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Abstract

We define a bounded cohomology class, called the median class, in the second bounded
cohomology, with appropriate coefficients, of the automorphism group of a finite-dimensional
CAT(0) cube complex X. The median class of X behaves naturally with respect to taking
products and appropriate subcomplexes and defines in turn the median class of an action
by automorphisms of X. We show that the median class of a non-elementary action by
automorphisms does not vanish and we show to what extent it does vanish if the action is
elementary. We obtain as a corollary a superrigidity result and show, for example, that any
irreducible lattice in the product of at least two locally compact connected groups acts on a
finite-dimensional CAT(0) cube complex X with a finite orbit in the Roller compactification of
X. In the case of a product of Lie groups, the appendix by Caprace allows us to deduce that
the fixed point is in fact inside the complex X. In the course of the proof, we construct a Γ-
equivariant measurable map from a Poisson boundary of Γ with values in the non-terminating
ultrafilters on the Roller boundary of X.

1. Introduction

The goal of this paper is to define a cohomological invariant of some non-positively curved
metric spaces X for a non-elementary action of a group Γ → Aut(X) and to use this invariant
to establish rigidity phenomena.

The paradigm is that bounded cohomology with non-trivial coefficients is the appropriate
framework to study negative curvature. The first instance of this fact is the Gromov–Sela
cocycle on the real hyperbolic n-space X (in fact, on any simply connected space with pinched
negative curvature) with values into the L2 differential one-forms on X (see [27, 7.E1, 49]).

The same philosophy has been promoted by Monod [39], Monod–Shalom [40, 41] and
Mineyev–Monod–Shalom [37]. They prove that a non-elementary isometric action on a
negatively curved space (belonging to a very rich class) yields the non-vanishing of second
bounded cohomology with appropriately defined coefficients of a geometric nature. Such
negatively curved spaces include proper CAT(−1) spaces, Gromov hyperbolic graphs of
bounded valency, Gromov hyperbolic proper cocompact geodesic metric spaces or simplicial
trees.

On the other hand, if G is a simple Lie group with rank at least 2 and H is any unitary
representation with no invariant vectors, then H2

cb(G,H) = 0, [16, 17], thus showing that in
non-positive curvature the situation cannot be expected to be completely analogous.
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In this paper, we move away from the negative curvature case and look at actions on CAT(0)
cube complexes.

CAT(0) cube complexes are simply connected combinatorial objects introduced by Gromov
[26]. They have been used in several important contexts, such as Moussong’s characterization
of word hyperbolic Coxeter groups in terms of their natural presentation [42]. A prominent
use of CAT(0) cube complexes was made by Sageev in his thesis [47]: generalizing Stalling’s
theorem on the equivalence between splittings of groups and actions on trees, [48, 50, 51],
he proved an equivalence between the existence of an action of a group Γ on a CAT(0) cube
complex and the existence of a subgroup Λ < Γ such that the pair (Γ,Λ) has more than one
end. More recently, Agol’s proof of the last standing conjecture in 3-manifolds, the virtual
Haken conjecture, uses (special) cube complexes in a crucial way, thus indisputably asserting
their relevance in the mathematical scenery.

The first example of a CAT(0) cube complex X is a simplicial tree; the midpoint of a vertex
is the analogue of a hyperplane for a general CAT(0) cube complex. Hyperplanes separate X
into two connected components, called halfspaces, the collection of which is denoted by H(X).
If the vertex set of X is locally countable, then H(X) is countable as well.

A CAT(0) cube complex is in particular a median space; that is, given any three vertices,
there is a unique vertex, the median, that is on the combinatorial geodesics joining any two
of the three points. For n � 2, let H(X)n denote the set of n-tuples of halfspaces in X. If
1 � p <∞, then we define a 1-parameter family of Aut(X)-invariant cocycles

c(n,R) : X ×X ×X −→ �p(H(X)n)

as the sum of the characteristic functions of some appropriate finite subsets of nested halfspaces
(called über-parallel; see Definitions 2.12 and 2.15) ‘around’ the median of three points and at
distance less than R. Incidentally, this is not a distance but just a pseudo-distance on the set
of hyperplanes, and will be discussed more in Subsection 2.G. Choosing a basepoint v0 ∈ X
and evaluating c on an Aut(X)-orbit, we get what we call a median cocycle on Aut(X) ×
Aut(X) × Aut(X). We then prove that, for every n � 2 and R � 0, the cocycle so defined is
bounded and hence defines a bounded cohomology class m(n,R)(X) in degree 2, which we call
a median class of X. Note that for any n � 2 there is a median class, but in the following
we will not necessarily make a distinction of the various median classes for different n. (See
(3.5), Proposition 3.4 and Lemma 3.11 for the precise definition and the proof of the above
statements.)

If ρ : Γ → Aut(X) is an action of a group Γ by automorphisms on X, then the median class
of the Γ-action is the pullback

ρ∗(m(n,R)(X)) ∈ H2
b(Γ, �p(H(X)n)).

Theorem 1.1. Let X be a finite-dimensional CAT(0) cube complex with a Γ-action. If the
Γ-action is non-elementary, then there is an RΓ � 1 so that the median class of the Γ-action
ρ∗(m(n,R)(X)) does not vanish for all n � 2 and all R � RΓ.

We call an action Γ → Aut(X) non-elementary if there is no finite orbit in X � ∂�X, where
∂�X denotes the visual boundary of X as a CAT(0) space. We note that, owing to [18], the
visual boundary of a finite-dimensional CAT(0) cube complex is both well defined, and indeed
well-behaved.

Let us say a word about what it means for a Γ-action to be non-elementary in the context
of CAT(0) cube complexes. First of all, the assumption implies, in particular that, by passing
to a subgroup of finite index, there are no Γ-fixed points in ∂�X. Under this hypothesis, using
the work of Caprace–Sageev [20, Proposition 3.5], one can pass to a non-empty convex subset
of X, called the Γ-essential core (see Subsection 2.E), which will have rather nice dynamic
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properties. Furthermore, the exclusion of a finite orbit on ∂�X excludes the existence of a
Euclidean factor in the essential core (see Corollary 2.35).

A key object in this paper is the Roller boundary ∂X of a CAT(0) cube complex, defined
in Subsection 2.A. It arises naturally from considering the hyperplane (and hence halfspace)
structure of X. The vertex set of X, together with its Roller boundary, can be thought of as
a closed subset of a Bernoulli space (with H(X) as the indexing set) and is hence compact
and totally disconnected. Although, in the case of a tree, the Roller boundary and the visual
boundary coincide, we remark that in general, there is no natural map between them. (There
is a map from the CAT(0) boundary to a quotient of the Roller boundary [28], but we will
not use it in this paper.) In Proposition 2.26, we prove nevertheless a result relating, to the
extent to which it is possible, finite orbits in the Roller boundary to finite orbits in the CAT(0)
boundary. The dichotomy that we obtain is analogous to the one in the case of a group Γ acting
on a symmetric space X of non-compact type; in this case, if Γ fixes a point at infinity in the
CAT(0) boundary of X , then the image of Γ is contained in a parabolic subgroup, via which
it acts on the symmetric space of non-compact type associated to the semisimple component
of the parabolic. The latter action may very well be non-elementary.

The dichotomy in Proposition 2.26 leads to the following converse of Theorem 1.1.

Theorem 1.2. Let X be a finite-dimensional CAT(0) cube complex with an elementary
Γ-action. Then:

(1) either there is a finite orbit in the Roller compactification X = X ∪ ∂X of X and
hence the median class ρ∗(m(n,R)(X)) of the Γ-action on X vanishes for all n � 2 and
all R � 1;

(2) or there exists a finite index subgroup Γ′ < Γ and a Γ′-invariant subcomplex X ′ ⊂ ∂X
(of lower dimension) on which the Γ′-action is non-elementary. In this case any median
class ρ∗(m(n,R)(X)), n � 2 and R � 1, of the Γ-action on X restricts to a median class
of the Γ′-action on X ′. In particular, RΓ = RΓ′ .

We say that an action of a group Γ on X is Roller elementary if it has a finite orbit on the
Roller compactification (that is, X union its Roller boundary). Combining the above theorem
with Theorem 1.1 we get the following formulation.

Theorem 1.3. Let X be a finite-dimensional CAT(0) cube complex. A Γ-action on X is
Roller elementary if and only if the median class ρ∗(m(n,R)(X)) vanishes for some (equivalently,
any) n � 2 and all R � 1.

One of the nice features of the Roller boundary is its robustness when considering products.
Because of this, the median cocycle can be defined for each irreducible factor of the essential
core of X. We refer the reader to Proposition 3.2 for a description of the cocycle in the case in
which the CAT(0) cube complex is not irreducible and hence of the naturality of the behavior of
the median class with respect to products. This, together with Theorem 1.1 yields immediately
the following corollary.

Corollary 1.4. Let X be a finite-dimensional CAT(0) cube complex with a non-
elementary action Γ → Aut(X). Then for all n � 2 and 1 � p <∞,

dim H2
b(Γ, �p(H(X)n)) � m,

where m � 1 is the number of irreducible factors in the essential core of the Γ-action on X.
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This result might not be sharp, in the sense that H2
b(Γ, �p(H(X)n)) could be in some cases

infinite-dimensional.
In a similar vein Bestvina–Bromberg–Fujiwara have proven the non-vanishing of the second

bounded cohomology with general uniformly convex Banach spaces as coefficients and for
weakly properly discontinuous actions on CAT(0) spaces in the presence of a rank 1 isometry
(that is, an isometry whose axis does not bound a half-flat), see [4].

Our results are different in that in Theorem 1.1, we are neither assuming that the action of
Γ → Aut(X) is proper or weakly properly discontinuous, nor that the CAT(0) cube complex
is proper or has a cocompact group of automorphisms.

Moreover, if the CAT(0) cube complex is a product, then there are no rank 1 isometries.
Caprace–Sageev proved [20] that there is always a decomposition of a CAT(0) cube complex
analogous to the decomposition of symmetric spaces into ‘irreducible’ (or ‘rank 1’) factors. Our
result is not sensitive to this decomposition and hence also applies to products.

But, more than anything else, we want to emphasize that the existence of a well-behaved and
concrete bounded cohomological class goes well beyond the mere knowledge that the bounded
cohomology group does not vanish and is the starting point of a wealth of rigidity results (see,
for example, [7, 8, 10–15, 24, 25, 31, 33, 35–37, 40, 53]).

Furthermore, our coefficients reflect geometric properties of the CAT(0) cube complex, and
this is essential to draw conclusions about the action. An example of this is the following
superrigidity result.

Theorem 1.5 (Superrigidity). Let Y be an irreducible finite-dimensional CAT(0) cube
complex and Γ < G1 × · · · ×G� =: G be an irreducible lattice in the product of � � 2 locally
compact groups. Let Γ → Aut(Y ) be an essential and non-elementary action on Y . Then the
action of Γ on Y extends continuously to an action of G, by factoring via one of the factors.

Here the group Aut(Y ) is a topological group endowed with the topology of the pointwise
convergence on vertices. This theorem is proved in Section 6, to which we refer the reader also
for an analogous result that does not require Y to be irreducible and the action to be essential.

We remark that requiring that the action be essential is necessary if one wants an irreducible
CAT(0) cube complex, as there is no guarantee that the essential core will be irreducible even
when X is.

A result similar to Theorem 1.5 was proved by Monod [39, Theorems 6 and 7] (see also [18,
Corollary 1.9]) in the case of an infinite-dimensional CAT(0) space, with conditions both on the
action and on the lattice Γ. For example, if Γ is not uniform, then in order to apply Monod’s
version of Theorem 1.5, Γ has to be square-integrable and weakly cocompact. Although these
conditions are verified for a large class of groups (such as, for example, Kazhdan Kac–Moody
lattices and lattices in connected semisimple Lie groups), they are in general rather intractable.
To give a sense of this, let us only remark that already finite generation (needed for example for
square integrability) is not known for a lattice Γ < Aut(T1) × Aut(T2), not even by imposing
strong conditions on the closure of the projections on Γ in Aut(Ti) to ensure irreducibility.
Furthermore, the more specific nature of a CAT(0) cube complex versus a CAT(0) space allows
us to extend the action to the whole complex.

As an illustration we have the following corollary.

Corollary 1.6. Let Γ be an irreducible lattice in the product G := G1 × · · · ×G� of � � 2
locally compact groups with a finite number of connected components. Then any Γ-action on
a finite-dimensional CAT(0) cube complex is elementary and has a finite orbit in the Roller
compactification X = X ∪ ∂X.
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Proof. Indeed, since G has finitely many connected components and, for any CAT(0) cube
complex X, the group Aut(X) is totally disconnected, a continuous map from G to Aut(X)
must have finite image. In view of Theorem 1.5 (in fact, more precisely of Corollary 6.2), this
implies that every Γ-action on a finite-dimensional CAT(0) cube complex is elementary. Note
that every finite index subgroup Γ′ � Γ is itself a lattice in G. Moreover, the closure of the
projection of Γ′ to each factor Gi is a closed subgroup of finite index in Gi. It is thus open, and
therefore contains the connected component of the identity of Gi. This shows that Γ′ is itself
an irreducible lattice in the product of � � 2 locally compact groups with a finite number of
connected components. By Theorem 1.2, this implies that every Γ′-action, and thus also every
Γ-action, has a finite orbit in the Roller compactification of X.

Combining Corollary 1.6 with a description of the structure of a point stabilizer in the Roller
boundary, established by Pierre-Emmanuel Caprace in Appendix B, one obtains the following
Fixed Point property for lattices in semisimple groups, which was pointed out to us by him.

Corollary 1.7. Let Γ be an irreducible lattice in a semisimple Lie group of rank at least 2.
Then every Γ-action on a finite-dimensional CAT(0) cube complex X has a fixed point.

Proof. If the semisimple Lie group has only one simple factor, then Γ has property (T)
and the desired conclusion is well known, see [44]. Otherwise, we apply Corollary B.2 from
Appendix B: Condition (a) holds as a consequence of Margulis’ Normal Subgroup Theorem,
while Condition (b) holds by Corollary 1.6.

It is conjectured that the conclusion of Corollary 1.7 holds without the hypothesis that X is
finite-dimensional; see [23]. In fact, Yves de Cornulier shows in [23] that this is indeed the case,
provided the ambient semisimple Lie group has at least one simple factor of rank at least 2.

On a different tone, recall that the concept of measure equivalence was introduced by Gromov
as a measure theoretical counterpart of quasi-isometries. The vanishing or non-vanishing of
bounded cohomology is not invariant under quasi-isometries (see [16, Corollary 1.7]); on the
other hand, Monod–Shalom proved that vanishing of bounded cohomology with coefficients in
the regular representation is invariant under measure equivalence [41] and hence introduced a
class of groups Creg := {Γ : H2

b(Γ, �2(Γ)) �= 0}. They also proved, for example, that if Γ ∈ Creg

and Γ × Γ is measure equivalent to Λ, then Γ × Γ and Λ are commensurable. We can add to
the groups in this list.

Corollary 1.8. Let Γ be a group acting on a finite-dimensional irreducible CAT(0) cube
complex. If the action is metrically proper, non-elementary and essential, then H2

b(Γ, �p(Γ)) �= 0
for 1 � p <∞, and hence in particular Γ ∈ Creg.

We remark that the same result does not hold if X is not irreducible. In fact, it can be
easily seen, using [17, Theorem 16], that if Γ < G1 ×G2 is an irreducible lattice in the product
of locally compact groups, then H2

b(Γ, �p(Γ)) = 0, provided G1 and G2 are not compact. An
example of such a group is any irreducible lattice Γ in SL(2,Qp) × SL(2,Qq), while it is easy to
see that it acts non-elementarily and essentially on the product of two regular trees Tp+1 × Tq+1.

A result similar to Corollary 1.8 has been proved by Hamenstädt in the case of a group
Γ acting properly on a proper CAT(0) space, also under the assumption that there exists a
rank 1 isometry and that the group Γ is closed in the isometry group of X [30]. Similarly,
Hull and Osin proved that every group Γ with a sufficiently nice hyperbolic subgroup has
infinite-dimensional H2

b(Γ, �p(Γ)) for 1 � p <∞ (see [32]). Examples of groups satisfying
such a condition encompass, among others, groups Γ acting properly on a proper CAT(0)
space with a rank 1 isometry and groups Γ acting on a hyperbolic space also with a
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rank 1 isometry and containing a loxodromic element satisfying the Bestvina–Fujiwara ‘weakly
properly discontinuous’ condition. We emphasize that our CAT(0) cube complexes are allowed
to be locally countable and reducible (recall that irreducibility is equivalent to the existence of
a rank 1 isometry [20]).

The proof of Theorem 1.1 uses the functorial approach to bounded cohomology developed
in [9, 17, 38]; the main point here is to be able to realize bounded cohomology via essentially
bounded alternating cocycles on a strong Γ-boundary. Recall from [34] that a strong Γ-
boundary is a Lebesgue space (B,ϑ) endowed with a measure class preserving Γ-action that is
in addition amenable and doubly ergodic ‘with coefficients’ (see [34] for the precise definition
or Subsection 3.C). An example of a strong Γ-boundary is the Poisson boundary of any
spread-out non-degenerate symmetric probability measure on Γ, see [34]. The advantage of
the approach using a strong Γ-boundary is that the second bounded cohomology is not a
quotient anymore (hence allowing one to determine easily when a cocycle defines a non-trivial
class); the disadvantage is that the pullback via a representation has to be realized by a
boundary map (with consequent technical difficulties [9]). The amenability of a strong Γ-
boundary implies immediately the existence of a boundary map into probability measures on
the Roller compactification of X, but going from probability measures to Dirac masses is often
the sore point of many rigidity questions. In the case of a proper CAT(0) cube complex and a
cocompact group of isometries in Aut(X), Nevo–Sageev identified the closure of the set of non-
terminating ultrafilters (see Subsection 2.A for the definition) as a metric model for a Poisson
boundary of Γ (see [43]). In this case, the boundary map could have been taken simply to be
the identity. In general, we have the following theorem.

Theorem 1.9. Let Γ → Aut(X) be a non-elementary group action on a finite-dimensional
CAT(0) cube complex X. If (B,ϑ) is a strong Γ-boundary, then there exists a Γ-equivariant
measurable map ϕ : B → ∂X.

In fact, one can obtain something a bit more precise, namely that the boundary map takes
values in the non-terminating ultrafilters of the Γ-essential core of X (see Theorem 4.1 and
Corollary 4.2). To prove Theorem 1.9, we develop some methods that take inspiration from [40,
Proposition 3.3] in the case of a simplicial tree but are considerably more involved in the case
of a CAT(0) cube complex due to the lack of hyperbolicity. For the sake of completeness we
remark that, in the case in which X is a CAT(0) space of finite telescopic dimension, Bader–
Duchesne–Lécureux proved the existence of such a boundary map into the visual boundary
∂�X of X [1].

The first step in the identification of a Poisson boundary in [43] is the proof that the set
of non-terminating ultrafilters is not empty, under the assumption that the action is essential
and the CAT(0) cube complex is cocompact. The same assertion with the cocompactness of
X replaced by the non-existence of Aut(X)-fixed points in the CAT(0) boundary follows from
our proof that the boundary map takes values into the set of the non-terminating ultrafilters.

Corollary 1.10. Let Y be a finite-dimensional CAT(0) cube complex such that Aut(Y )
acts essentially and without fixed points in ∂�Y . Then the set of non-terminating ultrafilters
in ∂Y is not empty.

The structure of the paper is as follows. In Section 2, we recall the appropriate definitions
and fix the terminology of CAT(0) cube complexes; we establish moreover some basic results
needed in the paper, by pushing a bit further than what was available in the literature; the
knowledgeable reader should have no problem parsing through the subsections. In Section 3, we
construct the cocycle on the Roller compactification of the CAT(0) cube complex X and show
that it is bounded. We conclude the section with an outlook on the proof of the non-vanishing
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of a median class. The boundary map and Theorem 1.9 are discussed in Section 4. We prove
Theorems 1.1 and 1.2 in Subsection 5.B, Corollary 1.4 is a consequence of Theorem 1.1 and
Proposition 3.2, while Theorem 1.5 and Corollary 1.8 are proved in Section 6.

2. Preliminaries and basic results

2.A. Generalities on CAT(0) cube complexes, hyperplanes, duality and boundaries

A cube complex X is a metric polyhedral complex with cells isomorphic to [0, 1]n and isometries
ϕj : [0, 1]j → X as gluing maps. The cube complex is CAT(0) if it is non-positively curved with
the induced Euclidean metric and has finite dimension D if the m-dimensional skeleton Xm of
X is empty for m > D and non-empty for m = D. We always assume our cube complexes to
be finite-dimensional. A cube complex X is CAT(0) if and only if it is both simply connected
and the link of every vertex is a flag complex: recall that a flag complex is a simplicial complex
such that any (n+ 1)-vertices that are pairwise connected by an edge actually span an n-
simplex [5, Theorem II.5.20]. A combinatorial isometry between two CAT(0) cube complexes
is a homeomorphism f : X → Y such that the composition f ◦ ϕj : [0, 1]j → Y is an isometry
into a cube of Y . Note that any combinatorial isometry preserves also the CAT(0) metric. We
denote by Aut(X) the group of combinatorial isometries from X to itself.

