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We discuss the microscopic mechanisms by which low-temperature amorphous states, such as ultra-

stable glasses, transform into equilibrium fluids, after a sudden temperature increase. Experiments

suggest that this process is similar to the melting of crystals, thus differing from the behaviour

found in ordinary glasses. We rationalize these observations using the physical idea that the trans-

formation process takes place close to a “hidden” equilibrium first-order phase transition, which

is observed in systems of coupled replicas. We illustrate our views using simulation results for a

simple two-dimensional plaquette spin model, which is known to exhibit a range of glassy behav-

iour. Our results suggest that nucleation-and-growth dynamics, as found near ordinary first-order

transitions, is also the correct theoretical framework to analyse the melting of ultrastable glasses. Our

approach provides a unified understanding of multiple experimental observations, such as propagating

melting fronts, large kinetic stability ratios, and “giant” dynamic length scales. We also provide a

comprehensive discussion of available theoretical pictures proposed in the context of ultrastable glass

melting. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954327]

I. INTRODUCTION

Recent experiments using vapor deposition methods have

produced stable glass states with very low enthalpy,1–5 offering

a new route for production of amorphous materials with

controllable properties.6 Simultaneously, the discovery of

such new amorphous materials raises exciting theoretical

challenges,7 because they open a new observational window

on the behaviour of glassy materials.

In particular, these novel glassy states are kinetically

“ultrastable.”1,8 On heating at constant rate, they recover back

to equilibrium at a higher temperature than conventional

glasses. Alternatively, if the stable glasses are held at a fixed

temperature above the glass transition, their relaxation to

equilibrium is much slower than that of conventional glasses.

Some stable glasses retain their glassy structure over periods

up to 105 times longer than the structural relaxation time of

the equilibrium fluid.8 In addition, the mechanism by which

thin films of stable glasses transform into the equilibrium

liquid appears strongly heterogeneous, and is accompanied

by melting fronts that are initiated at the film boundaries,

and sweep through the system.9 This process is reminiscent

of the melting of crystalline materials, and is different from

the behavior of ordinary glasses. The qualitative analogy with

crystal melting forms the basis of the current interpretation of

experimental findings.2 For thicker films of vapor-deposited

glasses, the situation is different again—it is believed2,10 that

melting fronts are initiated in the bulk, and then mediate the

subsequent transformation to the fluid. The crossover between

thin-film and bulk behaviour defines a dynamic length scale

characterizing the melting process, and experiments report a

crossover length in the micrometer range.2 Such a “giant”

dynamic length scale is unexpected in supercooled liquids, in

which the dynamic correlation length scales associated with

equilibrium relaxation near the glass transition are typically a

few nanometers.11,12

These recent observations are currently the subject

of intense experimental investigations.1–5,8,9,13,14 They raise

several interesting questions. For example, what structural

features are responsible for the stability of these materials?

How do deposition conditions affect their properties? What

is the microscopic mechanism for the recovery back to

equilibrium of these stable states? In this work, we concentrate

on this last question, comparing the transformation kinetics

of these amorphous materials with the melting of crystalline

solids. We argue that this process has a universal (material-

independent) character, because of the presence of a nearby

first-order phase transition,15–17 with associated nucleation-

and-growth phenomenology. The phase transition that we

invoke to rationalise the observed behaviours takes place

when two physical copies of the system are coupled to each

other by a field ε. This phase transition is therefore “hidden,”

because it cannot directly be accessed in experiments, although

its presence in realistic glass-formers has been established

numerically.17 We show that this theoretical construction is

useful for understanding experimental observations such as

the existence of melting fronts,9 the fitting of transformation

kinetics by the Avrami equation, and the existence of giant

length scales.2

To illustrate this theoretical picture, we use computer

simulations of a simple spin model—the triangular plaquette

model (TPM). This system does not capture the molecular

details of supercooled liquids, but it does mimic many

features of glassy materials, such as dynamical slowing

down and spatially heterogenous dynamics, linked to growing

dynamic and static correlation length scales.18–25 In particular,

0021-9606/2016/144(24)/244506/15/$30.00 144, 244506-1 Published by AIP Publishing.
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the existence of growing static correlations in this model

is accompanied by first-order phase transitions associated

with coupled replicas,26–28 as also seen in molecular glass-

formers.16,17,29,30 The idea that simple plaquette spin models

of this type can be useful for describing glass-forming liquids

is at the root of dynamical facilitation theory,20,31 as their

low-temperature dynamics is controlled by the constrained

diffusion of a sparse assembly of localised defects. We show

here that the TPM exhibits the universal features that we

expect of stable glasses: kinetic stability, nucleation-and-

growth phenomena associated with melting close to first-

order phase transitions, and giant dynamic length scales.

Since these features are associated with a phase transition,

we expect that results for this simple system also apply to

atomistic models that have similar phase diagrams, and by

extension, to experiments.

The TPM is particularly well-suited for the present study

because it is relatively cheap to simulate computationally,

compared with atomistic liquids. More importantly, a

formidable advantage over off-lattice liquids is the possibility

to prepare directly—and at no computational cost—

equilibrium configurations with arbitrarily low energy, without

the need for simulating the vapor deposition process, or

achieving brute force equilibration at low temperatures. By

construction, therefore, our results can say nothing about

the preparation of ultrastable glasses (this problem has been

addressed computationally32–34), but we can shed light on their

behaviour upon sudden heating. Other strategies have been

used to achieve similar effect, including a random pinning

procedure,35 or simulations with kinetically constrained

models,36–38 which all permit to “plant”39 low-temperature

configurations at no cost.

In comparing our results with those of kinetically con-

strained models (KCMs),40 we note that while both plaquette

models and KCMs are representative of dynamical facilitation

theory, the KCMs do not undergo the thermodynamic phase

transitions described here, because they are defined explicitly

as models of excitations (or defects) that lack any static

interactions. By contrast, the TPM is defined in terms of spin

variables with simple local interactions—the low temperature

behaviour of this model is characterised by long-ranged many-

body spin correlations (amorphous order), as well as low

energy excitations without static interactions, similar to those

that appear in KCMs. The static many-body spin correlations

in the TPM are essential for the analogy that we draw here

with nucleation-and-growth. Earlier simulations of atomistic

liquids have invoked a similar analogy with melting processes

based on empirical observation,35 and a qualitative picture

essentially similar to ours has been invoked to interpret

experimental findings,2 but in none of these earlier works

was the corresponding first-order phase transition precisely

characterized. Here, we show how to make these ideas

concrete and how they may be used to make quantitative

predictions for the observed behaviour. In addition, we provide

in Sec. VI B a detailed comparative discussion of the various

theoretical efforts proposed so far.

The structure of the paper is as follows. Section II outlines

our general theoretical setting, and Section III describes the

model that we consider. Section IV describes the kinetics of the

transformation process from stable glass back to equilibrium,

and Section V investigates the mechanism of this process

using spatio-temporal correlation functions. In Section VI

we discuss the main implications of our results for theory

and experiments, before concluding with a short outlook in

Section VII.

II. THEORETICAL BACKGROUND

A. Basic process: Bulk transformation
of stable glasses

To describe our general theoretical setting, we use C to

denote a configuration of some glassy system (for example,

this might represent the positions of N particles within a

liquid, or the states of N spins in the TPM). The potential

energy of configuration C is E(C). We prepare a stable glass

state, according to a probability distribution Pst. For example,

we might take

Pst(C) ∝ e−E(C)/T0, (1)

which corresponds to a thermal equilibrium distribution at

some low temperature T0. In Eq. (1) we have set the Boltzmann

constant to unity. In experiments performed with ultrastable

glasses, thermalisation at low temperature is not guaranteed

by the vapor deposition process, and the distribution Pst is not

known.

At time t = 0, we couple this initial configuration to a

heat bath at temperature T ≥ T0 for which the average energy

⟨E⟩T is larger than its average in the stable glass state ⟨E⟩st.

