receptors suggest that distinct differences exist between

the coregulator interaction domains of AR and ER.

This may be because the interaction between the AR

N-terminus and the LBD generates a potential

coregulator in interaction structure that differs from

that of ER. Since different target cells express different

levels of coactivators and corepressors, which accounts

for cell-specific regulation of responsive gene expres-

sion, increased activity of coactivators can lead to the

emergence of resistance. Additionally, coactivators can

interact with other transcriptional factors (Lee et al.

1998), and as a result they also enhance transcription

without ligand binding. Several coactivators are

important both in breast cancer and prostate cancer

for the development of hormone independence. Dis-

ruption of SRC-1 results in partial hormone resistance,

particularly to thyroid hormone (Xu et al. 1998). In
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addition, results from different groups indicated that

SRC-1 is involved in the progression of prostate

cancers. Using reverse transcriptase PCR, Fujimoto

and colleagues (2001) found that the expression levels

of SRC-1 were higher in higher-grade prostate cancers

or cancers with a poor response to endocrine therapy.

At the same time, it has been reported that SRC-1

expression was elevated, together with the expression

of AR, in recurrent prostate cancers (Gregory et al.

2001a). Previous studies found that SRC-2 is also

overexpressed in recurrent prostate cancers. Over-

expression of SRC-1 and SRC-2 confers on AR an

increased sensitivity to the growth-stimulating effects

of low-androgen concentrations. This change may

contribute to prostate cancer recurrence after

androgen-deprivation therapy. High levels of SRC-1 in

uterus and breast are known to enhance the agonistic

effect of TAM (Katzenellenbogen & Katzenellenbogen

2002); SRC-1 can also interact synergistically with

CRE-binding protein to activate ER-mediated tran-

scription in a ligand-independent manner (Jackson

et al. 1997), and this activity can be inhibited by

corepressor SMRT (Smith et al. 1997).

In TAM-treated breast cancer patients, high AIB1/

SRC-3 expression was associated with worse disease-

free survival, which is indicative of TAM resistance

(Osborne et al. 2003). Compared with the widespread

expression of SRC-1 and SRC-2, expression of AIB1/

SRC-3 is restricted to few tissues, including the uterus,

the mammary gland and the testis (Suen et al. 1998).

Disruption of AIB1/SRC-3 gene in mice causes severe

growth and reproductive defects, such as the retarda-

tion of mammary gland development (Xu et al. 2000).

Amplification and overexpression of AIB1/SRC-3 in

human breast and ovarian cancers have been observed

(Anzick et al. 1997, Chen et al. 1997, Yeh et al. 1998).

It has been reported that the AIB1/SRC-3 amplifica-

tion/overexpression was correlated with ER and PR

positivity (Bautista et al. 1998).

Breast cancer (BRCA1) is a breast cancer-

susceptibility gene, and its mutations are correlated

with an increased risk of breast and ovarian cancers

(Martin et al. 2001). Interestingly, BRCA1 was shown

to function as a ligand-independent corepressor for ER

and PR and enhance the ligand-dependent AR trans-

activation in the presence of exogenous SRC family

members (Miki et al. 1994, Yeh et al. 2000, Fan et al.

2001). Thus, it is reasonable to speculate that the nor-

mal expression of BRCA1 probably protects the breast

from tumorigenesis by suppressing the ER and PR

signaling pathway and promoting AR activity in pro-

state cancer development. The ARAs, AR-associated

proteins, is a group of factors that can bind to AR and

modulate its transcriptional activity. Based on their

molecular masses, these factors were named ARA70,

ARA160, ARA54, ARA55, ARA267 and ARA24

(Kang et al. 1999, Yeh et al. 1999). Studies on the

expression patterns of ARA70 in different cell lines

and human cancer samples showed that the expression

of ARA70 was decreased in prostate cancer (Yeh et al.

1999) and breast cancer (Kollara et al. 2001). In breast,

loss of ARA70 protein expression was found in 60% of

Human Epidermal growth factor receptor (HER)2-

positive breast cancers, whereas only 33% of HER2-

negative breast cancer samples lost the expression

(Kollara et al. 2001). Since androgen plays an inhibitory

role for breast cancer cell growth, and HER2 stimulates

the growth of breast cancers, loss of the expression of

AR and/or ARA70 in breast might confer a growth

advantage to these cells. In prostate, ARA70 mRNA is

highly expressed in the normal epithelial cells, while

benign prostatic hyperplasic and cancer cell lines

express either lower or no ARA70 (Kollara et al. 2001).

