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Abstract

A typical learning process begins with some prior beliefs about the target concept. These beliefs
are re�ned using evidence, typically a sample. The evidence is used to compute a �posterior be-
lief�, which assigns a probability distribution over the hypothesis class F . Using the posterior, a
hypothesis is selected to predict the labels during the generalization phase. A natural candidate
is the Bayes hypothesis, that is, the weighted majority vote. However, this hypothesis is often
prohibitively costly to compute. Therefore, there is a need for an algorithm to construct a hy-
pothesis (either a single hypothesis from F , or from a di�erent class), given the posterior belief.
Several methods have been proposed for this problem: for example, Gibbs sampling, ensemble
methods, and choosing the maximum posterior. We propose a new method: choosing the median

hypothesis. This method is close to the average Gibbs hypothesis and the Bayes hypothesis in
terms of accuracy while having the same run-time e�ciency, during the generalization phase, as
the maximum posterior method.

In this paper, we de�ne a measure of depth for hypotheses, from which we derive the median
hypothesis. We prove generalization bounds which leverage the PAC-Bayes analysis technique.
We present an algorithm to approximate the median hypotheses and we prove its correctness. Our
de�nition of median is closely related to Tukey's median; in fact, to the best of our knowledge,
our algorithm is the �rst polynomial approximation algorithm to the Tukey median.

1. Introduction

In the learning process, one starts with one's prior beliefs, re�nes them using some data (evidence)
and �nally chooses a hypothesis. A schematic diagram of this process is presented in Figure 1. The
initial belief, given as a probability measure P over a function class F , is re�ned using the evidence
to form the posterior Q, which is again a probability measure over F . Here, we draw a distinction
between F , the class of functions available to the learning algorithm, and a hypothesis, which may
not even be a member of F , although it is constructed from elements of F . For example, many
learning algorithms use a sample {(xi, yi)}mi=1 and employ an evaluation function of the form:

E (f) =
1

m

m∑
i=1

l (f (xi) , yi) + r (f) (1)

where l is some loss function and r (·) is a regularization term. The energy function, E (f), can be
converted into prior and posterior probabilities with density functions p and q de�ned respectively
as:

p (f) :=
1

Zp
exp (−βr (f)) , q (f) :=

1

Zq
exp (−βE (f))

where Zp and Zq are the �partition functions� and β > 0 is a constant (the reciprocal of the
temperature) (Sollich (2002)).
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Figure 1: A schematic view of learning

Method Run Time E�ciency Information content on the posterior

Gibbs sampling High Low
MAP High Low

Bayes estimator Low (typically) High
Ensembles (small) High Low
Ensembles (large) Low High

Median High High

Figure 2: Di�erent methods of turning the posterior Q into a hypothesis.

Given the posterior measure Q, one has to pick a hypothesis to use. For example, one could
choose to use the Bayes classi�er which will conduct a weighted majority vote for every prediction.
However, this method is often prohibitively slow due to its run-time computational complexity. One
might instead choose the Maximum A Posteriori (MAP) classi�er. This method will be e�cient
in terms of run-time computational complexity, but it is very loose in capturing the information
conveyed by Q. The main shortcoming of the MAP estimator is that it focuses on the density at a
single point. While doing that, it might ignore a large population that may be better represented by
a di�erent hypothesis. Moreover, the MAP estimator is not stable in the sense that a minor change
to Q can result in the estimator changing in an arbitrary way. These e�ects are discussed in detail
in Appendix A.

Another possible approach for selecting a hypothesis given Q is to sample hypotheses according
to Q and thus form an ensemble. In a sense, the bagging method (Breiman (1996)) does exactly
this. The run-time computational complexity of this method depends on the size of the ensemble
while the ability of the ensemble to capture the information encoded in Q grows with the size of the
ensemble. A schematic relating the di�erent approaches is shown in Figure 2.

In this work we present a new method for constructing a representative hypothesis using Q. The
method constructs a hypothesis which is deep (we will de�ne 'depth' precisely in Section 2). We call
this hypothesis the median hypothesis, by analogy to the notion of median in one dimension. If the
median is indeed deep, it is guaranteed that whenever the weight of the majority is large enough,
the median hypothesis will vote with the majority; the median can deviate from the majority only
in cases where the majority is marginal. Using PAC-Bayesian results, we provide generalization
bounds for these types of classi�ers. Moreover, we show that in many realistic settings, for example
when learning linear classi�ers and using a convex energy function E (f), the median is indeed deep.

In the second part of this work we present an algorithm for �nding the median. The algorithm
uses an unlabeled sample of points x1, . . . , xu and a sample of functions f1, . . . , fn to �nd a point
with a large empirical depth. We prove that the gap between the empirical depth and the true
depth is small and hence the hypothesis found is a good approximation to the median. In the case of
linear classi�ers, this algorithm approximates the Tukey Median (Tukey (1975); Donoho and Gasko
(1992)). Table 1 contains a summary of the notation used in this work.

The notion of depth is a key concept in our discussion. Depth is a measure of the centrality of a
point in a distribution. It has been used before in the context of learning. Rousseeuw and Hubert
(1998) have de�ned the notion of regression depth. However, in this work we focus on classi�cation
tasks. Gilad-Bachrach et al. (2004) have used depth in the context of classi�cation. However, their
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Symbol Description

X a sample space

x an instance x ∈ X
µ a probability measure over X
S a sample of instances, S = {x1, . . . , xu}.
F a function class. f ∈ F is a function f : X 7→ ±1.
f, g functions in the function class F

P,Q,Q′ probability measures over F
T a sample of functions, T = {f1, . . . , fn}.