Given a finite-dimensional cube complex X, we can define an equivalence relation on edges,
generated by the condition that two edges are equivalent if they are opposite sides of the same
square (that is, a 2-cube). A midcube of an n-cube σ with respect to the above equivalence
relation is the convex hull of the set of midpoints of elements in the equivalence relation. A
hyperplane is the union of the midcubes that intersect the edges in an equivalence class. So
a hyperplane is a closed convex subspace and it defines uniquely two halfspaces, that is, the
two complementary connected components. On the countable collection H(X), or simply H,
when no confusion arises, of halfspaces on X defined by the hyperplanes, one can define a
fixed-point-free involution

∗ : H −→ H

h �−→ h∗ := X � h,
(2.1)

so that a hyperplane is the geometric realization of a pair {h, h∗}. In the following, we identify
the hyperplane ĥ with the pair of halfspaces {h, h∗} that it defines. We denote by Ĥ(X) the
set of hyperplanes.

We say that two halfspaces h, k are transverse, and we write h � k if all the intersections

h ∩ k, h ∩ k∗, h∗ ∩ k, h∗ ∩ k∗ (2.2)

are not empty. Two halfspaces h, k are parallel, and we write h ‖ k, if they are not transverse,
equivalently if (exactly) one of the following relations,

h ⊂ k∗, h ⊂ k, h∗ ⊂ k∗, h∗ ⊂ k (2.3)

holds; two parallel halfspaces h and k are said to be facing if h ⊂ k∗. We say that two
hyperplanes ĥ, k̂ are transverse (respectively, parallel) if some (and hence any) choice of
corresponding halfspaces h and k is transverse (respectively, parallel). Finally, we say that
two points u and v are separated by a halfspace h (or a hyperplane ĥ = {h, h∗}) if u ∈ h and
v ∈ h∗ (or vice versa).

Two halfspaces h, k are said to be nested if either h ⊂ k or k ⊂ h. A subset of hyperplanes
is transverse (respectively, parallel) if all of its elements are pairwise transverse (respectively,
parallel).

Recall that a family of pairwise transverse hyperplanes must have a common intersection
([47] or [46]). We can think of the dimension of a CAT(0) cube complex as the largest
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cardinality of a family of pairwise transverse hyperplanes, because such a maximal intersection
defines a cube of maximal dimension.

Given a subset α ⊂ H of halfspaces, we denote by α∗ the set {h∗ : h ∈ α}.

Definition 2.1. We say that a subset α ⊂ H of halfspaces satisfies:

(i) the partial choice condition if α ∩ α∗ = ∅, that is if whenever h ∈ α, then h∗ /∈ α;
(ii) the choice condition if α ∩ α∗ = ∅ and α � α∗ = H;
(iii) the consistency condition if whenever h ∈ α and h ⊂ k, then k ∈ α.

Then an ultrafilter on H is a subset of H that satisfies the choice and consistency properties.
In other words, an ultrafilter on H is a choice of a halfspace for each hyperplane in X with
the condition that as soon as a halfspace is in the ultrafilter, any halfspace containing it must
also be in the ultrafilter. We call partially defined ultrafilter a subset α ⊂ H that satisfies the
partial choice and consistency properties.

Remark. We point out that the notion of ultrafilter used in the theory of CAT(0) cube
complexes is slightly off from the classical one in set theory and topology (see, for example,
[21]). In fact, in the context of CAT(0) cube complexes, subsets of ultrafilters are never
ultrafilters and thus, in particular, the intersection of two ultrafilters is never an ultrafilter.

We say that an ultrafilter satisfies the Descending Chain Condition (DCC) if every
descending chain of halfspaces terminates. Such ultrafilters are called principal and are in
one-to-one correspondence with the vertices of the CAT(0) cube complex X (see [28]). By
abuse of notation, we do not usually make a distinction between X, its vertex set or the
collection of principal ultrafilters.

The consideration of X as a collection of ultrafilters leads in a natural way to an inclusion of
X into the Bernoulli space 2H, where v �→ {h ∈ H : v ∈ h}. This justifies a further (standard)
abuse: thinking of X ⊂ 2H, by duality we get that h ∈ v if and only if v ∈ h and we can hence
write v =

⋂
h∈v h. Let X be the closure of X in 2H. One can check that the elements of X,

thought of as subsets of H, are ultrafilters.
The correspondence that associates to an ultrafilter a vertex in X can be pushed further

to give a duality between finite-dimensional CAT(0) cube complexes and those pocsets that
satisfy both the finite interval condition and the finite width condition. Recall that a pocset
Σ is a partially ordered set with an order-reversing involution. The pocset satisfies the finite
interval condition if, for every pair α, β ∈ Σ with α ⊂ β, there are only finitely many γ ∈ Σ
such that α ⊂ γ ⊂ β; moreover, it satisfies the finite width condition if there is an upper bound
on the size of a collection of incomparable elements. Given a pocset Σ, one can consider the
space of ultrafilters on Σ. The CAT(0) cube complex X(Σ) corresponding to the pocset Σ has
the principal ultrafilters as vertices, edges joining ultrafilters that differ only in the assignment
on one element in Σ and cubes attached to the 1-skeleton whenever it is possible.

The set of halfspaces H(X) in a CAT(0) cube complex is a pocset with the above properties
and the CAT(0) cube complex obtained with the above construction from the set of principal
ultrafilters on H(X) is exactly X.

The boundary ∂X := X �X is called the Roller boundary, and consists of all ultrafilters
that are not principal [45]. The compact set X is called the Roller compactification.

An ultrafilter v ∈ ∂X is said to be non-terminating if every finite descending chain can be
extended, that is, if given a finite collection {h0, . . . , hN} ⊂ v such that h0 ⊃ · · · ⊃ hN , then
there is an hN+1 ∈ v such that hN+1 ⊂ hN ⊂ · · · ⊂ h0.

While the Roller boundary ∂X is not empty if the CAT(0) cube complex is unbounded, it
is unclear as to when the set of non-terminating ultrafilters is not empty. However, one can
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impose reasonable conditions that do guarantee that these exist (see [43] and Section 4). In the
case of a tree, the entire Roller boundary consists of non-terminating ultrafilters; in the case
of a ZD, there are only 2D-many non-terminating ultrafilters, while there are examples, such
as the wedge of two strips [43, Remark 3.2], in which the set of non-terminating ultrafilters is
empty.

A CAT(0) cube complex has of course also a visual boundary ∂�X with respect to its CAT(0)
metric [5]. We recall that ∂�X is the set of endpoints of geodesic rays in X, where we identify
two geodesic rays if they stay at bounded distance from each other.

2.B. Intervals and median structure

If u, v ∈ X, then their combinatorial distance d(u, v) is the number of hyperplanes by which
the two corresponding ultrafilters differ. We will call a sequence of points u = x0, . . . , xn = v a
combinatorial geodesic if d(xi, xi+1) = 1 for i = 0, . . . , n− 1 and

d(xi, xj) + d(xj , xk) = d(xi, xk)

for all 1 � i � j � k � n. Hence the combinatorial distance corresponds to the graph metric
on the 1-skeleton of X. The oriented interval of halfspaces

[u, v] = {h ∈ H : h ∈ v � u}
is the (finite) set of halfspaces containing v and not u and the counting measure on H is
consistent with the combinatorial metric d on X in that |[u, v]| = d(u, v). Note that on [u, v]
there is a partial order given by the inclusion. It is immediate to check that

[u, v] = [v, u]∗,

where we recall that [v, u]∗ = {h ∈ H : h∗ ∈ [v, u]}.
Combinatorial geodesics and oriented intervals are related as follows.

Lemma 2.2. For each u, v ∈ X, combinatorial geodesics between u and v are in one to
one correspondence with enumerations of the elements of [u, v] that are compatible with the
(reverse) partial order given by inclusions.

Proof. Let u = x0, . . . , xn = v be a combinatorial geodesic. One obtains an enumeration
h1, . . . , hn of elements of [u, v] by setting hi to be the halfspace corresponding to the unique
oriented edge between xi and xi+1. Let us now show that this order is consistent with the
(reverse) partial order. Indeed, suppose that i < j. If hi � hj , then they are incomparable and
there is nothing to check. Otherwise, observe that xi ∈ hi \ hj as xi is obtained by starting
at u and crossing each of the elements in {h1, . . . , hi} (which does not contain hj). Therefore,
hj ⊂ hi.

Conversely, let u, v ∈ X with d(u, v) = n and assume we are given an enumeration h1, . . . , hn
consistent with the inclusion, where hj ∈ [u, v]. By consistency, if h �= hj were a halfspace
between u and h1, then h ∈ [u, v], contradicting that d(u, v) = n. Therefore, there is a unique
oriented edge starting at u corresponding to h1. Let x1 be the terminal vertex. Inductively, this
defines a sequence x1, . . . , xn where xn = v. Since |[u, v]| = d(u, v), it follows that this describes
a combinatorial geodesic.

We consider also the vertex-interval

I(u, v) := {w ∈ X : w ∩ (u ∩ v) = u ∩ v},
that is, the set of all vertices that are crossed by some combinatorial geodesic between u and v.

The following fact seems to be folklore and is essential for our result. We refer the reader to
[6, Theorem 1.16] for a complete proof.
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Lemma 2.3 (Intervals embedding). Let u, v ∈ X. Then the vertex intervals I(u, v)
isometrically embed into ZD (with the standard cubulation), where D is the dimension of X.

The image Iu,v in ZD of the above embedding is exactly the CAT(0) cube complex associated
to the halfspaces H(u, v) := [u, v] ∪ [v, u].

Remark 2.4. In general, if u ∈ X is an ultrafilter, its opposite u∗ is not an ultrafilter. It is
easy to see that if u∗ is an ultrafilter, then H(X) = [u, u∗] ∪ [u∗, u] and hence X is an interval.

Also recall that the vertex set of a CAT(0) cube complex with the edge metric is a median
space [45]; namely, for every triple of vertices u, v, w ∈ X, the intersection I(u, v) ∩ I(v, w) ∩
I(w, u) is exactly a singleton. This unique point is called the median of u, v and w and we
denote it by m(u, v, w). It is a standard fact that

m(u, v, w) = (u ∩ v) ∪ (v ∩ w) ∪ (w ∩ u). (2.4)

2.C. Isometric embeddings

If H′ ⊂ H(X) is an involution invariant subset of halfspaces, then H′ is a pocset in its own right
and hence one can consider the associated CAT(0) cube complex X(H′). A priori, the complex
X(H′) that one obtains with this construction cannot be embedded as a subcomplex of X,
but there is always a combinatorial quotient map πH′ : X → X(H′), defined by α �→ α ∩ H′,
that restricts to πH′ : X → X(H′). If the subset H′ ⊂ H is invariant for the action of a group
Γ → Aut(X) of combinatorial automorphisms, then X(H′) inherits a Γ-action with respect to
which the map πH′ is Γ-equivariant.

There are however conditions under which X(H′) can be embedded in X.

Definition 2.5. Let H′ ⊂ H(X) be an involution invariant subset of halfspaces. A lifting
decomposition of H′ is a choice of a subset W ⊂ H(X) \ H′ satisfying the partial choice and
consistency conditions (see Definition 2.1), and so that H(X) = H′ � (W �W ∗).

We note that a lifting decomposition need not exist. A collection H′ ⊂ H is said to be tight
if it satisfies the following: for every h, k ∈ H′, if h ⊂ � ⊂ k, then � ∈ H′. We remark that the
existence of a lifting decomposition W of H′ ⊂ H implies that H′ is tight. Indeed, suppose
that h, k ∈ H′ and h ⊂ � ⊂ k. If � /∈ H′, then � ∈W �W ∗. Since H′ is involution invariant,
we may assume that � ∈W . But this means that k ∈W , which contradicts the fact that
W ∩ H′ = ∅. This shows that the condition that H′ is tight is necessary for the existence of a
lifting decomposition for it.

Lemma 2.6. Let H′ ⊂ H(X) be a involution invariant tight subset of halfspaces. Assume
that H′ admits a lifting decomposition H = H′ � (W �W ∗). Then there is an isometric
embedding i : X(H′) ↪→ X(H), defined by i(α) := α �W, whose image is i(X(H′)) =

⋂
h∈W h.

As particular cases, if H′ = ∅, then i(X(HW )) is a point; or if W contains an infinite
descending chain, then i(X(H′)) ⊂ ∂X.

Proof. We first show that if α is an ultrafilter on HW , then α �W is an ultrafilter on H. By
construction, α �W satisfies the choice condition. We need to verify the consistency condition,
that is, that if h ∈ α �W , k ∈ H with h ⊂ k, then k ∈ α �W .

If h ∈W and k ∈ H is such that h ⊂ k, then k ∈W , since W ⊂ H satisfies the consistency
condition. If h ∈ α and k ∈ H is such that h ⊂ k, then either k ∈ α � α∗ and hence k ∈ α
because α is an ultrafilter on α � α∗, or k ∈W �W ∗. But k cannot be in W ∗. In fact, if
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k ∈W ∗, then k∗ ∈W ; since k∗ ⊂ h∗ and W satisfies the consistency condition, it follows that
h∗ ∈W , contradicting that α ∩ (W �W ∗) = ∅.

Now, assume that α, β ∈ X(H′). It is easy to check that

(α �W )Δ(β �W ) = αΔβ,

since H′ ∩W = ∅. This shows that the embedding is an isometry and hence extends to the
cube structure on X(H′).

By definition α �W =
⋂
h∈α�W h ⊂

⋂
h∈W h, so that H ⊆ (α � α∗) � (W �W ∗) Moreover,⋂

h∈W h consists of all partially defined ultrafilters on W �W ∗: to complete an element x ∈⋂
h∈W h to an ultrafilter on H is exactly equivalent to choosing α ∈ X(H′).

Remark 2.7. As alluded to above, the existence of a lifting decomposition is a very
restrictive condition. However, the existence of a strongly convex set, that is a set B ⊂ X
such that for any x, y ∈ B also I(x, y) ⊂ B, implies the existence of a lifting decomposition. In
fact, if

H′ := {h ∈ H(X) : h crosses B} and W := {h ∈ H(X) : B ⊂ h},
then H = H′ � (W �W ∗) is a lifting decomposition of H′ with which X(H′) gets isometrically
embedded in X with image B.

Definition 2.8. A map 
 : X → X is a projection if there exists a lifting decomposition
H(X) = HW � (W �W ∗) and if 
 = i ◦ πHW

, where i : X(HW ) ↪→ X is the isometric embedding
in Lemma 2.6.

It is easy to verify that the composition of two projections is still a projection.
If Γ → Aut(X) is an action and HW is Γ-invariant, then X(HW ) inherits a Γ-action. If in

addition 
 is a projection and the embedding is Γ-equivariant, then the image of the projection
is a Γ-invariant subcomplex in X. This happens exactly when the choice of subset W ⊂ H(X)
of the lifting decomposition is Γ-invariant, so that i(X(HW )) is a Γ-invariant subcomplex in
X(H).

2.D. Decomposition into products

The product of CAT(0) cube complexes is a CAT(0) cube complex in a natural way. If X =
Y × Z, then there is the following decomposition of the hyperplanes:

Ĥ(X) = {ĥY × Z : ĥY ∈ Ĥ(Y )} � {Y × ĥZ : ĥZ ∈ Ĥ(Z)} ∼= Ĥ(Y ) � Ĥ(Z), (2.5)

and (ĥY × Z) � (Y × ĥZ) for any hY ∈ H(Y ) and hZ ∈ H(Z).
Conversely, any such partition of the hyperplanes into mutually transverse subsets cor-

responds to a decomposition of the CAT(0) cube complex into a product. In fact, by [20,
Proposition 2.6] any CAT(0) cube complex decomposes as a product X = X1 × · · · ×Xm of
irreducible factors, m � 1, which are unique up to permutations and are often referred to as
the rank 1 factors of X.

The induced CAT(0) metric (respectively, the combinatorial metric) on the product is the �2-
product (respectively, �1-product) of the factor metrics. We record the following standard fact.

Lemma 2.9. Let X = X1 × · · · ×Xk be the product of CAT(0) spaces Xj , j = 1, . . . , k and
let G := G1 × · · · ×Gk, where Gj � Aut(Xj) is a subgroup of the isometries of the jth factor
Xj . Then any Gj-fixed point in ∂�Xj defines a G-fixed point in ∂�X.

Proof. Let us denote by δj and δ the CAT(0) metrics, respectively, onXj and onX. Assume
that, up to permuting the indices, there is a G1-fixed point ξ1 ∈ ∂�X1. Let �1 : [0,∞) → X1 be
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a geodesic in X1 representing ξ1, that is, ξ1 = �1(∞). Since ξ1 is G1-invariant, it follows that
supt∈[0,∞) δ1(γ�1(t), �1(t)) <∞. If xj ∈ Xj for 2 � j � m is any point, then � : [0,∞) → X
defined by �(t) := (�1(t), x2, . . . , xm) is a geodesic in X. Then, for any γ ∈ G, we have

sup
t∈[0,∞)

δ(γ�(t), �(t))2 := sup
t∈[0,∞)

⎡⎣δ1(γ�1(t), �1(t))2 +
m∑
j=1

δj(γxj , xj)2

⎤⎦ <∞,

hence �(∞) is G-invariant.

In addition, there is a corresponding decomposition of the Roller boundary,

∂X =
m⋃
j=1

X1 × · · ·Xj−1 × ∂Xj ×Xj+1 × · · · ×Xm,

and Aut(X) contains Aut(X1) × · · · × Aut(Xm) as a finite index subgroup (Aut(X) is allowed
to permute isomorphic factors). If Γ → Aut(X) is a group acting by automorphisms, then there
is a subgroup Γ0 < Γ of finite index (� m!) that acts on Xj via the projection Γ0 → Aut(Xj).

2.E. The essential core

A halfspace h ∈ H is said to be Γ-essential if, for some (equivalently all) x ∈ X, the Γ-orbit of
x inside h, that is, Γ · x ∩ h, is not at bounded distance from the hyperplane ĥ. A hyperplane
ĥ ∈ Ĥ is called Γ-essential (or essential for short) if each of the corresponding halfspaces is Γ-
essential, and half-Γ-essential (or half-essential) if only one of the two corresponding halfspaces
if Γ-essential. The Γ-essential core (or essential core) Y of the Γ-action on X is a CAT(0)
cube complex corresponding to the Γ-essential (or essential) hyperplanes. The Γ-action on the
Γ-essential core Y is essential and any non-empty Γ-invariant convex subcomplex of Y is equal
to Y . Following the notation of [20], we denote by Ess(X,Γ) the set of Γ-essential hyperplanes
in X, so that we can write

Ĥ(X) = Ess(X,Γ) � nEss(X,Γ),

where the set of non-essential hyperplanes nEss(X,Γ) includes both the half-essential and
the trivial ones. Since both Ess(X,Γ) and nEss(X,Γ) are Γ-invariant subsets of Ĥ(X), the
decompositions

Ĥ(X) = Ess(X,Γ) � nEss(X,Γ) = Ess(Y,Γ) � nEss(X,Γ)

are Γ-invariant.
While in general the essential core of an action can be empty, it is proved in [20,

Proposition 3.5] that if there are no Γ-fixed points in the visual boundary ∂�X of X and no
Γ-fixed points in X, then the essential core Y is a non-empty Γ-invariant convex subcomplex
Y ⊂ X. As a consequence, one has both that ∂�Y ⊂ ∂�X and ∂Y ⊂ ∂X. However, even if X
is irreducible, its essential core Y need not be. Let Y = Y1 × · · · × Ym be the decomposition
into irreducible factors. Using the decomposition of hyperplanes for products discussed above,
we obtain

Ĥ(X) = Ess(Y,Γ) � nEss(X,Γ) = Ĥ(Y1) � · · · � Ĥ(Ym) � nEss(X,Γ), (2.6)

where we used for simplicity the notation Ĥ(Yj) to indicate Ess(Yj ,Γ) (since by hypothesis
they coincide because the induced action on Yj is Γ-essential).

Let H(X)n denote the set of n-tuples of halfspaces in X. Since if n-tuple s ∈ H(X)n is
essential, then any other halfspace containing the halfspaces in s is essential as well, the
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decomposition in (2.6) induces a decomposition

H(X)n = H(Y1)n � · · · � H(Ym)n � HnEss(X)n, (2.7)

where HnEss(X)n consists of n-tuples such that at least one halfspace is non-essential.

2.F. Skewering, flipping: über-separated and über-parallel pairs of halfspaces

Flipping and double skewering are important tools introduced by Caprace–Sageev [20].

Definition 2.10 ([20]). We say that γ ∈ Aut(X) flips a halfspace h ∈ H(X) if γh∗ ⊂ h.
Moreover, we say that γ skewers ĥ if γh ⊂ h (or h ⊂ γh).

