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Joint replacement surgery is the gold-standard therapeutic approach to treat patients
with end-stage hip and knee arthritis, providing pain relief and joint function recovery.
Despite the improvements in implant design and surgical techniques, revisions after
total joint replacement are expected to grow. The periprosthetic inflammation, featured
by the sustained inflammatory response to the implant debris, elicits the activation
of osteoclasts and consequent periprosthetic osteolysis (PPOL), ultimately leading to
implant aseptic loosening, which is the most common cause of long-term implant failure.
There are currently no effective strategies to control periprosthetic inflammation, and
long-term implant survival remains a major challenge in orthopedics. A broad knowledge
of the mechanisms underlying the biological response to implant debris would support
the development of novel and effective pharmacological strategies to manage PPOL
and promote implant lifespan. In this review, a detailed description of the cellular and the
molecular mechanisms underlying the biological response to implant debris is provided,
highlighting the most recent findings. Furthermore, we reviewed novel therapeutic
strategies that are being investigated to prevent inflammatory periprosthetic osteolysis.

Keywords: orthopedic implants, implant wear particles, periprosthetic inflammation, osteolysis, aseptic
loosening

INTRODUCTION

Joint replacement surgery, one of the most successful procedures in orthopedics, remains the
ultimate option to relieve uncontrolled pain and re-establish joint function in end-stage hip and
knee arthritis (Learmonth et al., 2007). A regression analysis with age, gender, race and/or ethnicity,
census region, and year as covariates, performed using data from the US National Center for Health
Statistics, indicate that the number of hip and knee arthroplasties is estimated to grow 174% to
572,000 procedures and 673% to 3.48 million, respectively, by 2030 (Kurtz et al., 2007). The same
study projects that about 7 and 15% of knee and hip arthroplasties, respectively, are still expected to
fail, causing the need for a revision surgery (Kurtz et al., 2007). The revision surgeries, in addition
to the significant healthcare costs, are associated with a high risk of infection and poor clinical
outcomes (Vanhegan et al., 2012; Weber et al., 2018).

The slow progressive inflammatory response to the implant-derived wear particles is the
hallmark of periprosthetic osteolysis (PPOL) and subsequent implant aseptic loosening (AL)
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(Cobelli et al., 2011; Parvizi, 2015; Sukur et al., 2016), a major
cause for long-term implant failure (Sharkey et al., 2014; Thiele
et al., 2015).

Periprosthetic inflammation is characterized by an innate
immune response that occurs due to macrophage reactivity to
implant byproducts, resulting in the release of pro-inflammatory
factors, activation of osteoclasts, and consequent osteolysis,
thus leading to AL (Goodman et al., 2014; Athanasou, 2016;
Gallo, 2019).

In the current scenario of increasing life expectancy and
growing rate of joint replacement in the younger and more
active population (Kurtz et al., 2009; Skytta et al., 2011; Katz,
2012), the long-term survival of joint replacement is a major
challenge in orthopedics.

Biomaterials, such as metals, polymers, and ceramics, are
currently used to fabricate joint replacement implants, and
several bearing surfaces can be obtained by the combination
of different materials. Despite the biocompatibility of the
materials used and the improvement in the (i) implant designs,
(ii) materials themselves, and (iii) surgical techniques, the
repeated movement of the bearing surfaces under loading
generates wear debris (e.g., wear particles and metal ions)
that trigger an exacerbated biologic response (Gibon et al.,
2017a,b). Particularly, polymeric and metal debris represent
the major concerns.

There are currently no effective strategies for treating
periprosthetic inflammation. A clear understanding of the
biological mechanisms underlying the response to implant
debris would support the development of non-surgical biological
approaches to manage inflammatory periprosthetic bone loss and
promote implant survival.

Here we presented a detailed review of the pathways involved
in the biological response to implant debris, emphasizing
the recent findings. In addition, we also reviewed potential
therapeutic strategies, which are under investigation, to control
inflammation-induced PPOL.

BIOMATERIALS USED IN JOINT
REPLACEMENT IMPLANTS

The selection of a biomaterial for an implant relies on critical
aspects, in which the biological requirements are added to the
chemical, mechanical, and physical requests. Concepts such as
biocompatibility, bioactivity, and osteoinduction are considered
as major players in the process of development and selection
of a biomaterial for orthopedic implants (Navarro et al., 2008).
Metals, polymers, and ceramics are the three categories of
materials currently used to design joint replacement implants.

Titanium and its alloys and cobalt–chrome (Co–Cr) alloys
are the metals used for their excellent mechanical and corrosion
properties (Prasad et al., 2017). Nevertheless, the release of
ions and wear particles from the metallic materials is a
matter of concern (Hamidi et al., 2017). Despite their excellent
biocompatible properties, the ions and the wear particles released
from metal alloys may activate an immune response that, as will
be discussed in section “Biological Mechanisms Underlying the

Response to Implant Wear Debris,” can promote osteolysis and,
eventually, implant AL.

The ultrahigh molecular weight polyethylene (UHMWPE) is
the most commonly used polymer in the design of orthopedic
implants (Alothman et al., 2014). It has been considered an
exceptional material to be employed in coupling bearing surfaces
with metals or ceramics and is highly biocompatible and very
resistant to corrosion (Bracco et al., 2017). The release of
wear particles is the major source of concern associated with
UHMWPE. Despite the reduction in mechanical properties,
cross-linking the material has allowed to partially overcome
this issue. Highly cross-linked UHMWPE was introduced in
the 1990s, and long-term clinical studies showed significant
less wear when compared with conventional polyethylene (PE)
(Shi et al., 2019).

