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The generation of haploid gametes by meiosis is a highly conserved process for sexually
reproducing organisms that, in almost all cases, involves the extensive breakage of chromo-
somes. These chromosome breaks occur during meiotic prophase and are essential for
meiotic recombination as well as the subsequent segregation of homologous chromosomes.
However, their formation and repair must be carefully monitored and choreographed with
nuclear dynamics and the cell division program to avoid the creation of aberrant chromo-
somes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-
signaling network related to the canonical DNA damage response is deeply interwovenwith
the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint
network (MCN) creates a wide range of dependent relationships controlling chromosome
movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair.
In this review, we summarize our current understanding of the MCN. We discuss common-
alities and differences in different experimental systems, with a particular emphasis on the
emerging design principles that control and limit cross talk between signals to ultimately
ensure the faithful inheritance of chromosomes by the next generation.

M
eiosis is a specialized chromosome segre-

gation process, wherein a diploid parent
cell gives rise to haploid gametes (Kleckner

1996; Petronczki et al. 2003; Gerton andHawley

2005). The reduction in ploidy is essential for
gametogenesis in all sexually reproducing or-

ganisms and is achieved by a single round of

DNA replication followed by two chromosome
segregation events that uniquely segregate not

only sister chromatids but also homologous

chromosomes. Separation of homologous
chromosomes occurs during the first meiotic

division (meiosis I), followed by the separation

of sister chromatids during meiosis II.

The mechanics of chromosome segregation

require that chromosome pairs that are to be
segregatedmust first be connected to each other

to ensure their properorientation on the spindle

(Miller et al. 2013). Just like duringmitosis,mei-
otic sister chromatids are held together by sister

chromatid cohesion that is established when the

diploid genome is duplicated during premeiotic
S phase (Fig. 1A). However, no such a priori

linkage exists for homologous chromosomes.

Consequently, a major mechanistic challenge
of meiosis is to identify homologous chromo-

some pairs and establish connections between

them. Much of meiotic prophase, the extended
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G2 phase preceding meiosis I, is dedicated to
achieving this goal.

In most organisms, the connections be-

tween homologous chromosomes are estab-
lished by crossover recombination (Fig. 1B).

Crossovers exchange covalent links between se-

quences of homologous chromosomes, and in
conjunction with crossover-distal sister chro-

matid cohesion, provide the physical connec-

tions necessary for homologous chromosome
segregation during meiosis I (Fig. 1C) (van

Heemst and Heyting 2000; Lee and Orr-Weaver

2001). Crossover recombination is initiated af-
ter premeiotic DNA replication with the pro-

grammed introduction of numerous DNA

DSBs by the conserved SPO11 enzyme (Fig.
2A) (Keeney 2001). Removal of SPO11 and 50

resection of DSBendsproduces30 single-strand-

ed DNA (ssDNA) ends that are used by the
strand-invasion proteins RAD51 and DMC1 to

search for homologous repair templates (Neale

and Keeney 2006). In meiosis, a distinct inter-
homolog (IH) bias is generated to promote

crossover recombination between homologous

chromosomes rather than sister chromatids
(Hollingsworth 2010; Lao and Hunter 2010).

Moreover, a process knownas crossover interfer-

ence ensures an even distribution of crossovers
before stable strand-invasion interactions with

thehomolog (CarpenterandSandler1974;Bish-

op and Zickler 2004; Berchowitz and Copenha-
ver 2010). Only stabilized strand-invasion inter-

mediates are processed into double-Holliday

junctions and ultimately resolved as crossovers,
whereas the remaining intermediates are dis-

placed from the homolog to be repaired as non-
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Figure 1. A crossover establishes a physical link between homologous chromosomes. (A) Schematic of a pair of
homologous chromosomes (red and purple). The replicated sister chromatids are held together by cohesion
(green rings). (B) A crossover between homologous chromosomes, in conjunction with cohesion distal to the
crossover site, establishes aphysical connectionbetween them. (C)Acrossoverallowshomologous chromosomes
to orient properly on the meiotic spindle (gray lines).
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Figure 2. Meiotic DNA replication and DSB repair events occur concomitantly with chromosome structural
morphogenes. Schematic of DNA metabolism (A), and chromosomal organization events (B) during meiotic
prophase. The homologous chromosomes replicate during premeiotic S phase. At leptonema, the DSBs are
initiated, whereas telomeres of the chromosomes become tethered to the nuclear envelope and the meiotic
chromosomes assume a bouquet conformation (in most organisms). Synapsis (depicted by gray lines) between
homologous chromosome pairs is thought to initiate at sites of crossover repair in zygonema. By pachynema the
homologous chromosomes are fully synapsed and the crossover-designated repair is at the double-Holliday
junction intermediate stage. The synaptonemal complex disassembles at diplonema to reveal the crossover sites
between the homologous chromosomes.
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crossovers (Allers and Lichten 2001; Hunter and

Kleckner 2001).
DSB formation and repair are facilitated by

chromosome structure transitions that are easily

observable by cytologyandunderlie the cytolog-
ically defined stages of meiotic prophase—lep-

tonema, zygonema, pachynema, anddiplonema

(Fig. 2B) (Baarends andGrootegoed 2003; Stor-
lazzi et al. 2003).Meiotic chromosomemorpho-

genesis initiates concomitantly with DNA rep-

lication with the assembly of proteinaceous
chromosome axes that give each chromosome

a rod-like center with emanating chromatin

loops (Klein et al. 1999; Blat et al. 2002; Panizza
et al. 2011; Borde anddeMassy 2013). The loop-

axis organization is completed in leptonemaand

is important for DSB formation as well as for
establishing IH bias (Blat et al. 2002; Storlazzi

et al. 2003; Carballo et al. 2008; Kim et al. 2010;

Hong et al. 2013). As cells progress through zy-
gonema, homologous chromosomes pair, their

axes align, and inmany organisms, the chromo-

somes progressively synapse. Synapsis refers to
the assembly of a tripartite proteinaceous scaf-

fold called the synaptonemal complex (SC) that

is formed by central transverse filaments laid
down between the paired axes of the homolo-

gous chromosomes (Page and Hawley 2004;

Fraune et al. 2012). DSBs that have been desig-
nated to become crossovers are suggested to be

the sites of synapsis initiation, in addition to

synapsis initiation at the centromeres in some
organisms (Klein et al. 1999; Henderson and

Keeney 2004; Tsubouchi and Roeder 2005;

Obeso and Dawson 2010; Subramanian and
Hochwagen 2011). The final stages of crossover

recombination occur in the context of the SC.

When all chromosomes achieve full-length syn-
apsis, the cells are in pachynema. By the subse-

quent diplonema, the cells have completed re-

pair and disassemble their SC as they prepare to
segregate the homologous chromosomes.

Alongside these chromosomal transitions,

nuclear organization is often found to undergo
remarkable changes (Fig. 2B). The specific nu-

clear restructuring varies between organisms

and can take the form of telomere clustering
in the nuclear envelope (the “bouquet” stage

observed in many organisms), the subnuclear

congression of chromosomes, as observed in

Caenorhabditis elegans and Drosophila mela-

nogaster, or a dramatic elongation of the nucle-

us, as seen in Tetrahymena thermophila (Scher-

than 2001; Sheehan and Pawlowski 2009; Takeo
et al. 2011; Tanneti et al. 2011; Loidl et al. 2012;

Woglar and Jantsch 2013). In addition, chromo-

somes often undergo periods of extraordinary
dynamicity, exemplified by the “horsetail move-

ment” in Schizosaccharomyces pombe and the

rapid pachytene movements in Saccharomyces

cerevisiae or maize (Ding et al. 1998; Tomita

and Cooper 2006; Koszul et al. 2009; Sheehan

and Pawlowski 2009; Sonntag Brown et al. 2011;
Lee et al. 2012). These processes typically occur

in a stage-specific manner and, in most in-

stances, are thought to either help chromosome
pairing or resolve unproductive chromosomal

interactions (Koszul and Kleckner 2009).

