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Abstract Cenozoic intraplate volcanism is widespread throughout much of eastern Australia and

manifests as both age-progressive volcanic tracks and non-age-progressive lava fields. Various mechanisms

have been invoked to explain the origin and distribution of the volcanism, but a broad consensus remains

elusive. We use results from seismic tomography to demonstrate a clear link between lithospheric

thickness and the occurrence, composition, and volume of volcanic outcrop. Furthermore, we find that

non-age-progressive lava fields overlie significant cavities in the base of the lithosphere. Based on numerical

simulations of mantle flow, we show that these cavities generate vigorous mantle upwellings, which likely

promote decompression melting. However, due to the intermittent nature of the lava field volcanics over the

last 50 Ma, it is probable that transient mechanisms also operate to induce or enhance melting. In the case

of the Newer Volcanics Province, the passage of a nearby plume appears to be a likely candidate. Our results

demonstrate why detailed 3-D variations in lithospheric thickness, plate motion, and transient sources of

mantle heterogeneity need to be considered when studying the origin of non age-progressive volcanism

in continental interiors.

1. Introduction

Evidence of intraplate volcanism can be found throughout the globe, yet it remains a relatively poorly under-

stood phenomenon, withmany different mechanisms proposed to explain its provenance [e.g., Raddick et al.,

2002; Conrad et al., 2011; Ballmer et al., 2015a]. In Australia, the origin of widespread Cenozoic intraplate

volcanism, which traverses almost the entire length of the eastern seaboard (Figure 1), is a subject of consid-

erable uncertainty and debate. One of the key challenges in trying to pinpoint themechanisms which lead to

melting and emplacement is to explain the overlapping presence, in time and space, of both age-progressive

and non-age-progressive volcanism [Wellman, 1974]. As illustrated in Figure 1, there are two classes of age-

progressive volcanism: (i) central volcanoes, which are bimodal shield volcanoes with both basaltic and felsic

flows and intrusions; and (ii) the leucitite suite, which are low-volume potassium-rich leucite-bearing lavas.

In contrast, the lava field volcanics, which exhibit no evidence of age progression, are almost exclusively

basaltic innature [Wellman, 1974]. Theage-progressive volcanism,which is also locatedoffshore in theTasman

Sea, has usually been attributed to thepresence of oneormoremantle plumes [Wellman, 1974; Johnson, 1989;

Cohen et al., 2007; Sutherland et al., 2012; Jones andVerdel, 2015;Davies et al., 2015]. In this scenario, a relatively

stationary plume generates melt beneath a NNE migrating plate, hence the observed southerly decrease in

age of the central volcanoes and leucitites.

A broad consensus on the origins of the lava field volcanics has proven to be more elusive, with proposed

models including (i) decompressionmelting induced by small-scale convection arising from changes in litho-

spheric thickness [Demidjuk et al., 2007; Farrington et al., 2010;Davies andRawlinson, 2014]; (ii) rift-related pro-

cesses in the Tasman andCoral seaswhich involvemelt injections fromenriched asthenospheric domains into

the migrating lithosphere above [Sutherland et al., 2012]; (iii) heat transfer from the Pacific mantle [Finn et al.,

2005]; and (iv) transtensional decompression caused by far-field stresses [Cas et al., 2017]. A key consideration

in understanding both lava field and age-progressive volcanics is the influence of the lithosphere, which can

exert control on the depth (and, hence, pressure) of decompression melting, the occurrence of small-scale
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Figure 1. Distribution of eastern Australian Cenozoic intraplate volcanism. Leucitite suite: low-volume potassium-rich

leucite-bearing lavas; lava fields: extensive but thin basaltic lava cover sourced from lava cones, small scoria, and

maars; and central volcanos: dominantly basaltic and also feature felsic lava flows or intrusions, with lavas emanating

from central vents and often producing large volcanic complexes [Wellman, 1974]. Ages of rocks associated with

age-progressive central volcanos and the leucitite suite are included [e.g., Johnson, 1989; Cohen et al., 2009, 2013;

