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Abstract

Allele frequency data from human reference populations is of increasing value for the filtering, interpretation, and

assignment of pathogenicity to genetic variants. Aged and healthy populations are more likely to be selectively depleted of

pathogenic alleles and therefore particularly suitable as a reference population for the major diseases of clinical and public

health importance. However, reference studies of confirmed healthy elderly individuals have remained under-represented in

human genetics. Here we describe the Medical Genome Reference Bank (MGRB), a large-scale comprehensive whole-

genome data set of healthy elderly individuals. The MGRB provides an accessible data resource for health-related research

and clinical genetics and a powerful platform for studying the genetics of healthy ageing. The MGRB is comprised of 4000

healthy, older individuals, mostly of European descent, recruited from two Australian community-based cohorts. Each

participant lived ≥70 years with no reported history of cancer, cardiovascular disease, or dementia. DNA derived from blood

samples has been subject to whole-genome sequencing. The MGRB has committed to a policy of data sharing, employing a

hierarchical data management system to maintain participant privacy and confidentiality, while maximising research and

clinical usage of the database. The MGRB represents a resource of international significance, which will be made broadly

accessible to the clinical and genetic research community.

Introduction

One of the key challenges in the interpretation of whole-

genome sequencing (WGS) data for the diagnosis of

inherited disease is discriminating rare candidate disease-

causing variants from the large numbers of benign variants

unique to each individual. Reference populations are pow-

erful filters to distinguish pathogenic from population-based

genetic variation, both clinically for Mendelian disorders

[1, 2] and in research for studies of genetic disease [3].

The availability of population-based allele frequency

data has been instrumental in enabling variant filtering,

assignment of pathogenicity, and frequency-based estimates

of penetrance in recent years [4–6]. Variant frequency data

has facilitated the diagnosis and discovery of an unprece-

dented number of damaging variants affecting gene func-

tion, which can subsequently lead to disease. Population or

allele frequency-based filtering has become a mainstay of

clinical genetics. This was initially made possible by access

to the International HapMap [6] and 1000 Genomes [5] data

sets and then more recently by the Exome Aggregation
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Consortium (ExAC) and Genome Aggregation Database

(GnomAD) [4]. All of these reference projects have been

pivotal in influence on human genetics, primarily due to the

common aspect of making variant frequency data readily

available to users in the clinical and research communities.

An increasing number of reference population sequencing

projects are now underway worldwide, reflecting the need

to understand the underlying genetic variation in different

backgrounds, especially among non-European populations

[7–11].

Despite the value provided by previous human genetic

reference populations, each has been limited in some capa-

city. One of the most common and significant limitations has

been the lack of detailed phenotypic or clinical information

provided to the research community and rationale for sample

ascertainment used. Such information is of particular

importance for confirming or refuting the presence of genetic

disease phenotypes in the reference population. Access to

longitudinal clinical outcome data to interpret genetic var-

iation considered to be pathogenic has also been lacking. For

example, a cancer-free individual sampled at age 45 years

may be included in a reference control population but then

go on to develop cancer at a later age. This individual may

carry a damaging cancer-predisposing germline variant;

however, this individual may still be used as a negative

control in many subsequent cancer studies.

When combined with the stochastic and environmentally

dependent nature of disease phenotypes, identification of

genetically risk-deplete controls is a critical aspect of

defining high-confidence reference populations and subse-

quently achieving a better understanding of the genetic basis

of common diseases. Only one whole-genome sequenced

population comprised of individuals confirmed to be deplete

of genetic disease phenotypes has been generated to date

[12]. Depletion of disease phenotypes should decrease the

burden of penetrant damaging variants that affect disease-

related gene function. Such populations, such as the one we

describe here, have increased power to act as negative

controls for variant filtering and assignment of pathogenicity

in studies focused on inherited or genetic disease.

Another challenge of reference populations is the relative

size of the population. The larger a reference population is,

the more likely the population will be to contain a particular

rare variant. Therefore, larger sample sizes typically provide

more robust population-based allele frequencies for rare

variation. This is of critical importance, given most patho-

genic alleles are rare, occurring at <1% in the population.