Work over the past several years has revealed
that meiotic cells rely on an intricate network of

signaling mechanisms to coordinate this com-

plex program and create dependencies between
different processes (Roeder and Bailis 2000;

Hochwagen and Amon 2006; Longhese et al.

2009; MacQueen and Hochwagen 2011). These
dependencies are necessary to establish the cor-

rect timing of meiotic prophase events and to

avoid deleterious interactions between different
processes. They also provide an opportunity to

delay or even cull meiotic cells if meiotic pro-

cesses go awry. Here, we attempt to summarize
our current understanding of this network of

dependencies. In an effort to simplify, we will

refer to the checkpoint components by their
human homologs wherever possible and indi-

cate the organism-specific nomenclature in su-

perscript when referencing the function in an
organism-specific context.

AWEB OF DEPENDENCIES CREATES ORDER
IN MEIOTIC PROPHASE

Throughout this review, we refer to the over-
all signaling network comprising these mech-

anisms as the meiotic checkpoint network

(MCN). In line with the original definition of
cell cycle checkpoints (Hartwell and Weinert

1989),weuse the term“checkpointmechanism”
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to describe any signalingmechanism that creates

a dependent relationship betweenmetabolically
independent meiotic processes (e.g., DSB for-

mation and SC assembly). This broad definition

is intended to emphasize that checkpoints are
not primarily surveillance mechanisms that re-

spond to abnormal events. Although meio-

tic DSBs are a form of genome damage, their
formation is an inherent part of every meiotic

prophase, and thus per se not abnormal. Con-

sequently, we view the MCN not simply a dam-
age response network, but as an integral coordi-

nating mechanism that is central to the ordered

execution of meiotic prophase.
Figure 3 provides a broad overview of our

current understanding of the MCN. By far, the

most dependencies arise from the formation of
DSBs,presumably reflecting the inherentdangers

associatedwith chromosomebreakage.However,

some processes are also linked to the completion
of DNA replication or the proper pairing and

synapsis of chromosomes. Remarkably, almost

all currently knowndependencies inmeioticpro-
phase involve the activities of the conserved PI3-

like kinases ATM and ATR. This means that the

MCNmust have mechanisms to differentiate be-
tween signals to elicit the appropriate responses.

Wediscuss this important featureof theMCNina

later part of this review, but first focus on the
general architecture of theMCN.

THE MAIN PLAYERS

The core signaling machinery of the MCN uses

many of the players of the canonical DNA dam-
age response (DDR) network (Table 1), includ-

ing the conserved checkpoint sensor kinases

ATM and ATR (MacQueen and Hochwagen
2011). ATM and ATR are evolutionarily related

serine/threonine kinases that become activated

by distinct forms of DNA damage as well as by
asynapsis during meiosis (Carballo and Cha

2007; Burgoyne et al. 2009). ATM responds pri-

marily to blunt and protein-conjugated DSB
ends, whereas ATR is activated by RPA-coated

ssDNA resulting fromDSB processing, as well as

ssDNA/dsDNA junctions (Harrison andHaber
2006; Lovejoy and Cortez 2009). Both kinases

rely on the activity of cofactors for damage rec-

ognition. ATM detects blunt ends with the help

of the MRN complex (MRE11-RAD50-NBS1)
(Usui et al. 2001; Nakada et al. 2003; You et al.

2005). ATR detects ssDNA through its activator

ATRIP, and ssDNA/dsDNA junctions through
the PCNA-like 9-1-1 complex (RAD9-RAD1-

HUS1) (Zou and Elledge 2003; Harrison and

Haber 2006; Refolio et al. 2011). In addition,
the cofactors BRCA1 and TOPBP1 promote

ATR activity in response to unsynapsed meiotic

chromatin (Refolio et al. 2011; Royo et al. 2013).
ATM and ATR phosphorylate large and often

overlapping sets of substrates on serine-gluta-

mine (SQ) or threonine-glutamine (TQ) di-
peptides. Many of the known effectors of the

MCN are direct targets of ATM/ATR (Table

2), creating immediate links between signal
and outcome. In addition, ATM/ATR activate

the CHK1 and CHK2 effector kinases, which

further relay checkpoint signals but typically
control a more restricted set of processes.

CONTROLOF DSB FORMATION

Ongoing Replication Blocks DSB Formation

The first known checkpoint mechanism in mei-

otic prophase is the meiotic replication check-

point. As in mitotic cells, a primary function of
the meiotic replication checkpoint is the main-

tenance of replication potential, which occurs

through ATR- and CHK2-dependent stabiliza-
tion of replication forks (Branzei and Foiani

2010; Blitzblau and Hochwagen 2013). Howev-

er, in addition, the meiotic replication check-
point also prevents DSB formation as long as

replication is ongoing (Figs. 3 and 4A) (Tonami

et al. 2005; Ogino andMasai 2006; Blitzblau and
Hochwagen 2013). The enforced temporal sep-

aration of replication and DSB formation is

important because it ensures that crossovers
only form between replicated chromosomes

(see Fig. 1).Moreover, it prevents lethal conflicts

between DSB formation and DNA replication
(Blitzblau and Hochwagen 2013). The replica-

tion checkpoints of S. pombe and S. cerevisiae

suppress DSBs through transcriptional repres-
sion of essential regulators of DSB formation,

although the identityof the ultimate checkpoint

Meiotic Checkpoint Network
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target differs between the twoyeasts. In S. pombe

expression ofMde2, an axis associated DSB reg-
ulator, is down-regulated by the checkpoint,

whereas expression of SPO11 itself is under

the control of the replication checkpoint in the
budding yeast (Ogino andMasai 2006; Miyoshi

et al. 2012; Blitzblau and Hochwagen 2013). In

addition, the replication checkpoint of S. cere-

visiae also directly controls the chromosomal
localization and activation of other components

of the DSB machinery (MER2 and REC114).

Signaling in this case occurs both through
CHK2Rad53-dependent and independent mech-

anisms and involves regulation of the conserved
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Figure 3. Dependent relationships established by the MCN. The meiotic checkpoint network creates a web of
dependencies to promote sequential progression ofmeiotic events (A), or preventmeiotic progression in the face
of defective repair or synapsis (B). Dashed lines and arrows indicate a modulation in activity.
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cell cycle kinase DDK (Blitzblau and Hochwa-
gen 2013). A role for CHK2 in coordinating

premeiotic DNA replication and subsequent

meiotic prophase entry was also suggested for
C. elegans (MacQueen and Villeneuve 2001). A

possibly even earlier meiotic role of ATR and

CHK2 in DNA replication was recently suggest-
ed in S. pombe. In this organism,mutation of an

ATR/ATM- and SPO11Rec12-dependent phos-

phorylation siteonCHK2Mek1 resulted inadelay
in DNA replication (Tougan et al. 2010). Al-

though this phosphorylation event may repre-

sent feedback regulation of replication by DSBs,
this possibility requires further study as deletion

of ATRRad3 or CHK2Mek1 did not similarly affect

S-phase progression (Ogino and Masai 2006).