Under reasonable hypotheses such combinatorial automorphisms can always be found. More
precisely, if X is a finite-dimensional CAT(0) cube complex and Γ → Aut(X) acts essentially
on X without fixing any point in the visual boundary ∂�X, then, for every halfspace h ∈
H(X), there exists γ ∈ Γ that flips h (see [20, Flipping Lemma, Subsection 1.2]). As a simple
consequence, we have also that, given any two halfspaces k ⊂ h, there exists γ ∈ Γ such that
γh ⊂ k ⊂ h (see [20, Double Skewering Lemma, Subsection 1.2]).

The following notion was first introduced by Behrstock–Charney [3].

Definition 2.11 ([3]). We say that two parallel hyperplanes are strongly separated if there
is no hyperplane that is transverse to both.

By the usual abuse of terminology we say that two halfspaces are strongly separated if the
corresponding hyperplanes are.

The existence of strongly separated hyperplanes is definitively a rank 1 phenomenon. In
fact, it is easy to see that if X is reducible, then there are no strongly separated hyperplanes.
For non-elementary CAT(0) cube complexes, the fact that the existence of strongly separated
hyperplanes is actually equivalent to the irreducibility of the CAT(0) cube complex was proved
in [20], although the case of a right-angled Artin group can already be found in [3].

We will need a finer notion of strong separation, which is less standard but will be key to
our work.

Definition 2.12. Two strongly separated halfspaces h1 and h2 are said to be an über-
separated pair if any two halfspaces k1, k2 with the property that hi � ki for i = 1, 2 are parallel.
We say that two strongly separated hyperplanes are über-separated if their halfspaces are.

Remark 2.13. If h ⊂ k ⊂ � are pairwise strongly separated halfspaces, then h and � form
an über-separated pair.

Lemma 2.14. Let Y be a finite-dimensional irreducible CAT(0) cube complex and Γ →
Aut(Y ) be a group acting essentially and non-elementarily. Given any hyperplane ĥ, there
exists γ ∈ Γ such that ĥ and γĥ form an über-separated pair and h ⊂ γh (or γh ⊂ h).

Proof. By [20, Proposition 5.1] for any halfspace h there is a pair of halfspaces h1, h2 such
that h1 ⊂ h ⊂ h2 and ĥ1 and ĥ2 are strongly separated. We apply now the Double Skewering
Lemma in [20, Subsection 1.2] to the pair h1 ⊂ h2 to obtain that h1 ⊂ h2 ⊂ γ0h1 for some γ0 ∈
Γ. By construction, and since Γ acts by automorphisms of Y , we have the chain of inclusions

h1 ⊂ h ⊂ h2 ⊂ γ0h1 ⊂ γ0h ⊂ γ0h2 ⊂ γ2
0h1 ⊂ γ2

0h ⊂ γ2
0h2.
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Since ĥ1 and ĥ2 are strongly separated, the same is true for γ0ĥ1 and γ0ĥ2, and for γ2
0 ĥ1 and

γ2
0 ĥ2. Hence ĥ and γ3

0 ĥ is an über-separated pair by Remark 2.13.

Note that über-separated pairs are in particular strongly separated and hence they do not
exist in the reducible case [20, Proposition 5.1]. To deal also with the reducible case we will
use the following generalization.

Definition 2.15. Two parallel halfspaces h1 and h2 are said to be über-parallel if, for
every pair of halfspaces k1, k2 such that hi � ki for i = 1, 2, then either the halfspaces k1 and
k2 are parallel, or they each cross both h1 and h2. Two parallel hyperplanes are über-parallel
if their halfspaces are.

According to the definition, an über-separated pair is in particular über-parallel. If X is a
product, then über-separated pairs from an irreducible factor will not be über-separated in X
but will be über-parallel. Even when X is irreducible, there may be reducible subcomplexes of
X. In such a reducible subcomplex, such as, for example, a copy of Z2 inside Z ∗ Z2, there may
be pairs of halfspaces that are über-separated in one of the factors of that subcomplex but not
über-separated in X. The notion of über-parallel captures these types of pairs, as is the case,
for example, in the Salvetti complex associated to Z ∗ Z2.

2.G. The bridge

The concept of bridge of two parallel hyperplanes was introduced by Behrstock–Charney [3].

Definition 2.16. Let h1 ⊂ h2 be a nested pair of halfspaces. Consider the set of pairs of
points in h1 × h∗2 minimizing the distance between h1 and h∗2, that is,

Mh1,h2 = {(x, y) ∈ h1 × h∗2 : if (a, b) ∈ h1 × h∗2 then d(x, y) � d(a, b)}.
It will be convenient to denote by M1 and M2 the projections of Mh1,h2 into h1 and h∗2,

respectively.
The combinatorial bridge connecting h1 and h∗2 is the union of intervals between such minimal

distance pairs:

b(ĥ1, ĥ2) =
⋃

(x,y)∈Mh1,h2

I(x, y).

In the following, we will drop the dependence on the hyperplanes whenever no confusion can
arise.

We observe that if (x1, y1), (x2, y2) ∈Mh1,h2 , then d(x1, y1) = d(x2, y2). The following lemma
on the distance between a point and a halfspace, permeates several proofs to come. We denote
by Ĥ(u, h) the hyperplanes separating u from h and define the distance of u from h to be

d(u, h) := min{d(u, v) | v ∈ h}.

Lemma 2.17. Let u ∈ X and let h be a halfspace so that u ∈ h∗. Then d(u, h) equals the
cardinality |Ĥ(u, h)|.

Proof. If a hyperplane separates u from h, it will have to be crossed by any combinatorial
geodesic from u to v for any v ∈ h and hence it will contribute to d(u, v). It follows that
|Ĥ(u, h)| � d(u, h).

Conversely, take v ∈ hminimizing the distance to u and assume that a combinatorial geodesic
from v to u crosses a hyperplane k̂ transverse to ĥ. Since k̂ and ĥ are not comparable, there
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is a (perhaps different) combinatorial geodesic that crosses k̂ before crossing ĥ. Let v′ be the
point reached just after crossing k̂, then v′ ∈ h because the geodesic has not crossed ĥ yet, and
d(u, v′) < d(u, v). Since this is impossible by definition of v, the geodesic must cross at most
all hyperplanes separating u from h.

The structure of the bridge is obtained in the following lemma.

Lemma 2.18. Let h1 ⊂ h2 be any pair of nested halfspaces.

(1) If ĥ separates two points in Mi, i = 1 or 2, then ĥ crosses ĥi.
(2) Let (p1, p2) ∈Mh1,h2 and suppose that ĥ separates p1 and p2. Then ĥ is parallel to

both ĥ1 and ĥ2.
(3) If a hyperplane ĥ separates any two points on the bridge and ĥ is transverse to either

of the ĥi, with i ∈ {1, 2}, then ĥ is transverse to both the ĥi.
(4) For any (p1, p2) ∈Mh1,h2 , the distance d(p1, p2) is exactly the number of hyperplanes

separating h1 from h∗2, including ĥ1 and ĥ2.
(5) The bridge b(ĥ1, ĥ2) is isomorphic to a product and strongly convex.

More precisely, b(ĥ1, ĥ2) ∼= M1 × I(p1, p2), where M1, the projection of Mh1,h2 into h1, is
strongly convex, and (p1, p2) is any pair in Mh1,h2 .

Before starting the proof, we make the general observation that if p1 ∈M1, then no
hyperplane ĥ can separate p1 from ĥ1. In fact, if there is such a hyperplane, the geodesic joining
p1 to the point p2 ∈M2 such that (p1, p2) ∈Mh1,h2 would have to cross this hyperplane before
crossing ĥ1, contradicting that (p1, p2) is a minimizing pair. The same argument holds of course
for p2 ∈M2.

We also establish the following easy claim.

Claim 2.19. Let p1 ∈M1 and p2 ∈M2 be such that (p1, p2) minimizes the distance.
Assume that there exists ĥ such that ĥ � ĥ1, p1 ∈ h and p2 ∈ h∗. Then either p1 belongs
to the cube identified by ĥ and ĥ1 or there exists ĥ′ such that ĥ′ � ĥ1, p1 ∈ h′ and ĥ′ ⊂ h.

Proof of Claim. If p1 does not belong to the cube determined by ĥ and ĥ1, then there
exists a hyperplane ĥ′ separating p1 from ĥ. If ĥ′ were not transverse to ĥ1, then ĥ′ would be
a hyperplane separating p1 from ĥ1, which we observed is not possible.

Proof of Lemma 2.18. (1) For simplicity let us set i = 1 and let p1, p
′
1 ∈M1 be the points

separated by ĥ. If ĥ is not transverse to ĥ1, then ĥ must separate, say, p1 from ĥ1 and we
observed already that this is not possible.

(2) If ĥ were to cross ĥ1, then we could assume, by applying repeatedly the claim, that p1

belongs to the cube identified by ĥ and ĥ1. Then, by crossing ĥ, one would still remain in ĥ1

and reach a point closer to p2, contradicting the minimality of (p1, p2).
(3) Let ĥ be a hyperplane that separates two points on the bridge and ĥ � ĥ1. Let us assume

that ĥ is parallel to ĥ2. Then, up to replacing h by h∗, M2 ⊂ h∗. If it were also M1 ⊂ h∗,
then the interval between any element of M1 and any element in M2 would be contained in h
and hence b(ĥ1, ĥ2) ⊂ h, which contradicts the assumption on ĥ. Therefore, M1 ∩ h∗ �= ∅. Let
p1 ∈M1 ∩ ĥ∗ and let p2 ∈M2 such that (p1, p2) ∈Mh1,h2 . By construction, ĥ separates p1 and
p2 and, hence, by (2), cannot be transverse to either ĥ1 or ĥ2, contradicting the hypothesis.

(4) Let (p1, p2) ∈Mh1,h2 . Clearly, d(p1, p2) is greater than or equal to the number of
hyperplanes separating h1 from h2. The other inequality is the assertion in (2).
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Definition 2.20. Let b(ĥ1, ĥ2) be the bridge of the hyperplanes ĥ1, ĥ2.
(1) The hyperplanes crossing both ĥ1 and ĥ2 are horizontal hyperplanes and are denoted

by β̂h.
(2) The hyperplanes separating ĥ1 and ĥ2 are called vertical hyperplanes and are denoted

by β̂v.

Continuation of the proof of Lemma 2.18. (5) From (3), we see that the hyperplanes of the
bridge are either horizontal or vertical. Then any element of β̂h crosses any element of β̂v and
vice versa; therefore, the bridge b(ĥ1, ĥ2) is a product X(β̂h) ×X(β̂v). Furthermore, by part
(2) we have that I(p1, p2) ∼= X(β̂v) for any (p1, p2) ∈Mh1,h2 .

To conclude, it remains to show that M1 is strongly convex. First, we note that, by (2) and
(3), if β̂h is not empty, each element of β̂h separates elements of M1 and of M2. Now take
s1, t1 ∈M1 and u1 ∈ I(s1, t1). Let s2, t2 ∈M2 be the other end of the minimizing pairs for
s1, t1. Let u2 ∈ I(s2, t2) be the element obtained by starting at s2 and crossing the hyperplanes
separating s1 from u1. This is well defined because, by (1) and (3), the hyperplanes separating
s1 from t1 are all in β̂h. Then only the hyperplanes separating h1 from h∗2 can separate u1 from
u2. Hence the pair (u1, u2) ∈Mh1,h2 , so that I(s1, t1) ⊂M1. Hence, M1 is strongly convex and
thus is b(ĥ1, ĥ2) = M1 × I(p1, p2).

Although we will not need it, we observe that, since the bridge is strongly convex, if
H := {h ∈ H : b(ĥ1, ĥ2) ⊂ h}, then H = (βh � βv) � (H �H∗) is a lifting decomposition of the
hyperplanes associated to the bridge and hence the bridge is isometrically embedded in X as
a product.

In view of Lemma 2.18 the following is well defined.

Definition 2.21. Let h1 ⊂ h2 be a nested pair of halfspaces. The length �(b(ĥ1, ĥ2)) of
the bridge of ĥ1 and ĥ2 is the cardinality of the set βv.

We will adopt the usual abuse of terminology and refer to horizonal halfspaces (respectively,
vertical halfspaces) as the halfspaces corresponding to the horizontal (respectively, vertical)
hyperplanes, and denote them by βh (respectively, βv).

It is straightforward to see that if ĥ1 and ĥ2 are strongly separated, then the corresponding
set of horizontal halfspaces is empty [3, Lemma 2.2].

The following lemma is probably well known, but we include it here because we could not
find a reference for it.

Lemma 2.22. Let X be a CAT(0) cube complex, x ∈ X and B ⊆ X be a strongly convex
subset. There is a unique point pB(x) ∈ B minimizing the combinatorial distance between x
and B.

Note that this lemma is standard in the case of the CAT(0) distance, see, for instance, [5].
In the case of a CAT(0) space, however, the proof of the existence of an orthogonal projection
is a bit more difficult than the proof of its uniqueness.

Proof. Since the combinatorial distance takes discrete values, the existence of a point in
B minimizing the distance is obvious. To prove uniqueness, let y and y′ be two points in B
minimizing the distance between B and x. Let us show that Ĥ(x, y) ⊆ Ĥ(x, y′), where Ĥ(x, y)
is the collection of hyperplanes separating x from y: If a hyperplane ĥ0 ∈ Ĥ(x, y) does not
separate x from y′, then it has to belong to Ĥ(y, y′), and so do the hyperplanes ĥ1, . . . , ĥs
separating ĥ0 from y. Let p ∈ I(x, y) obtained by starting at y and crossing the hyperplanes
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ĥs, . . . , ĥ0. Then p also belongs to I(y, y′) ⊆ B; but d(x, p) < d(x, y) because p is also on a
geodesic from x to y, contradicting that y was distance minimizing. So Ĥ(x, y) = Ĥ(x, y′). By
Lemma 2.2, we deduce that y = y′.

We can hence give the following definition.

Definition 2.23. For x ∈ X and B a strongly convex subset in X, denote by pB(x) ∈ B
the projection of x on B.

Lemma 2.24. Let h1 ⊂ h2 be a pair of nested halfspaces, x1 ∈ h1 and x2 ∈ h∗2. Denote by
b the bridge connecting h1 and h∗2. Then the following conditions are satisfied.

(1) A horizontal hyperplane of the bridge cannot separate xi from pb(xi) for i = 1, 2.
(2) The following holds true:

d(x1, x2) = d(x1, pb(x1)) + d(pb(x1), pb(x2)) + d(pb(x2), x2).

Proof. (1) Observe first of all that pb(x1) ∈ b(ĥ1, ĥ2) ∩ h1. Now let ĥ be a horizontal
hyperplane of the bridge. If ĥ separates x1 from pb(x1), say x1 ∈ h and pb(x1) ∈ h∗, then
there is a point in b(ĥ1, ĥ2) ∩ h1 different from pb(x1) and at distance from x1 smaller than
d(x1, pb(x1)), contradicting that pb(x1) is the projection of x1 on b(ĥ1, ĥ2).

(2) That d(x1, x2) � d(x1, pb(x1)) + d(pb(x1), pb(x2)) + d(pb(x2), x2) follows from the trian-
gle inequality, so let us show the other inequality, which we do by showing that Ĥ(x1, pb(x1)) ∪
Ĥ(pb(x1), pb(x2)) ∪ Ĥ(pb(x2), x2) ⊂ Ĥ(x1, x2).

A hyperplane ĥ separating pb(x1) from pb(x2) cuts the bridge and hence by Lemma 2.18(3)
is either vertical or horizontal. If it is vertical, it separates h1 from h∗2 and hence x1 from x2 as
well. If ĥ is horizontal, then it cannot separate xi from pi(xi) by part (1) of this lemma. Since
ĥ is separating pb(x1) from pb(x2), this forces ĥ to separate x1 from x2.

By part (1) a hyperplane ĥ separating xi from pb(xi), for i = 1 or 2, cannot be horizontal;
by Lemma 2.18 it cannot cross the bridge, so it has to separate x1 from x2.

2.H. Finite orbits in the CAT(0) boundary versus finite orbits in the Roller boundary

Non-elementarity of the action is defined in terms of the non-existence of a finite orbit in the
CAT(0) boundary. We describe in this section to what extent this is equivalent to the same
property with respect to the Roller boundary.

We start with one direction of the equivalence that is very easy and is here for completeness,
since it will not be needed in the following.

Proposition 2.25. Let Y be a finite-dimensional CAT(0) cube complex and let Γ →
Aut(Y ) be an action on Y . If the action is essential and there is a finite orbit in the Roller
boundary, then there is a finite orbit in the CAT(0) boundary.

Proof. Let ξ ∈ ∂Y be a point in the finite Γ-orbit and let Γξ be its stabilizer, whose action
is still essential since it is of finite index in Γ. Let h ∈ H be a halfspace containing ξ. If there
were no Γξ-fixed point in ∂�Y , then we could apply the Flipping Lemma (see Subsection 2.F);
hence there would exist γ ∈ Γξ that flips h∗, so that γh ⊂ h∗. But this would contradict the
fact that ξ = γξ ∈ γh.

The following proposition pins down to what extent an elementary action implies the
existence of a finite orbit in the Roller boundary.
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Proposition 2.26. Let X be a finite-dimensional CAT(0) cube complex and let Γ →
Aut(X) be an action on X. If there is a finite orbit in the CAT(0) boundary, then either

(1) there is a finite Γ-orbit in the Roller boundary, or
(2) there exists a subgroup of finite index Γ′ < Γ and a Γ′-invariant subcomplex X ′ ↪→

∂X on which the Γ′-action is non-elementary. Moreover, X ′ corresponds to a lifting
decomposition of halfspaces.

The argument will depend on the following lemma, which we assume now, and whose
verification we defer to right after the proof of the proposition. We start with the following
natural construction, that can also be found in [28, Subsection 4.1]. Note that there is a similar
construction in [19, Section 3].

Let ξ ∈ ∂�X, let g : [0,∞) → X be a geodesic asymptotic to ξ and let us define Tξ to be the
following set of halfspaces:

Tξ := {h ∈ H : for every ε > 0 there exists tε � 0 such that Nε(g(tε,∞)) ⊂ h}, (2.8)

where Nε(g(tε,∞)) is the ε-neighborhood of the image of the geodesic ray g|(tε,∞).

Lemma 2.27. Let X be a CAT(0) cube complex with a Γ-action and let ξ ∈ ∂�X. The set
Tξ in (2.8) satisfies the following properties.

(1) It is independent of the geodesic g and Γξ-invariant, where Γξ < Γ is the stabilizer of
ξ in Γ.

(2) It is not empty.
(3) It satisfies the partial choice and consistency conditions.
(4) It contains an infinite descending chain.

Proof of Proposition 2.26. Let ξ ∈ ∂�X be one of the points in the finite Γ-orbit, and let
Γξ < Γ be the stabilizer of ξ, [Γ : Γξ] <∞. It follows from the above Lemma 2.27 and from
Subsection 2.C that Tξ induces a lifting decomposition

H(X) = Hξ � (Tξ � T ∗
ξ ) (2.9)

and there is a Γξ-equivariant projection 
 : X → X whose image is the isometrically embedded
Γξ-invariant subcomplex Xξ := i(X(Hξ)). Observe that because of Lemmas 2.27(4) and 2.6,
dimXξ < dimX. Moreover, if Hξ = ∅, then Xξ = Xξ is a Γξ-fixed point in ∂X.

Proceeding inductively, we can conclude the proof. In fact, if the Γξ-action on Xξ is non-
elementary, then we are in case (2) of the proposition. If, on the other hand, there is a finite
Γξ-orbit in ∂Xξ, using the fact that the composition of two projections is a projection, we can
repeat the argument. The finite dimensionality of X ensures that the process terminates.

Proof of Lemma 2.27. (1) Only for this part of the proof we denote by Tξ(g) and by Tξ(g′)
the sets defined in (2.8) with respect to two asymptotic geodesics g and g′. Then g and g′

are at bounded distance from each other, that is, there exists an r > 0 such that g′([0,∞)) ⊂
Nr(g[0,∞)). By the triangle inequality, if ε > 0, then Nε(g′[t,∞)) ⊂ Nε(g[t,∞)) for all t � 0.
But this implies that if h ∈ H is such that there exists tε+r with Nε(g′(tr+ε,∞)) ⊂ h, then also
Nε(g(tr+ε,∞)) ⊂ h. Thus Tξ(g) = Tξ(g′) and therefore Tξ(g) is independent of g.

Since ξ is Γξ-invariant, the geodesics g and γg are asymptotic and hence Tξ(g) = Tξ(γg).
The Γξ-invariance of Tξ then follows at once, since γNε(g(t,∞)) = Nε(γg(t,∞)) for all t � 0.