The biocompatibility features of bioceramics make them
very important candidates to be used in orthopedic implants
(Campbell et al., 2004). Bioceramics can behave as inert or
bioactive materials in an osseous environment, presenting
osteoconductive properties and promoting the fixation of
joint prostheses (Navarro et al., 2008). Alumina and zirconia
have been used to replace metallic materials. Alumina offers
lower friction and constant wear, and zirconia presents minor
wear, in addition to its strength (Gamble et al., 2017). To
overcome inherent disadvantages, such as high brittleness and
high elastic modulus, these materials have been combined in
order to develop zirconia-toughened alumina. The base of
alumina provides high hardness to the material and zirconia
promotes resistance to crack propagation (De Aza et al., 2002;
Tuan et al., 2002).

Presently, several options of bearing surfaces for joint
replacement implants are available. For total hip replacement,
surgeons choose between ceramic-on-ceramic (CoC), ceramic-
on-polyethylene (CoPE), and metal-on-polyethylene (MoPE),
each presenting specific advantages and disadvantages (Gallazzi,
2018). Metal-on-metal bearing surfaces are no longer considered
as an option due to the high rate of failure and the serious
adverse biological response to the metallic wear debris released
(Campbell, 2010; Gill et al., 2012; Gallazzi, 2018). Acetabular
liners are commonly made of PE, either UHMWPE or XLPE
or ceramics (Gallazzi, 2018). Ceramics and metal alloys are
used to manufacture the heads. The bearing surfaces containing
acetabular liners made of conventional PE (both MoPE and
CoPE) are associated with wear particle release and osteolysis
(Gallazzi, 2018). This drawback is less important for XLPE
(Sakellariou et al., 2013). CoC bearing surfaces are between
the best-performing bearing surfaces, with very low wear rates
and high biocompatibility (Petsatodis et al., 2010; Kang et al.,
2015). However, the brittleness of the material that increases
the risk of breakage (Howard et al., 2017) and the noise from
the implant such as squeaking (Swanson et al., 2010) are still
important disadvantages of the CoC bearing surfaces. Regarding
bearing surfaces in knee replacement implants, UHMWPE of
the tibial insert can articulate against metal or ceramic femoral
components (Oonishi et al., 2009; Inacio et al., 2013), although
ceramic femoral components are yet rarely used in clinical
practice (Solarino et al., 2017).
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Overall, the choice of the best coupling bearing surfaces
requires a deep understanding of the features of each bearing
surface and a profound knowledge of the patients’ specific
characteristics and needs.

COMMON CAUSES OF JOINT
REPLACEMENT IMPLANT FAILURE

The expansion of novel implant devices has been promoting the
longevity of orthopedic implants. However, patients submitted
to arthroplasties are still facing the multiple risk factors of
implant failure. The patients’ comorbidities (such as obesity,
rheumatoid arthritis, and diabetes mellitus) and the inadequate
surgical techniques may cause post-operative complications (e.g.,
bleeding, wound dehiscence, and infection) (Haleem, 2018;
Ravi et al., 2019). When not suitable for pharmacological
treatment, these complications compromise, at the early stages,
the success of arthroplasty, and a revision surgery may be
required (Delaunay et al., 2013).

Periprosthetic infection is the most common and serious
complication that can occur at the early stages after a joint
replacement (Sharkey et al., 2014; Thiele et al., 2015; Lum et al.,
2018), often demanding multiple additional surgeries to replace
the infected implant. Although the risk of infection is higher
during the first weeks after surgery [mostly associated with the
patients’ risk factors and inadequate surgery techniques (Haleem,
2018)], periprosthetic infection can occur at later stages. Infection
in adjacent tissues can promote the entrance of bacteria in
the bloodstream, increasing the risk of implant colonization
and infection at any time post-surgery (Feng et al., 2016). The
administration of antibiotics often fails to eliminate the infection,
making the need for complex subsequent surgical procedures
inevitable (Li et al., 2019).

Concerning the long-term implant failures, AL becomes the
most common cause of orthopedic implant revision surgeries
(Sharkey et al., 2014; Thiele et al., 2015). The causes for AL
change overtime after arthroplasty; at the early stages, it is
mostly associated with implant fixation failure, while at the
later stages, it is related with wear particle-associated osteolysis.
The regular use of joint replacement prostheses causes the
release of small debris that stimulate an inflammatory response
and subsequent periprosthetic bone osteolysis (Gallo, 2019).
Currently, revision surgery is the only procedure available to
manage AL. Nevertheless, revision surgeries have been associated
to high clinical and surgical risks and are not as effective as
the primary surgeries, comprising lower outcomes and higher
infection rates (Weber et al., 2018).

BIOLOGICAL MECHANISMS
UNDERLYING THE RESPONSE TO
IMPLANT WEAR DEBRIS

Biomaterial implantation gives rise to a host response to the
foreign material that will determine the integration and the
biological performance of the implant. The molecular patterns

and the degradation products released by implanted devices can
stimulate the immune system (Kubes, 2020). Upon biomaterial
implantation, a sequence of events is initiated, beginning with
an injury, followed by blood – material interactions, provisional
matrix formation, acute inflammatory response that may
lead to chronic inflammation, granulation tissue development,
foreign body reaction, and fibrosis/fibrous capsule development,
impairing the implant function (Anderson et al., 2008).