DSB Levels—A Balancing Act

In addition to linking DSB formation to the

sufficient completion of DNA replication, there

is increasing evidence that the MCN also feeds
back to modulate DSB levels once DSB forma-

tion has initiated. Inmouse andDrosophila, loss

of ATM leads to increased abundance of DSB
markers, whereas loss ofATRcauses similar phe-

notypes in A. thaliana, suggesting that DSB-de-

pendent activation of these kinases down-regu-
lates further DSB formation (Joyce et al. 2011;

Lange et al. 2011;Kurzbaueret al. 2012).Meiotic

DSB levels must be tightly controlled, as an ex-
cessive DSB load can lead to severe problems in

DNA repair (Johnson et al. 2007). Indeed, a

number of meiotic phenotypes of Atm2/2

mice can be alleviated by reducing SPO11 copy

number (Bellani et al. 2005; Barchi et al. 2008).

A particular function of ATM in this context
may be to prevent repeated DSB formation at

the same chromosomal locus (including the sis-

ter chromatid). Spatial proximity of DSBs could
explain why Atm2/2 mice display a strong in-

crease in the amount of postcleavage SPO11-

Table 1. MCN proteins and their homologs

Mammals S. cerevisiae C. elegans S. pombe Drosophila Arabidopsis Function

Signaling proteins

ATR Mec1 ATL-1 Rad3p Mei-41 ATR PI3a kinase-like kinase

ATM Tel1 ATM-1 Tel1p Atm ATM PI3 kinase-like kinase

RAD9A,

RAD9B

Ddc1 HPR-9 Rad9p Rad9A,

Rad9B

– PCNAb-like clamp (9-1-1

complex)

RAD1 Rad17 MRT-2 Rad1p Rad1 PCNA-like clamp (9-1-1

complex)

HUS1

HUS1B

Mec3 HUS-1 Hus1p Hus1 – PCNA-like clamp (9-1-1

complex)

CHK1 (Chk1) CHK-1 Chk1p (Grp) – Protein kinase

CHK2 Rad53

Mek1

CHK-2 Cds1p

Mek1p

Mnk – Protein kinase with FHAc

domain

Several Cdc5 PLK-2 Plo1p Polo – Protein kinase

HORMAD1

HORMAD2

Hop1 HTP-1

HTP-2

HIM-3

Hop1 – ASY1 Chromosomal HORMA-

domain proteins

SYCP3 Red1? HTP-3? Rec10? C(2)M? ASY3? Chromosome axis component

Several Sir2 SIR-2 Sir2p Sir2 SRT1

SRT2

NAD-dependent deacetylase

TRIP13 Pch2 PCH-2 – Pch2 – AAAþ-ATPased

Proteins shown to be involved in theMCNpathwayare in bold. Proteins thatwere shownnot to be part of theMCN function

are in parentheses. Proteins that share functional homology but no obvious sequence homology are followed by “?”.
aPhosphoinositide 3-kinase.
bProliferating cell nuclear antigen.
cFork-head associated domain.
dATPases associated with diverse cellular ATPase.
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Table 2. Phosphorylation events involved in creating dependencies

Modifying

enzyme(s) Target

Phosphorylated

residue(s) Organism Effect(s) References

ATRMec1/ATMTel1 CtIPSae2 (Ser73)

(Thr90)

Ser249

Ser279

Ser289

S. cerevisiae Activation of DSB

resection

Cartagena-

Lirola et al.

2006;

Terasawa et al.

2008

ATRMec1/ATMTel1 HORMADHop1 Ser298

(Ser311)

Thr318

S. cerevisiae Inhibition of

intersister repair

Carballo et al.

2008

ATR HORMAD1 Ser375 Mouse MSCI, signaling of

asynapsis?

Fukuda et al.

2012; Royo

et al. 2013

ATR HORMAD2 Ser271 Mouse MSCI? Royo et al. 2013

ATRMec1/ATMTel1 RPA2Rfa2 Ser122 S. cerevisiae Altered crossover

distribution in

some intervals

Bartrand et al.

2006

ATRMec1/ATMTel1 RNF212Zip3 Up to four

residues

S. cerevisiae Altered crossover

levels in some

intervals

Serrentino et al.

2013

ATRMec1/ATMTel1 SCP1Zip1 Ser75 S. cerevisiae Dissolution of

centromere

pairing

Falk et al. 2010

ATM Histone

H2AFX

Ser139 Mouse Persistence of the

bouquet

Fernandez-

Capetillo et al.

2003

ATR Histone

H2AFX

Ser139 Mouse MSCI Royo et al. 2013

ATRMec1/ATMTel1 Rec114 Thr175

Ser187

(Ser256)

S. cerevisiae Reduced DSB

formation

Carballo et al.

2008

ATRMec1/ATMTel1 CHK2Mek1 (Ser12)

(Ser14)

Thr15

S. pombe Activation of

CHK2Mek1 kinase

activity

Tougan et al.

2010

CHK2Mek1 Rad54 Thr132 S. cerevisiae Inhibition of

intersister repair

Niu et al. 2009

CHK2Mek1 Rdh54 Thr6

Thr673

S. pombe Inhibition of

intersister repair?

Tougan et al.

2010

CHK2Mek1 Mus81 Thr281

Thr422

S. pombe Inhibition of

intersister repair?

Tougan et al.

2010

CHK2Mek1 Histone H3 Thr11 S. cerevisiae Inhibition of

intersister repair?

Govin et al. 2010

CHK2Mek1 Cdc25 Up to nine

residues

S. pombe DSB-dependent

nuclear exclusion

of Cdc25; cell cycle

delay

Perez-Hidalgo

et al. 2008

CHK2 SUN-1 Ser8

Ser12a

Ser24

Ser35/Thr36
Ser43

Ser58

Ser62

C. elegans Chromosome

pairing and

synapsis initiation

Penkner et al.

2009

aSer12 phosphorylation is likely indirect because it also depends on PLK-2 (Labella et al. 2011).
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Figure 4. The meiotic checkpoint network integrates signal to the appropriate response. (A) Stalled replication
forks prevent DSB formation via several mechanisms in S. cerevisiae. Mec1 regulates transcription of SPO11 and
recruitment of Rec114 to the meiotic chromosomes, whereas the downstream Rad53 kinase controls phosphor-
ylation of Mer2 by regulating the activity of DDK kinase. (B) MCN regulates resection. Both Tel1 and Mec1
kinases activate Sae2 for DSB end resection to generate 30 ssDNA overhangs. The MCN also prevents hyper-
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leads to recruitment, dimerization, and activation ofMek1 kinase. Regulation of Rad54 activity byMek1 inhibits
IS repair thus promoting IH bias. (D) In Drosophila, the MCN negatively regulates NHK-1 kinase. NHK-1
kinase controls condensation of the oocyte chromatin and also allows its release from the nuclear envelope on
completion of DSB repair. (E) Unsynapsed chromatin in mouse recruits ATR via HORMAD1/2. ATR facilitates
phosphorylation of H2AFX that spreads into the chromatin loops and recruits silencing factors. (F) MCN
regulates exit frommeiotic prophase by controlling the expression and localization of Ndt80 transcription factor
as well as by inhibiting CDK kinase. Cdc5 kinase relieves inhibition of Ndt80 by theMCN in a feedforward loop
to allow rapid exit from prophase.
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oligonucleotide complexes, but only a mild

increase in the number of cytologically discern-
able RAD51 foci (Barchi et al. 2008; Lange et

al. 2011). Analyses of recombinant chromatids

from S. cerevisiae tetrads at specific DSB sites in
mutants lacking ATMTel1 or ATRMec1 also sup-

port this model (Zhang et al. 2011). Although

the target of ATM in this context remains to be
identified, recent experiments in S. cerevisiae

suggest the conserved SPO11 accessory factor

REC114 as a promising candidate. REC114 is a
substrateofATMTel1andATRMec1andmutations

mimicking constitutive ATM/ATR-dependent
phosphorylation cause a notable decrease in
DSB levels (Carballo et al. 2013). CHK2-depen-

dent regulationof theDSBregulatorsDSB-1 and

DSB-2 may have the equivalent function in
C. elegans (Rosu et al. 2013; Stamper et al. 2013).