Those of higher penetrance are often found at <0.1%. By

volume, the majority of all single-nucleotide variants

(SNVs) detected in the population are <1% frequency, as

shown by recent population-based whole-exome sequen-

cing and WGS studies, whereby singletons were by far the

most abundant SNV frequency class [4, 11, 13].

One notable limitation of several human reference

populations to date has been the aspect of data aggregation.

Often genetic data have been provided by many different

studies for aggregation efforts, with samples of varying

ethnicity, age, and genetic background combined [4]. This is

in contrast to a purpose-built reference cohort, confirmed to

be depleted of disease from the outset, beyond a certain age.

Data aggregation efforts have helped significantly to reach

the higher sample numbers required for variant filtering

based on disease population prevalence [14, 15]. However,

data aggregation has typically not ensured a high quality or

consistency of phenotypic information provided to the end

user. By contrast, a purpose-built reference population of

confirmed healthy elderly individuals, known to be deplete

of genetic disease phenotypes, provides the end user with

more confidence in the absence of genetic disease symptoms

and clearer rationale for sample ascertainment. These are

important features to consider in a reference population

intended to be used as a negative control set.

Large genomic reference data sets containing both heal-

thy and diseased individuals are valuable for population-

based filtering based on allele frequency thresholds, corre-

sponding to the prevalence of a related disease [15]. How-

ever, it is often difficult to determine exactly where to set

this allele frequency cutoff, when prevalence and genetic

architecture of diseases are unclear. This can be an issue

especially for poorly characterised, rare, or phenotypically

heterogeneous genetic conditions. Further, the logic of using

population disease prevalence-based variant filtering pre-

supposes knowledge about the genetics of the disease,

including the genes involved, relative variant frequencies,

and penetrance, which is not always known.

In the case of a confirmed disease-depleted cohort of the

healthy elderly, there is the unique advantage of requiring

no exact filter setting (or threshold) based on disease pre-

valence. This is because we can have confidence that the

cohort does not contain any individuals affected by severe

genetic disease, to an advanced age. Therefore, the fre-

quency of fully penetrant causative variants for severe

genetic disease can be reasonably assumed to be zero.

Achieving the unique combination of all features

required for the optimal human genetic reference popu-

lation is challenging but should include: large size by

sample number, confirmation of health and age pheno-

types (i.e. absence of disease) beyond an advanced age,

whole-genome coverage, ability to detect complex and

structural variation, availability of both genomic and

phenotypic data, and measurement of genetic sequence

variation using a consistent and compatible sequencing

technology (see Table 1).

Here we present the rationale and cohort design of the

first human reference population comprised of thousands of

whole genomes from confirmed healthy elderly individuals
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depleted of common and rare genetic disease phenotypes.

Samples for this project have been provided from two

leading Australian community-based cohort studies, with

access to phenotypic and clinical information, to confirm

the absence of rare genetic disease, as well as depletion of

common disease such as cardiovascular disease, dementia,

and cancer, in all participants.

The Medical Genome Reference Bank (MGRB) has

conducted WGS of 4000 healthy older adults. These indi-

viduals are participants of the ASPirin in Reducing Events

in the Elderly (ASPREE) study, an international clinical

trial for daily low-dose aspirin use in older people, coor-

dinated by the Department of Epidemiology and Preventive

Medicine at Monash University [16], or the 45 and

Up study, the largest ongoing study of healthy ageing in

the Southern Hemisphere, coordinated by the Sax

Institute [17].

Each MGRB sample has been sequenced using Illu-

mina technology at a minimum 30× coverage. Data pro-

cessing is conducted using WGS best practice pipelines

(GATK-BWA). Resulting population allele frequency

data is made openly accessible and downloadable via

public website. Individual-level variant call files (VCFs),

core phenotypes, and access to alignment files (BAMs)

are open to application via the MGRB Data Access

Committee. Access to additional clinical information and

phenotype data is available via application to contributing

cohorts [16, 17], via existing data access and governance

arrangements. For MGRB schematic project overview,

see Fig. 1.

Methods/design

Inclusion criteria

The MGRB is comprised of individuals consented through

the biobank programs of two contributing studies, following

protocols previously described [16–18]. Each sample is

from an individual who has lived to ≥70 years with no

reported history or current diagnosis of cardiovascular dis-

ease, dementia, or cancer, as confirmed by the participating

studies at recent follow-up study visits. MGRB cohort

demographics are shown in Table 2.