During the last years, we have witnessed a change in the
concept of what is an ideal biomaterial/implant. Instead of
being a material design to diminish host responses, biomaterials
are now developed to trigger desired immunological responses,
improving implant performance, its integration, and subsequent
tissue repair (Ning et al., 2016). With the improvement of
biomaterials, the half-life of total hip and knee arthroplasty has
considerably increased. Recent systematic reviews and meta-
analysis, with more than 15 years of follow-up, concluded that
total hip and knee replacement can be expected to last 25 years
in 58 and 82% of patients, respectively (Evans et al., 2019a,b).
However, the slow and progressive inflammatory response at
the bone/implant interface to the implant debris released from
the bearing surfaces causes PPOL, a major threat to long-term
implant survival.

Although implant debris can initiate an innate inflammatory
response acting on numerous cells including monocytes,
fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem
cells (MSCs), resident macrophages are the key population
to eliminate wear particles (Nich et al., 2013). In some
circumstances, the adaptive immune system can also be
activated, primarily in response to metal ions associated with a
hypersensitivity reaction to metals (Goodman, 2007; Pajarinen
et al., 2014; Schalock, 2017). The activation of macrophages is
still the dominant mechanism in periprosthetic inflammation
(Athanasou, 2016).

Macrophage reactivity, upon activation by wear particles
(Figure 1), is driven by the chemical and the physical features of
the particles and is determined by pattern recognition receptors
(PRRs), which results in the release of pro-inflammatory
cytokines [e.g., tumor necrosis factor (TNF)-α, IL-1β, IL-6,
prostaglandin E (PGE)-2), growth factors (macrophage colony
stimulating factor 1—M-CSF), pro-osteoclastic factors (receptor
activator of nuclear factor kappa B ligand—RANKL), and
chemokines (e.g., IL-8, macrophage inflammatory protein—
MIP-1α, monocyte chemoattractant protein—MCP-1)],
leading to the systemic recruitment of more macrophages and
osteoclast precursors, promoting inflammation and osteolysis
(Landgraeber et al., 2014).

It is well accepted that the inflammatory response to
the implant particles leads to osteoclast formation through
progenitor recruitment and up-regulation of RANKL (Fisher,
2005; Holding et al., 2006; Abu-Amer et al., 2007; Landgraeber
et al., 2014). The release of TNF-α and IL-1β by macrophages in
response to wear particles promotes the expression of RANKL
and suppresses the expression of osteoprotegerin (OPG) by the
osteoblasts and fibroblasts (Lin et al., 2014; Kandahari et al.,
2016). RANKL binds to the RANK expressed on osteoclast
precursors, activating signaling pathways such as nuclear factor
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FIGURE 1 | Macrophages response to implant wear particles and biological strategies to prevent aseptic loosening. The macrophages’ reactivity upon activation by
wear particles is driven by cell membrane contact through surface receptors, such as CD14 and TLRs, or through the phagocytosis of wear debris. The activation of
NF-κB induces the release of pro-inflammatory cytokines (e.g., TNF-α, IL-1, IL-6, and PGE-2), growth factors (M-CSF), pro-osteoclastic factors (RANKL), and
chemokines (e.g., IL-8, MIP-1α, and MCP-1), leading to the systemic recruitment of more macrophages and osteoclast precursors, thus promoting inflammation and
osteolysis. This figure also summarizes some proposed biological strategies to prevent and treat aseptic loosening. TLR, Toll-like receptor; PMNs,
polymorphonuclear cells; IL, interleukin; NF-κB, nuclear factor kappa B; NLRP3, NOD-, LRR-, and pyrin domain-containing protein 3; TNF, tumor necrosis factor;
RANKL, receptor activator of nuclear factor kappa B ligand; ROS, reactive oxygen species; MSC, mesenchymal stem cell; MCP-1, monocyte chemoattractant
protein-1; CD, cluster of differentiation; M-CSF, macrophage colony stimulating factor 1; PGE, prostaglandin E; IFN, interferon.

kappa-light-chain-enhancer of activated B cells (NF-κB) and
mitogen-activated protein kinase (MAPK), therefore stimulating
osteoclastogenesis and excessive bone resorption activity and
ultimately leading to implant loosening (Purdue et al., 2007).

Macrophages are remarkable plastic cells with different
functions and functional states, which are specified by the
complex interplay between microenvironmental signals and
a differentiation program that determines the macrophage
identity. Two well-established polarized phenotypes are often
referred to as classically activated macrophages (M1) and
alternatively activated macrophages (M2). The M1 macrophages
are characterized by the production of pro-inflammatory
cytokines, namely, TNF-α, IL-1, and IL-6, express inducible nitric
oxide synthase, and are linked to T helper 1 (Th1) type of immune
response (Murray, 2017). M2 macrophages have associated anti-
inflammatory cytokines, such as IL-4, IL-10, and IL13, express
mammalian chitinase Ym1 and arginase 1, and are related to T
helper 2 (Th2) type of immune response (Murray, 2017).