A number of recent studies in S. cerevisiae

indicate that defects in DSB repair further mod-
ulate DSB levels. The effects are rather com-

plex as the MCN shows both DSB-promoting

and DSB-suppressing effects depending on the
amount of DSBs formed, the type of repair de-

fect, and whether cells are able to prematurely

exit prophase (Argunhan et al. 2013; Blitzblau
andHochwagen 2013; Carballo et al. 2013; Gray

et al. 2013; Lao et al. 2013; Rockmill et al. 2013).

Finally, work in yeast and mice also suggests
a feedback between DSB formation and homo-

log interactions, as DSB formation continues

on unsynapsed chromosomes (Kauppi et al.
2013a,b; Thacker et al. 2014).

CONTROLOF DSB REPAIR

Activation of DSB End Processing

DSB formation itself triggers a major activation

of the MCN (Fig. 3). One of the first events

following meiotic DSB formation is MRN/
CtIP-initiated end resection, which promotes

homologous recombination and also creates a

barrier to error-prone end-joining mechanisms
of repair (Joyce et al. 2012; Yin and Smolikove

2013). Resection is initiated by MRE11-depen-

dent endonucleolytic incisions near DSBs, fol-
lowed by bidirectional resection that requires

both MRN and EXO1 (Zakharyevich et al.

2010; Garcia et al. 2011). In S. cerevisiae, the

MRNXrs2 complex detects unprocessed meiotic
DSB ends and activates ATMTel1 kinase, which

in turn phosphorylates the MRN interacting

protein CtIPSae2 to initiate DSB resection (Fig.
4B) (Usui et al. 2001; Cartagena-Lirola et al.

2006; Terasawa et al. 2008). In a positive feed-

back loop, resected DNA ends lead to the acti-
vation of ATRMec1, which further contributes to

CtIPSae2 activation. However, this dependency

is not strictly linear because ATRMec1 also be-
comes activated independently of ATMTel1, and

is itself sufficient to phosphorylate CtIPSae2 and

initiate resection (Cartagena-Lirola et al. 2008).
Meiotic resection initially is limited, but if

DSB repair is blocked,meiotic cells enter a phase

of DSB hyperresection. Intriguingly, ATRMec1

and the 9-1-1 complex are also required to re-

strain hyperresection (Shinohara et al. 2003;

Gray et al. 2013; Clerici et al. 2014). Given that
a number of nucleases are involved in the resec-

tion process (Mimitou and Symington 2009;

Zakharyevich et al. 2010; Garcia et al. 2011;
Schaetzlein et al. 2013), an appealing model is

that the MCN ensures appropriate resection

rates by activating some nucleases, while (tem-
porarily) inhibiting others (Segurado and Dif-

fley 2008; Manfrini et al. 2010; Luo et al. 2013;

Souquet et al. 2013). In S. cerevisiae, resection by
BLMSgs1/DNA2, in particular, is likely only ac-

tivated late in meiosis (Manfrini et al. 2010;

Zakharyevich et al. 2010).

Suppression of Intersister Recombination

For meiotic DSBs to support crossover for-

mation between homologous chromosomes,

repair from the more readily available homolo-
gous sequences on the sister chromatid must be

suppressed. Several mechanisms act in concert

to achieve this goal, both by down-regulating
sister-directed RAD51-recombinase activity

and by promoting the homolog as the preferred

repair template (Kim et al. 2010; Lao and Hun-
ter 2010; Kurzbauer et al. 2012;Hong et al. 2013;

Lao et al. 2013; Liu et al. 2014). Research in a

number of organisms indicates a central role of
the MCN in establishing meiotic homolog bias

(Carballo et al. 2008; Latypov et al. 2010), al-
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though the mechanistic details are best under-

stood in S. cerevisiae (Fig. 4C). In this organism,
ATMTel1/ATRMec1 phosphorylate the HORMA-

domain-containing chromosomal axis protein

HORMADHop1, the homolog of mammalian
HORMAD1/2, on several clustered S/TQ sites

(Table 1) (Carballo et al. 2008). This leads to the

recruitment, dimerization, and activation of the
CHK2-like effector kinase CHK2Mek1 (Niu et al.

2005, 2007; Carballo et al. 2008; Wu et al. 2010)

whose binding, in turn, stabilizes the phosphor-
ylation mark on HORMADHop1 (Chuang et al.

2012). Once activated, CHK2Mek1 kinase pro-

motes IH bias possibly in part by phosphorylat-
ing and inhibiting RAD54, a SWI/SNF-family

ATPase that stimulates RAD51-recombinase ac-

tivity for repair from the sister chromatid (Niu
et al. 2009). However, genetic experiments sug-

gest that other (currently unknown) targets of

CHK2Mek1 provide the primary mechanism to
promote IH bias (Niu et al. 2009; Terentyev et al.

2010). Research in S. cerevisiae and S. pombe has

identified several additional CHK2Mek1 targets,
including a chromatin mark (histone H3 T11),

the RAD54-related yeast protein Rdh54, and the

resolvase MUS81 (Govin et al. 2010; Tougan
et al. 2010). So far, onlyRdh54hasbeen excluded

as a likely functional target of the MCN (Niu

et al. 2009). Notably, Rdh54 phosphorylation
during vegetative growth is implicated in check-

point adaptation (Ferrari et al. 2013).

Suppression of Ectopic Recombination

There is evidence that the MCN also protects
genome stability by preventing nonallelic (ec-

topic) recombination. Mutants of the plant

Arabidopsis thaliana lacking both ATM and
ATR display DSB-dependent associations be-

tween nonhomologous chromosomes that per-

sist into metaphase I, suggestive of ectopic
crossover recombination (Culligan and Britt

2008). Moreover, increased ectopic recombina-

tion is also observed in S. cerevisiae cells lacking
a functional 9-1-1 complex andmice lacking the

9-1-1 component HUS1 (Grushcow et al. 1999;

Thompson and Stahl 1999; Shinohara et al.
2003; Lyndaker et al. 2013a; Shinohara and Shi-

nohara 2013). Although the relevant check-

point targets remain unknown, the checkpoint

network may restrain ectopic recombination by
coordinating the two DSB ends (Shinohara and

Shinohara 2013), a notion supported by the

observation that RAD51 and DMC1 recombi-
nases frequently appear in an abnormal side-by-

side arrangement in 9-1-1 complex mutants of

S. cerevisiae (Shinohara et al. 2003). The in-
creased number of RAD51 and DMC1 foci in

ATRmutants ofA. thalianamay reflect a similar

defect, although the geometry of recombinase
loading appears to differ between the two or-

ganisms (Kurzbauer et al. 2012). It is possible

that increased ectopic recombination is respon-
sible for the decreased crossover levels observed

in a number of checkpoint mutants (Shinohara

et al. 2003). However, in many cases mutations
in checkpoint factors also show a strong delay in

DSB repair, which may argue for a more direct

role of the meiotic checkpoint machinery in
promoting meiotic recombination (Shimada

et al. 2002; Shinohara et al. 2003; Peretz et al.

2009; Joyce and McKim 2010).