If the system has any kind of ideal glass transition then we

also assume that T is higher than this temperature. After some

(possibly very long) time, the system will recover back to

equilibrium at temperature T . The time τrec taken for this

process quantifies the kinetic stability of the original state.

It is natural to measure this time relative to the equilibrium

α-relaxation time τeq of the system measured at the same

temperature T . This suggests that the appropriate adimensional

measure of the kinetic stability of the glass is8,35

S =
τrec

τeq

, (2)

which we call the kinetic stability ratio. In experiments, S

= 103–105. In previous simulations using off-lattice super-

cooled liquids, stability ratios of at most S ≈ 102 were

reported.35,41

B. Link with an equilibrium first-order transition
for coupled replicas

We now introduce the coupled replica setting originally

devised by Franz and Parisi.15 They defined the overlap

Q(C,C ′) which measures the similarity between configu-

rations C and C ′. For identical configurations we have

Q(C,C ′) = 1 while for independent random configurations

one expects Q(C,C ′) ≈ 0. For a spin system, it is conventional

to take Q = 1
N



i sis
′

i
where si is the state of spin i in

configuration C containing N spins, and similarly s′
i

is the

state of spin i in configuration C ′.
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For a fixed stable glass configuration C0, we then

consider a biased thermal distribution for configuration C

at temperature T ,

Pε(C |C0) ∝ e−[E(C)−εNQ(C,C0)]/T . (3)

Here, a positive value of the field ε biases the configuration C

to be similar to the reference configuration C0.

If C0 is a low temperature stable glass state and the

temperature T is not too high, mean-field theory predicts15

a first-order phase transition to occur at some ε∗ = ε∗(T,T0).

The expected phase diagram in the plane (ε,T) is sketched in

Fig. 1(a). At this transition, the average value of the overlap

⟨Q⟩ε jumps from a small to a large value, as ε is increased

through ε∗. For ε > ε∗, the configuration C becomes trapped

in the same metastable state as the reference configuration C0.

We emphasize that the field ε is a thermodynamic quantity

that appears directly in the energy function (3), so that the

transition at ε∗ is an ordinary thermodynamic phase transition,

not a non-equilibrium one.

What is the connection with the bulk melting of a single

stable glass configuration? To see this, consider the following

thought-experiment (or computer simulation). We generate

a stable glass configuration C0, and we initialise the system

in this state by setting C = C0. Then, at time t = 0, we

connect the system to a thermal bath at temperature T , as

in the usual setting of Sec. II A. For t > 0 we run the

dynamics as usual, except that the system energy is now

biased, as Eε(C) = E(C) − εNQ(C,C0), so that the system

will eventually converge to the distribution function in Eq. (3).

This distribution differs in general from an equilibrium state

at temperature T , which is recovered only for ε = 0.

If we choose the field strength ε such that ε > ε∗ then

Eq. (3) means that C will remain forever in the same

metastable state as C0, so the overlap Q(C,C0) will remain

close to unity. This implies that the system remains in a

configuration close to the initial stable glass state for arbitrary

long times: the glass never melts! If instead one has ε < ε∗,

then the system will eventually relax to a state whose overlap

with the initial glass configuration is low. In this case, it

should sample configurations similar to the equilibrium fluid

at temperature T . In other words, the field ε gives an additional

handle to control the kinetic stability ratio S of the glass when

heated to a temperature T ≥ T0. The ratio S can then be

tuned from the physical value obtained at ε = 0, up to S → ∞

when ε → ε∗. We argue that this new handle, which allows

us to produce glasses with arbitrary-large kinetic stability

ratio, provides a key to a deeper understanding of the melting

process and makes our study experimentally relevant.

The central point of our paper is that the case ε < ε∗

includes the physical melting dynamics which occurs at ε = 0.

In this case, our thought-experiment corresponds to the natural

(unbiased) dynamics of C, which is independent of C0, except

for the transient effect of this initial condition. The existence

of the first-order transition at ε∗ becomes physically relevant

for the melting process when ∆ε = (ε∗ − ε) is small, because

the system is then very close to a first-order phase boundary.

In this case, the system can be expected to relax into the low-

overlap stable phase by a nucleation-and-growth mechanism.

The range of ε over which this condition applies is discussed

in Sec. II C below. The result is that if the critical field ε∗ itself

is sufficiently small, the natural melting process for stable

glasses occurs close to this first-order phase boundary, so the

nucleation-and-growth phenomenology should be at play. The

qualitative difference between ordinary and ultrastable glasses

is then very clear, as ε(T,T0) for a given T decreases rapidly as

T0 becomes smaller, implying that the melting of more stable

glasses occurs closer to the phase boundary than the one of

ordinary glasses.

Note finally that this argument about the existence of

a first-order transition is fully independent of the existence

of a finite temperature ideal glass transition TK. Therefore,

the unsettled issue of the existence in realistic glass-formers

of the (mean-field) Kauzmann transition does not affect our

conclusions. By contrast, it is known that the transition in

the (ε,T) that we invoke is present in finite dimensional

glass-formers,17 and thus our approach goes beyond (and does

not rely on) the mean-field approach where the first-order

transition was first discovered.15

C. Transformation kinetics near first-order transitions

If the transformation of a stable glass into a liquid occurs

near a first-order phase transition, this immediately suggests

FIG. 1. (a) Phase diagram for coupled replicas. There is a first-order phase boundary between high- and low-overlap phases. Depending on the model, this

phase boundary may intersect the ε = 0 axis at a finite temperature TK (as in mean-field models15) or at T = 0 (as in plaquette models26–28). (b) Schematic figure

illustrating nucleation and growth of a single droplet of a new state, within an original (reference) state. (c) Schematic figure showing nucleation and growth in a

large system, where multiple nuclei form and grow. There is a large length scale ℓnuc which is the typical spacing between nuclei. A picture qualitatively similar

to (c) was put forward on empirical grounds in Ref. 2, for which the phase diagram in (a) provides theoretical support.
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that behaviour similar to ordinary first-order melting should

be observed. We briefly summarize the features of these

processes that are relevant for the experimental situation.

1. Classical nucleation theory

Close enough to the phase boundary, the transformation

from configuration C0 will take place via the nucleation of

a droplet of the low-overlap phase, as depicted in Fig. 1(b).

Applying classical nucleation theory (CNT) to this physical

situation, we express the free energy to grow a droplet of the

new (low-overlap) state of size R inside the old (high-overlap)

phase as42,43

∆F(R) ≈ γRd−1
− ∆µRd, (4)

where γ is an interfacial energy cost and ∆µ > 0 the free

energy difference between the two phases, which is expected

to scale as the distance to the phase transition, ∆µ ∝ (ε∗ − ε).

Maximising ∆F then gives the size of the critical nucleus,

R∗ ∼ γ/∆µ, and of the free energy barrier to be crossed,

∆F∗ ∼ γd/∆µd−1. Both R∗ and ∆F∗ diverge at the phase

boundary where ∆µ→ 0.

In the coupled-replica system, this picture is slightly more

complicated since the reference configuration C0 enters the

problem as a source of quenched disorder.17,44,45 Physically,

this means that (i) the system is no longer translationally

invariant, so nucleation events might take place preferentially

in regions of the system where the free energy barrier is

particularly low and (ii) there will be important sample-

to-sample fluctuations of γ and ∆µ, which means that these

parameters will depend on the specific reference configuration

C0. While these two effects are certainly relevant for the

melting of real stable glasses, we shall neglect them in the

following. Our strategy is to first obtain a robust general

picture of the physical process, leaving for future work a more

careful study of how quenched disorder affects the simple

description offered here. This represents a significant, but

certainly worthwhile, additional effort.

2. Avrami kinetics

We can use the phase diagram in Fig. 1(a) to rationalise the

giant length scale and the heterogeneous relaxation observed

in experiments. The idea is that when ε∗ is small, then the

natural dynamics of the system at ε = 0 still corresponds to

the regime where (ε∗ − ε) is small and positive. In this case the

system is dominated by nucleation-and-growth, where large

length scales and heterogeneous relaxation are expected.