DQ (f |x) The depth of the function f on the instance x with respect to the measure Q.

DQ (f) The depth of the function f with respect to the measure Q.

Dδ,µ
Q (f) The δ-insensitive depth of f with respect to Q and µ.

D̂T (f |x) The empirical depth of f on the instance x with respect to the sample T

D̂S
T (f) The empirical depth of f with respect to the samples T and S.

ν A probability measure over X × {±1}
S a sample {(xi, yi)}mi=1 from (X × {±1})m

Rν (f) The test error of f : Rν (f) = Pr(x,y)∼ν [f (x) 6= y].

RS (f) The empirical error of f : RS (f) = Pr(x,y)∼S [f (x) 6= y].

Table 1: A summary of the notation used in this work

work assumes that nature selects a classi�er from a distribution known to the learning algorithm.
Furthermore, it assumes that there is no noise in the learning process. In our work, we lift these
two assumptions and present a method that works even when the target concept is chosen by an
adversary and the labels are corrupted by noise.

2. Depth

Depth is a useful tool in multivariate statistics (see e.g., Tukey (1975); Liu (1990)). Given a distri-
bution over points in Rd, a deep point is a point which is central to the distribution; the �shallow�
points are the outliers. There are many di�erent depth functions. For example, Tukey de�ned the
Tukey depth in the following way: the depth of a point x ∈ Rd given a distribution Q is

Tukey-DepthQ (x) = inf
w∈Rd

Q {x′ : w · (x′ − x) ≥ 0} . (2)

The depth function extends the de�nition of the median to the multivariate case by de�ning the
generalized median to be the deepest point according to the chosen depth function. The Tukey
depth also has a minimum entropy interpretation: given x, consider all hyperplanes containing x.
Each hyperplane splits the distribution Q in two, forming a Bernoulli distribution. Choose that
hyperplane whose corresponding Bernoulli has minimum entropy. The Tukey depth is then the
probability mass on the side of the chosen hyperplane with the lowest mass.

In this paper, unlike Tukey who used the depth function on the instance space, we view the depth
function as operating on the dual space, that is the space of classi�cation functions. Moreover, the
de�nition here extends beyond the linear case to any function class. The depth function measures
the agreement of the function f with the weighted majority vote on x. A deep function is a function
that will always have a large agreement with its prediction among the class F . Following Rousseeuw
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and Hubert (1998), who introduced the notion of depth for regression, we de�ne the depth for binary
classi�cation functions.

De�nition 1. Let F be a function class and Q be a probability measure over F . The depth of f on
the instance x ∈ X with respect to Q is:

DQ (f |x) = Pr
g∼Q

[g (x) = f (x)] .

The depth of f with respect to Q is:

DQ (f) = inf
x∈X

DQ (f |x) = inf
x∈X

Pr
g∼Q

[g (x) = f (x)] .

The Tukey-Depth is a special case of this de�nition whereF = Rd and X = Rd × R such that
f ∈ F operates on x = (xv, xθ) ∈ X by f (x) = sign (f · xv − xθ) . See Appendix B for details.

The depth DQ (f) is de�ned as the in�mum over all points x ∈ X . However, for our applications,
we can tolerate a small fraction of instances x ∈ X which have small depth, as long as most of the
instances have large depth. Therefore, we de�ne the δ-insensitive depth:

De�nition 2. Let F be a function class and Q be a probability measure over F . Let µ be a probability
measure over X and let δ ≥ 0. The δ-insensitive depth of f with respect to Q and µ is de�ned as:

Dδ,µ
Q (f) = sup

X′⊆X , µ(X′)≤δ
inf

x∈X\X′
DQ (f |x) .

The δ-insensitive depth function relaxes the in�mum in the depth de�nition. Instead of requiring
that the function f will always have a large agreement in the class F , the δ-insensitive makes this
requirement on all but a set of the instances with a probability mass δ.

With these de�nitions in hand, we turn to provide generalization bounds for deep hypotheses.
The �rst Theorem shows that the error of a deep function is close to the error of the Gibbs classi�er.

Theorem 3. Deep vs. Gibbs
Let Q be a measure on F . Let ν be a measure on X ×{±1} with the marginal µ on X . For every

f ∈ F the following holds:

Rν (f) ≤
1

DQ (f)
Eg∼Q [Rν (g)] (3)

and

Rν (f) ≤
1

Dδ,µ
Q (f)

Eg∼Q [Rν (g)] + δ . (4)

Note that the term Eg∼Q [Rν (g)] is the expected error of the Gibbs classi�er (which is not
necessarily the same as the expected error of the Bayes classi�er). Hence, this theorem proves that
the generalization error of a deep hypothesis cannot be large, provided that the expected error of
the Gibbs classi�er is not large.

Proof. For every x∗ ∈ X we have that

Pr
g∼Q, (x,y)∼ν

[g (x) 6= y |x = x∗] ≥ Pr
g∼Q, (x,y)∼ν

[f (x) 6= y and g (x) = f (x) |x = x∗]

= Pr
(x,y)∼ν

[f (x) 6= y|x = x∗] Pr
g∼Q, (x,y)∼ν

[g (x) = f (x) |x = x∗ and f (x) 6= y]

= Pr
(x,y)∼ν

[f (x) 6= y|x = x∗] Pr
g∼Q, (x,y)∼ν

[g (x) = f (x) |x = x∗]

= Pr
(x,y)∼ν

[f (x) 6= y|x = x∗]DQ (f |x∗) ≥ Pr
(x,y)∼ν

[f (x) 6= y|x = x∗]DQ (f)
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First we prove (4). De�ne the set Z =
{
x : DQ (f |x) < Dδ,µ