Obligate Crossover Formation and Crossover
Interference

Finally, there is limited evidence that the MCN

has a role in regulating crossover distribution.
Several processes are at work to ensure that each

homologous chromosome pair receives a cross-

over (the obligate crossover), and that neigh-
boring crossovers do not occur too close to each

other (crossover interference). In male mice,

ATM activity is required for the obligate cross-
over in the small pseudoautosomal region of

homology that allows pairing between X and Y

chromosomes (Barchi et al. 2008). In addition,
mice lacking ATM have increased autosomal

crossover numbers accompanied by reduced

crossover interference (Barchi et al. 2008). Sim-
ilarly, in S. cerevisiae, ATMTel1/ATRMec1-de-

pendent phosphorylation of the Rfa2 subunit

of RPA, as well as of the SC component
RNF212Zip3, alters crossover distribution in

some genetic intervals (Bartrand et al. 2006;

Serrentino et al. 2013), although the generality
of these effects remains to be determined. A

crossover interference defect was also observed

Meiotic Checkpoint Network

Cite this article as Cold Spring Harb Perspect Biol 2014;6:a016675 11

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


in S. cerevisiaemutants lacking the phosphatase

PP4, which is responsible for the dephosphor-
ylation of several ATR/ATM substrates (Falk

et al. 2010). However, the mechanism by which

the MCN influences crossover distribution has
so far remained elusive.

NUCLEAR ORGANIZATION, PAIRING,
AND SYNAPSIS

Checkpoint Control of Nuclear
Restructuring

In addition to coordinating DSB repair, the
MCN links meiotic nuclear dynamics to both

DNA replication and DSB metabolism. In

S. cerevisiae, one of the first instances of nuclear
restructuring, the dispersal of mitotic telo-

mere clusters, is linked to S-phase completion

(Trelles-Sticken et al. 2005a), and at least under
some circumstances requires ATRMec1 activity

(Trelles-Sticken et al. 2005b). A related connec-

tion between S-phase and nuclear restructuring
may exist inC. elegans. Following S phase in this

organism, chromosomes aggregate in a polar-

ized nuclear crescent with their telomeres an-
chored in clusters in the nuclear envelope, rem-

iniscent of the bouquet stage seen in many

organisms. This nuclear reorganization requires
CHK2, although not ATM/ATR (MacQueen

and Villeneuve 2001; Penkner et al. 2009).

Thus, how CHK2 is activated in this case is un-
clear. CHK2 activity is required for multiple

events in this context, including the enrichment

of ZIM proteins at chromosomal pairing cen-
ters and the phosphorylation of the chromo-

some anchor SUN-1 at the nuclear envelope

(Phillips and Dernburg 2006; Penkner et al.
2009). Dephosphorylation of SUN-1, in turn,

is required for the dissolution of the polarized

crescent as cells enter pachynema (Penkner et al.
2009; Woglar et al. 2013). A checkpoint-depen-

dent restructuring of the nucleus into a bou-

quet-like state is also observed in Tetrahymena,
although this process requires both DSB forma-

tion and ATR (Loidl andMochizuki 2009; Loidl

et al. 2012).
One of the best-understood mechanisms of

MCN-dependent nuclear reorganization in this

context is the release of chromosomes from the

nuclear envelope inDrosophila (Fig. 4D). Chro-
mosomal release occurs on completion of mei-

otic recombination and leads to the formation

of a compact chromosome cluster called the
karyosome. Before DSB repair, karyosome

formation is prevented by the ATRMei-41 and

CHK2Mnk-dependent inhibition of NHK-1 ki-
nase (Ghabrial and Schupbach 1999; Abdu et al.

2002; Lancaster et al. 2010). One of the sub-

strates of NHK-1 is the nuclear envelope protein
BAF, which must be phosphorylated to release

chromosomes into the nucleus (Lancaster et al.

2007). NHK-1 is also required for histone H2A
Thr119 phosphorylation, SC disassembly, and

condensin loading, which may further contrib-

ute to karyosome formation (Ivanovska et al.
2005; Lancaster et al. 2010).

Chromosome Pairing and the Bouquet

Thebouquet stage coincideswith theactivepair-

ing of homologous chromosomes, and a failure
to properly pair is associated with delayed dis-

persal of the chromosomal bouquet inmanyor-

ganisms. For example, the presence of an extra
chromosome extends the bouquet stage and al-

ters repair dynamics in trisomic human oocytes

(Roig et al. 2005; Robles et al. 2013). Similarly,
telomere clusters persist in pairing-defective

spo11 mutants of S. cerevisiae and Sordaria

(Trelles-Sticken et al. 1999; Storlazzi et al. 2003).
DSB processing is also necessary for exit from the

bouquet stage inTetrahymena (Loidl et al. 2012).

At least in somecases, thesedelaysmaydependon
checkpoint regulation, asmousemutants lacking

ATM or its substrate histone H2AFX (formerly

known as H2AX) fail to exit the bouquet stage
(Fernandez-Capetillo et al. 2003; Liebe et al.

2006). Finally, in S. cerevisiae, the MCN also de-

stabilizes the nonhomologous pairing of centro-
meres in response to DSBs through ATRMec1-de-

pendent phosphorylation of the central SC

component SCP1Zip1 (Falk et al. 2010).

Control of Synapsis Initiation

An interesting case of meiotic checkpoint con-

trol is the initiation of chromosome synapsis,
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which is coupled to chromosome pairing or

DSB formation in a variety of organisms. In C.

elegans, synapsis initiation is blocked by MCN-

mediated Ser12-phosphorylation of SUN-1, the

nuclear envelope protein that establishes con-
nections between chromosome ends and the cy-

toskeleton during meiosis. Ser12-phosphoryla-

tion of SUN-1 depends on CHK2 and the Polo-
like kinase PLK2, but is independent of ATM/
ATR (Penkner et al. 2009; Labella et al. 2011;

Woglar et al. 2013). Erasure of Ser12 phosphor-
ylation, and thus synapsis initiation, requires

appropriate DSB repair (Woglar et al. 2013) as

well as appropriate pairing interactions between
chromosomes, which appear to be monitored

by a force-dependent checkpoint mechanism

(Penkner et al. 2009; Wynne et al. 2012; Rog
and Dernburg 2013). A different mechanism

appears to link synapsis initiation to the onset

of DSB formation in S. cerevisiae. In the absence
of DSBs, synapsis initiation at centromeres

is actively blocked by a mechanism involv-

ing the putative SUMO-ligase RNF212Zip3 and
the proline isomerase Fpr3 (MacQueen and

Roeder 2009). How the DSB signal is transmit-

ted to allow synapsis initiation at centromeres
in this situation remains unknown, although

RNF212Zip3has recently emerged as a promising

MCN substrate (Serrentino et al. 2013).

ASYNAPSIS AND TRANSCRIPTIONAL
SILENCING

It is now well established that unsynapsed chro-

mosomes or chromosome segments elicit the
activation of several branches of the MCN.

Checkpoint signaling is apparent in meiocytes

with partial asynapsis, including cells carrying
extra chromosomes or chromosome transloca-

tions (Mahadevaiah et al. 2008; Burgoyne et al.