To see this, let us recall the Avrami picture of nucleation

kinetics.43,46 In a large system, the nucleation rate per unit

volume is

knuc ∼ e−∆F
∗/T . (5)

That is, starting from a system of volume V that is entirely

in the high-overlap phase, the droplets of the low-overlap

phase appear at random positions in the system, with total

rate knucV , as sketched in Fig. 1(c). These droplets grow with

a characteristic velocity v , until such time as they encounter

each other and start to overlap. Thus, paraphrasing Avrami’s

derivation,46 the fraction f of material in the original (high-

overlap) state evolves as

∂ f

∂t
= − f · knuct · cdv

dtd−1, (6)

where cd is a dimensionless constant that depends only on the

spatial dimension, such that the factor cdv
dtd−1 is the mean

rate of growth of new material due to a single droplet whose

radius is randomly (uniformly) distributed between 0 and vt.

The factor knuct is the number of nucleation events that have

occurred up to time t, and the factor of f takes care of the

fact that if new material is generated in a place where the

system has already transformed then this has no effect on

the amount of the old phase that remains. The resulting time

dependence is

favr(t) = e−(t/τavr)
d+1

, (7)

where the characteristic time for formation of the new phase is

τrec = τavr ≃
�
knucv

d
�−1/(d+1)

. (8)

The characteristic compressed exponential shape of the

relaxation function in Eq. (7) appears because droplets grow

with a fixed velocity, so the rate of production of the new

phase increases with time and is proportional to the surface

area of these droplets. The transformation time τrec in Eq. (8)

has a strong dependence on both T and T0 as it involves both

the velocity v of the front propagation (which presumably

decreases rapidly as T is decreased) and the nucleation rate

knuc, which varies exponentially with control parameters, see

Eq. (5).

Note also that if quenched disorder in the system leads to

heterogeneous nucleation, the factor knuct in (6) will only

be linear in time for small t, and will cross over to a

sublinear increase for larger times. This may lead to an

apparent reduction of the exponent d + 1 that appears in the

compressed exponential in (7), as found in Ref. 47.

3. Emergence of a “giant” dynamic length scale

There is an important length scale associated with this

process, which is much larger than the size of the critical

nucleus R∗ discussed above. The physical picture is that phase

transformation of a large system involves many independent

nucleation events, followed by growth of the resulting droplets

of the new phase, until they coalesce. This situation is

sketched in Fig. 1(c). The typical number of nucleation

events that happen during the transformation isN ≃ knucVτavr

so the typical distance between the independent nucleation

events is

ℓnuc = (V/N )1/d ≃ (v/knuc)
1/(d+1). (9)

Near the phase boundary, the nucleation rate is extremely

small, log knuc ∼ −1/(ε∗ − ε), whereas the velocity v ∼ (ε∗

− ε) vanishes much more slowly. This means that ℓnuc can

become very large, or “giant,” as it scales exponentially with

the distance from the phase boundary,

ℓnuc ∼ exp


∆F∗

T(d + 1)


∼ exp (A/|ε∗ − ε|α) , (10)
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where ∆F∗ is the free energy barrier within CNT, so A is a

constant that depends on the surface tension γ between the

phases and α is a constant (equal to d − 1 within CNT).

The scale ℓnuc appears as a sort of dynamical heterogeneity

in the non-equilibrium transformation process. It also leads to

strong finite-size effects in the transformation kinetics. If the

system size is less than ℓnuc then the Avrami picture breaks

down and the system transforms by a single nucleation event,

followed by a droplet that quickly grows and takes over the

system. In this case the compressed exponential relaxation of

Eq. (7) is replaced by simple exponential relaxation associated

with the waiting time for the first nucleation event to occur.

That is, for system sizes L & ℓnuc, one expects relaxation to

follow (7) but for L . ℓnuc one expects instead

f (t) = e−t/τ1, (11)

with τrec = τ1 ∼ 1/(knucV ) the volume-dependent mean wait-

ing time for the first nucleation event. (Notice that this relation

implies that smaller samples are more stable than larger ones.)

Therefore, the exponentially diverging length scale ℓnuc in

Eq. (10) corresponds to the crossover length scale controlling

finite-size effects.

We note that this picture, of nucleation followed by

front propagation at finite velocity, requires two important

assumptions. First, it only makes sense if nucleation is rare

enough (that is, knuc small enough) that the growing nuclei

can be identified and observed before they start to overlap.

This condition can be interpreted as the finite-dimensional

signature of a spinodal line—roughly speaking, the spinodal

is the point where the nucleation barrier is of the same

order as the thermal energy, ∆F∗/T ≈ 1, so that nucleation is

no longer rare, and the system becomes locally unstable to

phase transformation.42 In terms of stable glass melting, this

criterion sets an upper limit on (ε∗ − ε). In addition, to observe

Avrami-like nucleation-and-growth kinetics, one also requires

that the growth velocity v is large enough that nuclei of the

new phase grow quickly once they are formed. Equivalently,

the length scale ℓnuc should be much larger than the critical

nucleus size R∗, since otherwise the arguments leading to (7)

break down. As ε → ε∗, the critical nucleus R∗ diverges as a

power law in (ε∗ − ε) while ℓnuc diverges exponentially, so this

condition is surely satisfied. However, if this condition breaks

down for smaller ε (including the case of unbiased dynamics,

ε = 0), then one expects the transformation by nucleation-

and-growth to be replaced by an alternative mechanism with

different kinetics. This might be what happens in the melting

of ordinary glasses.

4. Relation to stable glass melting

Assuming that the picture of Fig. 1 applies to stable glass

melting, we arrive at the following predictions. (i) We expect

Avrami kinetics as in Eq. (7) for the transformation of large

systems, with a crossover to simple exponential kinetics in

smaller systems. For systems close to phase boundaries, the

length scale ℓnuc associated with this crossover may become

very large. (ii) The transformation process should be strongly

heterogeneous, involving fronts moving with a typical velocity

v , and dynamical correlations over length scales up to ℓnuc.

(iii) If it is possible to introduce (in simulations) a bias ε,

length and time scales should grow rapidly as ε increases

towards ε∗.

The first two of these predictions are consistent with

observed experimental data.2,3,8 In particular, fitting using

Avrami kinetics and the determination of a giant length scale

stemming from sparse nucleating sites have been discussed.2,8

In the following, we illustrate all three of these effects in the

TPM. We also discuss some behaviour in this model that may

be different from the experimental situation, and we discuss

the reasons for these effects.

III. THE TRIANGULAR PLAQUETTE MODEL

The TPM is defined on a two-dimensional triangular

lattice.18,20 In our computer simulations we use a rhombus-

shaped system of L2 = N sites, with periodic boundaries. The

spins are located on lattice sites and are denoted by si = ±1

with i = 1 . . . N . We also identify upward-pointing triangular

plaquettes on the lattice: each plaquette µ is associated

with three spins siµ, s jµ, skµ. We define plaquette variables

nµ = (1 − siµs jµskµ)/2, with nµ = 0,1. The energy of the

system is

E = −
J

2



µ

siµs jµskµ (12)

= −N J/2 + J


µ

nµ. (13)

Hence plaquettes with nµ = 1 are excitations (or excited

plaquettes) which carry energy J.

For large systems at equilibrium, excited plaquettes

are distributed as an ideal gas, so the plaquette variables

are independently identically distributed with ⟨nµ⟩ = c

= 1/(1 + eJ/T). In the following we fix the energy scale

J = 1, which also sets the temperature scale. In finite periodic

systems, it is convenient to take the size L as an integer power

of two, in which case thermodynamic properties of the model

are free from finite-size effects.18 In this case, for any given

configuration of the plaquette variables nµ, there is exactly

one possible configuration of the spin variables si, which may

be constructed directly.18,27

The model evolves in time by flipping spins according to

Metropolis rates: spin i flips with rate given by min(1,e−∆Ei/T),

where∆Ei is the change in energy required to flip the spin. This

ensures that the system converges to a Boltzmann distribution

p(C) ∝ e−E(C)/T . The dynamical evolution is implemented

using a continuous time Monte Carlo (MC) method.48

When considering coupled replicas, the overlap between

configurations with spins si and s′
i

is Q = 1
N



i sis
′

i
. The

distribution of initial (stable glass) states is pst(C) ∝ e−E(C)/T0

with T0 < T . For T0 = 0, this means that the initial state always

has all spins with si = +1, since this is the ground state of the

model, which is unique since we take periodic boundaries and

the system size is an integer power of two.