Q (f)
}
. Clearly µ (Z) ≤ δ. By

slight abuse of notation, we de�ne the function Z (x) such that Z (x) = 1 if x ∈ Z and Z (x) = 0 if
x /∈ Z. With this de�nition we have

1

Dδ,µ
Q (f)

Eg∼Q [Rν (g)] + δ ≥ Ex∗∼µ

[
1

Dδ,µ
Q (f)

Pr
g∼Q, (x,y)∼ν

[g (x) 6= y |x = x∗] + Z (x∗)

]

≥ Ex∗∼µ

[
1

Dδ,µ
Q (f)

Pr
(x,y)∼ν

[f (x) 6= y|x = x∗]DQ (f |x∗) + Z (x∗)

]

≥ Ex∗∼µ

[
Pr

(x,y)∼ν
[f (x) 6= y|x = x∗]

]
= Rν (f) .

(3) follows in the same way by de�ning Z to be constantly zero and δ to be zero as well.

Theorem Deep vs. Gibbs (Theorem 3) bounds the ratio of the generalization error of the Gibbs
classi�er and the generalization error of a classi�er as a function of the depth of the latter classi�er.
For example, consider the Bayes classi�er. By de�nition, the depth of this classi�er is at least
one half; thus Theorem 3 recovers the well-known result that the generalization error of the Bayes
classi�er is at most twice larger than the generalization error of the Gibbs classi�er.

Next, we combine Theorem Deep vs. Gibbs (Theorem 3) with PAC-Bayesian bounds (McAllester
(1999)) to bound the di�erence between the training error and the test error. We use the version of
the PAC-Bayesian bounds in Theorem 3.1. of Germain et al. (2009).

Theorem 4. Generalization Bounds
Let ν be a probability measure on X ×{±1}, let P be a probability measure of F and let δ, κ > 0.

With a probability greater than 1− δ over the sample S sampled from νm:

∀Q, ∀f, Rν (f) ≤
1

(1− e−κ)DQ (f)

(
κEg∼Q [RS (g)] +

1

m

[
KL (Q||P ) + ln

1

δ

])
.

Furthermore, for every δ′ > 0, the following holds with a probability greater than 1− δ over the
sample S sampled from νm:

∀Q, ∀f, Rν (f) ≤
1

(1− e−κ)Dδ′,µ
Q (f)

(
κEg∼Q [RS (g)] +

1

m

[
KL (Q||P ) + ln

1

δ

])
+ δ′

where µ is the marginal of ν on X .

Proof. Applying the bounds in Theorem 3 to the PAC-Bayesian bounds in Theorem 3.1 of Germain
et al. (2009) yields the stated results.

The generalization bounds theorem (Theorem 4) shows that if a deep function exists, then it
is expected to generalize well, provided that the PAC-Bayes bound for Q is su�ciently smaller
than the depth of f . This justi�es our pursuit to �nd the deepest function that is the median.
However, a question remains: are there any deep functions? The following theorem shows that in
many interesting settings this is indeed the case.

Theorem 5. Let X = Rd and F be the class of linear threshold functions over X (see Appendix B).
Let Q be a probability measure over F with density function q (f) such that q (f) = 1

Z exp (−E (f))
where E (f) is a convex function. Then there exists a function f ∈ F such that DQ (f) ≥ 1/e.

Proof. It is straight-forward to verify that q (f) is log-concave. Borell (1975) proved that Q is log-
concave if and only if q is log-concave. Hence, in the setting of the theorem, Q is log concave and
using the Mean Voter Theorem of Caplin and Nalebu� (1991) we conclude that the center of gravity
of Q has a depth of at least 1/e (e is Euler's number).
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Algorithm 1 Depth Estimation Algorithm

Inputs:

• A sample S = {x1, . . . , xu} such that xi ∈ X

• A sample T = {f1, . . . , fn} such that fj ∈ F

• A function f

Output:

• D̂S
T (f) - an approximation for the depth of f

Algorithm:

1. for i = 1, . . . , u compute D̂T (f |xi) = 1
n

∑
j 1fj(xi)=f(xi)

2. return D̂S
T (f) = mini D̂ (f |xi)

Recall that it is a common practice in machine learning to use convex energy functions E (f).
For example, SVMs (Cortes and Vapnik (1995)) and many other algorithms use energy function
of the form presented in (1) in which both the loss function and the regularization functions are
convex, resulting in a convex energy function. Hence, in all these cases, the median, that is the
deepest point, has a depth of at least 1/e.

3. Measuring depth

In the previous section we proved generalization bounds as a function of the depth function. More-
over, we showed that in many natural cases, the median function is indeed deep. This provides
the motivation to seek deep functions. Finding a deep function, even in the case of linear func-
tions, is hard. The best known algorithms have exponential dependency in the dimension (Chan
(2004)). When considering approximations of the Tukey median, the best known algorithms are
super-polynomial in the dimension (Clarkson et al. (1996)). In the Section 4 we present a polynomial
algorithm for approximating the median for any class of binary classi�cation functions. However,
before we present this algorithm we will study the following questions: given a function f and a
probability measure Q, can we compute or approximate DQ (f), the depth of f?

We suggest a straight-forward method to measure the depth of a function . The depth estimation
algorithm (Algorithm 1) takes as inputs two samples. One sample, x1, . . . , xu, is a sample of points
from the domain X . The other sample, f1, . . . , fn, is a sample of functions from F . Given a function
f for which we would like to compute the depth, the algorithm �rst estimates its depth on the points
x1, . . . , xu and then uses the minimal value as an estimate of the global depth. The depth on a point
xi is estimated by counting the fraction of the functions f1, . . . , fn that make the same prediction
as f on the point xi. Since samples are used to estimate depth, we call the value returned by this
algorithm, D̂S

T (f), the empirical depth of f .