(2) We will show that if, for every, h ∈ H there exists εh > 0 such that

Nεh(g(t,∞)) ∩ h �= ∅ and Nεh(g(t,∞)) ∩ h∗ �= ∅ (2.10)

for all t > 0, then there is an infinite family of pairwise transverse hyperplanes.
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We may assume that h ∈ H is not compact; otherwise (2.10) is never verified for any ε.
Moreover, observe that any geodesic γ crosses infinitely many hyperplanes. Order the cubes
according to the order in which they are crossed by γ. This gives rise, up to choosing an order
of hyperplanes on each of these cubes, to an order ĥ1, ĥ2, . . . on the hyperplanes according to
the order in which they are crossed by γ. If εi > 0 is the smallest ε such that (2.10) is verified
for ĥi, then any γ(t) is at CAT(0) distance at most εi from ĥi.

We claim that, for every ĥ�, there exists n� ∈ N such that, for every j � n�, the hyperplane
ĥj is transverse to ĥ�. In fact, the CAT(0) distance is quasi-isometric to the combinatorial
distance and the combinatorial distance between γ(t) and ĥ� is the number of hyperplanes
parallel to ĥ� that separate ĥ� from γ(t). On the other hand, for every j > n�, any hyperplane
ĥj parallel to ĥ� that intersects γ will contribute to the distance from γ(t) and ĥ� for t

large enough. By the previous observation this is not possible and hence eventually ĥj must
intersect ĥ�.

By setting m�+1 := nn�
, for every d ∈ N the hyperplanes ĥ1, ĥm1 , ĥm2 , . . . , ĥmd

form a family
of d+ 1 pairwise transverse hyperplanes.

(3) This is obvious from the construction.
(4) If Tξ does not contain an infinite descending chain, then Xξ ∩X �= ∅, where Xξ is the

complex associated to the lifting decomposition in (2.9). Because of Lemma 2.6, ξ ∈ ∂�Xξ.
We can hence apply the construction in the beginning of the proof of Proposition 2.26 to the
complex Xξ, whose halfspaces are now H � (Tξ � T ∗

ξ ), thus contradicting (2).

2.I. From products to irreducible essential factors

The following lemma identifies the important properties that are passed down from a complex
to the irreducible factors of the essential core. The content of the lemma is already in [20], but
we recall it here in the form in which we will need it.

Lemma 2.28. Let X be a finite-dimensional CAT(0) cube complex and let Γ → Aut(X)
be a non-elementary action. Then the Γ0-action on the irreducible factors of the essential core
is also non-elementary and essential, where Γ0 is the finite index subgroup preserving this
decomposition.

Proof. Let Y ⊂ X be the essential core, Y = Y1 × · · · × Ym be its decomposition into
irreducible factors, and Γ0 be the finite index subgroup preserving this decomposition. We
need to show that the following hold.

(1) The action of Γ0 on the Yj , j = 1, . . . ,m is essential as well.
(2) If Γ0 has no finite orbit on the visual boundary ∂�X, then the same holds for the

action on ∂�Yj , j = 1, . . . ,m.

(1) By [20, Proposition 3.2], the Γ0-action on Y (respectively, on Yi) is essential if and
only if every hyperplane ĥ ∈ Ĥ (respectively, ĥi ∈ Ĥj) can be skewered by some element in
Γ0. If ĥj ∈ Ĥ(Yj) is a hyperplane in Yj , then ĥ := Y1 × · · ·Yj−1 × ĥj × Yj+1 × · · · × Ym is a
hyperplane in Y . Since the action on Y is essential, there exists γ ∈ Γ0 that skewers ĥ and
hence it skewers ĥj . Then the Γ0-action on Yi is essential.

(2) We prove the contrapositive of the statement. Let Γ0 < Γ be the finite subgroup that
preserves each of the factors Yj and let us assume, by passing if necessary to a further subgroup
of finite index, that there is a Γ0-fixed point in ∂�Yj for some 1 � j � m. Then, by Lemma 2.9
there is a Γ0-fixed point in ∂�Y and hence a finite Γ-orbit in ∂�Y . Since Y is a convex subset
of X and hence ∂�Y ⊂ ∂�X, there is a finite Γ-orbit in ∂�X.
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2.J. Euclidean (sub)complexes

Definition 2.29. Let X be a CAT(0) cube complex. We say that X is Euclidean if the
vertex set with the combinatorial metric embeds isometrically in RD with the �1-metric for
some D <∞.

In [20, Theorem 7.2], under some natural conditions on the action of Aut(X), the authors
relate the existence of an Aut(X)-invariant Euclidean flat with the non-existence of a facing
triple of halfspaces, in the following sense.

Definition 2.30. Let n ∈ N. An n-tuple of halfspaces is called a facing n-tuple if they are
pairwise disjoint. An n-tuple of hyperplanes is called a facing n-tuple if there is a choice of
halfspaces forming a facing n-tuple.

As our setting differs slightly from the one used in [20], we discuss briefly in this section the
notion of Euclidean complexes and subcomplexes. The following definition is from [20].

Definition 2.31. A CAT(0) cube complex X is said to be R-like if there is an Aut(X)-
invariant bi-infinite CAT(0) geodesic.

Proposition 2.32. Let Y be a CAT(0) cube complex on which Aut(Y ) acts essentially.
Consider the following statements:

(1) Y is Euclidean;
(2) Y is an interval;
(3) Y is a product of R-like factors.

Then (3) ⇒ (2) ⇒ (1).

Proof. Observe that conditions (1) and (2) are preserved under taking products. Also, the
hypothesis of having an essential action is preserved by passing to the irreducible factors by
Lemma 2.28. Therefore, it is sufficient to consider the case in which Y is irreducible.

(3)⇒(2). Assume that Y is R-like. Let � ⊂ Y be the Aut(Y )-invariant CAT(0) geodesic. We
claim that � crosses every hyperplane of Y . In fact, otherwise there would be a halfspace h0

containing � and, since � is Aut(Y )-invariant, then ĥ0 would not be essential.
Let � : R → Y be a parameterization of �. One can check that, because of the above claim,

the collection of halfspaces

α := {h ∈ H(Y ) : there exists t ∈ R such that h ⊃ �(t,∞)}

defines a non-terminating ultrafilter. Then Y is an interval on α and its opposite ultrafilter
α∗ = H � α.

(2)⇒(1) This is Lemma 2.3.

We prove next that, under the assumption that there are no fixed points in the visual
boundary and the action is essential, being Euclidean is equivalent to the non-existence of
facing triples of hyperplanes. (It is possible that a Euclidean CAT(0) cube complex Y on
which Aut(Y ) acts essentially and without fixed points in the visual boundary, is a point (cf.
[20, Theorem E]).) As a byproduct, using [20, Theorem 7.2] we can conclude that also (1)
implies (3) under the above hypotheses. We start with the following easy lemma.
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Lemma 2.33. If X is a Euclidean CAT(0) cube complex that isometrically embeds into
RD, then any set of pairwise facing halfspaces has cardinality at most 2D.

Proof. Indeed, any collection of halfspaces can be arranged in at most D chains. Hence,
for each dimension there can be at most one pair of facing halfspaces and the assertion follows
from the fact that the �1-metric on RD is the sum of the �1-metrics on its factors.

More precisely, we have the following dichotomy that is compatible with the terminology in
[20] but holds also in the case in which the CAT(0) cube complex does not have a cocompact
group of automorphisms.

Corollary 2.34. Let Y be a finite-dimensional irreducible CAT(0) cube complex and
assume that Aut(Y ) acts essentially and without fixed points on ∂�Y . Then Y is Euclidean if
and only if H(Y ) does not contain a facing triple of halfspaces.

Proof. We first prove that if Y is Euclidean, then there are no facing triples of halfspaces.
Since the action is essential and there are no fixed points in ∂�Y , if there is a facing triple of
halfspaces, we can skewer several times two of the halfspaces into the third one to obtain a set
of pairwise facing halfspaces of arbitrarily large cardinality. Then Lemma 2.33 implies that Y
is not Euclidean.

Conversely, we assume that there are no facing triples of hyperplanes and prove that Y must
be Euclidean. Since Y is irreducible, let {hn} be a descending sequence of strongly separated
halfspaces, hn+1 ⊂ hn. The strategy of the proof consists in showing that

⋂
hn consists of a

single point α ∈ ∂Y and in using the non-existence of facing triples of hyperplanes to show
that α∗ is also an ultrafilter. Then Remark 2.4 will complete the proof.

To show that
⋂
hn is a single point, let us assume by contradiction that

⋂
hn contains at

least two distinct points, u, v ∈
⋂
hn. Let ĥ be a hyperplane that separates them. Observe that,

for every n ∈ N,

u ∈ h ∩ hn �= ∅ and
v ∈ h∗ ∩ hn �= ∅.

(2.11)

From this and the fact that the hn are a descending chain, one can check that if there exists
N ∈ N such that ĥ � hN , then ĥ � hn for all n � N , which is impossible since the {hn} are
pairwise strongly separated. So ĥ‖ĥn for every n ∈ N.

Again from (2.11) it follows that ĥ ⊂ hn for all n ∈ N . But this is also not possible since
there exist finitely many hyperplanes between ĥ and ĥn. Hence α :=

⋂
hn is a single point.

To see that α∗ is an ultrafilter, we need only to check the consistency condition, namely, that
if h ∈ α∗ and h ⊂ k, then k ∈ α∗. Observe that this is equivalent to verifying that if α ∈ h∗

and h ⊂ k, then α ∈ k∗. Suppose that this is not the case, that is, that there exists h, k ∈ H(Y )
such that h ⊂ k and α ∈ h∗ ∩ k.

We first claim that

there exists n0 ∈ N such that hn ⊂ k for all n > n0. (2.12)

In fact, suppose that there exists n′0 ∈ N such that ĥn′
0

� k̂. Since the {hn} are pairwise
strongly separated, then ĥn‖k̂ for all n > n′0. Using (2.2), the fact that the {hn} are a descending
chain and that α ∈ hn for all n ∈ N, it is easy to verify that hn ⊂ k for all n > n′0.

On the other hand, if ĥn‖k̂ for all n ∈ N, using again that the {hn} are a descending chain
and that there are only finitely many hyperplanes between any ĥn and k̂, one can easily
verify that there exists n′′0 ∈ N such that hn ⊂ k for all n > n′′0 . Hence (2.12) is verified with
n0 = max{n′0, n′′0}.
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Since h ⊂ k and there are only finitely many hyperplanes between ĥ and k̂, there exists n1 �
n0 such that either ĥn1 � ĥ or hn1 ⊂ h. But hn1 cannot be contained in h since α ∈ hn1 ∩ h∗,
hence ĥn1 � ĥ.

Again because the hyperplanes {ĥn} are strongly separated, if n > n1, then ĥn‖ĥ. This, the
fact that ĥn1 � ĥ and that hn ⊂ hn1 imply that hn ∩ h = ∅.

It follows that h∗n, h
∗ and k is a facing triple of halfspaces, contradicting the hypothesis.

Hence α∗ is an ultrafilter and the proof is complete.

We conclude the section with the following corollary that will be paramount in the sequel.

Corollary 2.35. Let X be a finite-dimensional CAT(0) cube complex and Γ → Aut(X)
be a non-elementary action. Then there are no Euclidean factors in the essential core.

Proof. Let Y ⊂ X be the essential core of the Γ-action and let Y0 be an irreducible factor of
Y . By Lemma 2.28, the Γ-action on Y0 is also essential and non-elementary. By Corollary 2.34,
Y0 cannot be Euclidean.

2.K. Facing triples of halfspaces

In this section, we show how the hypotheses of non-elementarity and essentiality of the action
are used to construct a suitable facing triple of hyperplanes.

Definition 2.36. A facing n-tuple of halfspaces is a facing über-separated (or parallel)
n-tuple if all the pairs of halfspaces are über-separated (or parallel) pairs.

As usual we extend the above definition to hyperplanes in the obvious way. We will need the
following lemma only in the case n = 3, but the extension to larger n is very easy.

Lemma 2.37. Let X be a CAT(0) cube complex with a non-elementary action Γ → Aut(X)
and n ∈ N. Then any essential halfspace h ∈ H(X) belongs to a facing über-parallel n-tuple all
of whose halfspaces can be taken to be in a single Γ-orbit.

Proof. First, we assume thatX is irreducible and essential. We show the existence of a facing
über-separated n-tuple. According to Corollary 2.34, since X is non-Euclidean, it contains a
facing triple of halfspaces, call it a, b, c. Using Lemma 2.14, we find γ1, γ2, γ3,∈ Γ such that
γ1a ⊂ a, γ2b ⊂ b and γ3c ⊂ c are über-separated pairs. Hence the triple γ1a, γ2b and γ3c is
facing and über-separated. To get a facing n-tuple out of a facing (n− 1)-tuple h1, . . . , hn−1,
we flip and skewer two elements of the (n− 1)-tuple into a third one; for example, we flip and
skewer h1 and h− 2 into hn−1 via γ1γ2 ∈ Aut(X), and now the n-tuple h1, h2, . . . , γ1h1, γ2h2

will be über-separated.
To get a facing über-separated n-tuple in an orbit, take h, and any facing über-separated

(n+ 1)-tuple of halfspaces. Then h crosses at most one element of this facing (n+ 1)-tuple.
Skewer and flip h into the n other halfspaces to get a facing über-separated n-tuple of halfspaces
in the orbit of h.

Let Γ0 < Γ be a finite index subgroup preserving each irreducible factor of the essential core
Y of X. Note that the hypotheses that the action is non-elementary and essential are preserved
up to passing to Γ0. One then deduces the general case where X is not necessarily irreducible
and essential by using that any essential halfspace belongs to an irreducible factor of Y . We
find the über-separated n-tuple in that irreducible factor of the essential core, and use it to
produce an über-parallel n-tuple on X.
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3. Construction and boundedness of the median class

Let Γ be a group and E be a coefficient Γ-module, that is, the dual of a separable Banach
space on which Γ acts by linear isometries. The bounded cohomology of Γ with coefficients in
E is the cohomology of the subcomplex of Γ-invariants in (Cb(Γk+1, E), d), where

Cb(Γk, E) :=

{
f : Γk → E : sup

g∈Γk

‖f(g)‖E <∞
}
, (3.1)

is endowed with the Γ-action

(gf)(g1, . . . , gk) := g · f(g−1g1, . . . , g
−1gk),

and

d : Cb(Γk, E) ��Cb(Γk+1, E)

is the usual homogeneous coboundary operator defined by

df(g0, . . . , gk) :=
k∑
j=0

(−1)jf(g0, . . . , gj−1, gj+1, . . . , gk).

3.A. The median cocycle

Let X be an irreducible finite-dimensional CAT(0) cube complex. Recall that X denotes the
Roller compactification of X, that is, the set of ultrafilters on H(X) (see Section 2). For n � 2,
we denote by H(X)n the set of n-tuples of halfspaces of X.

If 1 � p <∞, then �p(H(X)n) is the dual of a separable Banach space. In fact, if 1 < p <∞,
then �p(H(X)n) is the dual of �q(H(X)n), where 1/p+ 1/q = 1. On the other hand, �1(H(X)n)
is the dual of the Banach space C0(H(X)n) of functions on H(X)n that vanish at infinity, which
is separable since H(X)n is countable. For further use, we set the notation

Ep :=

{
�q(H(X)n) 1 < p <∞ and 1/p+ 1/q = 1,
C0(H(X)n) p = 1.

(3.2)

For each 1 � p <∞ and each integer n � 1, we define in this section a 1-parameter family
of cocycles

c(n,R) : X ×X ×X ���p(H(X)n),

that, by evaluation on a basepoint in X, will give a cocycle on Γ × Γ × Γ. We define the median
cocycle c(n,R) as the coboundary of an Aut(X)-invariant map ω(n,R) on X ×X whose values
are not in general p-summable and we will show that, on the other hand, c(n,R) = dω(n,R) is
bounded in the sense of (3.1) if n � 2. For n � 2, the median class m(n,R) will be defined as
the cohomology class of c(n,R) (which is independent of the basepoint).

If X is irreducible with an essential and non-elementary Γ-action, then the collection of
sequences of length n of über-separated pairs at consecutive distance less than R is non-empty
for R sufficiently large. Indeed, according to Caprace–Sageev [20] since X is irreducible and
non-elementary, it contains a strongly separated pair, and by essentiality we can repeatedly
skewer this pair to get an über-separated and nested n-tuple for any n ∈ N. In the general
case one can always find über-parallel sequences in the essential core of the action, and extend
those to the whole space. We hence define [[u, v]]n for u, v ∈ X to be the collection of pairwise
über-parallel n-tuples (h1, . . . , hn) ∈ H(X)n such that h1 ⊂ · · · ⊂ hn and hi ∈ v � u for each i.

For R > 0, we also define

[[u, v]](n,R) = {(h1, . . . , hn) ∈ [[u, v]]n : d(hi, hi+1) � R}. (3.3)
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So, [[u, v]](n,R) is the collection of sequences of length n of nested über-parallel halfspaces
containing v and not u and at consecutive distance less than or equal to R. We hope that the
notation suggests that these are in some sense subintervals.

For u, v ∈ X, let us define

ω(n,R)(u, v) := 1[[u,v]](n,R)
− 1[[v,u]](n,R)

. (3.4)

We will simply write c, ω and [[u, v]] for c(n,R), ω(n,R) and [[u, v]](n,R) when the context is
clear.

Fixing u, v ∈ X, the function has finitely many values

ω(u, v) : H(X)n −→ {−1, 0, 1}

and is finitely supported when u, v ∈ X.
Note that ω is not necessarily bounded when thought of as a function with values in

�p(H(X)n) and, in fact, its norm is proportional to the distance between u and v.
Let us now consider the Aut(X)-equivariant cocycle taking values in the functions on H(X)n,

defined as

c(u1, u2, u3) := (dω) (u1, u2, u3)
= ω(u2, u3) − ω(u1, u3) + ω(u1, u2) = ω(u2, u3) + ω(u3, u1) + ω(u1, u2)
= 1[[u2,u3]] + 1[[u3,u1]] + 1[[u1,u2]] −

(
1[[u3,u2]] + 1[[u1,u3]] + 1[[u2,u1]]

)
. (3.5)

We will show that, contrary to ω, the cocycle c on X actually takes values in �p(H(X)n)
(Proposition 3.4) and is bounded in the sense of (3.1).

Remark 3.1. Let Y ⊂ X be the essential core of the Γ-action on X and Y = Y1 × · · · × Ym
be the decomposition of Y into irreducible CAT(0) cube complexes. From the decomposition
in (2.7), we have a corresponding decomposition

�p(H(X)n) ∼= �p(H(Y1)n) ⊕ · · · ⊕ �p(H(Ym)n) ⊕ �p(HnEss(X)n) (3.6)

given by f �→ 1H(Y1)nf + · · · + 1H(Ym)nf + 1HnEss(X)nf , where the direct sum is in the �p sense.
The direct summand �p(H(Yj)n) is invariant for the action of a finite index subgroup Γ′ < Γ.

Proposition 3.2. Let Y be an essential CAT(0) cube complex and consider the cocycle
defined in (3.5)

c(n,R) : Y × Y × Y −→ �p(H(Y )n),

where R is chosen to be large enough so that in each irreducible component Yi of Y, the set
of über-separated n-tuples at consecutive distance less than or equal to R is not empty. Then
c(n,R) decomposes as

c(n,R)(ξ, η, ζ) = c1(n,R)(π1(ξ), π1(η), π1(ζ)) ⊕ · · · ⊕ cm(n,R)(πm(ξ), πm(η), πm(ζ)),

where

cj(n,R) : Yj × Yj × Yj −→ �p(H(Yj)n)

is the cocycle on the irreducible factors and πj : Y → Y j is the projection. Moreover,
c(n,R)(ξ, η, ζ) �= 0 if and only if cj(n,R)(πj(ξ), πj(η), πj(ζ)) �= 0 for some 1 � j � n.

Proof. Let ω and ωj , for j = 1, . . . ,m, be defined as in (3.4), respectively, on Y and Y j .
Since cj(n,R) = dωj(n,R) for 1 � j � k and c(n,R) = dω(n,R), it is enough to verify that

ω(n,R) = ω1
(n,R) + · · · + ωk(n,R).
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Let (ξ, η) ∈ Y × Y and set ξj := πj(ξ) for 1 � j � m. Since ωj(n,R)(ξj , ηj) = 1[[ξj ,ηj ]]
j
(n,R)

−
1[[ηj ,ξj ]]

j
(n,R)

and ω(n,R)(ξ, η) = 1[[ξ,η]](n,R)
− 1[[η,ξ]](n,R)

, it is enough to see that

[[ξ, η]](n,R) = [[ξ1, η1]]1(n,R) � · · · � [[ξm, ηm]]m(n,R),

where [[ξj , ηj ]]
j
(n,R) ⊂ H(Yj)n. But this follows immediately from the structure of the hyper-

planes and halfspaces in a product.

Corollary 1.4 will then be a direct consequence of Proposition 3.2, once Theorem 1.1 is
proved.

Another property of the median class of an action is that it behaves nicely with respect to
subcomplexes in the following sense.