Since the model is defined in two spatial dimensions, the

phase diagram in Fig. 1(a) applies only for the special case

T0 = 0. The first-order phase transition meets the ε = 0 axis at

T = 0, since the thermodynamic properties of the model for
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ε = 0 are trivial for all T > 0 (the system maps to an ideal gas

of excited plaquettes). The critical temperature in Fig. 1(a) is

then Tc = 0.38 (see Ref. 27). For T0 > 0, the phase transitions

in Fig. 1 are destroyed by the quenched disorder that enters the

problem through the random configuration C0. In this case,

the first-order transition in Fig. 1 is replaced by a smooth

crossover,49,50 but the behaviour near this crossover can still

resemble what happens near a phase transition: this effect will

be demonstrated below. To observe a phase transition using

a finite preparation temperature T0 > 0, one should study a

three-dimensional generalisation of the model,27 which would

then allow detailed theoretical analysis of the effect of the

quenched disorder on the melting dynamics.

IV. KINETICS OF STABLE GLASS MELTING

A. Bulk melting in large systems

As described above, we initialise a TPM in an equilibrium

configuration at temperature T0 and time t = 0. The system

then evolves for t > 0 by MC dynamics at temperature T ,

and eventually equilibrates at that temperature. For fixed

T = 1
3
, Fig. 2 shows the time-dependence of this process for

various T0, through the time-dependent average overlap q(t)

= ⟨Q(Ct,C0)⟩ and the average energy per spin ⟨E(t)/N⟩. The

system size is L = 64, which is large enough that these

results are representative of the large-L limit (for this specific

example). Finite-size effects will be discussed in more detail

below.

For T0 = 0 the initial configuration has all spins up. Both

the overlap and the energy are fitted in the long-time regime

by Avrami (compressed exponential) form given in Eq. (7),

with τavr = 1.1 × 104. At very early times, there are small

fluctuations within the stable glass state that reduce Q and

increase E—these are not fitted by the Avrami form, which

describes only the nucleation-and-growth process. For this

reason the fitting function is q(t) = a favr(t) with favr(t) given

by (7) and a = 0.925 a fitting parameter.

Another special situation is when T0 = T = 1
3

in which

case the average energy does not depend on time, by definition,

and the overlap shows the equilibrium relaxation of the TPM.

In this case the overlap has a stretched exponential form, as

is typical in glassy systems at equilibrium. We show a fit to

a exp[−(t/τeq)
α]with τeq = 857, α = 0.74, and a = 0.978: note

this is a three-parameter fit, in contrast to the two-parameter

Avrami fit shown for T0 = 0 where the compression exponent is

fixed by theory. As T0 increases from 0 to T , the system crosses

over from compressed exponential (Avrami-like) kinetics,

indicative of nucleation-and-growth, to stretched exponential

(glassy) kinetics, indicative of heterogeneous relaxation with

a broad range of time scales. In the language of Fig. 1 this

crossover takes place because increasing T0 moves the relaxa-

tion dynamics at ε = 0 further away from the first-order phase

boundary until its influence is no longer felt when T0 = T .

B. Kinetic stability ratio

It is clear that the stable glass state with T0 = 0 requires

a long time to recover to equilibrium, compared with

FIG. 2. Overlap q(t) for stable glass recovery at T = 1/3, varying T0. (Tem-

peratures are quoted to 2 significant figures throughout, the precise values

used were T0= 0, 1
6
, 1

5
, 1

4
, 1

3
.) Points are simulation results and lines are fits:

for T0= 0 the late-time relaxation (t ≥ 2000) is fitted to an Avrami form

q(t)= ae−(t/τ)
3
. For T0=T (equilibrium relaxation) the fit is a stretched

exponential q(t)= ae−(t/τ)
α

with fitted α = 0.74. The system size is L = 64,

which is large enough that the behaviour is representative of the limit L→∞.

(b) Energy per spin, ⟨E(t)/N ⟩, for the same process. The dashed line is

the equilibrium energy ⟨E⟩T = N (1+e1/T )−1, and the results for T0= 0 have

been fitted with an Avrami form (in d = 2) E(t)= ⟨E⟩T −ae−(t/τ)
3
.

equilibrium relaxation at T = 1
3
. We extract the time for

recovery to equilibrium as q(τrec) = 1/e, and we identify

S = τrec/τeq as a stability ratio. We measure S for various pairs

(T0,T) and report our results in Fig. 3. These results depend

both on the stable glass state itself (through the temperature T0)

and on the transformation temperature T . For a fixed melting

temperature T , lower energy stable glasses are always more

stable, as might be physically expected, but the dependence

on the transformation temperature is non-monotonic. Large

stability ratios appear in a range of intermediate transformation

temperatures T .

To understand this last result, note that for very high T ,

the rate for any spin to flip in the TPM approaches 1, and

all glassy behavior is lost. Hence τrec ≃ τeqm ≃ 1, so that

when the melting temperature belongs to the non-glassy high-

temperature regime, one necessarily has S ≈ 1. Physically,

this effect may be attributed to the MC dynamics of the

system, which implies that all spins are directly coupled to a

stochastic heat bath, and this coupling is strong enough to melt

the glass locally, without requiring any collective dynamics.

Another trivial limit, on the other hand, is for T = T0 where
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FIG. 3. Stability ratio S =τrec/τeq as a function of inverse temperature T−1

where melting occurs, for various preparation temperatures T0. Trivially,

S = 1 when T =T0 and also when T hits the high temperature non-glassy

regime, so that S is in general a non-monotonic function of the melting tem-

perature T , with a maximum which increases when glass stability increases,

i.e., when T0 decreases.

the recovery time extracted from the time-dependent overlap

τrec is equal, by definition, to the equilibrium relaxation time

τeqm. Hence one must again have S = 1 at T = T0. Therefore,

for a given low T0 value, S ≈ 1 both at very high T and

when T approaches T0: the stable glass behavior becomes

apparent only for intermediate T values, which results in a

non-monotonic temperature dependence. The only exception

is when T0 = 0 in which case we expect S to increase

monotonically on reducing T without turning down again,

because τeq→ ∞ as T0→ 0 and the position of the maximum

of S has shifted to T = 0.

We note that kinetic stability ratios S found in experiments

are often much larger than the values shown here, and they

also tend to increase with temperature T ,2,3,51 which is the

opposite trend to the data for T0 = 0 in Fig. 3. In comparing

absolute values of S with experiments, we note that the

temperatures T considered here are relatively high, in the sense

that equilibrium relaxation in the TPM at temperature T = 1
3

is only 2-3 decades slower than high-temperature (liquid-like)

relaxation times. The stability ratio increases rapidly (faster

than an Arrhenius-law) on reducing T so we might easily

imagine reaching much larger stability ratios if we were

able to perform simulations on the very long time scales

comparable with experiment. It is indeed hard to imagine

having a “more stable” glass than a perfectly thermalised

T0 = 0 initial configuration.

From our results, it is not so easy to rationalize the

apparent experimental finding that stability ratios S tend to

increase with T over a wide temperature range (and not just

for T close to T0). However, we note that the nature of the

coupling of the stable glass to the thermal bath is rather

different in experiments, compared to this kind of model,

where all spins are strongly and directly coupled to the heat

bath. As discussed above, we expect this strong coupling to

lead to S ≈ 1 at high temperatures. Experimentally, such a

trivial effect has not been reported, even after temperature

jumps to relatively high-temperatures in the mode-coupling

regime.52 Of course, in experiments, each molecule is not

directly coupled to a stochastic heat bath, and the calorimetric

process following a sudden temperature change is less trivial

than in simulations: this might explain the discrepancy with

our results in this regime, which is anyway not very relevant.