Despite its simplicity, the depth estimation algorithm can provide good estimates of the true
depth. The following theorem shows that if the xi's are sampled from the underlying distribution
over X , and the fj 's are sampled from Q then the empirical depth is a good estimator of the true
depth. Moreover, this estimate is uniformly good over all the functions f ∈ F . This will be an
essential building block when we seek to �nd the median in Section 4.

Theorem 6. Uniform convergence of depth
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Let Q be a probability measure on F and let µ be a probability measure on X . Let ε, δ > 0.For
every f ∈ F let the function fδ be such that fδ (x) = 1 if DQ (f |x) ≤ Dδ,µ

Q (f) and fδ (x) = −1
otherwise. Let Fδ = {fδ}f∈F .Assume Fδ has a �nite VC dimension d < ∞ and de�ne φ (d, k) =∑d
i=0

(
k
i

)
. If S and T are chosen at random from µu and Qn respectively such that u ≥ 8/δ then with

probability
1− u exp

(
−2nε2

)
− φ (d, 2u) 21−δu/2

the following holds:

∀f ∈ F , DQ (f)− ε ≤ D̂S
T (f) ≤ Dδ,µ

Q (f) + ε

where D̂S
T (f) is the empirical depth computed by the depth measure algorithm.

First we recall the de�nition of ε-nets of Haussler and Welzl (1986):

De�nition 7. Let µ be a probability measure de�ned over a domain X . Let R be a collection of
subsets of X . An ε-net is a �nite subset A ⊆ X such that for every r ∈ R, if µ (r) ≥ ε then A∩r 6= ∅.

The following lemma shows that a random set of points forms an ε-net with high probability if
the VC dimension of R is �nite.

Theorem 8. (Haussler and Welzl, 1986, Theorem 3.7 therein) Let µ be a probability measure
de�ned over a domain X . Let R be a collection of subsets of X with a �nite VC dimension d. Let
ε > 0 and assume u ≥ 8/ε. A random sample S = {xi}ui=1 selected at random from µu is an ε-net
for R with a probability of at least 1− φ (d, 2u) 21−εu/2 .

Proof. of the uniform convergence of depth theorem (Theorem 6).
By a slight abuse of notation, we use fδ both as a function and as a subset of X that includes

every x ∈ X for which DQ (f |x) ≤ Dδ,µ
Q (f). From Theorem 8 it follows that with a probability

≥ 1− φ (d, 2u) 21−δm/2 a random sample S = {xi}ui=1 is a δ-net for {fδ}f∈F . Since for every f ∈ F
we have µ (fδ) ≥ δ we conclude that in these cases,

∀f ∈ F , ∃i ∈ [1, . . . , u] s.t. xi ∈ fδ .

Note that xi ∈ fδ implies thatDQ (f |xi) ≤ Dδ,µ
Q (f). Therefore, with probability 1−φ (d, 2u) 21−δu/2

over the random selection of x1, . . . , xu:

∀f ∈ F , DQ (f) ≤ min
i
D (f |xi) ≤ Dδ,µ

Q (f) .

Let f1, . . . , fn be an i.i.d. sample from Q. For a �xed xi and using Hoe�ding's inequality

Pr
f1,...,fn

[∣∣∣∣ 1n |fj : fj (xi) = 1| − µ {f : f (xi) = 1}
∣∣∣∣ > ε

]
≤ 2 exp

(
−2nε2

)
.

Hence, with a probability of u exp
(
−2nε2

)
,

∀i,
∣∣∣∣ 1n |fj : fj (xi) = 1| − µ {f ∈ F : f (xi) = 1}

∣∣∣∣ ≤ ε .
Clearly, in the same setting, we also have that

∀i,
∣∣∣∣ 1n |fj : fj (xi) = −1| − µ {f ∈ F : f (xi) = −1}

∣∣∣∣ ≤ ε .
Thus, with a probability of at least 1−u exp

(
−2nε2

)
−φ (d, 2u) 21−εu/2 over the random selection

of x1, . . . , xu and f1, . . . , fn we have that

∀f ∈ F , DQ (f)− ε ≤ D̂S
T (f) ≤ Dδ,µ

Q (f) + ε .
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4. Finding the median

In Section 3 we have seen that it is possible to measure depth. Moreover, if the samples S and T are
large enough then with high probability the estimated depth is accurate uniformly for all functions
f ∈ F . We use these �ndings to present an algorithm which approximates the median. Recall that
the median is a function f which maximizes the depth, that is f = argmaxf∈F DQ (f). As an
approximation, we will present an algorithm which �nds a function f that maximizes the empirical
depth, that is f = argmaxf∈F D̂

S
T (f).