Jones and Verdel, 2015; Davies et al., 2015]. Direction and rate of current plate motion, based on the model

NNR-MORVEL56 [Argus et al., 2011], is shown in the bottom right hand corner of the plot. NVP = Newer Volcanics

Province. Black lines indicate the approximate locations of Palaeozoic orogen boundaries [Glen et al., 2016]. Although

not shown, recent evidence points to the presence of early to middle Miocene lava fields south of the NVP in Bass

Strait [Reynolds et al., 2017].

convection in the upper mantle, the composition of erupted material, and the pathway(s) taken by melt on

route to the surface [e.g., Ashwal and Burke, 1989; King and Anderson, 1998; Huang et al., 2002].

Nearly 20 years ago, the WOMBAT transportable seismic array experiment was conceived with the goal of

imaging the lithospheric architecture of eastern Australia at high resolution. To date, 17 sequential deploy-

ments have resulted in coverage of the entire Lachlan and Delamerian orogens and parts of the Thomson

and New England orogens (see Figure 1 for orogen locations) at a station spacing of approximately 50 km

(see Figure S1 in the supporting information). This has allowed high-resolution teleseismic body wave

[Rawlinsonetal., 2014a, 2015, 2016] and ambient noise surfacewave [Youngetal., 2013;Rawlinsonetal., 2014b;

Pilia et al., 2015] tomography to be carried out in order to image the crust and upper mantle. In the results

and discussion that follow, we use the latest WOMBAT seismic tomography, combined with numerical mod-

eling of mantle flow, to quantitatively examine themechanisms underpinning Cenozoic intraplate volcanism

in eastern Australia.
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Figure 2. (a) P wave velocity perturbations at 120 km depth obtained from teleseismic body wave tomography applied

to data recorded by the WOMBAT transportable seismic array. Perturbations are plotted relative to the average velocity

at this depth (8.0 km/s). Additional slices and synthetic resolution test results are provided in Figures S2–S4; (b) inferred

depth to the base of the lithosphere (LAB), computed from the body wave tomography using the method of Davies

et al. [2015]. The black dashed line highlights cavities in the base of the lithosphere, which are labeled C1 and C2.

2. Methods and Results
2.1. Teleseismic Body Wave Tomography

FMTOMO [Rawlinson et al., 2006, 2010] is used to invert teleseismic arrival time residuals for perturbations in

Pwave speed in theuppermantle. FMTOMOuses the fastmarchingmethod [RawlinsonandSambridge, 2004a,

2004b] to solve the forward problem of travel time prediction, and a subspace inversion method [Kennett

et al., 1988] to solve the inverse problem, with nonlinearity addressed by iterative application of the forward

and inverse solvers. Crustal structure, which is poorly resolved by the teleseismic data, is accounted for by

incorporating a 3-D crustal velocity model derived from ambient noise data (recorded by theWOMBAT array)

using a transdimensional tomography scheme [Young et al., 2013]. The regional 3-D AuSREM mantle P wave

model [KennettandSalmon, 2012] is incorporated in the startingmodel to account for theuseof relative arrival

time residuals from different subarrays (see section S1 for more details).

In order to assess the robustness of the solutionmodel, which is shown in Figures 2a and S2, we use synthetic

reconstruction tests [RawlinsonandSpakman, 2016] that are basedon an alternatingpattern of discrete spikes

which are separated by regions of zero velocity anomaly (see Figure S3). The results showgood horizontal res-

olution (Figure S4) throughoutmost of themodel region, although in the vertical direction, there is a tendency

to smear due to the subvertical geometries of the incident rays.
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2.2. Depth to Base of Lithosphere (or LAB Depth)

Small-scale convection in the upper mantle has a strong dependence on lithosphere-asthenosphere

boundary (LAB) depth variations. In order to completely avoid edge-effects in our 3-Dmantle flowcalculations

(see next section), we use a global model of LAB depth which has three levels of resolution: (i) high, based

on the WOMBAT mantle velocity model; (ii) medium, based on AuSREM [Kennett and Salmon, 2012]; and

(iii) low, based on the GypsumS globalmodel [Simmons et al., 2010]. Themain challenge in obtaining a unified

multiresolution LAB model is that the WOMBAT model is defined in terms of P wave velocity (less sensitive

to temperature than Swave velocity), is constrained by teleseismic body waves (produces vertical smearing),

and is a function of relative arrival time residuals. Consequently,methods that convert seismic velocity to tem-

perature [Cammarano et al., 2003; Goes et al., 2012; Priestley and McKenzie, 2013], or use a particular velocity

contour or velocity gradient, are unlikely to produce robust results.