M1 macrophages have been found in high concentrations
in periprosthetic tissues from AL patients (Rao et al., 2012).
Indeed PMMA (resulting from the bone cement) and UHMWPE
particles were shown to polarize macrophages toward an

M1 phenotype in vitro (Rao et al., 2012; Antonios et al.,
2013; Jiang et al., 2016). Mahon et al. (2018) reported
that the preferential polarization toward M1 phenotype
induced by PMMA particles is dependent on the activation
of membrane proximal kinase, spleen tyrosine kinase (Syk),
and members of MAPK family. Moreover, they show that
pre-treatment with Syk or MAPK inhibitors prevented M1
polarization and reduced the production of pro-inflammatory
mediators implicated in PPOL and osteoclast differentiation
(Mahon et al., 2018).

The precise mechanisms by which wear particles are
recognized and induce macrophage activation have not been fully
elucidated. Recent studies have shown that wear debris act as
danger signals or alarmins and are recognized by cell membrane
contact through surface receptors or after phagocytosis by
several PRRs (Goodman, 2014). PRRs can identify a myriad
of stimuli, including pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs).
PAMPs are exogenous molecules derived from bacteria, virus,
and fungi (Medzhitov and Janeway, 1997). DAMPs are produced
during tissue damage or homeostasis disturbances and include
endogenous intracellular molecules [heat-shock protein and high
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mobility group protein (HMGB1)], components of extracellular
matrix or released by necrotic cells and activated leukocytes
(Matzinger, 1994; Venereau et al., 2015).

Based on location, PRRs can be subdivided into two major
classes: (i) Toll-like receptors (TLRs) and C-type leptin receptors,
which are transmembrane proteins, and (ii) the retinoic acid-
inducible protein 1 (RIG)-1-like receptors and the NOD-like
receptors (NLRs), which are located intracellularly (Kumar et al.,
2011). Evidence supports the DAMPs and the activation of TLRs
as dominant mechanisms in macrophage reactivity to implant
particles; other mechanisms such as apoptosis, bone catabolism,
and hypoxia responses are also involved (Catelas et al., 1999a;
Samelko et al., 2013).

The signaling pathways activated by TLRs are divided into
myeloid differentiation factor 88 (MyD88)-dependent and My-
D88-independent pathways. The MyD88-dependent pathways
are the main downstream signaling shared by almost all TLRs,
except TLR-3. MyD88 signaling leads to the activation of NF-
κB and activating protein-1, responsible for the production
of pro-inflammatory cytokines (e.g., TNF-α, IL-1, and IL-12)
(O’Neill et al., 2013). The involvement of TLRs in the reactivity
to implant particles has been demonstrated both in patient
tissues and in animal models. TLRs are highly expressed by
the infiltrated macrophages in the periprosthetic tissues of AL
patients (Takagi et al., 2007; Lahdeoja et al., 2010; Pajarinen
et al., 2010). In in vitro cultures of macrophages, the inhibition
of MyD88 signaling resulted in the decrease of the inflammatory
response to PMMA particles (Pearl et al., 2011). In the same line,
MyD88 knockout mice display a reduced inflammatory response
to PMMA particles (Pearl et al., 2011).

The NOD-, LRR- and pyrin domain-containing protein 3
(NLRP3/NALP3) inflammasome has also been implicated in the
biological response to implant debris (Takagi et al., 2007; Caicedo
et al., 2009). The NLRP3 inflammasome is an intracellular
multi-protein complex activated upon cellular infection (PAMPs)
or stress (DAMPs), triggering the maturation of the highly
pro-inflammatory cytokines IL-1β and IL-18 (Martinon et al.,
2002; Tschopp, 2010). NLRP3 activation requires a two-step
signal. The first one, “priming signal,” leads to the activation
of NF-κB; the second step of the signal is responsible for the
oligomerization of NLRP3 through the recruitment of pro-
caspase-1 via the adaptor molecule apoptosis-associated speck-
like protein containing a CARD (ASC) and the cleavage of
cytokine precursors, leading to the maturation and the release of
IL-1β and IL-18 (Tschopp, 2010).

The phagocytosis of wear debris by macrophages has
been shown to activate the NLRP3 inflammasome pathway,
leading to caspase-1 activation, pro-IL-1β cleavage, and mature
IL-1β release, a critical cytokine for osteolysis induction
(Shiratori et al., 2018). Metal ions and particles were shown
to stimulate IL-1β secretion from human macrophages
via inflammasome activation [i.e., nicotinamide adenine
dinucleotide phosphate (NADPH)-, caspase- 1-, Nalp3-,
and ASC-dependent] (Caicedo et al., 2009). Regarding
this, CoCrMO-alloy particles were reported to stimulate
inflammasome through lysosomal destabilization mechanisms in

macrophages (Caicedo et al., 2013). Mice lacking caspase-1, the
sole effector of the NALP3 inflammasome, also showed reduced
PMMA particle-induced osteolysis (Burton et al., 2013). The
presence of NLPR3 and their related molecules (caspase-1 and
ASC) was detected in periprosthetic tissues (Takagi et al., 2007;
Naganuma et al., 2016), ultimately supporting the involvement
of NLRP3 inflammasome activation on the host response to
implant debris. The continued investigation into how wear
debris activate the inflammasome is therefore of great interest.