C. System size dependence of transformation
dynamics

As discussed in Sec. II C, the nucleation-and-growth

picture of stable glass transformation predicts strong finite-

size effects in the transformation kinetics. Figure 4 shows this

effect, for the case T = 1
3

and T0 = 0 discussed above. Fig. 4(a)

shows a significant finite-size effect in systems of linear sizes

L = 32 and L = 16, whereas L = 64 seems to have converged

to the infinite system size limit. This may be compared with

the behavior shown in Fig. 4(b), which shows similar results

for equilibrium relaxation at T = 1
3
. In this case, finite-size

effects are significant only for L = 8 and L = 4. This indicates

that the non-equilibrium melting is characterised by a length

scale that is of order four times larger than its equilibrium

counterpart. At equilibrium, the typical length scale for many-

body spin correlations and dynamical heterogeneity in the

TPM scales as ξ ≃ e1/(Tdf) where df = log2(3) ≈ 1.585 is

the fractal dimension of Sierpinski’s triangle.21 While the

prefactor (proportionality constant) in the scaling relation for

ξ is not known, assuming that this factor is close to unity

yields ξ ≈ 7 for T = 1
3
, consistent with Fig. 4(b).

Returning to the non-equilibrium relaxation of low-

temperature initial states [Fig. 4(a)], the behaviour of q(t) in

the smaller system (L = 16) is close to exponential, consistent

with the theoretical prediction in Eq. (11) and in contrast

to the compressed exponential found for Avrami kinetics in

large systems. Finally, Fig. 4(c) shows that while the average

relaxation is exponential in a small system size, the individual

trajectories relax with a simple two-state mechanism, where

a single rare event leads to immediate transformation of the

whole system. The physical idea is that once nucleation has

occurred, the growth of the droplet of the new phase is so

fast that it quickly takes over the whole system, so the system

transforms by a single nucleation event. The exponential form

is recovered by performing averages over different samples,

because the instant of the melting fluctuates from one sample

to another, presumably in a Poisson manner.

We again emphasise that while the length scale in

Fig. 4 is still relatively modest, and not comparable with

the giant length scales observed in experiments, the stability

ratio for this case is also relatively low (S ≈ 13). For

lower transformation temperatures T , we expect much larger

stability ratios accompanied by much larger length scales—the

difficulty is that the long time scales for these processes make

simulations difficult. In Section IV D, we show how this

difficulty can be avoided by exploiting the coupled-replica

construction described in Sec. II B, producing both large

stability ratio and, indeed, giant dynamic length scales.

D. Transformation dynamics for coupled replicas

The fits to Avrami theory in Fig. 2 indicate a nucleation-

and-growth mechanism associated with a first-order phase
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FIG. 4. (a) System size dependence of stable glass recovery at (T ,T0)

= ( 1
3
,0). For large systems, one observes compressed exponential (Avrami-

like) kinetics, as in Fig. 2. For smaller systems, the long-time relaxation is

close to exponential (dashed line), which we attribute to the exponentially

distributed waiting time for the first nucleation event. (b) Finite size effects

for equilibrium relaxation at T =T0=
1
3

are visible only for small systems

L = 4,8. (c) The average overlap during stable glass recovery at L = 16 (data

repeated from (a)), compared with three realisations of the time-dependent

overlap Q(C0, Ct). In each individual trajectory, the system makes a rapid

transformation between two states, involving a slow nucleation step followed

by a very rapid growth of the new phase, which leads to an abrupt decay of

the overlap.

transition. We now show that this phase transition is the one

anticipated by Franz and Parisi,15 as discussed for the TPM in

Refs. 26 and 27, and for a three-dimensional generalisation of

this model in Ref. 28.

To this end, we consider melting from T0 to T in the

presence of a positive biasing field ε > 0, as discussed in

Sec. II B. We show results in Fig. 5(a) for the transformation

kinetics of a stable glass with T0 = 0 at T = 1
3
, as the biasing

field ε is slowly increased. Concentrating first on the bulk

(large-system) behaviour, one observes an increase of almost

three orders of magnitude in the transformation time. To

rationalise this effect, Fig. 5(b) shows the phase diagram

of the TPM in the presence of the coupling field ε for

a reference temperature T0 = 0. Note that since T0 = 0, the

reference configuration C0 has si = 1 for all i. Due to this

simple reference configuration, the bias ε simply behaves

as a magnetic field, and so this model belongs to the 2d

Ising universality class27 and there is no quenched disorder, in

contrast to cases with T0 > 0. The first-order phase boundary

is known exactly due to a duality symmetry of the model,53,54

the position of the critical point was obtained numerically

in Ref. 27 as Tc ≈ 0.38. The path followed in Fig. 5(a) is

represented in the phase diagram shown in Fig. 5(b), which

explains the rapid growth of the transformation time τrec as the

transition is approached, as expected for first-order transitions.

The growth of the (bulk) transformation time τrec with ε is

shown in Fig. 5(c), in a representation which clearly indicates

that it should diverge exponentially fast as ε → ε∗ ≈ 0.0166.

Because the temperature is constant in this figure, the increase

of τrec translates into an increase of the kinetic stability ratio

FIG. 5. (a) Overlap q(t) showing stable glass recovery for (T0,T )

= (0, 1
3
), varying ε (increasing left to right). The values of ε are

(0,0.01,0.0133,0.0150,0.0157), as indicated in panel (b) with open circles.

Solid lines show the behaviour that we find in the limit of large system size.

For the largest values of ε, convergence of this limit requires system sizes of

L = 512,1024. To illustrate these strong finite-size effects, numerical results

for smaller systems are also shown. (b) Phase behavior of a TPM, coupled by

the field ε to a configuration C0 at T0= 0. The solid line indicates a first-order

phase transition, which separates high-overlap and low-overlap phases, and

ends at a critical point (black dot). The state points considered in (a) are

indicated by open circles. (c) The transformation times τrec obtained from

panel (a) grow rapidly as ε approaches the first-order transition, which occurs

at ε∗≈ 0.0166.
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S from S ≈ 13 at ε = 0 to S ≈ 5500 at ε = 0.0157. The very

large stability ratio reached near ε∗ is comparable to the

experimental measurements reported for ultrastable glasses,

and we hypothesise that the melting process in both cases

should be very similar.

It is therefore experimentally relevant to demonstrate that

such a large stability ratio is also associated with very strong

finite-size effects in the transformation kinetics, as predicted

in Sec. II C. These results are also shown in Fig. 5(a). For

the largest field considered (ε = 0.0157), there is a significant

finite-size effect in melting dynamics even for L = 512. For

ε = 0.0150, the behaviour for L = 512 is consistent with

the large-L limit, but there is a significant finite-size effect

for L = 256. Comparing with equilibrium relaxation at this

temperature [Fig. 4(c)], the stability ratio of S ≈ 5500 is

accompanied by a giant length scale, in the sense that it is

around two orders of magnitude larger than the length scales

characterising equilibrium behaviour of the simple liquid at

the same temperature.

For T0 > 0 the fact that the TPM is a two-dimensional

model means that the first-order phase transition shown in

Fig. 5(b) is destroyed by the quenched disorder that comes

from the randomness contained in the finite temperature

configuration C0.
49,50 (The same reasoning also explains the

absence of a phase transition in the random field Ising model in

two dimensions.) Nevertheless, one can still observe vestiges

of this phase transition on finite length and time scales. Indeed,

Fig. 2 shows that the stable glass transformation for T0 > 0

is qualitatively very similar to that for T0 = 0, at least when

T0 is low enough. To illustrate this effect more clearly, Fig. 6

shows results for T0 =
1
6
, for increasing bias ε. For small

fields ε, these results resemble the ones in Fig. 5(a), with

a transformation time that increases by nearly two orders

of magnitude, with compressed exponential (Avrami-like)

transformation kinetics. We again attribute these results to

nucleation-and-growth kinetics. As long as the critical nucleus

is not too large, it is not apparent that the first-order phase

transition has been destroyed by quenched disorder, since

the effect of the disorder operates on large length scales.49,50

However, as ε is increased, the critical nucleus grows and the

FIG. 6. Overlap q(t) showing stable glass recovery at T = 1
3

and T ′= 1
6

≈ 0.17, for ε = 0,0.0133,0.0167,0.0183 (increasing from left to right). As

in Fig. 5, solid lines show the behaviour in the large size limit, while

symbols show data in smaller systems, to illustrate finite size effects. For

the largest ε, we have verified that the large-L limit is converged by com-

paring data for L = 256,512,1024, which all agree to within statistical error

(not shown).

effects of the quenched disorder become apparent as a change

in transformation kinetics, crossing over from a compressed

to a stretched exponential form. This shows that the effects of

the (avoided) transition can still be felt, particularly when ε is

not too close to ε∗.