Instead, we use a simple empirical method devised by Davies and Rawlinson [2014] and Davies et al. [2015],

which is based on computing the vertically averaged velocity perturbation (dvav) over a prescribed depth

range and calibrating it against the minimum and maximum lithosphere thicknesses in the region given by

the AuSREM lithosphere thickness model [Kennett et al., 2013]. Using this approach, the minimum dvav will

correspond to the thinnest lithosphere, while the maximum dvav will correspond to the thickest lithosphere.

Despite the inherent assumptions of this approach, advantages include a decreased sensitivity to vertical

smearing and choice of referencemodel. Figure 2b illustrates the LABmodel obtained for southeast Australia

using this method. The equivalent Australia-wide model, which is obtained by first embedding the WOMBAT

P wave model into the AuSREM P wave model, is shown in Figure S6a.

For consistency, the same empirical method is applied to the Gypsum S wave model, which produces

the global LAB model illustrated in Figure S5a. By way of comparison, we also produce LAB models

(Figures S5b–S5d) that were calculated by converting the Gypsum S wave model to temperature, using

lookup tables from the thermodynamic database of Stixrude and Lithgow-Bertelloni [2005, 2011], for a sim-

ple pyrolitic model of mantle composition, and taking isotherms as a proxy for LAB depth. Since the absolute

value of the recovered seismic velocities has a dependence on the choice of reference model and regulariza-

tion, the absolute value of the isotherm used to define the LAB is not well constrained [e.g., Goes et al., 2005].

For Gypsum, we find that realistic depths are produced by using lower than expected temperatures

(1050–1150∘C). The best match with the empirical result occurs for a temperature of 1050∘C (cf. Figures S5a

and S5b), although in general the pattern of depth variations is very similar. The complete multiscale LAB

model is obtained by embedding the model of Figure S6a into the model of Figure S5a (see section S2 for

more details).

Figure 3a shows a comparison between the new LAB depthmodel for southeast Australia and the location of

Cenozoic volcanic outcrop at the surface,which tends to overlie thin lithosphere. Figure 3b compares the loca-

tion of a large cavity (C1) in the base of the lithosphere with a total magnetic intensity map, while Figures 3c

and 3d (and S7) compare the location of C1 with anisotropic Rayleigh wave phase velocity maps [Pilia et al.,

2016] generatedusing themethodofDebayleandSambridge [2004]. These comparisons arediscussed inmore

detail later in the manuscript.

2.3. Numerical Modeling of Mantle Flow

In a recent study Davies and Rawlinson [2014] examined mantle flow beneath the NVP using a simple litho-

spheric thickness model in the presence of plate motion. Both edge-driven convection or EDC (a thermal

instability that occurs at the boundary between thick and thin lithosphere) and shear-driven upwelling or

SDU (induced by the relative motion between lithosphere and underlying mantle) were considered. Here

we apply a similar approach but now directly incorporate the multiscale global LAB model. This represents

a major advance on the 2014 study, which computed mantle flow only within a small region surrounding

the NVP using a simple block approximation to a previous generation of LAB model. We simulate instan-

taneous global upper mantle flow using the Fluidity computational modeling framework [e.g., Davies et al.,