Differences in PPOL have been observed among individuals,
and it is predicted to be associated with genetic variations
(Gordon et al., 2010; Del Buono et al., 2012; MacInnes et al.,
2015). As recently reviewed by Jagga et al. (2019), candidate
gene studies show single nucleotide polymorphisms (SNPs)
in several genes involved in both inflammatory signaling and
bone turnover pathways in the context of PPOL (Jagga et al.,
2019). SNPs have been observed in genes such as TNF-
α, IL-1, MMPs, OPG, RANK, and RANKL (Jagga et al.,
2019). Nevertheless, the functional effects of SNPs need to
be investigated.

It is also known that different implant wear particles
and their physical and chemical properties induce specific
macrophage responses. In the following sections, we describe
the inflammatory mechanisms triggered by wear debris
released by the different materials used in the design
of joint replacement implants: (i) polymers, (ii) metals,
and (iii) ceramics.

Polymer Wear Particles
The macrophage reactivity to implant particles of polymers
such as UHMWPE was shown to involve the activation of TLR
signaling (Maitra et al., 2009; Paulus et al., 2014; Valladares
et al., 2014). The specific involvement of TLR2 and TLR4
has been suggested in UHMWPE particle-induced osteolysis.
UHMWPE induced the up-regulation of TLR2 and TLR4 in
a calvarial mouse model (Valladares et al., 2014) and the
up-regulation of TLR2 in a mouse model of intraarticular
injection (Paulus et al., 2014). Moreover, in addition to the
activation of TLR1/2 signaling pathways, UHMWPE particles
also trigger the NLRP3 inflammasome through lysosomal
damage (Maitra et al., 2009).

A transcriptional profiling analysis of human macrophages
stimulated by UHMWPE particles revealed an up-regulation of
pro-inflammatory mediators, in agreement with the previous
studies, including CCL2, CCL3, CCL4, IL-8, CCL20, TNF-α,
IL-1β, and IL-6, and genes involved in osteoclastogenesis and
bone resorption, such as CCL3, CCL4, IL-8, CCL20, M-CSF,
and MMPs (Terkawi et al., 2018). Overall, in this study,
it was shown that macrophages elicited both inflammatory
and osteoclastogenesis-related genes in response to UHMWPE
particles, and importantly, TLR signaling was identified as
being involved in the inflammatory and osteolytic response
(Terkawi et al., 2018).

The PMMA particles have also been shown to be involved
in the stimulation of osteoclastogenesis and osteolysis (Quinn
et al., 1992; Sabokbar et al., 1998). These particles promoted
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the release of IL-1β and TNF-α from mouse macrophages
(Antonios et al., 2013) and stimulated the production of MCP-1
and, by this way, the recruitment of more macrophages and
MSCs (Huang et al., 2010). As previously mentioned, TLR
signaling was demonstrated to be involved in macrophage
reactivity to PMMA particles (Pearl et al., 2011). The inhibition
of MyD88 decreases PMMA particle-induced production of
TNF-α in mouse macrophages, and mice lacking the expression
of MyD88 developed less PMMA-induced osteolysis (Pearl
et al., 2011). The NALP3 inflammasome was also shown
to have a critical contribution to PMMA particle-induced
osteolysis. Burton et al. (2013) reported that PMMA particles
induce caspase-1-dependent release of IL-1β from human
monocytes and mouse macrophages and that this is reversed
by the inhibition of the NALP3 inflammasome. They also
reported that mice lacking caspase-1, the effector of the
NALP3 inflammasome, present reduced PMMA-induced
calvarial osteolysis (Burton et al., 2013). Recently, Abu-
Amer et al. (2019) reported that PMMA particles increase
vascular endothelial growth factor (VEGF) expression and
vascularization in a mouse calvarial model, and the inhibition
of VEGF reduces TNF expression and osteoclastogenesis,
highlighting the role of angiogenesis in PMMA particle-induced
inflammatory osteolysis.

Metal Wear Debris
Generation of metallic debris is still a matter of great concern
regarding PPOL. In in vitro and in vivo studies, cobalt alloy
debris was shown to elicit inflammasome danger signaling,
from initial lysosomal destabilization and NADPH oxidase
induction of reactive oxygen species (ROS) to NLRP3-ASC
oligomerization and caspase-1 conversion of pro-IL-1β and
pro-IL-18 into mature IL-1β and IL-18 (Caicedo et al., 2013;
Samelko et al., 2016). On the other hand, the involvement
of TLR signaling in macrophage reactivity to cobalt particles
has remained controversial. Cobalt and nickel metal ions
were shown to facilitate TLR4 activation (Raghavan et al.,
2012; Oblak et al., 2015). However, Samelko et al. (2016)
reported that cobalt alloy particles do not preferentially
activate TLR4-induced inflammation compared with NLRP3
inflammasome danger signaling (IL-1β) in in vitro cultures
of mouse and human macrophages. Moreover, the authors
demonstrated that the inhibition of TLR4 did not decrease
the inflammatory response (Samelko et al., 2016). In
the same line, a TLR4-independent cobalt alloy-induced
extreme inflammatory bone loss was observed in a mouse
calvarial model; however, the blockage of the inflammasome
pathway completely suppressed the innate inflammatory
response to cobalt alloy particles (Samelko et al., 2016).
The involvement of other specific toxicity responses, such
as hypoxia, has been reported. Hypoxia-like responses were
evaluated in human macrophages after challenge with cobalt-
alloy particles, and the levels of HIF-1α, VEGF, TNF-α,
and ROS were found to be up-regulated (Samelko et al.,
2013). The up-regulation of HIF-1α was also observed in
periprosthetic tissues after the failure of MoM hip arthroplasties
(Samelko et al., 2013).