Receptor-positive, ligand-independent

Receptor mutations

Mutations of receptors can occur during the initiation

of tumor formation, or can develop after therapy

begins. Mutations in the ligand-binding domains of

receptors may change not only their binding affinity

and sensitivity to circulating ligands, but also the

specificity of the receptors to their ligands. In this case

receptors are able to bind substitutes such as other

circulating steroid hormones, or even antihormone

agents such as TAM or FLU to stimulate cell growth.

In breast cancer, ER mutation is not a major cause

of hormone resistance since it is seen in fewer than

10% of TAM-resistant breast cancer patients

(Achuthan et al. 2001). However, in prostate cancer,

AR mutations are found in about 30% of the meta-

stases that are resistant to hormone therapy (Navarro

et al. 2002). In addition, the mutation rate is signifi-

cantly increased in metastatic sites compared to

primary tumors (Marcelli et al. 2000), especially after

androgen-ablation therapy (Taplin et al. 1995). Many

of the mutations are gain of function and are located

in the ligand-binding domain, which results in inap-

propriate activation of AR by steroid hormones other

than androgen and AR antagonists (Buchanan et al.

2001). For instance, several mutant ARs such as

Thr-877fiAla, Leu-701fiHis, and Leu-701fiHis/

Thr-877fiAla have a broadened spectrum of ligand

responsiveness, and bicalutamide works as an agonist

for these mutants (Hara et al. 2003). These mutations

are considered to be responsible for the phenomenon
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of ‘antiandrogen withdrawal syndrome’ (Nelson et al.

2003).

ER/AR crosstalk with other growth factors

During the progression from hormone-dependent to

independent cancers, the crosstalk between ER/AR

and other growth factor pathways is a complicated

issue. There are several growth factors and their

receptors involved in this process. The crosstalk

between growth factor pathways and ER/AR occurs

at multiple levels and is bidirectional with different

importance in breast and prostate cancers. Novel

therapies against these growth factors are emerging

as alternative choices for the prevention and treatment

of hormone-resistant breast cancer or prostate cancer.

Many of the estrogen-responsive genes code for

peptide growth factors, membrane-bound tyrosine

kinase receptors (TKRs), and several cellular signaling

molecules, and usually their transcription is inversely

correlated with ER expression (Schiff et al. 2004). On

the contrary, the genotropic activity of ER is enhanced

by several growth factor signaling pathways, including

epidermal growth factor (EGF), insulin-like growth

factor type I (IGF-1), and transforming growth factor-

a (TGF-a), which enhance the phosphorylation of

AF-1 on Ser-118 of ER by MAPK. This phosphoryla-

tion enhances the nuclear localization of coactivators

and their interactionwith nuclearER, producing ligand-

independent transcriptional activity of AF-1, even in

the presence of TAM, and is related to antihormone

resistance (Kato et al. 1995, Schiff et al. 2003). Thus,

increasing the expression of growth factors or upregu-

lation of their receptors or the downstream signaling

elements can promote antihormone-therapy resistance.

Membrane ERs can also function like growth factor

receptors by binding to p85, a regulatory subunit of

phosphoinositide 3-kinase (PI3K) at the cell mem-

brane, leading to activation of the protein kinase Akt

and the subsequent downstream signaling (Migliaccio

et al. 2002). Therefore, membrane ER enhances

the transcriptional activity of nuclear ER through a

nongenotropic pathway. Both genotropic and non-

genotropic actions seem to be complementary, even

synergistic, not only for cellular growth but also for the

emergence of hormone resistance in a low-estrogen

environment (Schiff et al. 2003). In summary, ER may

suppress the expression of other growth factor

receptors and long-term estrogen suppression can

reactivate the expression of membrane TKRs. This

results in increased growth factor signaling, and

ERK1/2 MAPK, and PI3K/Akt activities, alteration

of ER subcellular localization and enhancement of

the nongenotropic action, stimulating the malignant

phenotype (Kumar et al. 2002, Schiff et al. 2004). More

and more evidence suggests that the crosstalk between

ER and these signaling pathways is upregulated or

activated in endocrine-resistant breast cancers, and

may be the major cause of endocrine resistance

(Johnston et al. 2003). In an in vitro study, dual

inhibition of MAPK with U-0126 and PI3K with

Ly294002 have been found to decrease the sensitivity

of ER to estradiol (Yue et al. 2003).