Beyond MGRB inclusion criteria, each sample from the

ASPREE study is from a participant aged ≥75 years at the

time of study enrolment, with no reported history of any

cancer type. Each sample from the ASPREE study also

meets the following criteria at the time of study enrolment;

no clinical diagnosis of atrial fibrillation; no serious illness

likely to cause death within the next 5 years (as assessed by

general practitioner); no current or recurrent condition with

a high risk of major bleeding; no anaemia (haemoglobin

>12 g/dl males, >11 g/dl females); no current continuous

use of other antiplatelet drug or anticoagulant; no systolic

blood pressure ≥180 mmHg and/or a diastolic blood pres-

sure ≥105 mmHg; no history of dementia or a Modified

Mini-Mental State Examination (3MS) score ≤77 [19]; and

no severe difficulty or an inability to perform any one of the

six Katz activities of daily living [20].

Beyond MGRB inclusion criteria, each sample from the

45 and Up study also met the following criteria; no record

Table 1 Features of human genetic reference populations (according to public domain websites and peer-reviewed literature, February 2018)

MGRB ExAC

[4]

GnomAD

[4]

UKBB SNPs

[28]

HLI - JCVI

[13]

Wellderly STSI

[12]

SweGen

[11]

HGVD

[7]

Approx. cohort size (Feb 2018) 4000 60,000 140,000 500,000 10,000 600 1000 3200

Purpose-built cohort (versus data

aggregation)

✓ X X ✓ ✓ ✓ ✓ ✓

Whole genome sequencing ✓ X ✓ X ✓ ✓ ✓ X

Ability to detect complex and SV ✓ X ✓ X ✓ X ✓ X

Phenotype data to confirm absence of

disease

✓ X X ✓ ✓ ✓ X ?

Confirmed healthy elderly population ✓ X X X X ✓ X X

Allele frequencies made readily

accessible

✓ ✓ ✓ X X X ✓ ✓

Formal data access and approval

policy

✓ X X ✓ X X ✓ X

Access provided to individual VCFs ✓ X X X X X X X

n ≥ 4000 samples ✓ ✓ ✓ ✓ ✓ X X X

Consistent and compatible seq.

technology

✓ ✓ ✓ X ✓ X ✓ ✓

MGRB Medical Genome Reference Bank, ExAC Exome Aggregation Consortium, GnomAD Genome Aggregation Database, UKBB SNPs U.K.

Biobank SNP data set, HLI-JCVI Human Longevity Inc - J. Craig Venter Institute, STSI Wellderly Scripps Translational Science Institute

Wellderly study, SweGen Swedish Genome reference population project, HGVD Human Genetic Variation Database (Japan)
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of cancer diagnosis in the NSW Central Cancer Registry

and no record of cancer diagnosis in the NSW Admitted

Patient Data Collection.

Phenotypic information

The following data are made available for all MGRB

samples through open access: year of birth, gender, height,

and weight. For samples from the ASPREE study, waist

circumference, blood pressure, fasting blood glucose, and

status of age-related macular degeneration are also made

available through open access.

Data generation

Library preparation, DNA sequencing, alignment,
and processing

WGS of MGRB samples has been performed using

Illumina HiSeq X sequencers at the Kinghorn Centre for

Clinical Genomics (KCCG) under clinically accredited

conditions (ISO 15189). Paired-end Illumina TruSeq

DNA Nano libraries were sequenced to one lane per

Adults avg. age 75 years with no history of 

cancer, cardiovascular or dementia

Whole genome sequencing (30x) + phenotypes

Open-Source 

Analytical 

Framework (Vectis)

Public 

download of 

summary VCF

GATK best-practices 
(alignment & variant calling) 

Target population

Data processing

Data access

Data type

End-users

Open-access
(web-based)

Application-based
(MGRB data access committee)

Access 

to BAM 

files

Individual 

VCFs + ‘core’ 

phenotypes

Funding & contributing 

cohorts

Medical, physical, 

cognitive & lifestyle 

phenotypes

Application 

to original 

cohorts

Clinical genetics 

labs
Researchers

Leadership & 

data generation

. .