Titanium implant particles are highly recognized to induce
a pronounced macrophage inflammatory response, with up-
regulation of pro-inflammatory cytokines, mainly IL-1β, IL-
6, and TNF-α (Eger et al., 2017, 2018), and activation of
NLRP3 inflammasome through the release of active adenosine
triphosphate (Baron et al., 2015). Moreover, it was shown that the
IL-1β up-regulation induced by titanium and chromium particles
in human macrophages is dependent on NLRP3 inflammasome
activation that, in turn, is dependent of TNF-α priming signal
(Jamsen et al., 2020).

Adding to the innate inflammatory response, it has been
speculated that a delayed type of hypersensitivity-like reaction
via T lymphocyte activation, though infrequent, could play a
role in AL (Goodman, 2007; Pajarinen et al., 2014; Schalock,
2017). This hypothesis is based on the presence of T lymphocytes
in periprosthetic tissues and on the ability of metal ions to
activate type-IV hypersensitivity by acting as haptens (Granchi
et al., 2018). Recently, it was shown that the number of T
lymphocytes increases in periprosthetic tissues with increasing
time from surgery and the growing concentration of metals
(Hobza et al., 2020).

The activation of macrophage by cobalt-alloy particles resulted
in a T helper 17 (Th17) cell inflammatory response, which
is directly associated with the risk of osteolysis development
(Chen et al., 2017). However, in a study using a mouse model,
the intraarticular injection of CoCrMo particles induced a
significantly enhanced pro-inflammatory cytokine expression
(TNF-α, IL-6, and IL-1β) when compared to the intraarticular
injection of CoCrMo ions (Cheng et al., 2020). On the other hand,
the expression of CD3-positive cells in the synovial membrane of
mouse knee did not increase in any of the groups (Cheng et al.,
2020). In the same line, data from an epidemiologic study showed
that patients with MoM or MoP implants displayed a decrease
in blood T lymphocytes despite an increase in the serum level
of chromium and cobalt (Granchi et al., 2003). Overall, whether
adaptive immune response contributes to the AL induced by
metal particles and metal ions is still a matter of intense debate,
and more studies are needed to clarify this subject.

Ceramic Wear Particles
CoC implants display minimal wear debris generation, with a
limited incidence of osteolysis, and long-term implant survival
rates, being proposed as the best option for young and
active patients (Hamadouche et al., 2002; Hannouche et al.,
2005). Nevertheless, studies on the toxicity of ceramic particles
have been developed. Alumina and zirconia, the common
ceramics used in joint implants, have been shown to have
low immunotoxicity. In studies evaluating the in vitro effect
of size and concentration of ceramic particles (Al2O3 and
ZrO2) in macrophages, it was shown that macrophage death
increased with particle size and concentration; cell death was still
considered to be very low (Catelas et al., 1999b, 1998). Moreover,
the release of TNF-α increased with particle concentrations
but was lower when compared with the levels induced by
polymeric particles (Catelas et al., 1999b, 1998). In other studies,
alumina particles were shown to have only limited capacity
to stimulate human macrophage release of IL-1β and MCP-1
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(Kaufman et al., 2008), and even high concentrations of ceramic
particles only induced a mild up-regulation of mRNA expression
of RANKL, OPG, and TNF-α (Bylski et al., 2009). Zirconia
particles were shown to induce the up-regulation of TLR3,
TLR7, and TLR10; however, these had only a slight influence
on the production of TNF-α and IL-1β (Lucarelli et al., 2004).
Overall, ceramic particles have been reported to induce limited
macrophage reactivity.

Despite the efforts made to decrease the generation of wear
particles and the impact of AL, through the improvement of
the materials, the implant design, the surgical techniques, and
the peri-operative rehabilitation, long-term implant survival
continues to be a major challenge. Further research is still needed
to allow a comprehensive understanding of the mechanisms
underlying the biological response to implant wear particles,
which will support the development of non-surgical therapeutic
modalities to control periprosthetic inflammation and the
consequent osteolysis.

POTENTIAL BIOLOGICAL STRATEGIES
TO PREVENT ASEPTIC LOOSENING

Multiple pharmacological strategies have been investigated as
putative approaches to mitigate or reverse the implant particle-
induced osteolysis. These strategies include the modulation of the
inflammatory response (e.g., the blockage of pro-inflammatory
cytokines and the modulation of macrophage polarization
and NF-κB pathway) and the modulation of the activity of
osteoclasts (Figure 1).

Bisphosphonates as a Strategy to
Modulate Osteoclast Activity
To avoid bone resorption, the osteoclast activity can be
modulated using bisphosphonates. These drugs inhibit
osteoclasts activity, suppress the differentiation of osteoclast
precursors, and can also induce macrophage apoptosis
(Moreau et al., 2007).