The intuition behind the algorithm is simple. Let S = {xi}ui=1. A function that has large
empirical depth will agree with the majority vote on these points. However, it might be the case
that such a function does not exist. If we are forced to �nd a hypothesis that does not agree with
the majority on some instances, the empirical depth will be higher if these points are such that
the majority vote on them wins by a small margin. Therefore, we take a sample T = {fj}nj=1 of
functions and use them to compute the majority vote on every xi and the fraction qi of functions
which disagree with the majority vote. A viable strategy will �rst try to �nd a function that agrees
with the majority votes on all the points in S. If such a point does not exist, we remove the point
for which qi is the largest and try to �nd a function that agrees with the majority vote on the
remaining points. This process can continue until a consistent function1 is found. This function is
the maximizer of D̂S

T (f). In the Median Approximation algorithm, this process is accelerated by
using binary search. Assuming that the consistency algorithm requires O (uc) when working on a
sample of size u. The linear search described above requires O

(
nu+ u log (u) + uc+1

)
operations

while the binary search strategy the complexity goes down to O (nu+ u log (u) + uc log (u)).
The Median Approximation (MA) algorithm is presented in Algorithm 2. One of the key advan-

tages of the MA algorithm is that it uses a consistency oracle instead of an oracle that minimizes
the empirical error. Minimizing the empirical error is hard in many cases and even hard to approxi-
mate (Ben-David et al. (2003)). Instead, the MA algorithm requires only access to an oracle that is
capable of �nding a consistent hypothesis if one exists. For example, in the case of a linear classi�er,
�nding a consistent hypothesis can be achieved in polynomial time by linear programming while
�nding a hypothesis which approximates the one with minimal empirical error is NP hard. The rest
of this section is devoted to analyzing the MA algorithm.

Theorem 9. The MA Theorem
The MA algorithm (Algorithm 2) has the following properties:

1. The algorithm will always terminate and return a function f ∈ F and an empirical depth D̂.

2. If f and D̂ are the outputs of the MA algorithm then D̂ = D̂S
T (f).

3. If f is the function returned by the MA algorithm then f = argmaxf∈F D̂
S
T (f).

4. Let ε, δ > 0 . If the sample S is taken from µu such that u ≥ 8/δ and the sample T is taken
from Qn then with probability of at least

1− u exp
(
−2nε2

)
− φ (d, 2u) 21−δu/2

the f returned by the MA algorithm is such that

Dδ,µ
Q (f) ≥ sup

g∈F
DQ (g)− 2ε

where d is as de�ned in Theorem 6.

To prove the MA Theorem we �rst prove a series of lemmas. The �rst lemma shows that the
MA algorithm will always �nd a function and will return it.

1. A function is de�ned to be consistent with a labeled sample if it labels correctly all the instances in the sample.
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Algorithm 2 Median Approximation (MA)

Inputs:

• A sample S = {x1, . . . , xu} ∈ X u and a sample T = {f1, . . . , fn} ∈ Fn.

• a learning algorithm A that given a sample returns a function consistent with it if such a
function exists.

Outputs:

• a function f ∈ F and its depth estimation D̂S
T (f)

Details:

1. Foreach i = 1, . . . , u compute p+i = 1
n |{j : fj (xi) = 1}| and qi = min

{
p+i , 1− p

+
i

}
.

2. Sort x1, . . . , xu such that q1 ≥ q2 ≥ . . . ≥ qm

3. Foreach i = 1, . . . , u let yi = 1 if p+i ≥ 0.5 otherwise, let yi = −1.

4. Use binary search to �nd i∗, the smallest i for which A can �nd a consistent function f with
the sample Si = {(xk, yk)}uk=i

5. If i∗ ≡ 1 return f and depth D̂ = 1− q1 else return f and depth D̂ = qi∗−1.

Lemma 10. The MA algorithm will always return a hypothesis f and a depth D̂

Proof. It is su�cient to show that the binary search will always �nd i∗ ≤ u. Therefore, it is enough
to show that there exists i such that A will return a consistent function f with respect to Si. To see
that, recall that Su = {(xu, yu)}. Therefore, the sample contains a single point xu with the label
yu such that at least half of the functions in T are such that fj (xu) = yu. Therefore, there exists a
function f consistent with this sample.

The next lemma proves that the depth computed by the MA algorithm is correct.

Lemma 11. Let f be the hypothesis that MA returned and D̂ be the depth returned then D̂ = D̂S
T (f)

Proof. For any function g, denote by Y (g) = {i : g (xi) = yi} the set of instances on which g agrees
with the proposed label yi. D̂

S
T (g), the estimated depth of g, is a function of Y (g) given by:

D̂S
T (g) = min

(
min
i∈Y (g)

(1− qi) , min
i/∈Y (g)

qi

)
.

Since the qi's are sorted, we can further simplify this term. Let i∈ = min {i : i ∈ Y (g)} and
i/∈ = max {i : i /∈ Y (g)} then

D̂S
T (g) = min

(
(1− qi∈) , qi/∈

)
.

In the above term, if Y (g) includes all i's we consider the term qi/∈ to be one. Similarly, if Y (g)
is empty, we consider qi∈ to be zero.

Let f be the hypothesis returned by MA and D̂ be the computed depth returned. If i∗ is the
index that the binary search returned and i∗ = 1 then Y (f) = [1, . . . , u] and D̂S

T (f) = 1− q1 which
is exactly the value returned by MA. Otherwise, if i∗ > 1 then i∗−1 /∈ Y (f) but [i∗, . . . , u] ⊆ Y (f).
Since qi∗−1 ≤ 0.5 but for every i′ it holds that 1 − qi′ ≥ 0.5 we have that D̂S

T (f) = qi∗−1 which is
exactly the value returned by FMA.
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The next lemma shows that the MA algorithm returns the maximizer of the empirical depth.

Lemma 12. If f is the function that the MA algorithm returned. Then f = argmaxf∈F D̂
S
T (f).

In the proof of Lemma 11 we have seen that the empirical depth of a function is a function of
the set of points on which it predicts with the majority vote. We use this observation in the proof
of this Lemma too.

Proof. Let i∗ be the value returned by the binary search and let f be the function returned by the
consistency oracle. If i∗ = 1 then the empirical depth of f is the maximal possible. Hence we may
assume that i∗ > 1 and D̂S

T (f) = qi∗−1.