Cloud 

computing

Fig. 1 The Medical Genome Reference Bank: Project overview

Table 2 MGRB summary demographics, by cohort

45 and Up ASPREE

Year of birth

1910–1915 0 0

1915–1920 2 5

1920–1925 11 89

1925–1930 79 490

1930–1935 108 1388

1935–1940 181 1153

1940–1945 356 0

1945–1950 77 0

Sex

Female 492 (60.4%) 1653 (52.9%)

Male 322 (39.6%) 1472 (47.1%)

Age at last follow-up (years; ~approx. 2016)

70–75 324 0

75–80 235 349

80–85 132 1778

85–90 83 787

90–95 38 192

95–100 2 19
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sample. DNA sequences are mapped to Build 37 of the

human reference genome and processed following the

Genome Analysis Toolkit (GATK) best practices [21].

Indel realignment and base quality score recalibration of

mapped reads are performed using GATK and best

practices parameters; unmapped reads to be left unmo-

dified. GATK HaplotypeCaller is used to generate g.vcfs

from all single-lane realigned and recalibrated BAMs

using recommended parameters. All of the raw

data are processed through the Genome One Discovery

pipeline (https://www.genome.one/discovery-genomics).

Data are analysed using the Hail open-source

framework for scalable genetic analysis (https://github.

com/hail-is/hail).

Phased data release plan

MGRB data will be generated, processed, and released in

three phases (for timelines, see Table 3). Summary var-

iant frequency data for the MGRB cohort is made

available at the MGRB web portal: https://sgc.garvan.

org.au. Complete genotype, phenotype, and raw data are

available to qualified applicants following data access

approval. Completion of each phase of sequencing will

be followed by a public release of allele frequency data

(Tier 1), including an update to the MGRB database,

website, portal, and beacon.

Data access

The MGRB Data Access Policy (DAP) summarises the

governance applied to individual and institutional access

(Table 4). Curated data will be openly accessible to the

international research community through the MGRB

website. Preliminary features will include a Beacon, as

defined by the Global Alliance for Genomics and Health

[22], extensive variant annotation, complex queries

(including genetic annotations and genomic regions),

visualisation of variant data (e.g. genome viewer/

gene networks), and ultimately, analysis tools for asses-

sing the genetic burden of individual variants and variant

subsets.

While basic demographic and phenotypic information

will be incorporated into the MGRB data portal,

researchers are invited to apply for access to compre-

hensive genotypic and clinical information to support

high-level integrative analysis. To maintain participant

privacy and confidentiality, while maximising MGRB

utility, we have deployed a tiered data management sys-

tem that determines the richness of data that is made

available to researchers (as summarised in Table 3). This

consists of Open access, Controlled access, and Restric-

ted access tiers.

The restricted access tier (Tier 3) will involve access

to more detailed phenotype and/or clinical information

and requires application, project approval, and ethical

approval from the ASPREE Presentations, Publications

and Ancillary Studies Committee (PPA) or 45 and Up

Data Access Committee. Notwithstanding internal prio-

rities, and subject to collaborative agreement, both

studies commit to fair and reasonable consideration of

applications to provide access to restricted access tier data.

Table 3 MGRB timeline for whole-genome sequencing and data

release

MGRB WGS target

sample

number

Progress timeline H1= first half of year,

H2= second half of year

Sequencing

completion

Tier 1

open data

release

Tier 2/3

approval

Phase I 1500 H2 2016 H2 2016 H1 2017

Phase II 3000 H2 2017 H1 2018 H2 2018

Phase III 4000 H2 2018 H1 2019 H2 2019

Table 4 MGRB tiered Data Access Policy

Tier 1. Open Access 2. Controlled Access 3. Restricted Access

Access Institutional email address required for

MGRB data portal access (not required

for Beacon) (www.sgc.garvan.org.au/

mgrb)

Data Access Application (DAA) must be

approved by the MGRB Data Access

Committee (DAC)