2009; Garcia-Cruz et al. 2009; Kouznetsova et al.
2009), and also occurs transiently on late-syn-

apsing chromosomal regions (Blanco-Rod-

riguez 2012). In C. elegans, asynapsis is associ-
ated with a delayed exit from the bouquet state

(Carlton et al. 2006; Colaiacovo 2006), and can

trigger apoptosis (Bhalla and Dernburg 2005).
In mammals, sites of asynapsis are asso-

ciated with the phosphorylation of several axis

proteins including HORMAD1 and 2 (Fig. 4E)

(Fukuda et al. 2012; Royo et al. 2013) and lead to
the recruitment of BRCA1, ATRIP, TOPBP1,

and ATR to the unsynapsed chromosome axes,

followed by the ATR-dependent accumulation
of g-H2AFX (histone H2AFX phosphorylated

on Ser139) (Perera et al. 2004; Turner et al. 2005;

Burgoyne et al. 2009; Refolio et al. 2011). If
asynapsis persists, g-H2AFX and ATR spread

over the entire chromatin with the help of the

g-H2AFX-binding factorMDC1 (Ichijima et al.
2011), and trigger the heterochromatinization

and meiotic silencing of unsynapsed chromatin

(MSUC). Transcriptional silencing as a conse-
quence of asynapsis is also observed in a number

of nonmammalian organisms, including Neu-

rospora and C. elegans (Shiu et al. 2001; Bean
et al. 2004; Checchi and Engebrecht 2011). De-

pending on which chromosomal regions are si-

lenced, MSUC in mice frequently leads to the
loss of spermatocytes, presumably as a result of

the depletion of essential survival factors (Bur-

goyne et al. 2009; Manterola et al. 2009).
MSUC is closely related to the meiotic si-

lencing of sex chromosomes within the sex

body by meiotic sex chromosome inactivation
(MSCI) (Fig. 5), a physiological process that re-

sponds to the unavoidable partial asynapsis of

heteromorphic sex chromosomes, but does not
lead to cell death (Turner et al. 2006). Sex body

formation takes place in late zygonema and is

associated with a second wave of g-H2AFX for-
mation. g-H2AFX formation occurs in two

waves in mouse meiocytes. The first wave coin-

cides with the onset of recombination, is ATM-
dependent, and forms foci that are thought to

mark DSBs (Mahadevaiah et al. 2001; Barchi

et al. 2005; Bellani et al. 2005). In contrast, the
secondwave ofg-H2AFX formation depends on

ATR,marks the remaining unsynapsed chromo-

somes, and behaves like an MSUC response in
that g-H2AFX and ATR spread across the asso-

ciated chromatin loops (Mahadevaiah et al.

2001; Turner et al. 2005; Royo et al. 2013). Cu-
riously, althoughmediated by theDNA-damage

sensor kinase ATR, the second wave is indepen-

dent of SPO11 (Barchi et al. 2005; Bellani et al.
2005).We discuss potential alternativemodes of

ATR activation later in this review.
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CELL CYCLE PROGRESSION, CELL DEATH,
AND LINKS TO DEVELOPMENT

Control of Prophase Exit

Similar to the mitotic DNA damage response,

activation of the MCN also triggers a delay in

meiotic prophase, presumably to provide suffi-
cient time for the completion ofmeiotic recom-

bination. A checkpoint-dependent prophase

delay or arrest in response to defects in synapsis
or DNA repair is apparent in many organisms

(Lydall et al. 1996; Shimada et al. 2002; Hoch-

wagen and Amon 2006; Joyce andMcKim 2010;
Lyndaker et al. 2013a; Woglar et al. 2013), al-

though mechanistic details on how the MCN

influences the cell cycle machinery are so far
largely restricted to S. cerevisiae and S. pombe.

In both yeasts, the meiotic cell cycle delay is

mediated by ATR-dependent activation and di-
merization of CHK2Mek1 (Lydall et al. 1996; Xu

et al. 1997; Shimada et al. 2002; Wu et al. 2010).

CHK2Mek1 acts in part through inhibition of
cyclin-dependent kinase (CDK). In S. cerevisiae,

CHK-2Mek1 kinase phosphorylates and activates

the CDK-inhibitory kinase WEE1Swe1 (Fig. 4F)

(Tung et al. 2000; Acosta et al. 2011), whereas in
S. pombe, CHK2Mek1 kinase promotes the nucle-

ar exclusion (and thus inactivation) of theCDK-

activating phosphatase CDC25 (Perez-Hidalgo
et al. 2008). The outcome in both cases is per-

sistent inhibitory tyrosine phosphorylation of

CDK. In parallel, the MCN of S. cerevisiae also
triggers the nuclear export of the Ndt80 (Hep-

worth et al. 1998; Wang et al. 2011), a key tran-

scription factor that activates the transcription
of a large set of genes including B-type cyclins as

well as the prophase-exit promoting kinase

PLKCdc5 (Chu and Herskowitz 1998; Sourirajan
and Lichten 2008). Tyrosine phosphorylation

and repression of cyclins both keep CDK inac-

tive and thus prevent precocious prophase exit
while the MCN is active. Recent research and

modeling has furthermore shown that Ndt80

and PLKCdc5 are embedded in an intricate sys-
tem of feedback and feedforward loops that cre-

ates a bistable switch for rapid exit frommeiotic

prophase once the checkpoint network is inac-
tivated (Acosta et al. 2011; Okaz et al. 2012).

Persistent Defects and the Induction
of Cell Death

If defects in repair or synapsis persist, the check-
point networks of various organisms adopt dif-

ferent terminal strategies. S. cerevisiae cells enter

a prolongedprophase arrest that canbe exited by
aborting meiosis should environmental condi-

tions become favorable formitotic growth (Sim-

chen 2009). Alternatively, S. cerevisiae can adapt
to the damage by inactivating the MCN, and

attempt meiosis (Bailis et al. 2000; Hochwagen

et al. 2005; Iacovella et al. 2010). In contrast,
meiocytes in metazoans are frequently culled

by checkpoint-dependent induction of the apo-

ptotic cell death program (Gartner et al. 2000;
Bhalla and Dernburg 2005; Di Giacomo et al.

2005), aprocessthat also functions as a screening

mechanism against germ cell precursors with
chromosomal abnormalities (Ahmed et al.

2013; Stevens et al. 2013; Titen et al. 2014). As

in the mitotic DNA damage response, the deci-
sion to enter the apoptotic program in response

to repair defects requires CHK2-dependent ac-

SCP3 ATR DNA

Figure 5. Meiotic chromosome spread from mouse
spermatocyte in pachynema depictingMSCI. TheXY
pair manifests as the sex body (white arrowhead) and
is enriched for ATR (red). SCP3 (green) marks the
axes of synapsed and unsynapsed chromosomes,
DNA is in blue. (Image courtesy of Sarai Pacheco
and Ignasi Roig.)
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tivation of the p53 family of proteins, and is

generally restricted to specific stages in meiotic
prophase (Derry et al. 2001; Barchi et al. 2005;

Suh et al. 2006; Rutkowski et al. 2011; Bolcun-

Filas et al. 2014; Kim and Suh 2014). The role of
the MCN in this decision has been difficult to

define because, in most cases, loss of MCN fac-

tors itself causes DSB repair defects, which in
turn trigger germ cell death (Barchi et al. 2008;

Burgoyne et al. 2009). Conversely, even a rela-

tively downstream factor in the MCN, such as
p53, not only regulates apoptosis but also leads

to reduced crossover formation in Drosophila

(Lu et al. 2010). However, disruption of the 9-
1-1 complex component HUS1 was recently

shown to bypass both pachynema arrest and

apoptosis in mouse spermatocytes (Lyndaker
et al. 2013a), and disruption of CHK2 has

similar effects in mouse oocytes (Bolcun-Filas

et al. 2014), supporting a role of the MCN in
this decision.