For a function g ∈ F , if there exists i > i∗ such that g (xi) 6= yi then D̂
S
T (g) ≤ qi−1 ≤ qi∗−1 ≤

D̂S
T (f). However, if g (xi) = yi for every i ≥ i∗ it must be that g (xi∗−1) 6= yi∗−1 or else the

binary search phase in the MA algorithm would have found i∗ − 1 or a larger set. Therefore,
D̂S
T (g) = qi∗−1 = D̂S

T (f).

Finally we are ready to prove Theorem 9.

Proof. of the MA Theorem (Theorem 9 )
Parts 1, 2 and 3 of the theorem are proven by Lemmas 10, 11 and 12 respectively. The last part

follows since from Theorem 6 it follows that with the stated probability ∀g ∈ F :

DQ (g)− ε ≤ D̂S
T (g) ≤ Dδ,µ

Q (g) + ε . (5)

Let g ∈ F and assume (5) holds. Since f maximizes the empirical depth D̂S
T (f) we have that

∀g ∈ F , Dδ,µ
Q (f) + ε ≥ D̂S

T (f) ≥ D̂S
T (g) ≥ DQ (g)− ε .

Therefore

∀g ∈ F , Dδ,µ
Q (f) ≥ DQ (g)− 2ε .

One of the weaknesses of Theorem 9 is the use of the VC-dimension of the special class of functions
Fδ. Computing this value is in many cases hard. Nevertheless, the following theorem shows that the
VC-dimension of the class F can be used to provide performance guarantees for the algorithm.

Theorem 13. Let ε, δ > 0 . If the sample S is taken from µu such that u ≥ 8/δ and the sample T
is taken from Qn then with probability of at least 1−u exp

(
−2nε2

)
−φ (d, 2u) 21−δu/2 the f returned

by the MA algorithm is such that Dδ,µ
Q (f) ≥ supg∈F DQ (g)− 2ε where d is the VC dimension of F .

Proof. Let D = supf∈F DQ (f). By abuse of notation, we de�ne for every f ∈ F the function fδ be
such that fδ (x) = 1 if DQ (f |x) < d∗ and fδ (x) = −1 otherwise. We de�ne the class Fδ such that

Fδ = {fδ}f :Dδ,µQ (f)<D .

First, we show that the VC dimension of Fδ is upper bounded by the VC dimension of F . Assume
that x1, . . . , xm are shattered by Fδ. Therefore, for every sequence y ∈ {±1}m there exists fy such
that fyδ induces the labels y on x1, . . . , xm. We claim that for every y 6= y′, the function fy and

fy
′
induce di�erent labels on x1, . . . , xm and hence this sampled is shattered by F . Let y 6= y′ and

assume, w.l.o.g. that yi = 1 and y′i = −1. Therefore xi is such that

DQ (fy |xi) < D ≤ DQ

(
fy
′
|xi
)
.
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From the de�nition of the depth on the point xi, it follows that DQ (fy |xi) 6= DQ

(
fy
′ |xi

)
if and

only if fy (xi) 6= fy
′
(xi). Therefore, the sample x1, . . . , xm is shattered by Fδ implies that it is

shattered by F as well. Hence the VC dimension of Fδ is bounded by the VC dimension of F which
we denote by d.

From the theory of ε-nets (see Theorem 8), it follows that with probability 1 − φ (d, 2u) 21−δu/2
over the sample S, for every f ∈ F such that Dδ,µ

Q (f) < D there exists xi such that

DQ (f |xi) ≤ Dδ,µ
Q (f) < D.

Therefore, with probability greater than

1− u exp
(
−2nε2

)
− φ (d, 2u) 21−δu/2

we will have the following:

1. For every f such that Dδ,µ
Q (f) < D we have that D̂T

S (f) ≤ Dδ,µ
Q (f) + ε

2. For every f we have that D̂T
S (f) ≥ DQ (f)− ε

Since we already showed that the algorithm �nds a function f that maximizes D̂T
S (f), then we have

that if f was returned by the algorithm then either Dδ,µ
Q (f) < D or

Dδ,µ
Q (f) ≥ D̂T

S (f)− ε ≥ sup
g
D̂T
S (g)− ε ≥ D − 2ε .

5. Implementation issues

The MA algorithm is straight forward to implement provided that you have access to three oracles:
(1) An oracle capable of sampling unlabeled instances x1, . . . , xu. (2) An oracle capable of sampling
hypotheses f1, . . . , fn from the belief distribution Q. (3) A learning algorithm A that returns a
hypothesis consistent with the sample (if such a hypothesis exists).

The �rst requirement is usually trivial. In a sense, the MA algorithm converts the consistency
algorithm A to a semi-supervised learning algorithm by using this sample. The third requirement
is not too restrictive. In a sense, many learning algorithms would be much simpler if they required
a hypothesis which is consistent with the entire sample as opposed to a hypothesis which minimizes
the number of mistakes (see for example Ben-David et al. (2003)). The second requirement, that is
sampling hypotheses, is challenging.

Sampling hypotheses is hard even in very restrictive cases. For example, even if Q is uniform
over a convex body, sampling from it is challenging but theoretically possible (Fine et al. (2002)). A
closer look at the MA algorithm and the depth estimation algorithm reveals that these algorithms
use the sample of functions in order to estimate the marginal Q [Y = 1|X = x] = Prg∼Q [g (x) = 1].
In some cases, it is possible to directly estimate this value. For example, many learning algorithms
output a real value such that the sign of the output is the predicted label and the amplitude is the
margin. Using an RBF function, this can be viewed as an estimate of Q [Y = 1|X = x]. This can
be used directly in the above algorithms. Moreover, the results of Theorem 6 and Theorem 9 apply
with ε = 0. Note that the algorithm that is used for computing the probabilities might be infeasible
for run-time application but can still be used in the process of �nding the median.