DAA must be approved by the MGRB

DAC and referred to the applicable

cohort governing body for further

approval

Clinical

data

Basic demographic data are provided,

genomic queries can be filtered according

to these fields

Basic demographic data and minimal clinical

information (where available) are provided per

individual record

Comprehensive clinical data that is

potentially specific to a participating

cohort is provided per individual record

Genomic

data

Beacon and pre-processed variant

frequencies

Individual record data provided—either

processed (VCF/gVCF format) or unprocessed

(FASTQ or BAM format) (dependent on

justification criteria being met)
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Individual de-identified processed genomic data would be

available to download from the MGRB after execution of a

Data Transfer Agreement. In the case of the ASPREE

study, any use of follow-up outcome data will need to take

into account effects of randomisation to low-dose aspirin,

which could impact health outcomes.

krowteNnocaeBHG4AGCohort Demographics

Clinical variant filtering

Interactive Visualisations

Fig. 2 MGRB database functionality and Vectis platform
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Data transfer

Current MGRB policy is to provide processed VCFs (or

gVCF) directly to approved applicants, via secure file

transfer, subject to the MGRB DAP and Information

Handling Statement (see www.sgc.garvan.org.au/mgrb).

For access to raw data files (BAM or FASTQ), scientific

rationale must be provided, after which approved access to

BAM and/or FASTQ is provided via remote login to the

MGRB server environment, hosted at the National Com-

putation Infrastructure (NCI). This is to avoid transfer and

duplication of extremely large file sizes.

Open-source analytical framework (Vectis)

Vectis (a lever in Latin) is a custom-build software envir-

onment and collection of modules for the MGRB to support

diverse users including clinicians, patients, and bench sci-

entists as well as bioinformaticians for the analysis of

patient cohorts of any size, comprising whole genomes,

exomes, or gene panels. The Vectis modules are described

in Fig. 2 and Table 5. Vectis is a collection of open source

modules made available from GitHub (https://github.com/

vectis-lab). The overall design comprises a Variant Store

Abstraction Layer backed by MySQL. Elastic Gene Search

is used for real time prompting of gene information, and the

Ensembl REST API provides genomic reference informa-

tion. The GA4GH Beacon Network is used for querying

cohorts registered in the Beacon Network. Auth0 provides

the identity and authentication service, with Sentry used to

track unhandled errors. The Vectis Explore module backend

relies on the in-memory GPGPU Database, which supports

the cross-dimensional charts.

Discussion

Analysis aims

The overarching aim of the MGRB is to create a catalogue of

genome-wide genetic variation in healthy, older individuals

and make data readily available to the clinical genetics and

research community. Secondary analysis aims of the MGRB

project include, but are not limited to, detection of different

variant classes, such as SNVs, insertions–deletions (Indels),

structural variants, and copy number changes across the

population; clustering of the cohort by ethnicity and other

phenotypic factors; examining the frequency and type of

clinically significant rare alleles, in relation to phenotypes;

calculating polygenic risk scores for a range of conditions,

and comparing these scores against population-based and

disease-based cohorts; and measuring non-germline variation

such as telomere length, mtDNA variation, and somatic

changes in blood in relation to genomic ageing.

Potential limitations and confounding factors

The MGRB study is limited by the size of the cohort (4000

individuals). Very rare genetic variants, many of which could

be of clinical or biological interest, may therefore not be present

in the data set, by chance. This limit of detection may restrict

the sensitivity of MGRB for some applications, compared to

larger data sets, such as ExAC and GnomAD [4]. However, for

many applications, the cohort size of the MGRB is sufficient,

with a very high probability of detection of variants with minor

allele frequency (MAF) down to 0.1%. The benefits of the

MGRB are balanced against the cohort’s size, and we believe

that variant filtering based on a combination of MGRB and

larger, less stringently ascertained cohorts will be the most

robust approach to variant filtering.

The MGRB is an Australian cohort with a preponderance

of Caucasian European ancestry. This limits its utility as a

variant filter to matched disease populations. We also

acknowledge it is still possible that some diseases with a

partial genetic architecture may still manifest in the MGRB,

such as some cancers with a late age of onset, beyond the

time of sampling.