Proposition 3.3. Let X be a finite-dimensional CAT(0) cube complex, Γ → Aut(X) be
an action and Γ0 < Γ be a finite index subgroup. Let W ⊂ H(X) be a consistent and Γ0-
invariant subset, so that H(X) = HW � (W �W ∗) is a lifting decomposition. Let XW ⊂ ∂X
be the corresponding subcomplex. Then the median class of the Γ-action on X restricts to the
median class of the Γ0-action on XW .

Proof. Since HnW ⊂ H(X)n, there is a map j : �p(H(X)n) → �p(HnW ) obtained by restriction.
If c : Γ × Γ × Γ → �p(H(X)n) is the median Γ-equivariant cocycle on X, then j ◦ c|Γ3

0
: Γ0 ×

Γ0 × Γ0 → �p(HnW ) is the median Γ0-equivariant cocycle on XW .

3.B. Boundedness of the median class

Proposition 3.4. LetX be a finite-dimensional CAT(0) cube complex and, for 1 � p <∞,
let c(n,R) be the 1-parameter family of cocycles defined in (3.5). Then

c(n,R) : X ×X ×X ���p(H(X)n) (3.7)

and

sup
u1,u2,u3∈X

‖c(n,R)(u1, u2, u3)‖p <∞.

More precisely, if D is the dimension of X, then, for any u1, u2, u3 ∈ X, the support of
c(n,R)(u1, u2, u3) has cardinality bounded above by

6(2(n− 1)R)2D+n−2.

To prove this proposition, we need a few preliminary results. For a set S ⊂ X define V�(S)
to be the �-neighborhood of S, that is, the set of vertices at combinatorial distance less than
or equal to � from some element of S.

We start with the following key result, where über-parallel is needed:

Lemma 3.5. Let h1 ⊂ h2 be an über-parallel pair of halfspaces, x ∈ h1 and y ∈ h∗2. Let �
be the length of the corresponding bridge. Then

I(x, y) ⊂ V�(h1 ∪ h∗2),

that is, the interval between x and y stays within � of h1 ∪ h∗2.
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Before proceeding with the proof, we record the following important remark, straightforward
from the proof of Lemma 2.17 and the concepts used in Subsection 2.G.

Remark 3.6. Let u, v ∈ X, let h be a halfspace so that u, v ∈ h∗ and assume that Ĥ(u, h) ⊆
Ĥ(v, h). Let u = x0, . . . , xn = v be a combinatorial geodesic from u to v, and let di = d(xi, h).
Our assumptions on u and v force the sequence di to be increasing, and the proof of the above
lemma shows that it remains constant as long as the hyperplanes crossed are transverse to ĥ,
but increase when they are parallel. In other words, crossing a hyperplane parallel to ĥ will
take the geodesic away from h.

Proof of Lemma 3.5. We will show that any geodesic from x ∈ h1 to y ∈ h∗2 stays within
� of h1, then goes to the bridge b(ĥ1, ĥ2) and then stays within � of h∗2 to reach y. Since
by Lemma 2.18, b(ĥ1, ĥ2) ⊂ V�(h1 ∪ h∗2), we will have shown that the geodesic never leaves
V�(h1 ∪ h∗2).

According to Lemma 2.2, a geodesic between x and y corresponds to an enumeration of all the
hyperplanes separating x from y, and hence, by Lemma 2.24(2), it has to cross all hyperplanes
separating x from pb(x), where pb(x) ∈ h1 is the projection of x on the bridge b(ĥ1, ĥ2), all those
separating pb(x) from pb(y) and all those separating pb(y) from y, not necessarily in this order.
In fact, when two hyperplanes are parallel, the enumeration in the geodesic has to respect the
order given by the inclusion of the corresponding halfspaces, but when two hyperplanes are
transverse, the geodesic can cross either one first.

Thus, to understand how far away from h1 ∪ h∗2 a combinatorial geodesic can possibly go,
we have to study the possible intersections of elements belonging to the following disjoint sets:

Ĥ(x, pb(x)), Ĥ(pb(x), pb(y)) ⊂ βh � βv and Ĥ(y, pb(y)),

where βh � βv is the decomposition of the halfspaces in the bridge into horizontal and vertical
halfspaces according to Lemma 2.18.

By Lemmas 2.18 and 2.24, since h1 and h2 are über-parallel, none of the hyperplanes
from Ĥ(x, pb(x)) can cross a hyperplane from Ĥ(y, pb(y)). Hence a geodesic from x to y
must enumerate all the hyperplanes from Ĥ(x, pb(x)) before enumerating any hyperplane from
Ĥ(y, pb(y)).

Now the hyperplanes from βh all cross ĥ1 and so, according to Remark 3.6, they will not
allow the geodesic to travel away from h1. The only hyperplanes that can take a geodesic away
from h1 are the ones from βv and from Ĥ(y, pb(y)). There are at most � hyperplanes from
hyperplanes from βv and the hyperplanes from Ĥ(y, pb(y)) will not matter as they will take
the geodesic away from h1 when it is already �-close to h∗2. Indeed, since the geodesic has to
exhaust all the elements of Ĥ(x, pb(x)) before using a hyperplane from Ĥ(y, pb(y)), the same
argument for h∗2 shows that it will be �-close to h∗2.

The above lemma says that, in case h1 and h2 are über-parallel, in order to go from h1 to
h∗2, one needs to travel on the bridge. The relevance of the hypothesis of being über-parallel is
exemplified in the following.

Example 3.7. Take six quarter planes glued in a natural way around their boundaries.
Let h1, h

∗
2 be the halfspaces corresponding to the hyperplanes ĥ1 and ĥ2 in the figure. In this

case �(b(ĥ1, ĥ2)) = 2, but one can easily find x ∈ h1 and y ∈ h∗2 such that a geodesic joining x
and y is not contained in a 2-neighborhood of h1 ∪ h∗2. In fact, there are pairs x, y (that will
be away from the bridge), with geodesics arbitrarily far away from the bridge joining them. In
this case the pair ĥ1, ĥ2 is strongly separated but not über-separated.
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Figure 1. The point m is not in the 2-neighborhood of h1 ∪ h∗
2.

Corollary 3.8. Let x, y ∈ X and h1 ⊂ h2 be an über-parallel pair of halfspaces such that
x ∈ h1 ⊂ h2 and y ∈ h∗2. Take z ∈ h∗1 ∩ h2. Then the median m(x, y, z) ∈ V�(h1 ∪ h∗2), where �
is the length of the bridge between h1 and h2.

Proof. The proof follows directly from the fact that the median is contained in the interval
between x and y, which in turn is contained in V�(h1 ∪ h∗2).

Corollary 3.9. Let x, y ∈ X, and m ∈ I(x, y). Let h1 ∈ [m,x] and h2 ∈ [y,m], with h1 ⊂
h2, be an über-parallel pair at distance less than or equal to R. Then BR(m) ∩ (h1 ∪ h∗2) �= ∅.

Proof. This is just a reformulation of Lemma 3.5. In fact, if d(ĥ1, ĥ2) � R, then
�(b(ĥ1, ĥ2)) � R. Then Lemma 3.5 implies that any point in an interval I(x, y), with x ∈ h1

and y ∈ h∗2, is at distance at most R from h1 or h∗2.

We remark that Example 3.7 shows that if ĥ1 and ĥ2 are only strongly separated, the
assertion of Corollary 3.9 does not hold, as one can see in Figure 1 with R = 2.

Example 3.10. The following ‘infinite staircase’ shows an irreducible CAT(0) cube
complex with a pair of hyperplanes ĥ1 and ĥ2 that are parallel and strongly separated
but not über-parallel. This example is elementary and there are no über-separated pairs.
Furthermore, what captures the pathology of this example is the fact that the median can be
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arbitrarily far from the bridge b(ĥ1, ĥ2). The notion of über-separated precisely excludes this
pathology.

�x �z = m(x, y, z)

�y

� �
�

b(ĥ1, ĥ2)

ĥ1

ĥ2

We also need the following result on the structure of the support of the cocycle.

Lemma 3.11. The support of c(u1, u2, u3) is the disjoint union of the six sets obtained by
permuting the indices of [[u1, u3]] � ([[u1, u2]] ∪ [[u2, u3]]). On each of these sets the cocycle is
identically equal to 1 or −1.

Proof. Let us first examine the structure of the intersections of the six sets appearing in
the definition of c. Observe that, for a, b, i, j ∈ {1, 2, 3} and a �= b and i �= j, we have that

if a �= i and b �= j, then [[ua, ub]] ∩ [[ui, uj ]] = ∅.

This is described more clearly by the following diagram:

��
�	

[[u2, u1]]

��
�	

[[u2, u3]]

��
�	

[[u1, u3]] ��
�	[[u1, u2]]

��
�	

[[u3, u1]]

��
�	

[[u3, u2]]

Indeed, consider s ∈ [[ua, ub]] ∩ [[ui, ua]]. Then every h ∈ smust contain ub and not ua but must
also contain ua and not ui, which shows that the intersection is empty. Likewise, [[ua, ub]] ∩
[[ub, uj ]] = ∅.
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However, c vanishes on each of the pairwise non-empty intersections. Indeed, if s ∈ [[u1, u2]] ∩
[[u1, u3]], then

c(u1, u2, u3)(s) = 0 + 0 + 1[[u1,u2]](s) − (0 + 1[[u1,u3]](s) + 0) = 0.

The other cases are computed similarly.

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. According to Lemma 3.11, an n-tuple h1 ⊂ h2 ⊂ · · · ⊂ hn
contributing to the cocycle at a triple u1, u2, u3 has to be in a set of the type

[[ui, uj ]] � ([[ui, uk]] ∪ [[uk, uj ]]) ,

where i, j, k ∈ {1, 2, 3} are all different, so that there are six such sets. In other words, if
(h1, h2, . . . , hn) ∈ [[ui, uj ]] � ([[ui, uk]] ∪ [[uk, uj ]]), then there exists j, with 1 � j < n, such
that m(u1, u2, u3) ∈ hj+1 but m(u1, u2, u3) �∈ hj . We hence need to count the number of such
n-tuples that ‘hug’ the median m(u1, u2, u3).

We start with the case n = 2 and look at the contribution from the set [[u1, u2]](2,R) �(
[[u1, u3]](2,R) ∪ [[u3, u2]](2,R)

)
. According to Lemma 2.3, the interval I(u1, u2) embeds in

Euclidean space. Let m = m(u1, u2, u3) ∈ I(u1, u2) ⊆ RD. Let h1 ⊂ h2, so that u2 ∈ h1 ⊂ h2,
u1 ∈ h∗2 and m ∈ h∗1 ∩ h2. According to Corollary 3.9, BR(m) ∩ (h1 ∪ h∗2) �= ∅. Without loss of
generality, we may assume that BR(m) ∩ h1 �= ∅. Then, there are at most (2R)D choices for
h1; since h2 is at distance R from h1, there are at most (2R)D choices for h2.

Hence, since there are six terms in the definition of the cocycle and each is a characteristic
function on a set of at most (2R)2D elements, we get 6(2R)2D for the bound of the cocycle.

For the general case, we count in how many ways we can construct a contributing n-
tuple from [[u1, u2]](n,R) �

(
[[u1, u3]](n,R) ∪ [[u3, u2]](n,R)

)
, call it h1 ⊂ · · · ⊂ hn. According to

the case n = 2, there are at most (2(n− 1)R)2D choices for h1 and hn, since h1 and hn
are at distance less than or equal to (n− 1)R from each other. Therefore, we must count
the possible ways of choosing h2, . . . , hn−1. To this end, we note that h2, . . . , hn−1 must
belong to the set βv of the bridge b(ĥ1, ĥn) between h1 and hn. The bridge has length at
most (n− 1)R and hence there are at most ((n− 1)R)n−2 many choices for h2, . . . , hn−1.
This means that there are at most (2(n− 1)R)2D((n− 1)R)n−2 contributing n-tuples from
[[u1, u2]](n,R) �

(
[[u1, u3]](n,R) ∪ [[u3, u2]](n,R)

)
.

Hence, since there are six terms in the definition of the cocycle and each is a characteristic
function on a set of at most 22D((n− 1)R)2D+n−2 elements, we get 6(2(n− 1)R)2D+n−2 for
the bound of the cocycle.

3.C. Toward the Proof of Theorem 1.1

We defined at the beginning of this section the bounded cohomology of Γ with coefficients in
�p(H(X)n) as the cohomology of the complex of the Γ-equivariant bounded functions on the
Cartesian product Γk with values in �p(H(X)n). So far, for any n � 2 we constructed a 1-
parameter family of Γ-equivariant cocycles c(n,R) : X ×X ×X → �p(H(X)n) and we remarked
that a choice of a basepoint will give a cocycle in Cb(Γ3, �p(H(X)n)). We still need to show that
the cohomology class represented by this cocycle does not vanish if the action is not elementary.
In order to do this, we recall from [17, 38] that if (B,ϑ) is a strong Γ-boundary, there is an
isometric isomorphism

H2
b(Γ, �p(H(X)n)) ∼= ZL∞

alt,∗(B
3, �p(H(X)n))Γ, (3.8)

where the space on the right-hand side is the space of L∞ alternating Γ-equivariant cocycles on
B ×B ×B, with the measurability intended with respect to the weak-∗ topology on �p(H(X)n),
1 � p <∞ as a dual of Ep (see (3.2)).
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We recall from the introduction that a strong Γ-boundary (B,ϑ) is a Lebesgue space endowed
with a measure class preserving Γ-action that is in addition

(1) amenable, and
(2) doubly ergodic with coefficients; namely:

Definition 3.12. Let Γ be a group and (B,ϑ) be a Lebesque space endowed with a measure
class preserving Γ-action. The action of Γ on B is doubly ergodic with (Hilbert) coefficients if
any weak-∗ measurable Γ-equivariant map B ×B → E into the dual E of a separable Banach
(Hilbert) space on which Γ acts by isometries is essentially constant.

One of the advantages of the realization (3.8) is that, because of (2) with E = �p(H(X)n) for
1 � p <∞, in degree 2 there are no coboundaries: hence showing that a cohomology class does
not vanish is reduced to showing that the corresponding cocycle is non-zero. The disadvantage
is that realizing the pullback via ρ : Γ → Aut(X) of a bounded cohomology class defined on
the boundary is possible under the condition that there exists a Γ-equivariant measurable
boundary map ϕ : B → X and that the bounded cohomology class can be represented by a
bounded Borel measurable alternating strict cocycle [9].

It can be immediately verified that the cocycle c defined in this section is alternating in
(u1, u2, u3), that is to say that if σ is a permutation of {u1, u2, u3}, then

c(σ(u1, u2, u3)) = sign(σ)c(u1, u2, u3). (3.9)

The Borel measurability of c is proved in Lemma A.4.
Furthermore, a strong Γ-boundary with properties (1) and (2) exists for any locally compact

and compactly generated group according to [17], and for arbitrary locally compact groups
with respect to a spread-out non-degenerate symmetric measure according to [34]; the existence
of the boundary map will take up the next section.

4. The boundary map

This section is devoted to the proof of the following theorem, with an eye to the implementation
of the isomorphism in (3.8).

Theorem 4.1. Let Γ → Aut(Y ) be a group action on an irreducible finite-dimensional
CAT(0) cube complex Y . Assume that the action is essential and non-elementary. If B is
a strong Γ-boundary, then there exists a Γ-equivariant measurable map ϕ : B → ∂Y taking
values into the non-terminating ultrafilters in ∂Y .

To realize the isomorphism in (3.8) in our generality, we will in fact need the following
stronger statement, which guarantees the existence of some kind of boundary map when the
action is not assumed to be essential and the complex is not necessarily irreducible.

Corollary 4.2. Let Γ → Aut(X) be a group acting on a finite-dimensional CAT(0) cube
complex X. Assume that there is no finite orbit in the visual boundary ∂�X and denote by Y
the essential core of X. Then there exists a Γ-equivariant measurable map ϕ : B → ∂Y ⊆ ∂X.

Proof. Since the action of Γ has no finite orbit in ∂�X, it has no fixed point. Therefore,
the essential core Y is not empty, [20, Proposition 3.5], and Γ also has no finite orbit in ∂�Y .
If Y = Y1 × · · · × Ym is the decomposition of Y into a product of irreducible subcomplexes, by
Lemma 2.28, Γ also has no finite orbit in ∂�Yi, for i = 1, . . . ,m, and moreover the action on
each Yi is essential.
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If j = 1, . . . , q, let ϕj : B → ∂Yj be the Γ-equivariant measurable boundary map whose
existence is proved in Theorem 4.1. Since

∏q
j=1 ∂Yj ⊆ ∂Y ⊆ ∂X, the map ϕ : B → ∂Y defined

by ϕ(b) := (ϕ1(b), . . . , ϕq(b)) has the desired properties.

The idea of the proof of Theorem 4.1 is as follows. Since X is a continuous compact metric
G-space, the space P(X) of probability measures on X endowed with the weak-∗ topology is
a subset of the (unit ball in the) dual of the continuous functions on X. By amenability of the
Γ-action on B, there exists a Γ-equivariant measurable map ψ : B → P(X) into the probability
measures on X (see [54, Proposition 4.3.9]). Each probability measure μ on X divides the set
of halfspaces into ‘balanced’ (that is halfspaces such that μ(h) = μ(h∗)) and ‘unbalanced’ ones.
If all halfspaces are unbalanced, this defines an ultrafilter, hence the map ψ : B → P(X) gives
a Γ-equivariant map ψ : B → X. Since the measure ϑ on B is ergodic, so is the pushforward
measure on X. Hence up to measure 0 the image of ψ is either in X or in ∂X. If it is in X,
then it is essentially constant, so we get a Γ-fixed point, hence it had to land in ∂X. The whole
work in the proof will be to exclude the presence of balanced halfspaces using non-elementary
actions assumptions as well as essentiality.

4.A. General preliminary lemmas using ergodicity

The following lemma can be thought of as a weaker version of the statement that a strong
Γ-boundary for a lattice is a strong Γ-boundary for its ambient group and vice versa.

Lemma 4.3. Let Γ be a group acting on a measure space (M,ϑ). If Γ acts ergodically on
(M ×M,ϑ× ϑ), then every finite index subgroup Γ0 � Γ acts ergodically on (M,ϑ).

Proof. We prove the contrapositive of the statement. Let Γ0 � Γ be a finite index subgroup
that does not act ergodically.

Let (M0, ϑ0) be the Mackey’s point realization of the measure algebra generated by the Γ0-
invariant sets. In other words, M0 is a standard measure space equipped with a measurable
map p : M →M0 such that p∗(ϑ) = ϑ0. Since, by passing to a finite index subgroup if necessary
(that will still act non-ergodically), Γ0 can be taken to be normal in Γ, this measure algebra is
Γ-invariant and hence it defines a Γ-action on M0 with respect to which the map p : M →M0

is Γ-equivariant. Hence there is an ergodic action of the finite group Γ/Γ0 on M0, which is
therefore an atomic space, but cannot consist of one point (otherwise the Γ0-action would be
ergodic).

Now take any point m0 ∈M0 and define A := p−1(m0) ⊂M . By construction A is neither
null nor conull and Γ0-invariant. Consider the subset

⋃
[γ]∈Γ/Γ0

γA× γA ⊂M ×M (which is
well defined by the Γ0-invariance of M0). This set is Γ-invariant and not null. Furthermore,
it is not conull. Indeed, let Ac = M �A denote the complement. We claim that A×Ac ⊂
(
⋃

[γ]∈Γ/Γ0
γA× γA)c. Indeed, if there is a γ′ ∈ Γ such that A×Ac ∩ (γ′A× γ′A) has positive

measure, then ϑ(A ∩ γ′A) > 0 and ϑ(Ac ∩ γ′A) > 0, while, by construction, ϑ(A ∩ γA) = ϑ(A)
or ϑ(A ∩ γA) = 0 for all γ ∈ Γ.

Therefore, the Γ-invariant set
⋃

[γ]∈Γ/Γ0
γA× γA is neither null nor conull and hence the

diagonal action of Γ on M ×M is not ergodic.

Lemma 4.4. Let C be a countable set with a Γ action and (B,ϑ) be a Lebesgue space with
a measure class preserving Γ-action that is in addition doubly ergodic with Hilbert coefficients.
Let B := B or to B := B ×B. If ψ : B → C is a Γ-equivariant measurable map, then ψ is
essentially constant.
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Proof. We prove the assertion for B := B ×B. The assertion for B := B follows then from
the first one applied to the precomposition with the projection π1 : B ×B → B on the first
component.

As the action of Γ on B ×B is ergodic, so is the pushforward measure ψ∗(β × β) and hence
the image of ψ is supported on an orbit. We now assume that the Γ-action on C is transitive.

If C is finite, then there is a finite index subgroup Γ0 which acts trivially on C. But as the
Γ0 action on B is still ergodic, by Lemma 4.3 we conclude that the action of Γ0 on C is still
transitive and hence C is a single point.