Among all the growth factors and growth factor

receptors, the EGF receptor (EGFR) family seems to

play a major role in promoting hormone refractory

transition, in particular HER-2/neu is well known to

associate with poorer prognostic phenotypes including

high-grade histology, high proliferation rate, and ER

negativity. There is also a tendency for HER-2/neu-

overexpressed breast cancer to be less responsive to

anti-estrogen therapies (Revillion et al. 1998). Introduc-

ing HER-2/neu cDNA into breast cancer cells pro-

motes ligand-independent downregulation of ER, and

converts cancer cells from estrogen-dependent to

estrogen-independent (Pietras et al. 1995). Its signaling

pathway can also disrupt the TAM-induced interaction

of ER with the transcriptional corepressor N-CoR

(Kurokawa et al. 2000, Kurokawa & Arteaga 2001).

High HER-2/neu expression constitutively activates

PI3K/Akt. Active Akt renders MCF-7 cells from

estrogen-dependent to -independent, and treating these

cells with TAM actually stimulates instead of inhibi-

ting their growth (Faridi et al. 2003). Since HER-2/neu

overexpression is closely related with MAPK hyper-

activity and TAM resistance, inhibiting MAPK can

reverse TAM resistance in HER-2/neu-overexpressed

breast cancer cells (Kurokawa et al. 2000).

The crosstalk between AR and growth factor

signaling pathways of prostate cancer is very similar

to that of breast cancer (Nelson et al. 2003). EGF,

IGF-I, and keratinocyte growth factor all activate AR,

especially IGF-I, and the AR antagonist casodex

blocks this activation completely (Culig et al. 1994).

This indicates that the activation is AR-dependent.

Membrane-bound TKRs, especially HER-2/neu, were

also observed to be involved in the progression to

AIPC, as overexpression of HER-2/neu increases

MAPK and Akt activities, phosphorylates AR, and

then turns on downstream target genes in a ligand-

independent manner (Lin et al. 2001).

The cytokine IL-6 is also related to the growth of

breast and prostate cancers and the emergence of

hormone resistance through its interaction with TKRs

and intracellular signaling pathways. In both breast

cancer and prostate cancer, elevated circulating levels
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of IL-6 are associated with worse prognosis, especially

in AIPC (Drachenberg et al. 1999, Salgado et al. 2003).

Serum IL-6 levels are significantly elevated in

hormone-refractory prostate cancer patients as com-

pared with earlier stages of the disease or with benign

prostate hyperplasia (Drachenberg et al. 1999). In

breast cancer, IL-6 increases intracellular aromatase

activity (Honma et al. 2002). IL-6 also facilitates the

formation of bone metastasis of both breast cancer and

prostate cancer by stimulating osteoclasts (Roodman

2001). In prostate cancer, IL-6 is the most potent

nonsteroidal regulator of AR activity. It alone causes

the activation of AR to approximately 50% of the

maximal activity induced by androgen (Culig 2003).

IL-6 regulation of AR activity and prostate cancer

growth occurs through MAPK and signal transducer

and activator of transcription 3 (STAT3; Chen et al.

2000, Culig et al. 2002). It can also stimulate the

autophosphorylation of HER-2/neu in prostate cancer

cells and subsequently activate the downstream kinase

signaling pathways (Qiu et al. 1998). Thus, IL-6 is

important in mediating and enhancing the transition

from hormone-dependent to hormone-independent of

breast and prostate cancer cells.

Since long-term estrogen deprivation induces the ex-

pression of growth factors and growth factor receptors,

and overexpressed growth factors and growth factor

receptors facilitate the emergence of antihormone

resistance, the question arises as to whether it is

possible to not only treat antihormone-resistant cancer,

but also to prevent the development of resistance by

early treatment with anti-growth factor agents, either

alone or in combination with anti-estrogen agents.

Several experiments using such combinations have

been reported, and have shown promising results

(Schiff et al. 2004).