A biological limitation of the MGRB will be the variable

penetrance of rare disease-predisposing variants, even in an

elderly population [23, 24]. An important consideration is that,

although the MGRB cohort is an aged, healthy group, it is still

possible that rare clinically significant predisposing variants

Table 5 Features of the Vectis

open-source analytical

framework

Feature Description

Secure login Two-factor authentication

Search Querying of cohorts using chromosomal coordinates and gene annotations

Beacon Integrated with the Global Alliance for Genomics and Health Beacon Network [19]

Explore function Highly interactive, low latency exploration of cohorts. Explore currently supports

the querying of 84 million variants in real time

Interactive graphics Including lollipop plots of allelic frequencies as well as gene transcripts

Variant annotations Including links out to the original supporting evidence

Scalable variant store Enables authorised users to subset patients based on clinical attributes and query

actual genotypes at the individual patient level
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will be present, some of which will not be expressed through

disease symptoms (non-penetrant). Most single gene predis-

positions, including familial cancers, are not fully penetrant,

meaning that <100% of individuals with predisposing variants

in such genes ever develop the associated clinical phenotype,

even in older age [23]. The MGRB will give a unique

opportunity to overcome the traditional ascertainment bias [25]

of human genetics in this regard. However, the detection of a

variant in the MGRB alone does not exclude its potentially

pathogenic role, where variable penetrance could be due to

genetic or environmental factors [26]. This is likely to be

particularly important for assigning causality in common dis-

eases, where polygenic effects are likely important. This caveat

is something end-users of the data must keep in mind.

A data set of whole-genome sequences from 600 individuals

aged >80 years has been published previously by the ‘Well-

derly’ study [12]. Individuals in this study had no reported

chronic diseases and were not taking chronic medications.

There are important differences between this study and the

MGRB. First, the number of samples in the MGRB will be

significantly higher at 4000, adding much-needed power and

sensitivity for detecting and filtering, rare variants. The MGRB

will have an average limit of detection for rare variants at 1/

8000 alleles (MAF= 0.000125) compared to 1/1200 alleles

(MAF= 0.00002583). Second, significant resources within the

MGRB have been allocated to ensuring data access, analytical

frameworks, and data-sharing mechanisms for both WGS and

phenotypic data. Third, there is the capacity to detect and report

complex and structural genetic variation more readily. Fourth,

the Wellderly study sequenced DNA using the Complete

Genomics platform [27], not the technology used by most

WGS or whole-exome sequencing of reference populations to

date [4, 5, 7–9, 11, 13]. There are important technical con-

siderations in the cross-compatibility of whole-exome and

WGS data for generating population allele frequencies on

different sequencing platforms or data processed using different

bioinformatic pipelines [4].

Implications

The MGRB has the potential to add another important

resource to the clinical genetic and research community for

filtering, annotation, and assignment of pathogenicity to

genetic variants. The unique aspects of the MGRB will

include: (1) focus on the healthy elderly, depleted of typical

monogenic disease phenotypes; (2) age of the cohort, average

>75 years, beyond the age of onset for most monogenetic

conditions; (3) the availability and access to individual-level

VCF and BAM data; and (4) the opportunity to access high-

quality, comprehensive, longitudinal, clinical, and phenotypic

information on sequenced samples [16, 17]. These factors will

ensure that MGRB has a unique place alongside other refer-

ence populations in human genetics.

Conclusion

The MGRB will be the first catalogue of whole-genome

variation across thousands of healthy elderly individuals.

This will provide an important data set, resource, and much-

needed negative control population for clinical genetic and

research use.

Acknowledgements The MGRB was funded by NSW Office of Health

and Medical Research - Sydney Genomics Collaborative grant (2014).

Authors would like to acknowledge the ASPREE Healthy Ageing Bio-

bank, ASPREE Investigator Group and ASPREE Collaborating Practi-

tioners listed on www.aspree.org. ASPREE was funded by the National

Institute on Aging and the National Cancer Institute at the National

Institutes of Health (grant number U01AG029824); the National Health

and Medical Research Council of Australia (grant numbers 334047,

1127060) and Monash University (Australia). The ASPREE Healthy

Ageing Biobank was supported by the Commonwealth Scientific and

Industrial Research Organisation (Australia), the Victorian Cancer Agency

(Australia) and Monash University (Australia). Authors acknowledge the

dedicated and skilled staff in Australia and the U.S. for the conduct of the

ASPREE trial and the ASPREE participants who willingly volunteered.