Interestingly, in both mouse and C. elegans,

the meiotic cell death response shows a pro-
found sexual dimorphism. Mouse spermato-

cytes experiencing defects in DSB repair or syn-

apsis typically undergo cell death in pachynema,
usually in conjunction with defective sex body

formation and the resulting aberrant gene ex-

pression. In contrast, defective oocytes often
proceed through themeioticdivisions (Nagaoka

et al. 2011, 2012). Although many are later re-

moved by atresia, surviving oocytes have a sub-
stantially higher rate of chromosome abnormal-

ities compared with mature sperm. The reason

for this inefficiency in removing aberrant
oocytes is unclear. A different sexual dimor-

phism is observed in worms. C. elegans her-

maphrodites show a robust apoptotic response
to persistent meiotic defects (Gartner et al.

2000; Bhalla and Dernburg 2005). In contrast,

C. elegans males only initiate the early stages of
the apoptotic program but prevent caspase ac-

tivation (Jaramillo-Lambert et al. 2010). This

signalingmodificationmaybe linked to the con-
stitutively asynaptic single X chromosome in

male worms. Unexpectedly, despite the apopto-

tic culling mechanism only being active in her-
maphrodites, male worms with synapsis defects

produce fewer aberrant gametes, indicating the

existence of apoptosis-independent proofing

mechanisms in the male (Jaramillo-Lambert
et al. 2010).

Links to Development

An alternative to triggering cell death in the face
of persistent defects is to prevent the forma-

tion of mature gametes. Accordingly, in several

organisms, the MCN creates dependencies be-
tween DSB repair and subsequent developmen-

tal events. One well-studied example occurs

in Drosophila, in which DSB repair is linked to
the developmental patterning of the oocyte. In

this organism, persistentDSBs lead toATRmei-41

andCHK2Mnk-dependentmodification of Vasa,
an RNA helicase required for the translation

of gurken mRNA and the dorsoventral pattern-

ing of the eggshell (Ghabrial et al. 1998; Staeva-
Vieira et al. 2003). As a result, the MCN can

block oocyte development. Analogously, the

presence of persistentDSBs or defective synapsis
also leads to an MCN-dependent block of the

developmental program for spore formation in

several fungi (Tung et al. 2000; Anderson et al.
2012; Guo and King 2013), ultimately prevent-

ing chromosomal defects from being passed on

to the next generation.

ARCHITECTURAL FEATURES OF THE MCN

From this overview of the different checkpoint
branches inmeiotic prophase, it is apparent that

the MCN is highly interconnected but uses a

surprisingly small number of signaling mole-
cules. This raises a number of questions, includ-

ing how some of the signals are generated in the

first place, how an appropriately modulated re-
sponse is elicited, and how individual depen-

dencies are separated and integrated.

The Context Matters

Increasing evidence suggests that the specialized

architecture of meiotic chromosomes plays a
fundamental role in shaping the response of

the MCN. In many organisms, disruption of

components of the meiotic chromosome axes,
including SYCP3 and cohesins, leads to a defect

inMCNsignaling (Wang andHoog2006; Kouz-
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netsova et al. 2009; Callender and Hollings-

worth 2010; Lightfoot et al. 2011), although in
some cases the loss of signal has been attribut-

ed to reduced DSB formation (Callender and

Hollingsworth 2010). Perhaps not surprisingly,
MCN roles have also been reported for several

histone methyltransferases (San-Segundo and

Roeder 2000; Checchi and Engebrecht 2011; La-
melza and Bhalla 2012; Ontoso et al. 2013a,b),

which presumably promote chromosome axis

assembly or contribute to the structural envi-
ronment ofMCN signaling. Further supporting

an instructive role of the chromatin environ-

ment, differential chromatinmarks on sex chro-
mosomes and autosomes are associated with

the differential response to asynapsis in C. ele-

gans (Checchi and Engebrecht 2011; Lamelza
and Bhalla 2012).

The chromosome axes likely have multiple

functions in the context of theMCN. They form
the platform for the binding and phosphoryla-

tion of HORMAD proteins, which form a key

part of the chromosomal environment for the
MCN in many organisms (Xu et al. 1997; Mar-

tinez-Perez and Villeneuve 2005; Carballo et al.

2008; Lin et al. 2010; Shin et al. 2010, 2013;
Daniel et al. 2011; Kogo et al. 2012a,b; Wojtasz

et al. 2012; Cheng et al. 2013). In addition,

chromosome axis components also interact di-
rectly with components of MCN. For example,

the S. cerevisiae axis protein Red1 physically

associates with the 9-1-1 complex, an inter-
action required for MCN activity (Eichinger

and Jentsch 2010). Cohesin is similarly required

for the recruitment of the 9-1-1 complex in
C. elegans (Lightfoot et al. 2011). Furthermore,

because the activation of CHK2 kinases by

ATM/ATR typically requires the presence of
adaptor proteins, it has been suggested that

chromosome axis proteins may provide such

an adaptor function for the activation of the
MCN (Niu et al. 2005; Carballo et al. 2008;

Hunter 2008; Eichinger and Jentsch 2010; Tou-

gan et al. 2010).
There is also increasing evidence that the

sequential dynamic changes of meiotic chro-

mosome axes play a significant role in the acti-
vation and modulation of the MCN. Most of

this evidence stems from the functional analysis

of TRIP13Pch2, a widely conserved AAAþ-

ATPase. TRIP13Pch2 modulates meiotic chro-
mosome structure in a variety of contexts, in

many cases by controlling the chromosomal de-

pletion or phosphorylation of HORMAD pro-
teins (San-Segundo and Roeder 1999; Borner

et al. 2008; Wojtasz et al. 2009; Roig et al.

2010; Vader et al. 2011; Miao et al. 2013; Chen
et al. 2014; Lo et al. 2014). Mutants lacking

TRIP13Pch2 share a number of phenotypic fea-

tures withmutants lacking ATMor ATR, consis-
tent with the model that TRIP13Pch2 is required

for full activation of the MCN (San-Segundo

and Roeder 1999; Borner et al. 2008; Joshi et al.
2009; Joyce and McKim 2009, 2010; Wojtasz et

al. 2009; Zanders and Alani 2009; Roig et al.

2010; Zanders et al. 2011; Farmer et al. 2012).
These effects are likely to a large extent a second-

ary consequence of disruptingHORMAD func-

tion, although in S. cerevisiae, TRIP13Pch2 also
directly modulates ATMTel1 by interacting with

the MRNXrs2 complex (Ho and Burgess 2011).

Signal Generation

Chromosomal architecture may also lie at the
root of one of the more perplexing aspects of

meiotic checkpoint regulation, the ability of the

MCN to respond to synapsis defects indepen-
dently of SPO11-induced DSBs (Barchi et al.

2005; Bellani et al. 2005; Bhalla and Dernburg

2005; Barbosa et al. 2007; Joyce and McKim
2009; Lu et al. 2010). Available evidence suggests

that features of the meiosis-specific chromo-

some structure itself may be able to activate
the MCN. In most cases, checkpoint activity

in response to asynapsis requires the activity of

TRIP13Pch2 on HORMAD proteins (Bhalla and
Dernburg 2005; Joyce and McKim 2009, 2010;

Kogo et al. 2012a; Wojtasz et al. 2012), and in

several cases it also requires the activity of the
histone deacetylase Sir2 (San-Segundo and

Roeder 1999; Joyce and McKim 2010; Pek et

al. 2012).
What DSB-independent feature of chromo-

some structure ultimately initiates the MCN

signal remains unclear. The small ubiquitin-
like protein modifier SUMO may be involved

in signal formation, as it is one of the earliest

V.V. Subramanian and A. Hochwagen

16 Cite this article as Cold Spring Harb Perspect Biol 2014;6:a016675

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


marks distinguishing the unsynapsed sex chro-

mosomes for MSCI (Vigodner 2009), and is
involved in MCN activation in S. cerevisiae