Another option is to sample from a distribution Q′ that approximates Q (Gilad-Bachrach et al.
(2005)). The way to use a sample from Q′is to reweigh the functions when computing D̂T (f |x).
Note that computing D̂T (f |x) such that it is close to DQ (f |x) is su�cient for estimating the depth
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using the depth measure algorithm (Algorithm 1) and for �nding the approximated median using
the MA algorithm (Algorithm 2). Therefore, in this section we will focus only on computing the
empirical conditional depth D̂T (f |x). The following de�nition provides the estimate for DQ (f |x)
given a sample T sampled form Q′:

De�nition 14. Given a sample T and the relative density function dQ
dQ′ we de�ne

D̂T, dQ
dQ′

(f) =
1

n

∑
j

dQ (fj)

dQ′ (fj)
1fj(x)=f(x)

To see the intuition behind this de�nition, recall that DQ (f |x) = Prg∼Q [g (x)] and D̂T (f |x) =
1
n

∑
j 1fj(x)=f(x) where T = {fj}nj=1. If T is sampled from Qn we have that

ET∼Qn
[
D̂T (f |x)

]
=

1

n

∑
j

E
[
1fj(x)=f(x)

]
=

1

n

∑
j

Pr [fj (x) = f (x)] = DQ (f |x) .

Therefore, we will show that D̂T, dQ
dQ′

(f) is an unbiased estimate of DQ (f |x) and that it is

concentrated around its expected value.

Theorem 15. Let Q and Q′ be probability measures over F then:

1. For every f , ET∼Q′n
[
D̂T, dQ

dQ′
(f)
]
= DQ (f |x)

2. If dQ
dQ′ is bounded such that dQ

dQ′ ≤ c then

Pr
T∼Q′n

[∣∣∣D̂T, dQ
dQ′

(f)−DQ (f |x)
∣∣∣ > ε

]
< 2 exp

(
−2nε2

c2

)
Proof. To prove the �rst part we note that

ET∼Q′n
[
D̂T, dQ

dQ′
(f)
]

= ET∼Q′n

 1

n

∑
j

dQ (fj)

dQ′ (fj)
1fj(x)=f(x)


= Eg∼Q′

[
dQ (g)

dQ′ (g)
1g(x)=f(x)

]
=

ˆ
g

dQ (g)

dQ′ (g)
1g(x)=f(x)dQ

′ (g)

=

ˆ
g

1g(x)=f(x)dQ (g) = DQ (f |x) .

The second part is proved by combining Hoe�ding's bound with the �rst part of this theorem.

6. Discussion

In this work we present a novel method for selecting a hypothesis that will generalize well given
a posterior belief. We proposed using the median hypothesis and analyzed its performance as a
function of its depth. We also presented algorithms for approximating the median and we analyzed
their performance. One possible application for our algorithm is approximating the Tukey median
in polynomial time. As far as we know, we are the �rst to provide an approximation algorithm for
the Tukey median which has a polynomial dependency on the dimension.

This work can be extended in several ways. First, we are interested in conducting an empirical
study to test the performance of the median hypothesis. Moreover, we are interested in extending
this work beyond binary classi�cation. The ability to approximate the Tukey median in polynomial
time open new possibilities too. These are the topics of our current research.
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Appendix A. Drawbacks of MAP

In our discussion we proposed that the maximizing the posterior might not be the optimal way to
choose a function with which to make predictions. We would like to demonstrate a failure of this
method on a toy example. Assume that the sample space is the set X = [1, . . . , N ]. I.e., the sample
space is a set of N discrete elements. The function class F is made of N + 2 functions described as
follows: for every i ∈ X the function fi is de�ned to be

fi (x) =

{
1 ifx ≡ i
0 otherwise

.

Additionally, F contains the constant functions f0 and f1 that assigns the values 1 and 0 respectively
for every input. Our prior is uniform over the set F .

Assume also that it is our belief that if the target function is fi for some i ∈ X then there will be
a noise at level 0 < ε < 1/2. That is, if the data is generated by fi then we will see the label y = 1
for x with probability ε if x 6= i and with probability 1− ε if x = i. For the functions f0 and f1 we
assume that the noise level is ε/2.

Assume we observed the instance x with the label y = 1. The posterior Q will be as follows

Q
{
f1
}
=

1− ε/2

Z
, Q

(
f0
)
=

ε/2

Z
, Q {fx} =

1− ε
Z

, ∀i 6= x, Q {fi} =
ε

Z
.

Therefore, the MAP estimator is f1. Nevertheless, for every i the probability, under Q, that the

label of i is y = 1 is at most
2− 3

2 ε

Z while the probability that the label is y = 0 is at least
(N− 1

2 )ε
Z .

Hence, if N ≥ 1
2 + 8

ε , then according to Q the label y = 0 is at least 4 times more likely than the
label y = 1. Thus, the Bayes estimator is the function f0. Moreover, since the Bayes estimator is in
the class F , it is also the median.

As we can see in this case, despite the uniform prior, the MAP estimator is the opposite function
to the Bayes estimator and the median. Moreover, if we look at the density at the function f0,i.e.
the density of the Bayes estimator and the median estimator, it turns out to have the lowest density.
Therefore, in this case, rather than maximizing the density, we were better of if we were minimizing
it.