Authors would like to acknowledge the 45 and Up Study, managed by the

Sax Institute (www.saxinstitute.org.au) in collaboration with major partner

Cancer Council NSW, and partners: the National Heart Foundation of

Australia (NSW Division); NSW Ministry of Health; NSW Government

Family & Community Services – Ageing, Carers and the Disability

Council NSW; and the Australian Red Cross Blood Service. We thank the

many thousands of people participating in the 45 and Up Study. Authors

would like to thank Margo Barr for her contributions to the MGRB

project.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Kobayashi Y, Yang S, Nykamp K, Garcia J, Lincoln SE,

Topper SE. Pathogenic variant burden in the ExAC database:

an empirical approach to evaluating population data for

clinical variant interpretation. Genome Med. 2017;9:13.

PubMed PMID: 28166811. Pubmed Central PMCID:

5295186.

2. Whiffin N, Minikel E, Walsh R, et al. Using high-resolution

variant frequencies to empower clinical genome interpretation.

The Medical Genome Reference Bank: a whole-genome data resource of 4000 healthy elderly individuals.. . . 315

http://www.aspree.org
http://www.saxinstitute.org.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Genetics in medicine : official journal of the American College of

Medical Genetics. 2017;19:1151–8. PubMed PMID: 28518168.

Pubmed Central PMCID: 5563454.

3. Bomba L, Walter K, Soranzo N. The impact of rare and low-

frequency genetic variants in common disease. Genome Biol.

2017;18:77. PubMed PMID: 28449691. Pubmed Central PMCID:

5408830.

4. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-

coding genetic variation in 60,706 humans. Nature.

2016;536:285–91. PubMed PMID: 27535533. Pubmed Central

PMCID: 5018207.

5. Genomes Project C, Abecasis GR, Altshuler D, et al. A map of

human genome variation from population-scale sequencing. Nat-

ure. 2010;467:1061–73. PubMed PMID: 20981092. Pubmed

Central PMCID: 3042601.

6. International HapMap C. The International HapMap Project.

Nature. 2003;426:789–96. PubMed PMID: 14685227.

7. Higasa K, Miyake N, Yoshimura J, et al. Human genetic variation

database, a reference database of genetic variations in the Japanese

population. J Hum Genet. 2016;61:547–53. PubMed PMID:

26911352. Pubmed Central PMCID: 4931044.

8. Nagasaki M, Yasuda J, Katsuoka F, et al. Rare variant discovery

by deep whole-genome sequencing of 1,070 Japanese individuals.

Nat Commun. 2015;6:8018. PubMed PMID: 26292667. Pubmed

Central PMCID: 4560751.

9. Fakhro KA, Staudt MR, Ramstetter MD, et al. The Qatar genome:

a population-specific tool for precision medicine in the Middle

East. Human genome variation. 2016;3:16016. PubMed PMID:

27408750. Pubmed Central PMCID: 4927697.

10. Leitsalu L, Haller T, Esko T, et al. Cohort Profile: Estonian

Biobank of the Estonian Genome Center, University of Tartu. Int J

Epidemiol. 2015;44:1137–47. PubMed PMID: 24518929.

11. Ameur A, Dahlberg J, Olason P, et al. SweGen: a whole-genome

data resource of genetic variability in a cross-section of the

Swedish population. European journal of human genetics: EJHG.

2017;25:1253–60. PubMed PMID: 28832569. Pubmed Central

PMCID: 5765326.

12. Erikson GA, Bodian DL, Rueda M, et al. Whole-Genome

Sequencing of a Healthy Aging Cohort. Cell.. 2016;165:1002–

11. PubMed PMID: 27114037. Pubmed Central PMCID:

4860090.

13. Telenti A, Pierce LC, Biggs WH, et al. Deep sequencing of 10,000

human genomes. Proceedings of the National Academy of Sci-

ences of the United States of America. 2016;113(42):11901-6.

PubMed PMID: 27702888. Pubmed Central PMCID: 5081584.