Next, assume that C is infinite. This means that the corresponding generalized Bernoulli
action of Γ on 2C is ergodic (indeed, it is weakly mixing) and measure preserving with respect
to the standard Bernoulli measure λ on 2C generated by taking 0 and 1 with equal mass.
By the double ergodicity with coefficients of B (see [17]; also [2, Lemma 2.2]), we conclude
that the diagonal Γ-action on B ×B × 2C is ergodic. Let (x, y) ∈ B ×B and S ⊂ C. It is
clear that the following evaluation function is essentially constant as it is invariant under the
diagonal Γ-action

(x, y, S) �−→ 1S(ψ(x, y)) ∈ {0, 1}.
By Fubini’s Theorem, there is a point (x0, y0) ∈ B ×B so that, for λ-almost every 1S ∈ 2C ,

the value of 1S(ψ(x0, y0)) is identically 0, or 1. This gives a contradiction. Indeed, for any
c ∈ C we know that

λ
(
{1S ∈ 2C : 1S(c) = 0}

)
= λ

(
{1S ∈ 2C : 1S(c) = 1}

)
= 1/2,

in particular for c0 := ψ(x0, y0).

We apply the previous lemma to the countable set 2H(X)
f consisting of finite subsets of H(X).

Corollary 4.5. Let P be equal to either P(X) or P(X) × P(X). If there exists a Γ-

equivariant measurable map P → 2H(X)
f , then the Γ-action on X is not essential.

Proof. By hypothesis there is a finite Γ-invariant subset of H(X) and in particular, there
is a finite Γ-orbit Γ · h. Then, the corresponding CAT(0) cube complex X(Γ · h) is finite and
by [20, Proposition 3.2, (i)⇒(iii)], the action is inessential.

4.B. Heavy and balanced halfspaces, and properties of their associated complexes

Let P(X) denote the space of probability measures on X. If μ ∈ P(X), define

Hμ := {h ∈ H(X) : μ(h) = μ(h∗)},
H+
μ := {h ∈ H(X) : μ(h) > 1/2},

H−
μ := {h ∈ H(X) : μ(h) < 1/2},

H±
μ := {h ∈ H(X) : μ(h) �= 1/2}.

We refer to Hμ as the balanced halfspaces and to H+
μ as the heavy halfspaces. The terms

unbalanced and light halfspaces are also self-explanatory.
We record a few easy consequences of the definition.

Lemma 4.6. Let μ, ν ∈ P(X) be any two measures.

(1) The family Hμ is closed under the involution h �→ h∗ and the involution is a bijection
between H+

μ and H−
μ .

(2) There is the following partition of halfspaces: H(X) = Hμ �H±
μ , where H±

μ = H+
μ �

H−
μ .
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(3) If h, k belong to Hμ (respectively, H+
μ or H−

μ ), then either h � k or all halfspaces
between h, k are in Hμ (respectively, H+

μ or H−
μ ).

(4) There are no facing triples of halfspaces in Hμ. If X is not Euclidean, it follows that
H+
μ �= ∅.

(5) If X is not Euclidean, Hμ and Hν are not empty and Hμ ∩Hν = ∅, then Hμ ∩Hε
ν �= ∅

for ε ∈ {+,−}.
(6) If h, k ∈ Hμ are two parallel halfspaces with h ⊂ k, then μ(h∗ ∩ k) = 0.
(7) The assignments μ �→ Hμ and μ �→ Hε

μ, for ε ∈ {+,−}, are Aut(X)-equivariant for the

natural actions on P(X) and 2H(X).

Proof. Assertions (1), (2) and (3) are obvious.
To see (4), assume that h1, h2, h3 were a facing triple of halfspaces in Hμ, so that h∗2 ⊂

h1, h∗3 ⊂ h1 and ĥ2‖ĥ3. This would imply that 1/2 = μ(h1) � μ(h∗2) + μ(h∗3) = 1, which is a
contradiction. Since X is not Euclidean, and hence there are facing triples of halfspaces, then
H±
μ �= ∅ and also H+

μ �= ∅.
Assertion (5) follows from the fact that if Hμ ∩Hν = ∅, then Hμ ⊂ H±

μ . But then, since Hμ

is invariant under the involution h �→ h∗, both Hμ ∩H+
ν and Hμ ∩H−

ν must be non-empty.
Assertion (6) is immediate since μ(k) = μ(h∗) + μ(h ∩ k) and h∗, k ∈ Hμ and (7) is

immediate from the definitions.

It follows from Lemma 2.6 with W := H+
μ and HW := Hμ that there is an isometric

embedding X(Hμ) ↪→ X and to simplify the notation, we denote by Xμ its image in X (XH+
μ

in the notation of Lemma 2.6).
We remark again that if Hμ = ∅, then Xμ is a single vertex in X. Note, moreover, that the

H+
μ are not Γ-invariant and the subcomplex Xμ ⊂ X is not Γ-invariant.

Lemma 4.7. The complex X(Hμ) is an interval.

Proof. Let us consider the projection p : X → X(Hμ) and let α0 ∈ supp(p∗μ). Let α∗
0 be

the ‘opposite’ of α0 (in Hμ). Observe that α∗
0 is an ultrafilter on Hμ: indeed, the only non-

trivial condition we must check is that if h ∈ α∗
0 and h ⊂ k, then k ∈ α∗

0. If instead k /∈ α∗
0,

then k ∈ α0, which means that h∗ ∩ k is an open neighborhood of α0, contradicting that α0 is
in the support of μ with Lemma 4.6(6). By construction, Hμ = [α0, α

∗
0] ∪ [α∗

0, α0], where the
intervals are taken in X(Hμ).

Definition 4.8. Let H′ be a subset of H(X). An element h ∈ H′ is called:

(i) minimal in H′ if, for every k ∈ H′, either k � h, h ⊂ k, or h ⊂ k∗;
(ii) maximal in H′ if, for every k ∈ H′, either k � h, k ⊂ h, or k∗ ⊂ h, that is to say, h is

maximal if h∗ is minimal;
(iii) terminal in H′ if it is either maximal or minimal.

Remark 4.9. The number of terminal elements is bounded above by 2d not just for Hμ

but for any union of pairwise incomparable chains in Hμ.

4.C. Proof of Theorem 4.1

Proof of Theorem 4.1. Since the Γ-action on (B,ϑ) is amenable, there exists a Γ-equivariant
measurable map ψ : B → P(X) into the probability measures on X. We consider P(X)
endowed with the pushforward of the quasi-invariant, doubly ergodic measure ϑ on B, so that
Γ acts ergodically on P(X) × P(X). We will show that under the hypotheses of the theorem,
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we may associate to every μ in the image of ψ a point in ∂X and the composition will be the
required Γ-equivariant measurable boundary map ϕ : B → ∂X.

The map C1 : P(X) → N ∪ {∞} defined by μ �→ |Hμ| is measurable (Corollary A.2(1)) and
Γ-equivariant, hence by ergodicity it is essentially constant.
I. Hμ = ∅ for almost all μ

If the essential value of C1 is 0, then, for almost every μ ∈ P(X), Hμ = ∅. This means that,
up to measure 0, the image of ψ lies in the set E := {μ ∈ P(X) : Hμ = ∅}. Thus we have a
well-defined composition ϕ : B → E → X defined by x �→ ψ(x) �→ Xψ(x), whose image is the
single point Xψ(x) ∈ X. (Lemma 2.6). Measurability is guaranteed by Lemmas A.1 and A.3.
The equivariance under Γ follows from Lemma 4.6(7). Proposition 4.11 will show that, in fact,
ϕ takes values into the non-terminating ultrafilters of X.

The rest of the proof will show that all other cases cannot occur.
II. 0 < |Hμ| <∞ for almost all μ

If the essential value of C1 were to be finite, then Corollary 4.5 with P = P(X) would imply
that the action is not essential.
III. |Hμ| = ∞ for almost all μ

To deal with this case, we consider the Γ-equivariant and measurable function C2 : P(X) ×
P(X) → N ∪ {∞}, defined by (μ, ν) �→ |Hμ ∩Hν | (Corollary A.2(2)). Again by ergodicity of
the Γ-action on P(X) × P(X), the function C2 is essentially constant.
III.a 0 < |Hμ ∩Hν | <∞ for almost all μ, ν

If the essential value of C2 were finite and non-zero, then Corollary 4.5 with P = P(X) ×
P(X) would again imply that the action is not essential.
III.b |Hμ ∩Hν | = 0 for almost all μ, ν

Now suppose that the essential value of C2 is 0, so that, for almost every μ, ν ∈ P(X),
Hμ ∩Hν = ∅. Let us consider the measurable (Corollary A.2(3)) Γ-equivariant function T :
P(X) × P(X) → N ∪ {∞}, defined by

T (μ, ν) := |τ((Hμ ∩H+
ν ) ∪ (Hν ∩H+

μ ))|,

where

τ : 2H(X) −→ 2H(X) (4.1)

is the map that assigns to a subset of halfspaces its terminal elements. By double ergodicity T
is essentially constant. Using the fact that both Hμ and Hν are Euclidean, any subset of them
must have finitely many terminal elements and therefore this essential value must be finite (see
Remark 4.9). Once more, essentiality of the action, along with Corollary 4.5 assures us that
the essential value is 0.

This leaves us with the case in which the essential value is zero, that is, Hμ ∩H+
ν has no

terminal elements for almost every (μ, ν). In this case the following proposition (whose proof
we postpone to Subsection 4.D) allows us to conclude that this case cannot happen.

Proposition 4.10. Suppose that, for almost every μ, ν ∈ P(X), |Hμ| = |Hν | = ∞, Hμ ∩
Hν = ∅ and Hμ ∩H+

ν has no minimal elements. Then X contains cubes of arbitrarily large
dimension.

III.c |Hμ ∩Hν | = ∞ for almost all μ, ν
Finally, let us suppose that the essential value of C2 is ∞, namely |Hμ ∩Hν | = ∞ for almost

every (μ, ν) ∈ P(X) × P(X).
If Hμ = Hν for almost every μ, ν ∈ P(X), then applying Fubini, there is a μ0 ∈ P(X) such

that, for every ν in a conull Γ-invariant subset, we have that Hμ0 = Hν . Hence, Hγ∗ν = γHν =
Hν . Since the action is essential without fixed points on the visual boundary, we may flip
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any h ∈ H+
ν . This means that H−

ν ∩H+
γ∗ν �= ∅ and so H+

ν is not Γ-invariant. As a result, the
corresponding embedded subcomplexes Xγ∗ν are not invariant. We will see in Proposition 4.17
that this implies that X is a product, which is a contradiction.

We are therefore left in the case in which Hμ ∩Hν is infinite but Hμ �= Hν , for almost all
μ, ν ∈ P(X).

We now consider whether or not Hμ has strongly separated halfspaces. Observe that the set

S = {(h1, h2) ∈ H(X) × H(X) : h1, h2 are strongly separated}

is Γ-invariant. Therefore, the map μ→ |(Hμ ×Hμ) ∩ S| is measurable (Corollary A.2(4)) and
Γ-invariant, and hence essentially constant.

If Hμ contains pairs of strongly separated halfspaces, then H+
μ satisfies the DCC

(Lemma 4.18). This implies that the action is again inessential by extracting the finitely many
terminal elements of the set (H+

μ ∩ (Hν �Hμ)) ∪ (H+
ν ∩ (Hμ �Hν)) (Corollary A.2(5)), and

we proceed as before to conclude that the action is inessential.
If, on the other hand, Hμ does not contain pairs of strongly separated halfspaces, then by

Corollary 4.21 the action is inessential.

4.D. Further properties and proofs

Proposition 4.11. Let X be a finite-dimensional CAT(0) cube complex, Γ → Aut(X) be
an essential action on X, (B, ν) be a doubly ergodic Γ-space with quasi-invariant measure ν
and ϕ : B → X be a measurable Γ-equivariant map. Then ϕ takes values in the non-terminal
ultrafilters of X.

We start with a few easy observations. Recall that if α and β are two ultrafilters,

H(α, β) := [α, β] ∪ [β, α] = [α, β] ∪ [α, β]∗.

Then it is easy to check that

τ(H(α, β)) = τ([α, β]) ∪ τ([α, β]∗) (4.2)

and hence |τ(H(α, β))| is finite.

Lemma 4.12. Let α and β be two ultrafilters and h ∈ τ(α). Then β /∈ h if and only if
h ∈ τ(H(α, β)).

Proof. If β ∈ h, then h does not separate α and β, so that h /∈ H(α, β) and, even more so,
h /∈ τ(H(α, β)). The converse is equally easy and will not be needed.

Proof of Proposition 4.11. We may assume thatX is irreducible. The general case will follow
from this case as in the proof of Corollary 4.2, since the set of non-terminating ultrafilters in
a product is the Cartesian product of the sets of non-terminating ultrafilters of each factor.

The composition of ϕ with the map τ defined in (4.1) that assigns to a set of halfspaces its
terminal element gives a Γ-equivariant measurable map B → 2H(X) defined by x �→ τ(φ(x)).
The function C4 : B → N ∩ {∞} defined by x �→ |τ(φ(x))| is hence essentially constant.

Therefore, we want to show that |C4(x)| = 0 for almost every x, that is, that the set τ(φ(x))
is empty, thus showing that ϕ(x) is non-terminating.

To this purpose let us consider the map θ : B ×B → 2H(X) that to a pair (x, y) ∈ B ×B
associates the set of terminal elements in H(ϕ(x), ϕ(y)). Again by ergodicity the function
C5 : B ×B → N ∪ {∞}, defined by C5(x, y) := |τ(H(ϕ(x), ϕ(y)))|, is essentially constant and,
by (4.2), 0 � |τ(H(ϕ(x), ϕ(y)))| <∞.
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By Corollary 4.5 with P = B, we deduce that, for almost every x, y ∈ B, τ(H(ϕ(x), ϕ(y))) =
∅. We show now that this is incompatible with |τ(ϕ(x))| > 0 for almost every x ∈ B, thus
proving the proposition.

Let x0 ∈ B be such that |τ(ϕ(x0))| > 0 and let B0 ⊂ B be a set of full measure such that
τ(H(ϕ(x0), ϕ(y))) = ∅ for all y ∈ B0. Then by Lemma 4.12, if h ∈ τ(ϕ(x0)), then we must have
that ϕ(y) ∈ h for all y ∈ B0. But B0 contains a Γ-orbit and hence this contradicts the fact that
the action is essential.

4.D.1. Proof of Proposition 4.10 (in step III.b). We will find arbitrarily a large family
of pairwise intersecting halfspaces. To this purpose, choose a sequence {μi}i∈N of pairwise
generic measures satisfying the hypotheses of Proposition 4.10. For each i, choose an infinite
descending chain hin ∈ H+

μ0
∩Hμi

.
Consider the following property of an ordered pair (μi, μj) of measures .

(*) There exists C(i, j) ∈ N such that, for every n � C(i, j), there is an Mn � C(i, j) such
that if m > Mn � C(i, j), then ĥin � ĥjm.

Lemma 4.13. Up to switching i and j, any pair of measures μi and μj satisfies (∗).

We postpone the proof of this lemma and show how to conclude the proof of Proposition 4.10.
Let us consider a graph G := G(V,E), where V := {μi} and where two measures μi and μj

are connected by an edge e ∈ E with source μi and target μj if the ordered pair (μi, μj) satisfies
(∗). By Lemma A.8, given D ∈ N, there exist (relabeled) measures μ1, . . . , μD ∈ {μi}n∈N such
that, for 1 � i < j � D, each ordered pair (μi, μj) satisfies (∗).

By choosing

C := max{C(i, j) : 1 � i < j � D}

and

M := max{MC(i, j) : 1 � i < j � D}.

we obtain that, for all n,m � C and 1 � i, j � D, the corresponding hyperplanes are transverse,
ĥin � ĥjm. This concludes the proof of Proposition 4.10.

Proof of Lemma 4.13. Fix two measures that we denote, for ease of notation, μ and ν.
Let hn ∈ H+

μ0
∩Hμ and km ∈ H+

μ0
∩Hν be the corresponding infinite descending sequences.

Since all the halfspaces in question belong to H+
μ0

, for each pair n,m we have the following
decomposition:

N × N = N1 �N2 �N3 �N4,

where

N1 = {(n,m) : hn � km},
N2 = {(n,m) : hn ⊂ km},
N3 = {(n,m) : hn ⊂ km},
N4 = {(n,m) : hn ⊃ km}.

We claim that if we allow ourselves to throw away a finite number of pairs (n,m) if necessary,
then the decomposition of N × N takes a simpler shape. Namely, we make the following claim.
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Claim 4.14. There exists a constant C ∈ N depending on μ and ν, such that

NC := (N × N) ∩ ([C,∞) × [C,∞)) = N1 �Nj ,
where j = 2, 3 or 4.

In fact, let us suppose that N2 �= ∅ and N3 �= ∅ and let us take (n3,m3) ∈ N3 and (n,m) ∈
N2. Set m′ := min {m,m3}, such that

h∗n ⊂ km′ and hn3 ⊂ km′ .

If n � n3, then hn ⊂ hn3 ⊂ km′ , which is impossible since also h∗n ⊂ km′ . Hence there is no pair
(n,m) ∈ N2 such that n � min {n3 : (n3,m3) ∈ N3} =: A3. It follows that

{(n,m) ∈ N2 : n � A3} ∩N3 = ∅. (4.3)

Now let us suppose that N3 �= ∅ and N4 �= ∅ and let us take (n3,m3) ∈ N3 and (n,m) ∈ N4.
If n � n3, then

kn ⊂ hn ⊂ hn3 ⊂ km3 ,

which is impossible by Lemma 4.6 part (3). Hence, analogously to the previous case, we have
that

{(n,m) ∈ N2 : n � A3} ∩N4 = ∅. (4.4)

Finally, let us suppose that N2 �= ∅ and N4 �= ∅ and let us take (n,m) ∈ N2 and (n4,m4) ∈
N4. Set n′ := min {n, n4}, so that

hn′ ⊃ km and hn′ ⊃ km4 .

If m � m4, then hn′ ⊃ km4 ⊂ km, which is impossible since also hn′ ⊃ k∗m. Hence there is no
pair (n,m) ∈ N2 such that m < min{m4 : (n4,m4) ∈ N4} =: B4. It follows that

{(n,m) ∈ N2 : m � B4} ∩N4 = ∅. (4.5)

By setting C := max{A3, B4} we have proved the claim.
Let us suppose now that, for n0,m0 � C, the pair (n0,m0) ∈ N1 �N3 and, in fact, that

(n0,m0) ∈ N3 (otherwise there is nothing to prove). Choose m0 = m0(n0) to be the largest
integer such that (n0,m0) ∈ N3. Then, because NC = N1 �N3, for every m � m0(n0) + 1, the
hyperplanes ĥn0 and k̂m are transverse. Hence the assertion of the lemma is proved in the case
in which NC = N1 �N3.

Remark that the same identical argument shows the assertion if NC = N1 �N2, since we only
used that there is a minimal element km0 in the sequence km that contains the hyperplane ĥn0 .

The argument if NC = N1 �N4 is analogous, but with the role of hn and km reversed, as now
there is a minimal element hn0 in the sequence hn that contains the hyperplane k̂m0 . Namely,
let (n0,m0) ∈ N4 be such a pair. Then, for all n � n0(m0) + 1, the hyperplanes ĥn and k̂m0

are transverse.

Remark 4.15. The last assertion in the proof relative to the case NC = N1 �N4 holds
also for the case NC = N1 �N2, but the symmetry of this case is not useful.

4.D.2. Proofs needed in step III.c.

Lemma 4.16. Let X be a CAT(0) cube complex and A be any cubical subset of X (that
is, A is a union of cubes, not necessarily connected). If Y is the smallest strongly convex
subcomplex of X containing A, then

Ĥ(Y ) = Ĥ(A) � {ĥ ∈ Ĥ(Y ) : ĥ separates A in at least two non-trivial subsets}.



Page 38 of 52 I. CHATTERJI, T. FERNÓS AND A. IOZZI

Proof. We only need to check that every ĥ ∈ Ĥ(Y ) � Ĥ(A) separates A in non-trivial
subsets. Take ĥ = (h, h∗) ∈ Ĥ(Y ) and assume by contradiction that A ⊆ h. Then any geodesic
between two points of A is also contained in h (otherwise this geodesic would cross h twice).
Hence Y ⊆ h, contradicting that h ∈ Ĥ(Y ).

Proposition 4.17. Let X be a CAT(0) cube complex and Γ → Aut(X) be an essential
action. Let H′ ⊂ H(X) be a Γ-invariant subset of halfspaces andXα ⊂ X be a Γ-invariant family
of subcomplexes such that Ĥ(Xα) = Ĥ′. Let Y be the smallest strongly convex subcomplex

containing A :=
⋃
αXα. Then Y = X and X = X(Ĥ′) × Z.