In the previous example we have shown a case in which the MAP estimator seems not to be
performing well. We now turn to discuss a broader issue concerning the di�erent estimators. The
estimators can be viewed as statistics of the posterior Q. One question we can ask about such a
statistic is how stable is it. That is, by how much do we have to change Q to be able to get an
arbitrary value for the statistic?

Assume we have an estimator Est which is a function that gets a probability measure Q as an
input and returns a function f : F 7→ {±1} as an output. For two probability measures Q and Q′

we measure the distance between them using the total variation distance:

δ (Q,Q′) = sup {|Q (A)−Q′ (A)| : A is measurable} .

For every function f ∈ F we can ask what is the closest Q′ to Q for which Est (Q′) = f :

d (Est, Q, f) = inf {δ (Q,Q′) : Est (Q′) = f} .

Finally, we de�ne the stability of Est at Q to be the distance to the furthest function

stability (Est, Q) = sup
f∈F

d (Est, Q, f) .

The way to interpret this de�nition is as follows; if s = stability (Est, Q) then for every f ∈ F , we
can force the estimator Est to use f as its estimate by changing Q by at most s in terms of total
variation distance.
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It may be easier to understand this de�nition using an example. Assume that Q is a non-atomic
measure. To simplify the discussion, we assume that it is continuous with respect to Lebesgue
measure. Therefore, there is an energy function E (f) associated withQ such that for any measurable
set A,

Q [A] =

ˆ
A

exp (−E (f)) df .

In this setup the MAP estimator is de�ned to be f∗ = argminf∈F E (f). For every f̂ ∈ F , we de�ne
E′ such that

E′ (f) =


E (f∗) if f = f̂

E
(
f̂
)

if f = f∗

E (f) otherwise

We can de�ne Q′ such that Q′ [A] =
´
A
exp (−E′ (f)) df . From the de�nition of the MAP estimator,

it follows that f̂ is the MAP estimator with respect to Q′. However, the total variation distance
between Q and Q′ is zero. Hence, the stability of the MAP estimator is zero. The following theorem
lower bounds the stability of the median estimator as a function of its depth

Theorem 16. Let Q be a posterior over F . Assume that for every x ∈ X and y ∈ ±1 there exists
f ∈ F such that f (x) = y. Let p = infx,y Q {f : f (x) = y}. Let d be the depth of the median for Q
then

stability (median, Q) ≥ d− p
2

.

Proof. Let ε > 0. There exists (x̂, ŷ) such that Q {f : f (x̂) = ŷ} < p+ ε. Furthermore, there exists

f̂ such that f (x̂) = ŷ. Let f∗ be the median of Q. Let Q′ be such that f̂ is the median of Q′ hence

DQ′ (f
∗) ≤ DQ′

(
f̂
)
.

Note that for every f we have that

|DQ (f)−DQ′ (f)| ≤ δ (Q,Q′) .

This follows since

|DQ (f)−DQ′ (f)| =
∣∣∣inf
x

(Q {f ′ : f ′ (x) = f (x)})− inf
x

(Q′ {f ′ : f ′ (x) = f (x)})
∣∣∣

≤
∣∣∣inf
x

(Q {f ′ : f ′ (x) = f (x)})− inf
x

(Q {f ′ : f ′ (x) = f (x)} − δ (Q,Q′))
∣∣∣

= δ (Q,Q′) .

Since DQ

(
f̂
)
< p+ ε then

d− δ (Q,Q′) ≤ DQ′ (f
∗) ≤ DQ′

(
f̂
)
< p+ ε+ δ (Q,Q′) .

Hence

δ (Q,Q′) ≥ d− p− ε
2

and thus

stability (median, Q) ≥ d− p− ε
2

.

Since this is true for every ε > 0 it follows that

stability (median, Q) ≥ d− p
2

.
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This analysis shows again the bene�ts of maximizing depth. Note that with small modi�cations,
this theorem applies to the Bayesian estimator as well.

Appendix B. The Tukey depth as a special case

In this section we show that the Tukey depth function is a special case of the depth function de�ned
in this work.

Assume F = Rd and X = Rd+1. Every instance x ∈ X can be denoted as x = (xv, xθ) where
xv ∈ Rd and xθ ∈ R. We de�ne for f ∈ F and x ∈ X

f (x) = sign (f · xv − xθ) .

where sign (0) is de�ned to be 1. For every w ∈ Rd, and f ∈ F we consider the point x = (w, f · w).
Note that for every f ′ ∈ F we have that

f ′ (x) = sign (f ′ · w − f · w) .

Hence, f ′ (x) = 1 if and only if f ′ · w ≥ f · w. Thus

Q {f ′ : w · (f ′ − f) ≥ 0} = DQ (f |x) .

Therefore, we have that

Tukey-DepthQ (f) = inf
w∈Rd

Q {x′ : w · (x′ − x) ≥ 0}

≥ inf
x∈X

DQ (f |x)

= DQ (f) .

On the other hand, consider x ∈ X and �x f ∈ F . Recall that f (x) = sign (f · xv − xθ). If
xθ > f · xv we have that f (x) = −1 and

DQ (f |x) = Q {f ′ : f ′ · xv < xθ}
≥ Q {f ′ : f ′ · xv ≤ f · xv}
= Q {f ′ : (−xv) · (f ′ − f) ≥ 0} .

In the same fashion, if xθ < f · xv we have that f (x) = 1 and

DQ (f |x) = Q (f ′ : f ′ · xv ≥ xθ)
≥ Q (f ′ : f ′ · xv ≥ f · xv)
= Q {f ′ : xv · (f ′ − f) ≥ 0} .

This is su�cient to show that for this setting, Tukey-DepthQ (f) = DQ (f).
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