In three dimensions, phase transitions survive28 for T0 > 0,

so one would expect nucleation-and-growth kinetics with a

diverging time scale in that case too. It would be interesting

to investigate these effects in a three-dimensional model such

as the square-pyramid model (SPyM), which is a three-

dimensional generalisation of the TPM. In particular, it would

be useful to understand the influence of quenched disorder

on nucleation and growth near the first-order transition in

that case, but we postpone that investigation for a future

study.

V. NUCLEATION-AND-GROWTH DYNAMICS

A. Qualitative observations

In this section, we show images of the heterogeneous

nucleation-and-growth dynamics that takes place in the TPM

as it transforms from an initial state at T0 = 0 to an equilibrium

state at temperature T . To investigate this, we consider the

local time-dependent overlap

qi(t) = si(t)si(0), (14)

which is equal to +1 if spin i is in the same state as it was

in the initial (reference) configuration C0. Similar snapshots

have been produced in earlier simulations of ultrastable glasses

produced by random pinning.35

We show in Fig. 7(a) how the overlap evolves as a

system transforms from a low energy initial condition to an

equilibrium state, for a representative trajectory at T = 1
3
,

ε = 0.007. In that case, the system size is L = 64. As time

increases, we see the emergence of a first nucleation event

(highlighted in red), followed by a second one at a later time

(also highlighted). These two droplets then rapidly expand and

fill the entire system. At the time when the growing domains

merge, the dynamic heterogeneity seems to be maximal, as

the system is half relaxed in a spatially heterogeneous manner.

At very long times, the system is homogeneous again, and

resembles a typical equilibrium liquid configuration at that

same temperature.

In Fig. 7(b) we show a similar time series of spin

configurations for the same temperature T = 1
3

but a larger

field value ε = 0.0150, much closer to the transition point at

ε∗ ≈ 0.0166. There is clearly a large length scale associated

with this dynamical relaxation, which is accompanied by the

much larger stability ratio shown in Fig. 5(c). To construct

these images, we have used a system size L = 1024. The large

length scale that is apparent in these snapshots is consistent

with Fig. 5(a) above, which showed that finite-size effects

are significant for this process even for system sizes up to

L = 256. We see multiple nucleation events, followed by a

rapid growth of the fluid phase invading the glass. These

images provide a vivid visual demonstration of the melting

process taking place in the present model.
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FIG. 7. Time-dependent local overlap qi(t) during nucleation and growth for (T0,T )= (0, 1
3
). Pale blue indicates sites where qi(t)=+1, so Ct matches the

initial configuration C0; black sites are where the configurations differ. (a) System size L = 64 and ε = 0.007. The configurations are equally spaced in log(time)

between 0.15τrec and 1.06τrec, with τrec≈ 28 000. Two independent growing nuclei of the low overlap phase are highlighted in red. At the final time, the

system has reached equilibrium and approximately half of the spins match the initial condition, so the overlap is small (q(t)≈ 0.02). (b) System size L = 1024

and ε = 0.015 for times (t/τrec)= (0.36,0.52,0.75) with τrec= 1.1×106. There are multiple nucleation events, and the growing clusters merge and eventually

percolate. At the merging time, the “giant” length scale of the dynamic heterogeneity is about two orders of magnitude larger than in equilibrium at the same T .

B. Dynamic length scales via four-point functions

To analyse this behaviour quantitatively, we use the

machinery of four-point correlation functions, which have

been used extensively to discuss dynamical heterogeneity

in glassy systems at equilibrium.12,55 Similar correlation

functions were calculated for nucleation and growth

processes,56,57 and were measured also during the melting

of randomly pinned glasses.35

Four-point correlation functions are constructed from the

overlap qi(t) as

g4, i j(t) = ⟨qi(t)qj(t)⟩ − q(t)2. (15)

We emphasise that these averages run over both the random

initial condition and the stochastic dynamics of the model.

This means that g4, i j depends only on the relative positions of

sites i and j, and that ⟨qi(t)⟩ = N−1⟨


i qi(t)⟩ = q(t).

The function g4, i j measures the correlations of the overlap

between sites so it characterises the correlated regions shown

in the snapshots of Fig. 7. For a simpler characterisation of

the strength of these correlations (or the size of the correlated

domains), we also consider the four-point susceptibility

χ4(t) =



1

N





i

qi(t)



2

− Nq(t)2


(16)

=
1

N



i j

g4, i j(t). (17)

Figure 8 shows results for χ4(t) for T0 = 0, T = 1
3
, and

increasing ε. As expected for a system undergoing dynam-

ically heterogeneous relaxation, the four-point susceptibility

is non-monotonic in time, with a peak close to τrec, where

q(t) ≈ 1/e. The maximum value of χ4, which we denote by

χ∗
4
, reflects the volume of domains of high (or low) overlap,

as seen in Fig. 7. The significant result from Fig. 8 is that χ∗
4

increases strongly as ε is increased, providing a quantitative

comparison of the increased heterogeneity associated with

nucleation-and-growth as the phase boundary is approached.

We expect χ∗
4

to be comparable with the maximal volume of

correlated domains in Fig. 7. Comparing with Fig. 1, this size

should be of order ℓ2
nuc, which diverges exponentially fast as

the phase boundary is approached. Because the transformation

time τrec also diverges exponentially, we expect a power law

relation between χ∗
4

and τrec, consistent with the simulation

results in Fig. 8. Such power law indicates a direct correlation

FIG. 8. Four-point susceptibility χ4 for (T0,T )= (0, 1
3
) as ε is varied from

0 to 0.013 (increasing from left to right). The increasing recovery time is

accompanied by an increase in dynamical heterogeneity. The dashed line

indicates χ4∼ t
0.85, showing that the dynamic heterogeneity length scale

increases algebraically with the kinetic stability of the glass.
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between the stability ratio S quantifying the kinetic stability

to the relevant dynamic length scale controlling the melting

process, as suggested before.35

To investigate this behaviour in more detail, we consider

the four-point correlation function g4, i j(t). This function

depends only on the relative positions of sites i and j. For

simplicity, we take a circular average of this function, arriving

at a function g4(r, t), where r is the distance between sites i

and j. (There is fine structure in the dependence g4, i j on the

orientation relative to the lattice of the vector connecting sites

i and j, but this is unimportant for the behavior considered

here.) For nucleation and growth, we expect domains to be

compact, and hence

g4(r, t) ≃ n(t)e−r/ξ4(t), (18)

where ξ4(t) is the typical size of a growing domain of the

new phase, and the prefactor n(t) should be proportional to

the number density of critical nuclei, at least in the early time

regime where droplets do not overlap. Assuming as in Sec.

II C that droplets of the new phase grow with velocity v , we

expect

ξ4(t) ∼ vt + ξ0. (19)

Results for a representative state point (with ε = 0) are

shown in Fig. 9, including fits to Eqs. (18) and (19). The

agreement is good, with a maximal domain size ξ∗
4
≈ 11,

consistent with the observation of Fig. 4 that a system size

L = 16 is not large enough to recover bulk behaviour at this

state point.