Proof. Since Y is Γ-invariant and the action is essential, then Y = X.
Because of Lemma 4.16, the hyperplanes of Y are of two types: either they are in Ĥ′ = Ĥ(A)

and they separate one (equivalently, any) of the Xα or they separate a Xα from a Xα′ . Any
hyperplane ĥ of this second type will cross any hyperplane k̂ ∈ Ĥ′. Indeed, if ĥ = (h, h∗) and
k̂ = (k, k∗), it is easy to see that the four intersections in (2.2) are non-empty. Hence X is a
product.

Lemma 4.18. If |Hμ| = ∞ andHμ contains strongly separated halfspaces, thenH+
μ satisfies

the DCC.

Proof. Let h, k ∈ H(X) be a pair of strongly separated halfspaces in Hμ with h ⊂ k. There
is the following decomposition:

H+
μ = P (h) ∪ P (k), (4.6)

where P (h) and P (k) are the μ-heavy halfspaces that are parallel, respectively, to h and k.
Note that while P (h) and P (k) are not necessarily disjoint, their union is the whole of H+

μ

since h and k are strongly separated.
Let hn ∈ H+

μ be a descending chain, that is, hn+1 ⊂ hn. We must show that the chain
terminates. By passing to a subsequence, we may assume that hn belong to the same set for
all n ∈ N and it is hence enough to consider, for example, the case hn ∈ P (h) for all n ∈ N.

Since hn ∈ H+
μ and h ∈ Hμ, we cannot have that hn ⊂ h or h ⊂ h∗n. Let us suppose that

h ⊂ hn. Since between h and hn there are only finitely many halfspaces, and since no μ-heavy
halfspace can be contained in a balanced one, the chain must terminate. Likewise the same
argument applied to h∗ ⊂ hn shows that the chain must terminate.

Lemma 4.19. For every measure μ either Ĥμ contains a pair of strongly separated
hyperplanes or there exists a pair h ∈ H−

μ , k ∈ H+
μ of halfspaces, such that the hyperplanes ĥ

and k̂ are strongly separated and, for every x ∈ Hμ, x̂ ⊂ h∗ ∩ k.

Proof. Suppose that Hμ does not contain strongly separated halfspaces. We first show
that, for every x ∈ Hμ, there exist k0(x), k3(x) ∈ H±

μ such that k̂0(x) and k̂3(x) are strongly
separated and x̂ ⊂ k∗0(x) ∩ k3(x). For ease of notation, we drop the dependence on x.

In fact, since X is irreducible, given x ∈ Hμ, there exist halfspaces k1, k2 such that k̂1 and
k̂2 are strongly separated hyperplanes and k1 ⊂ x ⊂ k2. Then at least one between the k1 and
k2 must be in H±

μ , but perhaps not both of them. Then double skewer k2 into k1 and k∗1 into
k∗2 to obtain

γk2 ⊂ k1 ⊂ x ⊂ k2 ⊂ γ−1k1,

where the pairs γk2, k2 and k1, γ
−1k1 are strongly separated. Since all hyperplanes correspond-

ing to pairs of halfspaces in the sequence k0 ⊂ k1 ⊂ k2 ⊂ k3 are strongly separated, there can be
at most one halfspace that belongs to Hμ. By measure considerations, this halfspace can only
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be either k1 or k2, so that k0, k3 ∈ H±
μ , and the assertion is proved. In particular, γk1 ∈ H−

μ

and γ−1k2 ∈ H+
μ .

Double skewer once again to get h ∈ H−
μ and k ∈ H+

μ with ĥ, k̂ strongly separated, such
that

h ⊂ k0 ⊂ x ⊂ k3 ⊂ k.

We show now that, given any y ∈ Hμ, we have ŷ ⊂ h∗ ∩ k. In fact, we cannot have k ⊂ y
or k ⊂ y∗, since y, y∗ ∈ Hμ and k ∈ H+

μ . Analogously, we cannot have that ŷ � k̂, because
otherwise ŷ could not intersect k̂3 and hence it would have to contain it, which is impossible
again by measure considerations. Hence y ⊂ k. An analogous argument shows that h ⊂ y, thus
completing the proof.

The above argument can be extended to show the following lemma.

Lemma 4.20. Let μi ∈ P(X) be measures such that Ĥμi
does not contain strongly

separated hyperplanes for all i and Hμi
∩Hμj

�= ∅ for all i, j. Then there exists a pair of

halfspaces h ⊂ k such that ĥ, k̂ are strongly separated and, for every x ∈ Hμj
, x̂ ⊂ h∗ ∩ k.

Proof. Fix μ0 and apply Lemma 4.19 to find halfspaces h2 ⊂ h3 such that ĥ2, ĥ3 are strongly
separated and

x̂ ⊂ h∗2 ∩ h3. (4.7)

Use the double skewering lemma several times to find a chain h0 ⊂ · · · ⊂ h5 of halfspaces
with corresponding pairwise strongly separated hyperplanes. We will use that (4.7) holds in
particular for every xj ∈ Hμ0 ∩Hμi

to show that ŷ ⊂ h0 ∩ h5 for every y ∈ Hμj
and every j.

Consider in fact y ∈ Hμi
. Observe that ŷ can be transverse to at most one ĥi, 0 � i � 5, since

these are pairwise strongly separated. If it is transverse to any ĥi for 1 � i � 4, we are done,
since then ŷ ⊂ h∗0 ∩ h5. Suppose instead that ŷ is transverse to ĥ0. Then ĥ1 and h2 are nested
in between ŷ and x̂j , which is impossible by Lemma 4.6 part(3) and because Ĥμj

does not
contain strongly separated hyperplanes. A similar argument shows that ŷ cannot be transverse
to ĥ5.

If instead ŷ is parallel to all ĥi, for 0 � i � 5, then we have to check that ŷ ⊂ h0 and ŷ ⊂ h∗5
cannot happen. If fact, if ŷ ⊂ h0, as before, this would force ĥ1, ĥ2 to be in Ĥμj

, which is not
possible because they are a strongly separated pair. The case in which ŷ ⊂ h∗5 can be excluded
analogously.

Corollary 4.21. Assume that, for almost every μ ∈ P(X), there are no strongly
separated pairs in Hμ. If Hμ ∩Hν �= ∅ for almost every pair (μ, ν), then the Γ-action is
non-essential.

Proof. Fix a generic measure μ0 with a generic Γ-invariant set B0 such that, for every
ν ∈ B0, we have that Hμ0 ∩Hν �= ∅.

Lemma 4.20 implies the existence of a pair of halfspaces h ⊂ k such that h∗ ∩ k contains
all the hyperplanes in Ĥμ for ν ∈ B0, in particular those in γĤμ0 = Ĥγ∗μ0 for all γ ∈ Γ. This
shows that the two halfspaces h and k are not Γ-flippable, which contradicts either that the
action is essential or that it is without fixed points on the CAT(0) boundary [20, Theorem 4.1].
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5. Proof of Theorems 1.1 and 1.2

Let X be a finite-dimensional CAT(0) cube complex, Γ → Aut(X) be a non-elementary action
and Y ⊂ X be the essential core of X. Let (B,ϑ) be any strong Γ-boundary. In order to
prove our main result, we constructed in Section 4 a measurable Γ-equivariant boundary map
ϕ : B → ∂X to the Roller boundary ∂X. The precomposition of the median cocycle c with
ϕ : B → ∂X yields a Γ-equivariant cocycle defined on B3, which we will show is non-zero on a
set of positive measure (Proposition 5.1 and Lemma 5.3). According to (3.8), this ensures the
existence of a non-trivial cohomology class on Γ. Then [9] ensures that the median class of the
Γ-action ρ∗(m(n,R)) ∈ H2

b(Γ, �p(H(X)n)), n � 2, corresponds to the cohomology class c ◦ ϕ3 on
B3 and hence does not vanish.

5.A. Passing from a cocycle on ∂X to a cocycle on B

We give a condition on a Γ-equivariant cocycle d : (∂X)3 → E to guarantee that d ◦ ϕ3 : B3 →
E is non-zero on a set of positive measure, where ϕ : B → ∂X is a measurable Γ-equivariant
map.

Let K be compact metrizable Γ-space. A measure λ ∈ P(K) is quasi-invariant if λ and γ∗λ
have the same null sets for all γ ∈ Γ.

If h ∈ H(X) is a halfspace, then we set

h := {x ∈ X : x ∈ h}

and

∂h := h ∩ ∂X.

Proposition 5.1. Let Γ be a group with a non-elementary and essential action Γ →
Aut(Y ) on a finite-dimensional CAT(0) cube complex Y . If (B,ϑ) is a strong Γ-boundary, let
ϕ : B → ∂Y be a Γ-equivariant measurable map. Let d : (∂Y )3 → E be an everywhere defined
alternating bounded Γ-equivariant Borel cocycle with values in a coefficient Γ-module E. If
there exist halfspaces hi ∈ H(Y ) such that d(ξ1, ξ2, ξ3) �= 0 for every (ξ1, ξ2, ξ3) ∈ ∂h1 × ∂h2 ×
∂h3, then d ◦ ϕ3 is a non-trivial element of ZL∞

alt,∗(B
3, E)Γ.

The proof is almost an immediate consequence of the following lemma.

Lemma 5.2. Let Y be a finite-dimensional CAT(0) cube complex and Γ → Aut(Y ) be a
non-elementary essential action. If λ ∈ P(∂Y ) is any quasi-invariant probability measure, then
λ(∂h) > 0 for any halfspace h ∈ H(Y ).

Proof. If λ(∂h) = 0, then λ(∂h∗) = 1. By the Flipping Lemma [20, Theorem 4.1], there
exists γ ∈ Γ such that h∗ ⊂ γh. But this is a contradiction because ∂h∗ ⊂ ∂(γh) = γ∂h, while,
by quasi-invariance, λ(γ∂h) = 0.

Proof of Proposition 5.1. If there exist halfspaces hi ∈ H(Y ) such that d(ξ1, ξ2, ξ3) �= 0 for
every (ξ1, ξ2, ξ3) ∈ ∂h1 × ∂h2 × ∂h3, then d ◦ ϕ3(x1, x2, x3) �= 0 for almost every (x1, x2, x3) ∈
ϕ−1(∂h1) × ϕ−1(∂h2) × ϕ−1(∂h3) =: S ⊂ B3.

By Lemma 5.2 applied to the quasi-invariant probability measure ϕ∗ϑ ∈ P(∂Y ), the set S
has positive ϑ3-measure and hence d ◦ ϕ3 is a non-trivial element of ZL∞

alt,∗(B
3, E)Γ.

5.B. Proof of Theorems 1.1 and 1.2

We start with a lemma ensuring that the cocycle is non-vanishing on a set of positive measure.
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Lemma 5.3. Let X be a finite-dimensional CAT(0) cube complex, with a non-elementary
action Γ → Aut(X). Then, for every essential h ∈ H(X) and for every n � 2, there is a positive
measure set A(h,n) ⊂ ∂X3 and Rh > 0 so that, for every R > Rh, the restriction c(n,R)|A(h,n)

does not vanish.

Proof. Let γ and γ′ ∈ Γ be such that the triple h, γh, γ′h is an über-parallel facing triple
in an orbit as in Lemma 2.37. By the Flipping Lemma, there exists μ ∈ Γ such that μh∗ ⊂ h
and let η ∈ Γ be an element that skewers μh into γh, so as to obtain

μh ⊃ h∗ ⊃ γh ⊃ ημh.

The pair μh and μηh is über-parallel and hence so is any consecutive pair in the sequence

μh ⊃ ημh ⊃ η2μh ⊃ · · · ⊃ ηn−1μh.

Because of Lemma 5.2, the set

A(h,n) := ∂(μh∗) × ∂(η(n−1)μh) × ∂(γ′h)

has positive measure. Since, for every (ξ1, ξ2, ξ3) ∈ A(h,n), the set [[ξ3, ξ2]](n,R) � ([[ξ3, ξ1]](n,R) ∪
[[ξ1, ξ2]](n,R)) is not empty, provided R is larger than the translation length Rh of η, Lemma 3.11
ensures that c(n,R)|A(h,n) does not vanish.

Proof of Theorem 1.1. Let Y be the essential core of the Γ-action on X. According
to [9], the class of c(n,R) ◦ ϕ3 is the isometric image of the median class m(n,R) under the
isomorphism (3.8), where ϕ : B → ∂Y is the boundary map constructed in Theorem 4.1.
Let RΓ = min{Rh |h essential} and where the Rhs are as defined in Lemma 5.3. Then,
Proposition 5.1 and Lemma 5.3 ensure that c(n,R) ◦ ϕ3 is non-trivial if n � 2 and R � RΓ.

Proof of Theorem 1.2. If the Γ-action is elementary, by definition there exists a finite orbit
in X ∪ ∂�X. If the finite Γ-orbit is in X, then there is a subgroup of finite index Γ0 < Γ
that fixes a point x ∈ X. Hence the median class of the Γ0-action on X vanishes. Since the
map H2

b(Γ, �p(H(X)n)) → H2
b(Γ0, �

p(H(X)n)) is injective [38], the median class of the Γ-action
vanishes.

If, on the other hand, there exists a finite Γ-orbit in ∂�X, then we can apply Proposition 2.26
and deduce that either there is a finite orbit in ∂X, in which case we conclude as in the first
part and the median class of the Γ-action vanishes, or there exists a finite index subgroup
Γ′ < Γ and a Γ′-invariant subcomplex X ′ ⊂ ∂X in which the Γ′-action is non-elementary. By
Theorem 1.1, the median class of the Γ′-action onX ′ does not vanish, and, sinceX ′ corresponds
to a lifting decomposition of halfspaces, by Proposition 3.3 it is the restriction of the median
class of the Γ-action on X.

6. Applications

6.A. Rigidity of actions

Proof of Theorem 1.5. We will need our action to satisfy the property that the barycenter
of every face has trivial stabilizer. This is a natural generalization to CAT(0) cube complexes
of the notion of no edge inversions in the context of actions on trees. For this reason, we start
with an arbitrary action and then pass to its cubical subdivision.

Let Y ′ be the cubical subdivision of Y . Observe that Aut(Y ) ↪→ Aut(Y ′) and the image acts
with the property that the barycenter of every face in Y ′ has trivial stabilizer. Moreover, Γ
acts essentially on Y ′ and Y ′ is irreducible.
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The proof follows very closely the strategy of the proof in [52]. Namely, if we denote by ei
the identity in Gi, then we aim to show that there is an i ∈ {1, . . . , �} for which the set

Yi := {x ∈ Y ′ : if γm ∈ Γ such that pri(γm) −→ ei,

then there exists N > 0 such that γmx = x for all m � N}

is not empty, where pri : G→ Gi is the ith projection. It is easy to see that the set Yi is
Γ-invariant. Indeed, if γm ∈ Γ is a sequence such that pri(γm) → ei, then, for every γ ∈ Γ, we
have that pri(γ−1γmγ) → ei. Moreover, Yi is convex with respect to the CAT(0) metric: in
fact, let x1, x2 ∈ Yi and let γm ∈ Γ be a sequence such that pri(γm) → ei. Then, by definition
of Yi there exists N sufficiently large such that γmxj = xj for all m � N and j = 1, 2. Since
Γ acts by isometries, if m � N, then γm will also fix pointwise the unique CAT(0) geodesic
between x1 and x2.

We claim now that if Yi is not empty, then it is in fact a subcomplex of Y ′. To see this,
let us write Y ′ as the disjoint union of k-dimensional faces, where a k-dimensional face is the
interior of a k-dimensional cube if 1 � k � dim(Y ) and is the boundary of a one-dimensional
cube if k = 0. Let Fk be a k-dimensional face that has non-empty intersection with Yi. Then
Fk ⊂ Yi. Since we are acting on the cubical subdivision Y ′, we have also that if γm eventually
fixes a face Fk, then it fixes all lower-dimensional faces that are contained in its closure Fk,
thus showing that Fk ⊂ Yi. Thus Yi is a CAT(0) cube subcomplex of Y ′.

We are then left to show that there exists i ∈ {1, . . . , �} such that Yi �= ∅.
Let i ∈ {1, . . . , �} and let Hi ⊂ �2(H(Y )n) be the (possibly trivial) subspace on which the

isometric action of Γ extends continuously to G via the projection pri : G � Gi. By [17,
Theorem 16], H2

b(Γ, �2(H(Y )n) =
⊕�

i=1 H2
b(Gi,Hi), so that by Theorem 1.1 there exists an

i ∈ {1, . . . , �} (not necessarily unique) such that Hi �= {0}.
The space Yi will be constructed from these data as follows.
Define on H(Y )n an equivalence relation, namely if s, s′ ∈ H(Y )n, then we say that s ∼ s′ if

f(s) = f(s′) for all f ∈ Hi. Since these functions are square summable, all of the equivalence
classes are finite, with the possible exception of the class where all functions in Hi vanish.
Moreover, Γ permutes all the finite equivalence classes and leaves invariant the only infinite
one (if it exists). Therefore, the complement H(Y )n0 of the infinite class in H(Y )n is Γ-invariant.

Claim 6.1. Let [s] ∈ H(Y )n0/ ∼ be a finite equivalence class and StabΓ([s]) be its stabilizer.
If γm ∈ Γ is a sequence such that pri(γm) → ei, then there exists N > 0 such that, for all
m � N, γm ∈ StabΓ([s]).

We assume the claim for the moment and show that Yi is not empty. Fix [s] ∈ H(Y )n0 and
let ĥ be a hyperplane corresponding to one of the halfspaces appearing in an element of [s]. By
Lemma 2.14, there exists γ ∈ Γ such that ĥ and γĥ are strongly separated. By [3, Lemma 2.2],
the bridge b(ĥ, γĥ) consists of a single geodesic (of finite length). Observe that since H(X)n0
is invariant, the class [γs] is finite. Hence there are finitely many halfspaces in the set {h :
h ∈ s′, for s′ ∈ [s′]}, both if s′ = s and if s′ = γs. It follows that if we define L := StabΓ([s]) ∩
StabΓ([γs]), then the L-orbit of b(ĥ, γĥ) is finite, therefore bounded, and its circumcenter is an
L-fixed point.

If γm ∈ Γ is a sequence such that pri(γm) → ei, Claim 6.1 implies that, for m large enough,
the sequence γm belongs to L and hence fixes the circumcenter, thus showing that Yi �= ∅. Then
Proposition 4.3 in [52] shows that the action of Γ on Yi extends to G by factoring through Gi.

Since the action of Γ on Y ′ is essential, it follows that Yi = Y ′. Observe however that, since
Aut(Y ) is closed in Aut(Y ′) in the topology of the pointwise convergence, the extension of the
action to G is in Aut(Y ).
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Proof of Claim 6.1. Let s ∈ H(Y )n0 and let f ∈ Hi so that f(s) �= 0. Since limm→∞ ‖γmf −
f‖2 = 0, it follows that limm→∞ f(γms) = f(s). Because f is square summable, it takes finitely
many values in a |f(s)|/2-neighborhood of f(s), so that we conclude there exists N(f, s) such
that f(γms) = f(s) for all m � N(f, s). In particular, {γms : n � 1} is finite.

If γmk
s �∼ s for some subsequence mk, then, by passing to a further subsequence, we may

assume that s0 := γmk
s �∼ s. But then there is g ∈ Hi such that g(s) �= 0 and g(s0) �= g(s),

which, together with

g(s0) = lim
k
g(γmk

s) = g(s),

is a contradiction.

The proof of the above theorem does rely on the assumption that Y is irreducible and
essential. In general, we can pass to the essential core Y of the Γ-action on X and to its cubical
subdivision Y ′. Let Γ′ < Γ be the finite index subgroup that acts on each of the irreducible
factors in Y ′ and let G′

i := pri(Γ′). By applying Theorem 1.5 to each of the irreducible factors,
we obtain that the action of Γ′ on Y extends continuously to an action of G′, where G′ =
G′

1 × · · · ×G′
�, by factoring via one of the factors.

We have hence proved the following.

Corollary 6.2. Let X be a finite-dimensional CAT(0) cube complex and Γ be an
irreducible lattice in the product of locally compact groups G1 × · · · ×G� =: G. Let Γ →
Aut(X) be a non-elementary action on X. Then the action of Γ on the essential core of X
virtually extends to a continuous action of an open finite index subgroup in G, by factoring
via one of the factors.

6.B. The class Creg

We now prove Corollary 1.8 concerning the class of groups Creg. The idea of the proof is as
follows. If the action is proper, then in particular the vertex stabilizers are finite. We can then
find, for each n > 1, an n-tuple s ∈ H(X)n with finite stabilizers such that �p(Γ · s) ↪→ �p(Γ).
We then prove that s can be chosen in such a way that this map does not vanish on the image
of the cocycle.

Proof of Corollary 1.8. Let h ⊂ k be two strongly separated halfspaces in H. Since the action
of Γ is also by CAT(0)-isometries, the stabilizer of {h, k} must also stabilize their CAT(0)
bridge. Since the action is proper, the stabilizer of the CAT(0) bridge b(ĥ, k̂) is finite. It follows
that if s = (h1, . . . , hn) is a über-separated sequence of halfspaces of consecutive distance less
than or equal to R, then StabΓ(s), the stabilizer of s in Γ, is finite.