2011; Kramer et al., 2012; Le Voci et al., 2014; Davies et al., 2016], which employs an unstructured mesh dis-

cretization todealwith themultiscale nature of the LABmodel. Incompressiblemantle flow is simulatedunder

the Boussinesq approximation, and we assume a composite Newtonian and non-Newtonian rheology to

accommodate both diffusion and dislocation creepmechanisms. To ensure that the SDU component of man-

tle flow is accurately captured, present-day plate motions are imposed from the global kinematic model of
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Figure 3. Correlations between crust and lithospheric mantle structure and volcanic outcrop. (a) LAB depth with

distribution of Cenozoic volcanism at the surface superimposed (see Figure 1 for description of volcanic outcrop),

(b) magnetic map of basement structure, (c) phase velocity map at 2.5 s period (peak sensitivity at ∼2.5 km depth),

and (d) phase velocity map at 5.0 s period (peak sensitivity at ∼5 km depth). See Figure S7 for phase velocity maps at

7.5 s and 12.5 s period. Note that the color scales used in Figures 3c and 3d are not identical. Isotropic velocity variations

are displayed as variations in color, while the magnitude and orientation of the fast axis of anisotropy is represented by

black lines. Dashed red line delineates the boundary of C1. CP = Curnamona Province.

Seton et al. [2012]. Further details of the method and input parameters, which are constrained by experimen-

tal and observational datasets [e.g., Karato andWu, 1993; Gaboret et al., 2003; Iaffaldano and Lambeck, 2014]

can be found in section S3.

Figure 4a shows one horizontal and two vertical slices through the 3-D radial component of flow

(i.e., upwelling and downwelling), which is induced by EDC-SDU (see Figure S8 for radial flow patterns across

a range of depths). In order to gain insight into the relative strength of radial and tangential mantle flow

beneath southeast Australia, we also plot the velocity ratio (Figure 4b), which is defined as |Vr∕Vt|, where Vr

is the radial velocity and Vt is the velocitymagnitude. Thus, |Vr∕Vt|=0when there is only tangential flow, and

|Vr∕Vt|=1 when there is only radial flow (see Figure S9 for plots of velocity ratio across a range of depths).

The horizontal and vertical slices exhibit clear evidence of upwelling beneath both the large cavity (C1) and

smaller cavity (C2) to the east. At shallower depths just beneath the lithosphere, the velocity ratio tends to be

smaller due to the increasing dominance of surface plate motions. We note here that the velocity ratio is not

intended to be a proxy for wheremeltingmay occur; it simply shows the relative dominance of radial and tan-

gential flow. Furthermore, the presence of upwelling does not necessarily imply melting, since this depends

on elevating the temperature of material above the solidus at a particular depth. However, the existence of

vigorous upwelling at shallower depths (<200 km) beneath the surface expression of lava field volcanism

likely provides a favorable setting for decompression melting.
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Figure 4. Mantle flow induced by variations in LAB depth and plate motion. (a) Radial mantle flow, with upwellings in red, and downwellings in blue. Small arrows

illustrate flow direction in the N-S plane, (b) velocity ratio, with dominantly tangential flow in white/green and dominantly radial flow (upwelling or downwelling)

in brown/purple. The boundaries of C1 and C2 are shown by a yellow dashed line. (c) Normalized E-W flow (longitudinal flow divided by magnitude of horizontal

flow) in the vicinity of the NVP. Westerly flow is of the order of 2 cm/yr. To determine whether nonzero velocity ratios correspond to upwelling or downwelling,

the corresponding plots in Figure 4b can be compared with those in Figure 4a. For plots of radial flow and velocity ratio across a range of depths, refer to

Figures S8 and S9.

3. Discussion

TheLABmodelproducedby this studyexhibits depthvariations in southeastAustralia that range fromapprox-

imately 50 km near the coast to over 200 km in the continental interior (Figure 3a). In some cases, these

variations share a close association with near-surface observations. For example, the Curnamona Province

(CP), which stands out clearly in total magnetic intensity (Figure 3b), appears as a locally thick region of litho-

sphere (Figure 3a), which is consistent with its Palaeoproterozoic-Archean origins [Page, 2005; Hand et al.,

2008]. To the north of the CP, the thicker lithosphere is likely associated with stable shield region of the con-

tinent, although it appears to extend further east than previously thought [e.g., Fishwick et al., 2008], possibly

due to the presence of a Precambrian continental sliver beneath the southern Thomson Orogen [Glen et al.,

2013, 2016]. The New England Orogen, which lies at the very eastern edge of the continent, exhibits zircon
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age dates which also suggest the presence of an older continental fragment [Aitchison et al., 1992; Glen et al.,

2016], the location of which approximately corresponds with the locally thick zone that forms the eastern

margin of C2 (Figure 2b).