Receptor-positive, receptor/ligand-
independent (bypass pathway)

The mechanisms involved in hormone-refractory

transition are complicated. Several complementary or

alternative pathways may occur simultaneously, some

of which are capable of bypassing receptors com-

pletely. Inhibition of genotropic or nongenotropic

pathways can lead to apoptosis in breast and prostate

cancer cells. Blocking the apoptotic cascades by

enhancing antiapoptotic genes, decreasing proapopto-

tic genes or through mutations in oncogenes or tumor-

suppressor genes all are possible mechanisms for the

bypass pathway.

The antiapoptotic gene Bcl-2 is overexpressed in

more than half of all human cancers. Overexpression

of Bcl-2 occurs in 40–80% of human breast tumors

(Nahta & Esteva 2003) and also occurs frequently in

prostate cancers. Overexpression of Bcl-2 is associated

with the resistance to hormonal therapy and chemo-

therapy in both breast cancers and prostate cancers.

This phenotype may come from the selection effect of

antihormone agents. Treatment with Bcl-2 antisense in

a prostate cancer animal model delays the emergence

of androgen independence (Gleave et al. 1999).

Transcriptional factor nuclear factor kB (NF-kB)
modulates the expression of genes involved in cell

proliferation, differentiation, apoptosis, and meta-

stasis. Constitutive activation of NF-kB is noted in

ER-negative breast cancer cells, in TAM-resistant

MCF-7 cells (Gu et al. 2002), and during breast cancer

progression to hormone-independent growth

(Nakshatri et al. 1997).

Mutation or decreased expression of tumor-

suppressor genes is also an alternative pathway.

Tumor-suppressor genes are involved in the DNA-

repair process to maintain genomic integrity, cell-cycle

control, and induction of apoptosis in damaged cells

and regulation of transcription. Failure of tumor-

suppressor genes increases the probability of accumu-

lation of replication errors and genomic instability,

making cells less responsive to apoptotic signals, and

contributing to an increase in hormone-independence

and tumor aggressiveness. The most common mutated

tumor-suppressor gene is p53 (Levine et al. 1991). In

hormone-refractory prostate cancers p53 was posi-

tively increased during hormonal therapy from 17%

of untreated primary tumors to 40% of hormone-

refractory recurrences. The percentage of mutations

was significantly higher in cases of AR gene amplifica-

tion (Koivisto & Rantala 1999). PTEN (phosphatase

and tensin homologue deleted on chromosome 10) is

another tumor-suppressor gene that has been noted to

be mutated in both breast cancer and prostate cancer

(Li et al. 1997). In breast cancer, BRCA1 and BRCA2

mutations are well known for hereditary and sporadic

breast cancers (Wooster & Weber 2003). Recently

these two genes were found to be related to prostate

cancer development (Rosen et al. 2001).

Receptor-negative, hormone-independent

Since ER/AR are responsible for the ligand-induced

signal transduction, ER/AR are also the main targets

of antihormone agents. With decreased expression of

ER/AR these therapeutic agents lose their targets, which

may be a cause of resistance. In fact, absence of ER

expression is the most common mechanism of de novo

resistance in breast cancers, whereas a complete loss of
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ER expression is not common in acquired resistance

(Clarke et al. 2003). Decreased expression of receptors

usually comes from hypermethylation of the respon-

sible genes. DNA hypermethylation of the AR

promoter region leading to AR downregulation has

been identified in 30% of hormone-refractory prostate

cancers, compared with only 10% in untreated primary

tumors (Suzuki et al. 2003). Reverse DNA hyper-

methylation by cytosine DNA methyltransferase inhi-

bitors restores androgen responsiveness in androgen-

refractory prostate cancer cells, making them sensitive

to growth inhibition by antiandrogen agents (Izbicka

et al. 1999). Hypermethylation of a CpG island in the

5k region of the ER gene is seen in ER-negative breast

cancer cells; demethylation of this site reactivates ER

gene expression (Ferguson et al. 1995). The same

condition has also been reported in AR-negative

prostate cancer cells (Jarrard et al. 1998).

Novel agents targeting sex hormone
receptors in hormone-resistant
breast and prostate cancers

In recent years, there has been growing interest in the

development of nonsteroidal modulators for steroid

hormone receptors as therapeutic agents. SERMs,

SARMs, and nonsteroidal modulators for progester-

one receptor have been successfully developed (Zhi et al.