We emphasise also that the linear growth with time of the

(non-equilibrium) dynamic heterogeneity length in Eq. (19)

again differs strongly from the subdiffusive behaviour found

in equilibrium studies of dynamic heterogeneity.55 This result

shows that the propagation of mobility from rare nucleation

sites is qualitatively similar to the heterogeneous melting

taking place from the interface in experimental work on

ultrastable glasses, even though what we observe here is the

analog of “homogeneous” melting,43 i.e., nucleation initiated

from the bulk rather than from an interface. For the present

model, we expect the velocity v to scale roughly as

v ≃
ξeq

τeq

, (20)

FIG. 9. Four-point correlation function g4(r, t) for (T0,T )= (0, 1
3
) and ε = 0,

for times t/τrec= 0.16,0.24,0.36,0.54,0.81 (increasing from bottom to top).

The lines (for selected times only) are fits to g4(r, t)= a(t)e
−r/ξ4(t ). (b) The

time-dependence of the length ξ4(t) can be fitted as ξ4(t)= ξ0+ vt , indicating

growth at a constant velocity.

where ξeq is the equilibrium correlation length (of order e1/(Tdf)

as discussed above), and τeq is the equilibrium relaxation time.

The physical reasoning leading to Eq. (20) is that on the low-

overlap side of the front, the system has a near-equilibrium

structure, so its dynamics are equilibrium-like. At equilibrium,

regions of linear size ξeq take a time of order τeq to equilibrate.

Hence the front moves through the system by successive

equilibration of regions of size ξeq, each taking a time τeq,

leading to Eq. (20); see also the discussion in Ref. 58, and

the numerical analysis of kinetically constrained models in

Refs. 36, 38, and 58.

This scaling relation indicates that the velocity should

only depend on the final temperature T , and should scale

essentially as 1/τeq, since the temperature dependence of ξeq

is much weaker than that of τeq. The scaling in Eq. (20) is

very much consistent with experiments.59 The temperature

dependence of v(T) has also been addressed in the context

of RFOT theory.10,65,66 Together with the snapshots in Fig. 7,

the linear time dependence of ξ4(t) is strong evidence that

this system is exhibiting nucleation-and-growth behaviour,

consistent with Avrami’s theory. We emphasise that this

dynamical behaviour is taking place for the natural (unbiased,

ε = 0) behavior, even if the only phase transitions that occur

in this model happen for finite bias ε. This is a sense in which

avoided phase transitions such as the one shown in Fig. 1 can

still provide explanatory behaviour for the natural dynamical

behaviour of glass-forming systems.

VI. DISCUSSION

A. Connection to experimental results

There are three principal aspects of our results for the

TPM that are relevant for the mechanism of transformation

of stable glasses in experiments. Since the simulations use

periodic boundaries, the relevant comparison is with bulk

stable glasses, or thick films.

(1) The transformation of stable glasses in experiments

has been observed to be similar to crystal melting.9 The

TPM reproduces this effect and we have explained this

phenomenology by reference to the first-order transition

shown in Fig. 5. In two dimensions the transition is

destroyed for T0 > 0, but its signature can still be seen in

the transformation kinetics. In the experimentally relevant

three-dimensional case, the transition will survive for T0 > 0

so the mapping to first-order phase transformation should

remain precise, and our interpretation should hold. Therefore,

we propose that the first-order phase transition discussed in

our work represents the correct framework to support the

analogy with crystal melting suggested in experimental work2

on purely empirical grounds.

(2) Our framework predicts naturally the emergence of

a “giant” length scale ℓnuc from Eq. (9) that is essentially

the spacing between independent nucleation events. This

length scale diverges at the first-order transition between

high-overlap (stable glass) and low-overlap (fluid) states, but

this transition is present only for ε > 0. In general, the length

scale is controlled by the nucleation rate knuc, which depends

strongly on the free energy difference ∆µ between the stable
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glass and equilibrium fluid states. For the physical case ε = 0,

we expect ∆µ ≈ T sconf(T) − u(T) + u(T0) where sconf is the

configurational entropy density that is gained by the liquid

during the transformation,67 while u(T) − u(T0) is the increase

in internal energy due to the temperature difference. At fixed T ,

more stable glasses have lower u(T0), and these will therefore

be associated with larger length scales. (More strictly, u

would be a free energy that includes the entropy associated

with intra-state fluctuations and enthalpic contributions from

volume changes during the transformation process.)

Our interpretation of the giant length scales observed as

finite-size effects in experiments is that for thin films, critical

nuclei are so rare that propagating fronts coming from the

boundaries of the system can travel through the entire film

before any nucleation event takes place. The thick-film (bulk)

limit sets in only when homogeneous nucleation and growth

have a significant effect on relaxation.2 Transformation of

stable glasses by (homogeneous) nucleation-and-growth is

one of the two scenarios proposed in Ref. 9, the other being

growth by melting fronts that are initiated at structural defects.

We note that the homogeneous scenario provides a prediction

for the large length scale [see Eq. (9)], in terms of the spacing

of critical nuclei—the heterogeneous picture requires that

these rare defects be present with the required low density,

presumably due to some feature of the film growth.

In the homogeneous picture, the crossover from thin to

thick film behaviour should take place at the point where

the film thickness becomes comparable to the typical spacing

between nucleation events. For a finite film of thickness

W , one should compare the time for a mobility front to

spread from the boundary through the system, W/v , with the

time τavr for homogeneous transformation given in Eq. (8).

One finds that the homogeneous transformation mechanism

operates only if W & ℓnuc. For this reason, we identify the

large length scale ℓnuc with the giant crossover length scale

measured in experiments,2 which is characterised through the

dependence on the film thickness W . Our results suggest

that this large length scale could be observed directly in

bulk stable materials, and would appear as a giant dynamic

heterogeneity length scale.9 To our knowledge, this has not

been directly observed in experiments yet where the length

scale has only been inferred from the crossover behaviour as

the film thickness is varied.

(3) The length scales and stability ratios observed in this

work are much smaller, for ε = 0, than those in experiments.

We attribute this to the relatively high transformation

temperatures T considered here. As noted above, equilibrium

relaxation at these temperatures is only 2-3 decades slower

than relaxation at the onset of glassy dynamics, in contrast

to the experimental case where relaxation is typically studied

close to the experimental glass temperature. For the TPM, we

expect that the stability ratio S and the length scale ℓnuc should

increase significantly as T is reduced, and are likely to diverge

as T → 0, taking always T0 ≪ T , or perhaps more precisely

τeq(T0) ≫ τeq(T). For this reason, we expect that the modest

length and time scales that we have found in this work are due

to our restriction to state points where computer simulations

are tractable—our theoretical arguments are applicable to

the large length and time scales found in experiments. We

have supported this claim using the biasing field ε at constant

(T,T0) to promote by more than two orders of magnitude both

the kinetic stability ratio and the dynamic length scale of the

melting process.

In addition to these three points, a potentially important

factor that we have not considered here is the heterogeneous

nature of the nucleation process, given that realistic initial

conditions in experiments are not translational invariant (in

contrast to the special case T0 = 0 for the TPM). This leads

to the possibility that nucleation will occur preferentially at

particular starting points within the stable glass phase. It would

be interesting to investigate this effect further, either in the

TPM or in its three-dimensional generalisation (the SPyM).

B. Connection to theoretical work

Since their experimental discovery, stable glasses have

attracted a large interest in the theoretical community as

well. In this section, we provide a comparative discussion of

our approach with other theoretical studies that discuss the

transformation kinetics of ultrastable glasses.

We have emphasised throughout our paper that the picture

provided by the study of the present plaquette model whose

behaviour is sketched in Fig. 1 is essentially the same as the

sketch provided in the analysis of experimental findings.2 It

should therefore come as no surprise that our findings and

predictions are in qualitative agreement with experimental

results, where words such as “nucleation” and “melting”

have already been employed. However, two points are worth

emphasising. (i) Previous interpretations have been empirical,

and presumably obtained by analogy with melting of crystals.