Fix s ∈ H(Y )n, and consider the Γ-equivariant map

σs : �p(Γ · s) −→ �p(Γ) (6.1)

defined by σsf(γ) := f(γs). Since ‖σsf‖p = |StabΓ(s)| ‖f‖p, the map is injective.
Now, observe that �p(H(Y )n) =

⊕
s∈S �

p(Γ · s), where S is a choice of Γ-orbit representatives.
Since the cocycle c : Y × Y × Y → �p(H(Y )n) is Γ-equivariant, for every s, we may post-

compose c with σs and precompose with the boundary map ϕ : B → ∂Y and obtain

cs = σs ◦ c ◦ ϕ3 : B ×B ×B −→ �p(Γ · s).

We now choose s so as to guarantee that cs is non-vanishing on a set of positive measure:
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As in the proof of Lemma 5.3, we fix h ∈ H(Y ) and find γ, γ′ ∈ Γ so that h∗, γh, γ′h form a
facing über-parallel triple. Let s = (h, γh, . . . , γn−1h). Then, cs restricted to the set

A(h,n) = ∂h× ∂(γ(n−1)h∗) × ∂(γ′h∗)

is non-zero, as is demonstrated in the proof of Lemma 5.3.

Appendix A. Some more proofs

A.A. The measurability of certain key maps

The notation used in this section refers to Section 4.

Lemma A.1. Let I ⊆ [0, 1] be a subinterval, possibly open, half open or closed. Let
HI
μ = {h ∈ H(X) : μ(h) ∈ I}. The map P(X) → 2H(X), defined by μ �→ HI

μ, is measurable with

respect to the weak-∗ topology on P(X).
As a consequence, the map N : P(X) → N ∪ {∞} defined by N(μ) = |HI

μ| is measurable.

Proof. Recall the definition of cylinder sets: Let F1, F2 ∈ 2H(X) be two finite sets. The
cylinder set associated to them is

C(F1, F2) = {H ∈ 2h : F1 ⊆ H and F2 ⊆ Hc}.
Cylinder sets form a basis for the topology on 2H(X). Therefore, it is sufficient to show that

K(F1, F2) = {μ : HI
μ ∈ C(F1, F2)}

is measurable.
To this end, observe that h is open and closed as a subset of X so that its characteristic

function 1h is continuous. Therefore, the set EI(h) = {μ : μ(h) ∈ I}, for h ∈ H(X), is weak-
∗ open, half open or closed according to I, and therefore is measurable. Then the following
completes the proof:

K(F1, F2) =
⋂
h∈F1

EI(h) ∩
⋂
h∈F2

(EI(h))c.

Corollary A.2. The following maps are measurable:

(1) C1 : P(X) → N ∪ {∞}, defined by C1(μ) := |Hμ|;
(2) C2 : P(X) × P(X) → N ∪ {∞}, defined by C2(μ, ν) := |Hμ ∩Hν |;
(3) T : P(X) × P(X) → N ∪ {∞}, defined by

T (μ, ν) := |τ((Hμ ∩H+
ν ) ∪ (Hν ∩H+

μ ))|;

(4) Nν : P(X) → N ∪ {∞}, defined by Nν(μ) := |(Hμ ×Hν) ∩ S|, where

S := {(h1, h2) ∈ H(X) × H(X) : h1, h2 are strongly separated};
(5) C3 : P(X) × P(X) → N ∪ {∞}, defined by

C3(μ, ν) := |[H+
μ ∩ (Hν �Hμ)] ∪ [H+

ν ∩ (Hμ �Hν)]|.

Proof. The proofs of statements (1), (2) and (5) are consequences of Lemma A.1 and the
observation that the product and composition of Γ-equivariant measurable maps are again
Γ-equivariant and measurable. Statement (4) follows by considering the fact that S is a
Γ-invariant set. Statement (3) follows from the following result.

Lemma A.3. The map p : 2H(X) → 2X defined by 1S �→ 1⋂
h∈S h

is measurable.
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Proof. Choose an enumeration H(X) = {hn : n ∈ N}. Recall that the standard projection
πN : 2H(X) → 2{h1,...,hN} is continuous. Next define pN : 2{h1,...,hN} → 2X as 1S �→ 1(

⋂
h∈S h)

,

which is also continuous as 2{h1,...,hN} is endowed with the discrete topology.
Observe that p(1S) = sup{pN ◦ πN (1S) : n ∈ N} and is hence measurable as the supremum

of continuous functions.

Recall that, in (3.2), we set the notation Ep := �q(H(X)n) if 1/p+ 1/q = 1 and 1 < p <∞,
and E1 to be the Banach space of functions on H(X)n that vanish at infinity.

Lemma A.4. For all 1 � p <∞, the cocycle c : X
3 → �p(Hn) is a Borel map, where X

3 ⊂
2H(X) has the induced product topology and �p(H(X)n) has the weak-∗ topology as the dual
of Ep.

Proof. Choose an enumeration of H and let HN := {h1, . . . , hN}. Let us define the finite
space

HnN := {s ∈ Hn : s ⊂ HN},

and, for any subsets E,F ⊂ H, the set

(E � F )nN := {s ∈ HnN : s ⊂ E and s �⊂ F}.

The map c+N : 2H × 2H × 2H → C0(Hn) defined as

c+N (F1, F2, F3) := 1(F3�F2)n
N

+ 1(F1�F3)n
N

+ 1(F2�F1)n
N

factors through the canonical projection 2H → 2HN on triples and hence is continuous. Then
the map cN (F1, F2, F3) := c+N (F1, F2, F3) − c+N (F1, F3, F2) is also continuous and in particular
is continuous when restricted to the subset X

3 ⊂
(
2H

)3. (Here we use the identification of a
vertex v ∈ X with the principal ultrafilter containing v.)

For any f ∈ Ep, the function on X
3

defined by

(x, y, z) �−→ 〈cN (x, y, z), f〉

is continuous. Its pointwise limit

(x, y, z) �−→ lim
N→∞

〈cN (x, y, z), f〉

is measurable and, in fact,

〈c(x, y, z), f〉 = lim
N→∞

〈cN (x, y, z), f〉 ,

thus showing that the cocycle c restricted to X
3

is Borel.

A.B. A lemma in graph theory

Let G(V,E) be a tournament, that is a complete directed finite graph with vertices V and edges
E. We denote by s, t : E → V, respectively, the source and the target of an edge. We allow the
possibility that there are two edges between two vertices, one in each direction. Given a vertex
v ∈ V , we denote by o(v) (respectively, i(v)) the number of outgoing (respectively, incoming)
edges at v. Since the graph is complete,

o(v) + i(v) � |V | − 1, (A.1)

for every v ∈ V .
The next lemma shows that if the graph is complete, there is at least one vertex that has

‘many’ outgoing edges.
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Lemma A.5. If G := G(V,E) is a complete directed finite graph and |V | = D, then there
exists v ∈ V such that o(v) � (D − 1)/2.

Proof. From (A.1), we have that∑
v∈V

o(v) + i(v) � D(D − 1).

We have also that ∑
v∈V

o(v) =
∑
v∈V

i(v),

so that ∑
v∈V

o(v) � D(D − 1)
2

.

Since |V | = D, the assertion follows readily.

Definition A.6. We say that a complete directed finite graph G(V,E) with |V | = D is
strictly upper triangular (or transitive tournament) if there exists a numbering v1, . . . , vD of
its vertices, such that, for all j = 1, . . . , D,

o(vj) = D − j,

i(vj) = j − 1.

The terminology is inspired from the fact that the corresponding D ×D adjacency matrix
M with coefficients

Mij :=

{
1 if there exists e ∈ E with s(e) = vi and t(e) = vj ,

0 otherwise,

is strictly upper triangular, namely v1 is connected by an outgoing vertex to all of the remaining
v2, . . . , vD, v2 is connected to v3, . . . , vD and so on.

Example A.7. A strictly upper triangular graph with d = 2 corresponds to the matrix

M =

⎛⎝0 1 1
0 0 1
0 0 0

⎞⎠ and is of the form

Lemma A.8. Let G = G(V,E) be a complete directed graph (not necessarily finite) and
D ∈ N. If |V | � 5D, then there exist D vertices v1, . . . , vD such that the induced complete
directed subgraph on v1, . . . , vD is strictly upper triangular.

Proof. The idea is to construct the strictly upper triangular graph inductively. By
Lemma A.5, there exists v1 ∈ V with o(v1) � (|V | − 1)/2 � |V |/5 outgoing edges. Denote by

O(v1) := {e ∈ E : s(e) = v1}
the set of outgoing edges (so that |O(v1)| = o(v1)). We consider now the induced complete
directed subgraph G(v1) on v1 and on the vertices at the end of the edges in O(v1), namely
G1 := G(V (v1), E(v1)) ⊂ G, where

V (v1) := {v1} � {t(e) : e ∈ O(v1)} and O(v1) � E(v1) ⊆ E,

and the edges E(v1) are exactly the edges in E needed to complete the graph on the vertices
V (v1). Remark that, by construction, |V (v1)| = o(v1) + 1 � |V |/5 � 5D−1 and the induced
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complete directed subgraph on any ordered pair of vertices v1, v, with v ∈ V (v1), is (trivially)
a strictly upper triangular graph.

We could now proceed to formulate a rigorous proof by induction, but we prefer showing
how to move to the next step, as we believe that the very simple idea of the proof will be more
transparent.

We repeat now exactly the same construction as before, applied to the graph G1(V (v1), E(v1))
instead of G(V,E). Namely, let v2 ∈ V (v1) be the vertex, whose existence is asserted by
Lemma A.5, such that if

O(v2) := {e ∈ E(v1) : s(e) = v2},
then o(v2) = |O(v2)| � (|V (v1)| − 1)/2 � |V (v1)|/5. By construction there is an outgoing edge
from v1 to v2 and from v1 to any other vertex in G1. From the graph G1, we retain now only
those vertices w ∈ V (v1) that are at the end of an outgoing edge from v2, so that v1, v2, w is
strictly upper triangular, and eliminate all of the other vertices. Namely, let G2 be the induced
complete directed graph on v2 and on the vertices that are the targets of the o(v2) edges in
E(v1) outgoing from v2; that is, G2 := G(V (v2), E(v2)) ⊂ G1, where

V (v2) := {v2} � {t(e) : e ∈ O(v2)} and O(v2) � E(v2) ⊆ E(v1) ⊆ E.

Now we have a complete directed graph on |V (v2)| � o(v2) + 1 � |V (v1)|/5 � 5D−2 vertices
from which we can continue choosing vertices v3, . . . , vD such that, at each step, we increase
by one our strictly upper triangular graph and we reduce by a factor of 5 the cardinality of
the vertex set.

Appendix B. Boundary stabilizers in CAT(0) cube complexes
by Pierre-Emmanuel Caprace

Let X be a (not necessarily proper) CAT(0) cube complex. A group Γ � Aut(X) is called
locally X-elliptic if every finitely generated subgroup of Γ fixes a point of X. The goal of this
appendix is to establish the following.

Theorem B.1. Let X be a finite-dimensional CAT(0) cube complex and α be a point in
the Roller compactification.

Then the stabilizer StabAut(X)(α) has a locally X-elliptic normal subgroup N such that the
quotient StabAut(X)(α)/N is finitely generated and virtually abelian of rank � dim(X).

The following consequence of Theorem B.1 is immediate.

Corollary B.2. Let Γ be a finitely generated group satisfying the following two
conditions.

(1) Every finite index subgroup of Γ has finite abelianization.
(2) For every Γ-action on a finite-dimensional CAT(0) cube complex, there is a finite

Γ-orbit in the Roller compactification.

Then every Γ-action on a finite-dimensional CAT(0) cube complex has a fixed point.

Remark B.3. As pointed out to me by Talia Fernos, the converse statement to Corollary
B.2 holds as well, namely: A finitely generated group Γ all of whose actions on finite-dimensional
CAT(0) cube complexes have fixed points, automatically satisfies (1) and (2). Indeed, Property
(2) is straightforward, while the existence of a finite index subgroup with infinite abelianization
can be used to produce an unbounded action on the standard cubulation of the Euclidean
n-space, for n large enough.
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The proof of Theorem B.1 uses a relation between the Roller boundary and the simplicial
boundary of X. The latter boundary was constructed by Hagen [29], under the hypothesis
that X is finite-dimensional. Before reviewing its construction, we start with an abstract tool
that will be used to produce the abelian quotient appearing in Theorem B.1.

Following Yves de Cornulier [22], we say that two subsets M,N of a set X are commensurate
if their symmetric difference M�N is finite. We say that M is commensurated by the action
of a group G acting on X if, for all g ∈ G, the sets M and gM are commensurate.

Proposition B.4 ([22, Proposition 4.H.1]). Let G be a group, X be a discrete G-set and
M ⊂ X be a commensurated subset.

Then the map

trM : G −→ Z : g �−→ #(M \ g−1M) − #(g−1M \M)

is a homormorphism, called the transfer character. Moreover, for any N ⊂ X commensurate
to M and any g ∈ G, we have trM (g) = trN (g).

We now turn back to our geometric setting: in the rest of this note we let X be a CAT(0)
cube complex. Its set of halfspaces (respectively, hyperplanes) is denoted by H(X) (respectively,
W(X)). The map H(X) → W(X) : h �→ ĥ associates to each halfspace its boundary hyperplane.
In order to define the simplicial boundary, we recall some of Mark Hagen’s terminology from
[29]. A set of hyperplanes U ⊂ W(X) is called:

(i) inseparable if each hyperplane separating two elements of U belongs to U ;
(ii) the inseparable closure of a set of hyperplanes V if U is the smallest inseparable set

containing V;
(iii) unidirectional if for each ĥ ∈ U , at least one halfspace bounded by ĥ contains only

finitely many elements of U ;
(iv) a facing triple if U consists of the three boundary hyperplanes of three pairwise disjoint

halfspaces;
(v) a UBS if U is infinite, inseparable, unidirectional and contains no facing triple (UBS

stands for unidirectional boundary set);
(vi) a minimal UBS if every UBS U ′ contained in U is commensurate to U ;
(vii) almost transverse to a set of hyperplanes V if each ĥ ∈ U crosses all but finitely many

hyperplanes in V, and each k̂ ∈ V crosses all but finitely many hyperplanes in U .

The following result is due to Mark Hagen.

Proposition B.5 ([29, Theorem 3.10]). Assume that X is finite-dimensional.
Given a UBS V, there exists a UBS V ′ commensurate to V such that V ′ is partitioned into

a finite union of minimal UBS, say U1 ∪ · · · ∪ Uk, where k � dim(X), such that, for i �= j ∈
{1, . . . , k}, the set Ui is almost transverse to Uj .

Furthermore, if V ′′ is a UBS which is commensurate to V and is partitioned into a finite
union of minimal UBS, say U ′

1 ∪ · · · ∪ U ′
k′ , which are pairwise almost transverse, then k = k′

and, up to reordering, the set U ′
i is commensurate to Ui for all i.

Following Hagen [29], the simplicial boundary of X, denoted by ∂�X, is defined (when
X is finite-dimensional) as the abstract simplicial complex whose underlying poset is the set
of commensuration classes of UBS, with the natural order relation induced by inclusion. Its
vertices thus correspond to the commensuration classes of minimal UBS, and two vertices are
adjacent if they are represented by two UBS that are almost transverse to one another. The
set of simplices of ∂�X is denoted by SX.
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The following observation, which is implicit in [29] (see the proof of Lemma 3.7 in [29]),
characterizes the minimal UBS.

Lemma B.6. Assume that X is finite-dimensional. Let h0 � h1 � · · · be an infinite chain
of halfspaces. Then the inseparable closure of {ĥi | i � 0} is a minimal UBS. Moreover, every
minimal UBS contains a (necessarily cofinite) UBS arising in this way.

Proof. Let V = {ĥi | i � 0} and U be the inseparable closure of V. It is clear that U is
infinite and inseparable. Observe moreover that each hyperplane in U separates ĥ0 from ĥi for
some sufficiently large i. This implies that U is unidirectional and does not contain any facing
triple. Thus U is a UBS. Proposition B.5 implies that U must be minimal.

That every minimal UBS arises in this way follows since any UBS contains an infinite set of
pairwise disjoint hyperplanes by the finite dimensionality of X.

We now briefly recall that definition of the Roller compactification, following Martin Roller
[45]. A section α : W(X) → H(X) of the map h �→ ĥ is called an ultrafilter if, for every
finite set F ⊂ W(X), the intersection

⋂
ĥ∈F α(ĥ) is non-empty. An ultrafilter is principal

if
⋂
ĥ∈W(X) α(ĥ) is non-empty, in which case that intersection contains a unique vertex.

Conversely, every vertex v of X gives rise to a unique ultrafilter, also denoted by v, which
maps each hyperplane ĥ to the unique halfspace bounded by ĥ and containing v. We identify
henceforth each vertex with the corresponding principal ultrafilter. The collection of all
ultrafilters is denoted by X. The subset of non-principal ultrafilters is denoted by ∂X. With
respect to the topology of pointwise convergence, the set X = X(0) ∪ ∂X is compact; it is a
compactification of the (discrete) set of principal ultrafilters X(0). The set X (respectively,
∂X) is called the Roller compactification (respectively, Roller boundary) of X. The following
observation provides a link between the Roller boundary and the simplicial boundary.

Lemma B.7. Let α ∈ ∂X. The following hold for all x, y ∈ X(0).

(1) The set U(x, α) = {ĥ ∈ W(X) |x(ĥ) �= α(ĥ)} is a UBS.
(2) The sets U(x, α) and U(y, α) are commensurate.

In particular, the map Σ: ∂X → SX, associating to α the commensuration class of the UBS
U(x, α), where x is a fixed vertex, is well-defined and Aut(X)-equivariant.

Proof. (1) The set U(x, α) is infinite since otherwise α would be principal, because x is so.
That U(x, α) is inseparable is clear. That U(x, α) is unidirectional follows from the fact that
x is principal. Finally, given any facing triple of hyperplanes, the maps x and α must coincide
on at least one of them. Hence U(x, α) is a UBS.

(2) Any hyperplane in the symmetric difference U(x, α)�U(y, α) separates x from y.
Therefore, U(x, α)�U(y, α) is finite.

The final ingredient needed for the proof of Theorem B.1 is the following result, due to
Sageev.

Proposition B.8. Assume that X is finite-dimensional. Let Γ � Aut(X) be a finitely
generated group acting without any fixed point on X. Then there exists γ ∈ Γ and h ∈ H(X)
such that γh � h. In particular, a (possibly infinitely generated) group Λ is locally X-elliptic
if and only if every element of Λ has a fixed point in X.

Proof. This follows from the proof of Theorem 5.1 in [47].
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Proof of Theorem B.1. If α ∈ X(0), then the desired conclusion is clear. We suppose
henceforth that α belongs to ∂X. Lemma B.7 then provides a k-simplex σ = Σ(α) fixed by
Γ = StabAut(X)(α). Note that k + 1 � dim(X) by Proposition B.5. We denote the vertices of σ
by v0, . . . , vk. For each j, the stabilizer StabΓ(vj) is of finite index in Γ, and commensurates any
UBS representing vj . We denote by χj the transfer character associated to this commensurating
action by means of Proposition B.4. Thus the sum

⊕k
j=0 χj is a homormorphism to Zk+1 which

is defined on a finite index subgroup of Γ. We denote its kernel by Γ0, and claim that Γ0 is
locally X-elliptic. The desired conclusion follows from that claim.

By Proposition B.8, it suffices to show that every element of Γ0 has a fixed point. Suppose
for a contradiction that an element g ∈ Γ0 has none. Applying Proposition B.8 to the cyclic
group generated by g, we find a halfspace h and a positive integer n such that gnh � h. Set
ĥi = gniĥ for all i ∈ Z. Since g fixes α, the collection {α(ĥi) | i ∈ Z} is 〈gn〉-invariant, and
must therefore be a chain. Upon replacing g by g−1, we may assume that α(ĥ0) � α(ĥ1). Let
x ∈ α(ĥ0) \ α(ĥ1) be a vertex. In particular x(ĥi) �= α(ĥi) for all i > 0. It follows that the UBS
U(x, α), which represents σ = Σ(α), contains ĥi for all i > 0. We now apply Proposition B.5 to
U(x, α). This yields a finite set of pairwise almost transverse minimal UBS U0, . . . ,Uk contained
in U(x, α), each representing a vertex vj of σ, and such that the union

⋃k
j=0 Uj is cofinite in

U(x, α). Since the hyperplanes ĥi have pairwise empty intersection, we deduce moreover from
Proposition B.5 that there is some j ∈ {0, . . . , k} such that ĥi ∈ Uj for all i larger than some
fixed I. By Lemma B.6, we may assume that Uj is the inseparable closure of {ĥi | i > I}. Since
gn(ĥi) = ĥi+1 for all i, we infer that gn maps Uj properly inside itself, thereby implying that
0 �= χj(gn) = nχj(g). This contradicts the fact that g ∈ Γ0 � Ker(χj).
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