1998, 2000, Hamann et al. 1999, Mitlak & Cohen 1999,

Weryha et al. 1999). These modulators are well

characterized for their better receptor specificity and

selectivity than steroidal ligands, and are more flexible

in structural modification for pharmacologic proper-

ties. More importantly, with these nonsteroidal che-

micals, it may achieve tissue-selective actions and thus

generate compounds with diverse purpose suitable for

specific therapeutic needs.

SERMs

Estrogens are widely used clinically to control repro-

duction and for hormone therapy and the treatment of

menopausal symptoms in women. Although beneficial

in these contexts, estrogen use has also been implicated

as a risk factor in breast and uterine cancer,

particularly since the first published report from

the Women’s Health Initiative (Rossouw et al. 2002),

suggesting that a greater measure of flexibility to

control unwanted side effects would be desirable.

Consequently, the recognition of SERMs as agents

able to elicit estrogenic effects in a tissue-specific

manner has expanded the potential population that

could benefit from ER ligand therapies. The prototypic

SERM is the trans isomer of TAM (Gottardis &

Jordan 1987, Gottardis et al. 1988). Although it was

first proposed to use for regulating fertility, it has been

applied primarily as a drug to treat breast cancer

(Harper & Walpole 1967, Williamson & Ellis 1973).

The ability of TAM to inhibit ER action has long been

considered integral to its utility in the breast cancer

arena, and this is consistent with numerous studies and

clinical trials demonstrating an effect of TAM in

ER-positive cells or breast tumors and an absence of

any significant activity in those lacking ER expression

(Early Breast Cancer Trialists’ Collaborative Group

1998). The subsequent observation of the estrogen-like

effects of TAM in the human skeleton (Love et al.

1992) was important to the conceptualization of

SERMs as potential drugs for indications other than

breast cancer. The success of TAM as a SERM has

been a driving force in the search for new SERMs as

well as selective modulators for other nuclear/steroid

receptors. Raloxifene, like TAM, exhibits anti-estrogen

activity in the breast and estrogen activity in the

skeleton. However, raloxifene lacks the significant

uterotropic activity associated with TAM and there-

fore represents an improved agonist/antagonist profile

(Delmas et al. 1997, Ettinger et al. 1999). In addition, a

number of other compounds, including lasofoxifene,

arzoxifene, and bazedoxifene, are under development,

which may one day be of clinical use for chemopreven-

tion of breast cancer or treatment and prevention of

osteoporosis (Baracat et al. 1999, Suh et al. 2001).

Consequently, the recognition of SERMs as agents

able to elicit estrogenic effects in a tissue-specific

manner has expanded the potential population that

could benefit from ER ligand therapies.

SARMs

Chemicals that regulate the transcriptional activity of

AR can be further categorized into structural (steroidal

and nonsteroidal) and functional (androgenic and

antiandrogenic) classes. Steroidal androgens, mainly

testosterone and its derivatives, have been used

clinically as replacement therapies for androgen

deficiency (Bagatell & Bremner 1996). Antiandrogens

are used to counteract the undesirable actions of

excessive androgens (e.g. to treat acne, hirsutism,

male-pattern baldness, and androgen-dependent

prostate cancer; Neumann 1982, McLeod et al.

1993). Nonsteroidal antiandrogens, such as FLU

(Eulexin), nilutamide (Anandron), and bicalutamide

(Casodex), bind to the AR LBD and, therefore, are

devoid of antigonadotropic, anti-estrogenic, and pro-

gestational effects. These agents are advantageous over
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steroidal antiandrogens (e.g. megestrol acetate, cypro-

terone acetate) in terms of specificity and selectivity

(Cockshott et al. 1990, Teutsch et al. 1994). Whereas

steroidal antiandrogens have been used clinically for a

long period of time, nonsteroidal androgens were not

conceptualized until very recently. Although androgen

therapies are currently available, they are based

primarily on delivery of testosterone or its derivatives

by injections or skin patches (Negro-Vilar 1999).