Pamidronate, a member of the bisphosphonate family, was
shown to inhibit UHMWPE-induced TNF-α release from
mouse macrophages and to induce macrophage apoptosis (Huk
et al., 2003). Moreover, pamidronate suppressed the PMMA-
induced bone resorption in a co-culture model of rat calvaria
and macrophages (Horowitz et al., 1996). In the same line,
bisphosphonate disodium ethane-1,1-diphosphonate was shown
to abolish the differentiation of osteoclast precursors and
bone resorption in a co-culture system of mouse monocytes
and foreign body macrophages (derived from granulomas
formed by a subcutaneous implantation of particles of PMMA,
UHMWPE, or titanium) with osteoclasts seeded on bone slices
(Pandey et al., 1996).

A meta-analysis of clinical trials of the post-operative
administration of bisphosphonates supports short- and mid-
term anti-osteolytic effects on periprosthetic bone following
arthroplasty (Prieto-Alhambra et al., 2014; Shi et al., 2018a; Su
et al., 2018), indicating the beneficial effects of bisphosphonates in
reducing mechanically induced bone resorption due to prosthesis
insertion. Importantly, bisphosphonates were shown to reduce

periprosthetic osteolysis also at later periods after total joint
arthroplasty (5 to 10 years), and this is putatively related with
effects on periprosthetic inflammation-induced osteolysis (Shi
et al., 2018b).

By delaying or preventing bone resorption, bisphosphonates
may be a beneficial strategy for preventing AL due to PPOL.
However, adverse effects such as pathologic osteonecrosis of
the jaw, femoral fracture, and impairment of fracture healing
may hamper bisphosphonates’ clinical application in AL context
(Maalouf, 2012).

The Targeting of the NF-κB Pathway
The RANKL is a receptor-ligand released from activated cells
during the inflammatory process and induces osteoclastogenesis
and bone resorption (Wada et al., 2006).

The NF-κB pathway is activated in macrophages and
osteoclasts when exposed to implant wear particles (Rao et al.,
2012), supporting that the modulation of NF-κB signaling can be
a strong strategy to mitigate osteolysis.

Ulrich-Vinther et al. (2002) reported in a titanium-implanted
mouse model that the soluble OPG protein, which acts
as a decoy receptor by binding to RANK, reducing its
bioavailability, decreased the number of osteoclasts and the
bone resorption. In the same line, the target of the NF-κB
pathway with the NF-κB decoy oligodeoxynucleotide (ODN),
which inhibits this transcription factor from binding to the
promoter regions of targeted genes, was also shown to
mitigate wear particle-induced osteolysis. In a mouse model
of continuous femoral particle infusion, the local delivery
of NF-κB decoy ODN reversed the bone loss induced by
UHMWPE particles and inhibited macrophage infiltration and
osteoclast number (Lin et al., 2016). The local injections of
ODN in a mouse calvarial model also reduced the UHMWPE-
induced expression of TNF-α and RANKL and increased the
expression of anti-inflammatory and anti-resorptive cytokines
(Sato et al., 2015).

The modulation of the IKB kinase (IKK) has been highlighted
as another potential strategy to inhibit the NF-κB pathway.
The reduction of the IKK complex assembly, through a short
peptide named NEMO-binding domain (NBD), led to the
inhibition of NF-κB activation, preventing RANKL-induced
osteoclastogenesis (Karin et al., 2004). Specifically, NBD peptide
was reported to inhibit PMMA-induced NF-κB activation in vitro
and inhibited the PMMA-stimulated osteoclastogenesis and
decreased PMMA-induced inflammatory response and osteolysis
in a mouse calvarial model (Clohisy et al., 2006). Also in a mouse
calvarial model, the intraperitoneal injections of RANK:FC
fusion protein, a recombinant RANKL antagonist, inhibit the
osteoclastogenesis and the bone resorption induced by titanium
particles (Childs et al., 2002). More recently, it was shown
that Tussilagone, a natural compound, impairs osteolysis by
the inhibition of RANKL-mediated NF-κB and p38-mediated
MAPK signaling pathways in a titanium particle-induced murine
calvarial model (Hu et al., 2020).

Altogether these studies support the targeting of the NF-κB
signaling pathway as a promising strategy to mitigate implant
particle-induced inflammatory osteolysis, and further studies are
needed to establish the efficacy and the safety of this strategy.
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Modulation of Macrophage Polarization
Despite the complexity of the mechanisms governing
macrophage polarization, manipulation toward a more anti-
inflammatory phenotype emerges as a potential strategy
to diminish implant particle-associated inflammation
(Ribeiro-da-Silva et al., 2018; Goodman et al., 2020).

Several in vitro and in vivo studies showed that macrophage
stimulation with IL-4 increases the expression of M2 markers.
In PMMA-activated mouse bone marrow-derived macrophages,
treatment with IL-4 reduced the TNF-α production (Antonios
et al., 2013). This effect was more notorious when IL-4 was
added before PMMA particles but was also observed when
IL-4 was administrated concurrently or after the challenge
with the PMMA particles (Rao et al., 2012; Antonios et al.,
2013). Moreover, IL-4 treatment also decreased the production
of TNF-α, IL-1β, and GM-CSF in PMMA-stimulated human
macrophages (Trindade et al., 1999). A reduction in TNF-α
and IL-6 production was also observed in human macrophages
exposed to titanium-alloy (Ti6Al4V) particles and treated with
IL-4 (Han, 2001). In the same study, treatment with IL-10 also
reduced the production of these pro-inflammatory cytokines
(Han, 2001).