Such crystal melting of course involves the presence of a

first-order transition, but the nature of the transition required

to provide a nucleation-and-growth picture for glass melting

was not previously discussed. (ii) The picture provided in

Ref. 2 is a coherent description of experimental findings, but

it does not enable predictions of the time scales and length

scales that appear in this qualitative description. In addition,

the nucleation-and-growth mechanism for bulk melting is

inferred from the observation of a crossover length and the

Avrami-like kinetics, but it has not been directly observed. On

the other hand, by connecting the transformation time of stable

glasses to a nucleation rate knuc, and hence to a competition

between a surface tension and a difference in free energy, our

work can offer predictions for the large length and time scales

observed in experiments.

Kinetically constrained models of glasses60,61 have also

been used to understand front propagation and melting

of stable glasses.36–38 If configurations of the TPM are

represented in terms of the defect variables ni, this system

behaves as a kinetically constrained model: localised defects

(or excitations) move by dynamical rules that lead to strong

dynamical heterogeneity, without static correlations between

the defects.20 It is therefore not surprising that many of our

results, including front propagation at finite velocity, are also

observed in kinetically constrained models.

However, a significant difference between the TPM

and the kinetically constrained models considered in other

studies36–38 is that the (constrained) defect dynamics of the
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TPM is a natural consequence of its spins si flipping with

(unconstrained) rates given by the Metropolis formula. The

coupled replica construction that we use here is based on these

spins—it is easy to show that the bias ε has a trivial effect

if the definition of the overlap is based on defect variables,

as would necessarily be done within kinetically constrained

models. This prevents a direct analogy between kinetically

constrained models and the thermodynamic first-order phase

transitions considered here. Kinetically constrained models do

support dynamical phase transitions,62,63 but it is not clear how

such transitions can be connected to nucleation-and-growth

dynamics.

For kinetically constrained models that lack a thermo-

dynamic transition, one expects melting of metastable states

to start at pre-existing defects, or “soft spots,” where spins

are able to flip—this is the heterogeneous scenario of Refs. 2

and 9. In this case, the giant length scale associated with

stable glass transformation is not associated with the spacing

between spontaneous nucleation events, but instead arises

from the distance between these pre-existing defects. Very

recently, a kinetically constrained model with a “softened”

constraint64 was used to study glass transformation,38 where

the soft constraint acts as a kinetic barrier for the production of

defects. This process mimics the nucleation step that is absent

in ordinary kinetically constrained models. Since the models

already support mobility fronts moving with finite velocity,

the introduction of such a slow nucleation step means that

one is then bound to recover a dynamics that is similar to

that described here. A difference with our approach is that the

length and time scales associated with melting are adjusted by

an extra modelling parameter (the softness of the constraint),

whereas in our case they emerge directly from the definition

of the model.

Finally, it is interesting to compare our approach to the one

first initiated by Wolynes,10 and developed further later.65,66

Although based on random first-order transition theory

(where the coupled-replica transition was first described),

this approach attacks the problem of front propagation by

the derivation of approximate equations of motion for a

mobility field. The main outcome is the description of

ballistic propagation of a front moving with a velocity which

tracks closely (but not exactly) the equilibrium relaxation

time, which is again a result similar to our results and the

outcome of kinetically constrained model analysis. However,

the melting of bulk ultrastable glasses and the associated

time scales and length scales was not discussed in this

approach.

C. Crossover between stable glass melting
and equilibrium relaxation

Before ending, we return to a question that arises from

Fig. 2(a): can the equilibrium relaxation itself occurring for

T0 = T be explained by a similar nucleation argument to the

transformation of the stable glass? The shape of the relaxation

function is different, but the general RFOT-like description of

Bouchaud and Biroli68 would seem applicable in both cases

(see also Ref. 21). We offer a scaling argument as to how these

two regimes might be smoothly connected.

Starting with transformation from a stable glass with

T0 = 0, the usual CNT predicts that the free energy cost for a

droplet of the new phase is

∆F ≈ γRd−1
− ∆µRd, (21)

with a critical nucleus R∗ ∼ γ/∆µ and a barrier F∗

∼ γd/∆µd−1. Both diverge at the phase boundary where

∆µ→ 0.

For equilibrium relaxation, we imagine that the phase

boundary is still present (as would be the case in d = 3).

However, the relevant state for equilibrium relaxation is

much further from the phase boundary and so the critical

nucleus is much smaller. Also, the form of the “droplets” that

mediate relaxation at equilibrium is different—the droplets

are fractal objects of size R that contain Ndrop ∼ Rdf spins and

have an energetic cost that scales as Jlog2R. (For the TPM,

df = log23 is the fractal dimension of Pascal’s triangle; for

the three-dimensional square-pyramid model, it is believed

that df = log25. In both cases df < d.) The free energy gain

on relaxing such an object is purely entropic (the idea is that

the initial state is localised in a single metastable minimum

while the final state can choose from many similar states). The

configurational entropy per site in the TPM is comparable with

the total entropy, which scales as s ∼ (J/T)e−J/T . Considering

the growing droplet we therefore estimate

∆F ≈ J log R − sRdf. (22)

This free energy barrier is maximal at R∗ ∼ (J/s)1/df.

Substituting for s, the barrier height is therefore F∗ ∼ J2/(Tdf),

leading to a relaxation time that scales as

log τ ∼ J2/(T2df). (23)

This result coincides with the relaxation-time scaling for the

TPM that is predicted and observed in numerics,20,21 subject to

numerical prefactors in (23) which are rather hard to establish,

both in numerics21 and analytically (consider for example the

simpler case of the East model40,69). We note that the length

scale R∗ obtained from this argument is also of the same order

as the four-point correlation length at equilibrium, and the

cavity point-to-set length, both of which scale as (e−J/T)−1/df:

see Ref. 21.

The resulting picture is that the interfacial costs

for nucleation of relaxation of localised droplets can

be understood in terms of a crossover formula, ∆Fint

∼ J log R + γRd−1, with the logarithmic term being relevant

for the relatively small droplets that control equilibrium

relaxation, while the surface tension term (γRd−1) is relevant

for large droplets, such as those found in nucleation close to

first-order phase boundaries. Similarly, the bulk free energy

gain from a droplet of size R can be approximated as

∆Fbulk ∼ sRdf + ∆µRd where again the first term is relevant for

smaller droplets and equilibrium relaxation, and the second

term applies to larger droplets, as found in nucleation and

growth.

Of course, these arguments are based on several

conjectures: it would be interesting to test them using further

numerical studies. However, they do seem to offer a coherent

picture of the TPM dynamics and of its static many-body

correlations (at least at the level of point-to-set). In general, the
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idea that nucleation-and-growth of relatively small droplets

might occur with a non-classical free energy such as (22)

follows the arguments in Ref. 68, but with the additional

generalisation that even the bulk term might not scale

as Rd.

VII. OUTLOOK

We have used the TPM to illustrate how phase transitions

that occur in systems of coupled replicas can be used to

rationalise the experimental behaviour of ultrastable glasses,

constructing a direct connection with nucleation-and-growth

dynamics. This provides a theoretical explanation for the

compressed exponential Avrami kinetics and the giant length

scales that are observed in experiments.2

The TPM is a schematic model and does not describe

the experimental system in detail, but these results show

how predictions based on phase transitions and universal

behaviour can be useful in practical settings. The TPM

combines facilitated dynamics of point-like excitations with

static many-body spin correlations that can be long-ranged and

lead to significant amorphous order. By combining these two

ingredients, the model can capture many qualitative features of

glass-forming systems, including non-trivial aging behaviour,

dynamical heterogeneity, and both static and dynamic phase

transitions.

More generally, the present results should serve as

useful guides to interpret future work dealing with the

dynamics of stable glasses. In particular, our approach

suggests that spatially resolved analysis of the melting

dynamics of in silico stable glasses or experimental materials

would be very valuable in validating the present picture.

Equilibrium dynamic heterogeneity is so short-ranged that

direct measurements of dynamic correlation length scales

remain scarce for molecular liquids. We suggest that direct

measurements of the non-equilibrium length scales discussed

here could be much easier, as these length scales may be

larger by orders of magnitude, and potentially more easily

accessible to experimental work.
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