Neither approach is optimal because injections result

in undesirable fluctuations in serum testosterone levels,

and skin patches are associated with irritation and

rashes. Oral preparations of currently available andro-

gens are not recommended because of their relatively

low efficacy, fluid retention, liver toxicity, prostatic

hypertrophy, and gynecomastia. Therefore, the goal of

preservation of positive androgen effects in some

tissues, while minimizing negative side effects in other

tissues, has stimulated a search for SARMs. Recently,

a group of nonsteroidal androgens that are electro-

philic derivatives of bicalutamide and hydroxyfluta-

mide was discovered (Dalton et al. 1998). Also, several

analogs of quinoline-based AR antagonists, notably

tricyclic pyridinodihydroquinoline derivatives, showed

promising anabolic effects without any significant

action on the prostate and seminal vesicles (Edwards

et al. 1999, Hamann et al. 1999, Higuchi et al. 1999,

Zhi et al. 1999). The selective action of these

compounds on muscle and bone tissues implies

important clinical applications for these androgen

analogs in the treatment of elderly men and patients

with wasting diseases. These studies marked the

emergence of a novel category of pharmacological

agents with potential applications in androgen therapy.

Assessments of the in vivo SARM activity of these

compounds are underway in animals as well as in

humans, and they show a promising tissue-selective

activity profile. Animal experiments with one such

SARM, LGD2226, revealed that it prevented loss of

bone mineral density associated with orchidectomy in

rats; in contrast, LGD2226 did not stimulate prostate

weights above those observed for intact rats (Negro-

Vilar 1999). The discovery of nonsteroidal androgens

provides an opportunity to identify agents with supe-

rior pharmacokinetic profiles to steroidal androgens

and implicates the possibility to obtain tissue-selective

AR modulators.

Fulvestrant

To overcome crosstalk between ER and other growth

factors, several novel agents have been evaluated, some

of which are currently in clinical practice. The most

straightforward method is to diminish functional ER.

Fulvestrant (Faslodex; ICI 182,780), is a pure anti-ER

agent which competes with estrogen for binding to

ER, with much higher affinity (89 versus 2.5% binding

affinity of estrodiol; Wakeling et al. 1991, Morris &

Wakeling 2002). Fulvestrant reduces the rate of ER

dimerization, increases ER degradation (Fawell et al.

1990), and reduces ER shuttling from the membrane to

the nucleus by blocking its nuclear uptake (Dauvois

et al. 1993). The loss of ER not only abrogates the

transcriptional effect of estrogen, but also blocks

the activation of ER by other growth factors. More

importantly fulvestrant blocks the agonistic effects of

both estrogen and TAM without a demonstrable

estrogen-agonistic effect (Wakeling & Bowler 1988,

Howell 2001). A single dose of fulvestrant has been

shown to decrease ER, PR, and Ki-67 levels signifi-

cantly in the primary breast cancers of postmenopausal

women compared to TAM (Robertson et al. 2001).

For the treatment of postmenopausal women with

receptor-positive breast cancers, fulvestrant was at

least as effective as aromatase inhibitors and TAM

(Howell et al. 2002, 2004, Osborne et al. 2002). The

long-term efficacy and side effects of fulvestrant still

need to be followed.

Hsp90 inhibitors

As a chaperone protein, Hsp90 binds to over 100 kinds

of proteins that are involved in multiple signaling

pathways utilized by cancer cells for growth and

survival. These proteins include steroid hormone

receptors (ER, AR, PR), growth factor receptors

(EGFR, HER-2), several kinases (Akt, c-RAF-1),

transcriptional factors, and mutated or chimeric

signaling proteins (mutated p53, p210Bcr-Abl; Isaacs

et al. 2003). Hsp90 serves as an important regulator

to control the folding, intracellular disposition, and

proteolytic turnover of many key regulatory proteins

of cell growth, differentiation, and survival. It is

constitutively expressed at 2–10-fold higher levels

in tumor cells compared to normal cells (Isaacs et al.

2003), its protective effect allows tumor cells to tolerate

the mutation of multiple critical signaling molecules

that would otherwise be lethal. Therefore it may be

important for cancer cell development and survival

(Bagatell & Whitesell 2004). Hsp90 inhibitors including

geldanamycin, the derivative product of geldanamycin

–17-allylaminogeldanamycin (17-AAG), help to

degrade several oncogenic proteins, and block several

oncogenic pathways (Workman 2004). More surpris-

ingly, the Hsp90 that is derived from tumor cells has

a 100-fold-higher binding affinity for 17-AAG than
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the Hsp90 from normal cells (Kamal et al. 2003).