14. Shah N, Hou YC, Yu HC, et al. Identification of Misclassified

ClinVar Variants via Disease Population Prevalence. Am J Hum

Genet. 2018;102:609–19. PubMed PMID: 29625023. Pubmed

Central PMCID: 5985337.

15. Minikel EV, Vallabh SM, Lek M, et al. Quantifying prion disease

penetrance using large population control cohorts. Science trans-

lational medicine. 2016;8:322ra9. PubMed PMID: 26791950.

Pubmed Central PMCID: 4774245.

16. McNeil JJ, Woods RL, Nelson MR, et al. Baseline Characteristics

of Participants in the ASPREE (ASPirin in Reducing Events in the

Elderly) Study. The journals of gerontology Series A, Biological

sciences and medical sciences. 2017;72:1586–93. PubMed PMID:

28329340. Pubmed Central PMCID: 5861878.

17. Up Study C, Banks E, Redman S, et al. Cohort profile: the 45 and

up study. Int J Epidemiol. 2008;37:941–7. PubMed PMID:

17881411. Pubmed Central PMCID: 2557061.

18. Lacaze P, Woods R, Zoungas S, et al. The genomic potential of the

Aspirin in Reducing Events in the Elderly and Statins in Reducing

Events in the Elderly studies. Intern Med J. 2017;47:461–3.

PubMed PMID: 28401726.

19. Teng EL, Chui HC. The Modified Mini-Mental State (3MS)

examination. J Clin Psychiatry. 1987;48:314–8. PubMed PMID:

3611032.

20. Katz S, Akpom CA. A measure of primary sociobiological

functions. International journal of health services : planning,

administration, evaluation. 1976;6:493–508. PubMed PMID:

133997.

21. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data

to high confidence variant calls: the Genome Analysis Toolkit best

practices pipeline. Current protocols in bioinformatics. 2013;43:11 0

1-33. PubMed PMID: 25431634. Pubmed Central PMCID:

4243306.

22. Global Alliance for G, Health. GENOMICS. A federated eco-

system for sharing genomic, clinical data. Science. 2016;352:

1278–80. PubMed PMID: 27284183.

23. Lacaze P, Winship I, McNeil J. Penetrance and the Healthy

Elderly. Genetic testing and molecular biomarkers. 2017;21:637–

40. PubMed PMID: 28876137. Pubmed Central PMCID:

5695739.

24. Lacaze P, Ryan J, Woods R, Winship I, McNeil J. Pathogenic

variants in the healthy elderly: unique ethical and practical chal-

lenges. J Med Ethics. 2017;43:714–22. PubMed PMID:

28341755. Pubmed Central PMCID: 5629947.

25. Minikel EV, Zerr I, Collins SJ, et al. Ascertainment bias causes

false signal of anticipation in genetic prion disease. Am J Hum

Genet. 2014;95:371–82. PubMed PMID: 25279981. Pubmed

Central PMCID: 4185115.

26. Xue Y, Chen Y, Ayub Q, et al. Deleterious- and disease-allele

prevalence in healthy individuals: insights from current predic-

tions, mutation databases, and population-scale resequencing. Am

J Hum Genet. 2012;91:1022–32. PubMed PMID: 23217326.

Pubmed Central PMCID: 3516590.

27. Drmanac R, Sparks AB, Callow MJ, et al. Human genome

sequencing using unchained base reads on self-assembling DNA

nanoarrays. Science. 2010;327:78–81. PubMed PMID: 19892942.

28. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open

access resource for identifying the causes of a wide range of

complex diseases of middle and old age. PLoS Med. 2015;12:

e1001779. PubMed PMID: 25826379. Pubmed Central PMCID:

4380465.

316 P. Lacaze et al.


	The Medical Genome Reference Bank: a whole-genome data resource of 4000 healthy elderly individuals. Rationale and cohort design
	Abstract
	Introduction
	Methods/design
	Inclusion criteria
	Phenotypic information

	Data generation
	Library preparation, DNA sequencing, alignment, and processing
	Phased data release plan
	Data access
	Data transfer
	Open-source analytical framework (Vectis)

	Discussion
	Analysis aims
	Potential limitations and confounding factors
	Implications

	Conclusion
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References