In UHMWPE particle-induced osteolysis in the mouse
calvarial model, daily treatment with IL-4 significantly decreased
bone loss and M1/M2, RANKL/OPG, and TNF-α/IL-1ra ratios
(Rao et al., 2013). The coating of implants with IL-4 resulted in
a preferential macrophage polarization toward an M2 phenotype,
in both in vivo and in vitro studies (Hachim et al., 2017; Yang
et al., 2018), and in an enhanced expression of M2 markers
such as IL-10, ARG-1, and platelet-derived growth factor-BB
(Yang et al., 2018).

Lately, metformin, an anti-diabetic drug, was shown to
promote the release of IL-10 from mouse bone marrow-derived
macrophages exposed to UHMWPE particles (Yan et al., 2018).
Metformin treatment also reduced the production of pro-
inflammatory cytokines, osteoclastogenesis, and osteolysis and
promoted IL-10 production and the polarization of macrophages
toward a M2 phenotype in the UHMWPE particle-induced
osteolysis mouse calvarial model (Yan et al., 2018).

In general, in vitro and in vivo studies support the modulation
of macrophage polarization as a putative effective approach
to mitigate implant wear particle-induced inflammation and
subsequent osteolysis.

Pharmacological Blockage of
Pro-inflammatory Mediators
As already described, the reactivity of macrophages to implant
particles leads to the release of pro-inflammatory factors
(cytokines, chemokines, prostaglandins, nitric oxide, and
peroxide metabolic intermediates) that will elicit osteolysis and
AL. The local inhibition of these pro-inflammatory mediators
may reduce inflammation in the periprosthetic tissue. Between
the pro-inflammatory mediators, TNF-α is critically involved
in wear particle-induced osteolysis, and its inhibition has been
investigated as a potential therapeutic strategy.

The antagonism of TNF-α with progranulin [a small anti-
inflammatory peptide that inhibits the binding of TNFα to
TNFR1/2 (Tian et al., 2014)] effectively inhibited titanium
particle-induced inflammation in an air pouch model and
osteoclastogenesis and osteolysis in vitro, ex vivo, and in vivo
(Zhao et al., 2016). Moreover, it was shown that these effects
were achieved primarily via inhibition of the TNFα/NF-κB
signaling pathway (Zhao et al., 2016). Etanercept, a soluble TNF-
α antagonist, was shown also to prevent titanium wear debris-
induced osteolysis in vitro and osteoclastogenesis and osteolysis
in vivo (Childs et al., 2001).

Eger et al. (2018) showed, using the mouse calvarial model
of titanium particle-induced osteolysis, that blocking TNF-
α, IL-1β, and IL-6 with anti-TNFα (adalimunab), anti-IL-
1β (anakinra), and anti-IL6 (tocilizumab) antibodies in vivo
completely abolished titanium-induced osteolysis. Resveratrol,
a natural compound with antioxidant, anti-inflammatory, and
antitumor effects (Frojdo, 2008), reduced the titanium wear
particle-induced oxidative stress in mouse macrophages, and this
was accompanied by the reduction of TNF-α release and NF-κB
phosphorylation (Luo et al., 2016). Overall, these studies support
the inhibition of TNF-α as a putative therapeutic approach
to control PPOL.

Further investigation is still deeply needed (i) to establish the
effectiveness, safety, and translatability to clinics of the promising
pharmacological strategies in ongoing research and (ii) to identify
novel therapeutic targets. Importantly, while extensive literature
on preclinical data is already available, only moderate clinical
research has been performed (Schwarz, 2014). Moreover, studies
in humans have mostly focused on the AL conditions, although
a different inflammatory profile was observed between AL and
non-AL stages of arthroplasty (Dyskova et al., 2019). Information
on the time axis of the processes occurring in the periprosthetic
tissues, from arthroplasty until the implant AL, will strengthen
our understanding of the mechanisms driving inflammation-
induced PPOL and further support the development of effective
therapeutic approaches.

CONCLUSION

In the last decades, the biological response to implant wear debris
has been investigated and macrophages were identified as the
key cells. However, the precise mechanisms by which wear debris
are recognized and induce macrophage activation have not been
fully elucidated. The information gathered so far demonstrate
that wear debris are recognized by several PRRs (e.g., TLRs
and NLRs). Among the PRRs, the activation of TLRs has been
identified as a dominant mechanism in macrophage reactivity to
implant particles. The activation of the NLRP3 inflammasome
has also been clearly implicated in this process. The trigger of
these mechanisms generates an inflammatory environment that
promotes periprosthetic osteolysis and AL.

There are currently no effective pharmacological strategies
to manage periprosthetic inflammation. However, several
therapeutic approaches are in ongoing research, namely, the (i)
blockage of the NF-κB pathway, (ii) modulation of macrophage
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polarization toward an anti-inflammatory profile, and (iii)
neutralization of TNF-α and other pro-inflammatory cytokines.
Further research is still needed to confirm their efficacy, safety,
and therapeutic potential in order to be translated to the clinics.
Furthermore, a comprehensive understanding of the mechanisms
underlying the biological response to implant wear particles will
support the identification of novel targets for putative effective
therapeutic methods to control periprosthetic inflammation-
induced osteolysis.
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