(Eichinger and Jentsch 2010). However, SUMO

accumulation on sex chromosomes depends
on ATR (Royo et al. 2013), indicating that

another aspect of asynapsis serves as a signal

in this case. It is possible that the presence of
HORMADs on unsynapsed chromosomes is it-

self the signal activating the MCN. In mouse,

HORMAD1 has multiple roles in meiotic pro-
phase (Shin et al. 2010, 2013; Daniel et al. 2011),

whereas HORMAD2 is selectively required for

SPO11-independent spreading of g-H2AFX
and MSUC/MSCI (Wojtasz et al. 2012). Be-

causeHORMAD2 directly binds toHORMAD1

(Wojtasz et al. 2012), an intriguing possibil-
ity is that HORMAD1/2 colocalization creates

a SPO11-independent signal to activate the

MCN. A direct checkpoint-activating function
of HORMADs is also suggested by the ob-

servation that C. elegans mutants precociously

expressing the HORMAD protein HTP-3 ar-
rest at meiotic entry in an ATMATL-1-dependent

manner without apparent DNA damage (Bur-

ger et al. 2013). Alternatively, there may be a
SPO11-independent source of DSB formation

and MCN activation, as indicated by the recent

observation of SPO11-independent DNA repair
foci on unsynapsed chromosomal regions of

mousemeiocytes as well as SPO11-independent

crossovers in Coprinus cinereus (Carofiglio et al.
2013; Crown et al. 2013).

Response Modulation

Another interesting feature of the MCN is the

relative insensitivity to damage that is observed
in several branches of this network. For exam-

ple, whereas mitotic S. cerevisiae cells arrest in

response to a single induced DSB (Lee et al.
2000), the same lesion elicits no comparable

response in meiotic prophase (Malkova et al.

1996). A similar insensitivity to damage is also
observed in mouse oocytes (Marangos and

Carroll 2012). Intriguingly, the canonical S. cer-

evisiae CHK2Rad53 checkpoint kinase, which
would launch the arrest response in mitotic

cells, is prevented from accessing meiotic chro-

mosomes in most circumstances (Cartagena-

Lirola et al. 2008) and is maintained in an inac-
tive state by protein phosphatase 4 (Falk et al.

2010). Indeed, overexpression of the CHK2Rad53

kinase delays meiotic progression (Usui and
Kanehara 2013). Conversely, there also exist ti-

tration effects, whereby too many aberrant

structures impair the normal checkpoint re-
sponse. In particular, the MSUC response in

mouse breaks down in the presence of too

many unsynapsed chromosomes (Mahadevaiah
et al. 2008; Kouznetsova et al. 2009). This may

indicate a signaling limit for the MSUC re-

sponse, andmayalso provide a safeguard against
initiating MSUC in the early stages of meiotic

prophase when most chromosomes are un-

synapsed.

Signal Integration and Separation

The complexity of the meiotic checkpoint net-

work raises the question how signals are in-

tegrated or separated. ATM and ATR achieve
signal integration simply by phosphorylating

manyof the same target sites. Thus, the presence

of blunt DNA ends and ssDNA can both elicit a
delay in meiotic progression (Hochwagen and

Amon 2006; Wu and Burgess 2006), and both

kinases can stimulate DNA resection and reg-
ulate repair partner choice (Cartagena-Lirola

et al. 2006; Carballo et al. 2008).

In other cases, it likely is necessary to avoid
cross talk between signals. For example, ATRMec1

regulates DSB formation differently in response

to stalled replication during premeiotic S phase
compared with leptonema when DSB forma-

tion has initiated (Argunhan et al. 2013; Blitz-

blau and Hochwagen 2013; Carballo et al. 2013;
Cheng et al. 2013; Gray et al. 2013). Similarly,

axis proteins (e.g., HORMAD1) assemble onto

chromosomes concurrently with DNA replica-
tion but only become ATR substrates on DSB

formation (Carballo et al. 2008; Wojtasz et al.

2009; Blitzblau et al. 2012; Cheng et al. 2013).
One way to achieve signal separation is through

alternative signaling complexes, such as the use

of different CHK2 kinases (Blitzblau andHoch-
wagen 2013), or different signaling platforms,

as has recently been suggested for the alternative
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9-1-1 complexes active during mouse meiotic

prophase (Lyndaker et al. 2013a,b; Vasileva
et al. 2013). The decision for which signaling

complex will ultimately be activated is likely

driven by the distinct spectrum of MCN inter-
actions that are possible at replication forks,

DSBs, or unsynapsed regions, and will therefore

again be strongly context dependent.
Finally, there is now substantial evidence

that the signaling environment of the MCN

evolves over the course of meiotic prophase.
In S. cerevisiae and mouse there are clear differ-

ences in the timing by which specificMCN-me-

diated phosphorylation events appear and dis-
appear (Barchi et al. 2005; Bellani et al. 2005;

Fukuda et al. 2012; Cheng et al. 2013). Of par-

ticular interest here is the entry into pachyne-
ma, which is associated with an apparent switch

in the signaling and response properties of

the MCN. For example, the phosphorylated
forms of HORMADs and CHK2Mek1 specifi-

cally disappear in pachynema (Cartagena-Li-

rola et al. 2008; Fukuda et al. 2012; Cheng et al.
2013). In C. elegans, exogenous DSBs can trig-

ger nuclear reorganization and persistent SUN-

1 phosphorylation in leptonema/zygonema but
not in pachynema (Woglar and Jantsch 2013).

Moreover, repair pathway choice for exogenous

DSBs also changes at later stages in meiotic pro-
phase (Rosu et al. 2011; Libuda et al. 2013).

Temporal evolution of MCN activity may in

some cases be the result of stage-specific activa-
tion of phosphatases that remove MCN-depen-

dent signals (Bailis et al. 2000; Hochwagen and

Amon 2006; Falk et al. 2010; Cheng et al. 2013).
In addition, in the spatially structured gonads

of metazoans, temporal differentiation of the

checkpoint response can also be imparted by
external signals. For example, in C. elegans her-

maphrodites, checkpoint-induced apoptosis is

restricted by Ras/MAP kinase signaling to late
pachynema, perhaps to avoid inappropriate cell

death induction at earlier stages when SPO11-

induced DSBs are prevalent (Rutkowski et al.
2011). The MCN therefore integrates both spa-

tial and temporal information to yield a high-

ly context-dependent coordination hub for
the step-by-step progression through meiotic

prophase.

CONCLUDING REMARKS

Our understanding of the MCN has progressed

by leaps and bounds over the past several years,

although with new insights, new experimental
challenges have emerged. The increasingly evi-

dent interconnectedness of the MCN means

that signaling outputs must be understood as
the summation of signaling branches that mod-

ulate and feed back on each other. Dissecting

this network will requiremore precisely regulat-
able genetic tools, new modeling approaches,

as well as a better description of meiotic chro-

mosome structure. Encouragingly, with the ac-
celerating rate of discovery of direct MCN tar-

gets in multiple organisms as well as the first

applications of systems-level analyses, the study
of theMCN has clearly reached a new stage, and

a comprehensive understanding of the MCN

is starting to be within reach. Ultimately, of
course, a major goal of this research is to use

the emerging knowledge of the MCN for a

better understanding of human chromosome
inheritance and fertility. Because the MCN

modulates the timing and activity of meiotic

processes, partial loss-of-function mutations
of MCN components are expected to have a

major impact on gamete quality. The increasing

abundance of whole-genome patient data holds
big promise in this respect. In the coming years,

informed by the research conducted in model

organisms, we expect that these data will pro-
vide major insights into the high incidence of

spontaneous abortions and chromosomal birth

defects in humans.
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