This information suggests that Hsp90 is a good target

of 17-AAG for treating cancers. In breast cancer and

prostate cancer, Hsp90 inhibitors can effectively

downregulate ER and AR protein levels (Segnitz &

Gehring 1997, Bagatell et al. 2001). Hsp90 inhibitors

downregulate HER-2/neu, inhibit Akt activation, and

enhance paclitaxel-induced apoptosis in HER-2/neu-

overexpressed breast cancer cells (Basso et al. 2002,

Solit et al. 2003). Thus Hsp90 inhibitors can be used to

target hormone-dependent and -independent breast

and prostate cancers with high activities of growth

factor signaling pathways. A clinical trial combining

17-AAG and paclitaxel together against HER-2/neu-

overexpressed breast cancer and prostate cancer is

currently ongoing.

Novel agents targeting tyrosine kinase
receptor in hormone-resistant breast
and prostate cancers

Since crosstalks with other growth factors and their

receptors — especially tyrosine kinase receptors — are

important mechanisms for the emergence of antihor-

mone resistance, an alternative method to block or

reverse this resistance is targeting the growth factors

and receptors themselves. Tyrosine kinases are tightly

regulated enzymes that play an important role in the

control of most fundamental cellular processes, includ-

ing cell proliferation, differentiation, metabolism,

migration, and survival. There are several potentially

effective interventions of the signaling pathways of

tyrosine kinase receptors, including agents targeting

growth factors; anti-growth factor receptor antibodies

such as trastuzumab (Herceptin), which target HER-2/

neu-overexpressed breast cancer, and pertuzumab

(2C4), which binds to a different epitope of HER-2/neu

ectodomain than trastuzumab; monoclonal anti-

bodies against EGFR such as IMC-C225 and a fully

humanized anti-EGFR monoclonal antibody ABX-

EGF; low-molecular-mass EGFR-specific tyrosine

kinase inhibitors, such as gefitinib (ZD1839 or Iressa),

which works by competing at the ATP-binding site

on the tyrosine kinase domain of EGFR; OSI-774

(Tarceva), which specifically blocks the kinase activity

of EGFR and EGFR autophosphorylation; CI-1033,

which acts as a pan-EGFR tyrosine kinase inhibitor,

and PKI-166, which is a reversible tyrosine kinase

inhibitor and can block the enzymatic activity of HER-

2/neu. All of these agents are presently in clinical trials

or clinical practices and have been reviewed extensively

(Johnston et al. 2003, Normanno et al. 2003, Madhu-

sudan & Ganesan 2004). Thus, we will not discuss

these agents here. Instead, we will describe a couple of

novel agents that may have potential to interfere

tyrosine kinase receptors.

Emodin

Emodin (3 methyl-1,6,8-trihydroxyanthraquinone),

isolated from Polygonum uspidatum, is an inhibitor

of protein tyrosine kinases (Jayasuriya et al. 1992).

Emodin also initiates apoptotic pathways in cancer

cells, such as hepatoma (Jing et al. 2002), cervical

cancer (Srinivas et al. 2003), and leukemia cells (Chen

et al. 2002). Emodin suppresses the autophosphoryla-

tion and transphosphorylation activities of HER-2/neu

tyrosine kinase, resulting in tyrosine hypophosphory-

lation of p185neu in HER-2/neu-overexpressing breast

cancer cells and non-small cell lung cancer (Zhang et al.

1995, Zhang & Hung 1996), suppressing their growth

and sensitizing these tumors to several chemothera-

peutic agents including paclitaxel, doxorubicin, etopo-

side, and cisplatin. In vivo Emodin also represses the

growth of HER-2/neu-overexpressed breast cancer

cells and sensitizes these cells to paclitaxel (Zhang

et al. 1999). Since emodin inhibits tyrosine kinase

activity, suppresses HER-2/neu phosphorylation, and

enhances chemosensitivity of breast cancers, it has the

potential to be an alternative therapy for HER-2/neu-

overexpressed, hormone-resistant breast cancers.