A primary feature of the LAB model is the presence of a large cavity in the base of the lithosphere which

underlies the LachlanOrogen (C1 in Figure 2b). This cavity almost exactly underlies a regionwhich exhibits an

unusual magnetic fabric (Figure 3b), a prominent low velocity zone in the upper middle crust and a distinct

pattern of azimuthal anisotropy (Figures 3c and 3d and S7). Thematch between the pattern ofmagnetic fabric

and crustal azimuthal anisotropy has been noted previously [Rawlinson et al., 2014a; Pilia et al., 2016] and

attributed to the presence of a large orocline beneath the Lachlan Orogen [Moresi et al., 2014]. The western

boundary of C1 corresponds to the transition from the Lachlan Orogen to the Delamerian Orogen, which

is often regarded as a change from crust of Palaeozoic oceanic origin to crust of Precambrian continental

origin [Glen et al., 2013]. The eastern boundary of C1 approximately underlies the transition to the Ordovician

Macquarie Arc at the surface [Foster and Gray, 2000]. The correlation between C1 (and to a lesser extent C2)

and features of the near-surface geology, which are related to Palaeozoic continental accretion, suggests that

the cavity predates the onset of Cenozoic intraplate volcanism.

Aside from the correlations noted above, there is also a clear relationship between lithospheric thickness

variations, as inferred from seismic body wave tomography, and the occurrence of Cenozoic volcanism in

southeast Australia (Figure 3a). The change in volume and composition between the central volcanos (above

lithosphere<100 km thick) and the leucitite suite (above lithosphere∼130 km thick) can be attributed to sup-

pression of decompressionmelting beneath thicker lithosphere which, ultimately, produces smaller volumes

of lavas containing higher concentrations of incompatible trace elements [Davies et al., 2015].

In order to examine the influence of variations in LAB depth and platemotion onmantle upwelling and hence

decompression melting, we carried out 3-D numerical simulations of mantle flow. The most striking result of

these tests (Figures 4, S8, and S9) is the effect that C1 and C2, combinedwith NNE directed platemotion, have

on the patterns of mantle flow. In the case of C1, mantle material flows upward into the cavity where it travels

south relative to the overriding plate. The narrow southern terminus of C1 combined with increasingly thin

lithosphere then focuses flow upward toward the NVP, with peak upwelling rates in excess of 1.2 cm/yr, which

is sufficient to cause decompression melting [e.g., Conrad et al., 2010; Davies and Rawlinson, 2014]. A similar

effect canbeobservedbeneathC2, although in this case intraplate volcanismoccurs directly above the cavity;

this is probably because the lithosphere is thinner beneath C2 compared to C1 and therefore better able to

accommodate decompression melting.

One limitation of the numerical modeling incorporated herein is that it is instantaneous (i.e., flow velocities

and viscosities are determined in the presence of a prescribed and fixed temperature/density field): as such,

results do not provide insight into the transient nature of lava field volcanism, which range in age from recent

to ∼40 Ma. Nonetheless, if we assume that the predicted flow regime has not changed markedly in the last

40 Ma (consistent with an invariant plate motion and LAB geometry), then we would have to conclude that

small-scale convection, by itself, may be insufficient to produce volcanism at the surface, and some secondary

“trigger” is required.

The NVP in southernmost mainland Australia (Figure 3a) is the most recent example of lava field volcanics,

with eruptive activity ceasing less than 5 ka [Wellman, 1974]. It is one of the best-studied volcanic provinces in

Australia, but its origins have remained enigmatic due to a lack of clear evidence for a deep or shallowmantle

source. The primary arguments against a plume source includes the east-west distribution of eruptive centers,

which is roughly perpendicular to the direction of platemotion, and the lack of an intersecting volcanic chain.