Type 5 adenovirus early region
1A (E1A) protein

The E1A of human adenovirus type 5 encodes the

proteins that activate viral transcription, thus permit-

ting viral replication in infected cells (Flint & Shenk

1989). E1A was reported to have an antitumor growth

effect and anti-metastasis effect (Pozzatti et al. 1988a, b,

Frisch 1991, Chinnadurai 1992, Frisch & Mymryk

2002). E1A can downregulate HER-2/neu expression in

human tumor cells, and inhibits the growth of HER-2/

neu-overexpressed cancer cells in vitro and in vivo

(Yu et al. 1990, 1991, 1993). There are several molecular

mechanisms that may contribute to this anti-cancer

effect of E1A: E1A can suppress HER-2/neu gene

expression; E1A inhibits activation of NF-kB through

suppression of IkB kinase (IKK) activity and IkB
phosphorylation, rendering cells to be more sensitive to

environmental stress (Shao et al. 1997, 1999, 2001);

E1A also negatively regulates the expression of Axl,

which is a transforming receptor tyrosine kinase

essential for tumor cell growth (Lee et al. 1999). When

combined with chemotherapeutic agents, E1A can

sensitize cells to the cytotoxic effect of drugs (Lowe

et al. 1993, Ueno et al. 1997). This sensitizing effect,
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which can be observed in a preclinical gene therapy

setting using an orthotopic breast cancer animal

model, may, through E1A, activate p38 and inactivate

Akt (Liao & Hung 2003, Liao et al. 2004).

The first clinical trial of E1A gene therapy was

initiated in 1996, which was the first gene-therapy trial

focused on breast cancers and ovarian cancers

(Hortobagyi et al. 2001). In this trial, E1A was deliv-

ered by a specific liposome into the thoracic cavity

of breast cancer patients with pleural effusion, or into

the peritoneal cavity of ovarian cancer patients with

ascites. After E1A treatment, HER-2/neu expression in

cancer cells derived from patients with HER-2/neu-

overexpressing cancers decreased significantly. In

addition, the local concentration of TNFa increased.

E1A was known to sensitize TNFa-induced apoptosis;

thus the enhanced TNFa may help E1A-mediated

anti-cancer activity (Wold 1993, Shao et al. 1999).

There are other clinical trials focused on breast, ovarian,

and head and neck cancer that have been reported

indicating the feasibility of the E1A gene therapy (Yoo

et al. 2001, Villaret et al. 2002,Madhusudan et al. 2004).

In summary, E1A as a therapeutic gene can be used

in several kinds of cancer. Its function is through not

only downregulating HER-2/neu expression, but also

interfering with mitogenic signaling pathways. These

effects may work on hormone-dependent or -indepen-

dent breast cancers, and may reverse hormone

resistance.

Conclusion

The endocrine system controls the long-term coordina-

tion of whole body organs. A dysregulated response

to hormones, in some cases, leads organs to receive

the hormone as a growth stimulant and results in

malignancy. Breast cancer and prostate cancer are

the most well-known and well-studied examples of

this. Although in most cases the cancers are initially

sex-hormone-positive and responsive to antihormone

therapy, the complicated interactions in these cells

eventually will make the resistance inevitable. From

previous reviews we know the emergence of resistance

is composed of several mechanisms, which can work

alone or in cooperation with each other, making treat-

ment more complicated and difficult. However, the

more we know about the mechanisms, the better we

can predict the prognosis of patients and, more impor-

tantly, prevent the emergence of resistance and treat

patients with different phenotypes.

One such example is the aromatase inhibitors. In

postmenopausal women, aromatase can inhibit the

production of estrogen from different sources, without

the stimulatory effect from ligand, and aromatase

inhibitors can prevent the emergence of resistance more

effectively than TAM, as shown in several clinical trials

including primary tumors, metastatic tumors, and

chemoprevention trials (Fricker 2004). Following

aromatase inhibitors, the pure anti-estrogen agent,

fulvestrant, was shown to be more effective than

aromatase inhibitors in postmenopausal women (Cole-

man 2003).

Cancer cells are heterogenous. There are differences

not only between different individuals but also between

different cells in the same individual. Currently there

are emerging new tests to examine the phenotypes

of cancers before we start to treat them or before

we change the treatment protocols. Additionally, the

therapeutic methods can be single or combination

methodologies. In treating hormone-dependent can-

cers, there are also several preclinical and clinical trials

combining antihormone agents with anti-growth factor

agents to block crosstalk, therefore preventing and

overcoming antihormone resistance. It is optimistic

that combination therapies may soon provide effective

strategies for the treatment of breast cancers and pro-

state cancers, and prevent the emergence of resistance.
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