However, the newly discovered Cosgrove track [Davies et al., 2015], which includes the leucitite suite shown

in Figure 3a, passes just to the east of the NVP at ∼6 Ma, roughly 1 million years prior to the first known

eruptions. A possible scenario to explain the initialization of volcanism within the NVP is that enriched and

elevated temperature plume material becomes entrained in an existing EDC-SDU upwelling (see Figure 4a,

which shows how the Cosgrove track intersects the mantle upwelling south of C1); this would locally reduce

viscosity, thus enhancing both EDC and SDU [Ballmer et al., 2015b]. Combined with mantle enrichment, this

induces or elevates decompression melting to the point where volcanism occurs at the surface. As the plate

continues to migrate north, the plume’s influence gradually decreases, and volcanism wanes.
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The interacting plume scenario finds support inmajor/trace element and isotopic analyses of basalts from the

NVP, which show evidence for intermixing of both plume and shallowmantle derivedmelt [McDonough et al.,

1985]. Furthermore, a similar mechanism has been postulated to explain the Canary volcanic province off the

coast of NWAfrica [Geldmacher et al., 2005]: here edge drive convection caused by a change in thickness, from

theNWAfricanCraton to oceanic lithosphere, is believed to interactwith theCanarymantle plume toproduce

surface volcanism.Our EDC-SDU-plumehypothesis is also consistentwith several other recent observationsof

theNVP [Oostinghet al., 2017], including (i) the largest concentration of volcanic centers occurring close to the

eastern margin (nearest to the Cosgrove track), (ii) a decrease in volcanic production rates after 4 Ma (waning

influence of passing plume), and (iii) an overall east-west (older-younger) age progression in the volcanism.

The latter observation could potentially be explained by dominantly westwardmantle flow beneath the NVP,

with our model predicting a westward velocity of the order of 2 cm/yr (see Figure 4c).

The lava field volcanism that we associate with C2 is unlikely to originate from the same interaction of

EDC-SDU and plume activity that we attribute to the NVP, because the (plume-related) age-progressive vol-

canism in this region is considerably younger than the lava fields. Therefore, another triggermust be invoked.

Possibilities include (i) gradual erosion of overlying lithosphere by the action of long-lived edge-driven

convective cells [e.g., King and Ritsema, 2000; Kaislanieimi and van Hunen, 2014] and (ii) convective entrain-

ment of hydrous lithosphere from the edge of a lithospheric keel or preexisting heterogeneity within the

asthenosphere [Demidjuk et al., 2007; Cas et al., 2017], which may locally enhance mantle melting.

4. Conclusions

In this study, we use variations in seismic wave speed derived from teleseismic body wave tomography to

infer variations in LAB depth beneath the WOMBAT array in southeast Australia and then perform numerical

simulations of 3-Dmantle flow to understand how plate motion and LAB depth variations conspire to dictate

the pattern ofmantle flow beneath the lithosphere. Major findings include (i) a clear correlation between LAB

depth and the distribution and composition of Cenozoic intraplate volcanism; (ii) two separate cavity-driven

flow regimes that cause mantle upwelling beneath the NVP and an older lava field province on the east

coast, with upwelling flow velocities in excess of 1.2 cm/yr; (iii) that EDC-SDU cannot be the sole mechanism

underpinning decompression melting and volcanism at the surface due to the temporal nature of lava field

provinces; and (iv) that the passage of the Cosgrove track, which intersected the eastern edge of what is now

the NVP at∼6 Ma, resulted in enriched and elevated temperature mantle material from the plume becoming

entrainedwithin the EDC-SDU upwelling, and instigated a phase of enhanced decompressionmelting, which

gradually migrated westward. These results provide new insight into the dependence of intraplate volcanism

on detailed LAB depth variations, plate motion, and transient sources of mantle heterogeneity and there-

fore have implications for other intraplate volcanic regions around the globe, including in the western US,

northeast Asia, Middle East, western Antarctica, and north Africa.
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