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Abstract. This paper describes the MESH block ciphers, whose designs
are based on the same group operations as the IDEA cipher, but with a
number of novel features: flexible block sizes in steps of 32 bits (the block
size of IDEA is fixed at 64 bits); larger MA-boxes; distinct key-mixing
layers for odd and even rounds; and new key schedule algorithms that
achieve fast avalanche and avoid the weak keys of IDEA. The software
performance of MESH ciphers are estimated to be better or compara-
ble to that of triple-DES. A number of attacks, such as truncated and
impossible differentials, linear and Demirci’s attack, shows that more re-
sources are required on the MESH ciphers than for IDEA, and indicates
that both ciphers seem to have a large margin of security.
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1 Introduction

This paper presents the MESH block ciphers, whose designs are based on the
same group operations on 16-bit words as the IDEA cipher [11], namely, bit-
wise exclusive-or, denoted ⊕, addition in ZZ216 , denoted ¢, and multiplication
in GF(216 + 1), denoted ¯, with the value 0 denoting 216. The MESH designs
are built on the strength of IDEA, but include some novel features: (i) flexible
block sizes in increments of 32 bits; (ii) larger MA-boxes; (iii) distinct key-mixing
layers for odd and even rounds; (iv) new key schedule algorithms. This paper
is organized as follows: Sect. 2 provides motivation for the new cipher designs;
Sect. 3 describes MESH-64; Sect. 4 describes MESH-96, and Sect. 5 describes
MESH-128. Sect. 6, 7, 8 and 9 describe attacks on the MESH ciphers. Sect. 10
discusses the software performance. Sect. 11 concludes the paper.

2 Design Rationale and Motivations

Since the publication of IDEA in [11], no extended IDEA variant has being pro-
posed with block sizes larger than 64 bits (or word sizes larger than 16 bits).
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Maybe such attempts were jeopardized due to the fact that 232+1 is not a prime
number,1 and thus, ZZ∗232+1 is not a finite field [12, p. 77, Fact 2.184]. The MESH
designs provide an alternative approach that does not rely on the need for larger
word sizes. This motivates the design of larger MA-boxes. All MA-boxes in the
MESH ciphers involve at least three interleaved layers of multiplication and ad-
dition operations in a zig-zag pattern, in comparison to two layers in IDEA.
The MA-boxes of some MESH ciphers have the property that not all multipli-
cations involve subkeys directly as an operand, but rather depend upon internal
data values. These designs effectively avoid many one-round linear relations and
one-round characteristics (to be discussed further). All the new MA-boxes are
bijective mappings (permutations), in order to avoid non-surjective attacks [13]).

Another feature of the MESH ciphers is the key schedule algorithm. Note that
in IDEA all multiplications involve a subkey as an operand. Since the modular
multiplication is the main non-linear operator in the cipher, the key schedule
needs to be designed to avoid weak subkeys for any choice of the user key,
otherwise, all multiplications could, in principle, be manipulated (Daemen [5]).
The following design principles were used in the key schedule of MESH ciphers
to avoid weak keys:

– fast key avalanche: each subkey generated from the user key quickly depends,
non-linearly, upon all user key words. This dependence is expressed by the
exponents of a primitive polynomial (one polynomial for each MESH cipher).
All key schedule algorithms interleave addition with exclusive-or operations.
There is additionally a fixed bit-rotation operation, because in both ¢ and
⊕ the relative position of the subkey bits is preserved and otherwise, two
related keys with subkeys differing only in the most significant bit could
propagate this difference to several other subkeys.

– use of fixed constants to avoid patterns in subkeys. For instance, without the
constants the user-defined key with all-zero words would result in all subkeys
being zero (independent of the non-linear mixing or the bit rotation) for any
number of rounds.

Common properties to IDEA and MESH ciphers include: (i) complete diffusion
is achieved in one round; (ii) no operation is used twice in succession in any
part of these ciphers; (iii) neither cipher uses explicit S-boxes, nor depend on
particular properties of Boolean functions such as in Camellia [1] or AES [8].

Three designs will be described: MESH-64, MESH-96 and MESH-128, where
the suffix denotes the block size.

3 The MESH-64 Block Cipher

MESH-64 is a 64-bit block cipher with a 128-bit key and 8.5 rounds (Fig. 1
and Table 1). The last 0.5 round is the output transformation (OT). The key
schedule for MESH-64 is defined as follows:
1 232 + 1 = 4294967297 = 641 · 6700417.
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Fig. 1. Computational graph of the MESH-64 cipher.

– First, 16-bit constants ci are defined as: c0 = 1, and ci = 3 · ci−1, i ≥ 1
with multiplication in GF(2)[x]/p(x), under the primitive polynomial p(x) =
x16 + x5 + x3 + x2 + 1. The constant ‘3’ is represented by the polynomial
x + 1 in GF(2).

– The 128-bit user key is partitioned into eight 16-bit words Ki, 0 ≤ i ≤ 7,
and assigned to Z

(1)
j+1 = Kj ⊕ cj , 0 ≤ j ≤ 6, and Z

(2)
1 = K7 ⊕ c7.

– Finally, each subsequent 16-bit subkey is defined as follows:

Z
(h(i))
l(i) = (((((Z(h(i−8))

l(i−8) ¢ Z
(h(i−7))
l(i−7) )⊕ Z

(h(i−6))
l(i−6) ) ¢ (1)

Z
(h(i−3))
l(i−3) )⊕ Z

(h(i−2))
l(i−2) ) ¢ Z

(h(i−1))
l(i−1) ) ≪ 7⊕ ci,

for 8 ≤ i ≤ 59; ‘≪ 7’ is left rotation by 7 bits; h(i) = i div 7 + 1, and
l(i) = i mod 7 + 1.

The key schedules of MESH-64 is designed to achieve fast key avalanche, due
to (1) being based on the primitive polynomial q(x) = x8 + x7 + x6 + x5 +
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x2 + x + 1 in GF(2), and the interleaving of ⊕ and ¢ operations. For instance,
Z

(2)
4 and all subsequent subkeys already depend upon all eight user key words.

The dependence of (1) on q(x) can be made clear by ignoring the left rotation
for a while, changing the ¢ to ⊕, and denoting Z

(h(i))
l(i) simply as Z(i). Then

(1) becomes Z(i) = Z(i−8) ⊕ Z(i−7) ⊕ Z(i−6) ⊕ Z(i−3) ⊕ Z(i−2) ⊕ Z(i−1) ⊕ ci. A
similar reasoning applies to the other MESH ciphers. Notice that both ¢ and
⊕ preserve the relative bit position of its operands. The left-rotation destroys
that property, so that changes only at the most significant bit of some subkeys
(in a differential related-key attack) would not propagate to other subkeys with
probability one. Without the constants, the all-zero user key would result in all
subkeys being zero (for any number of rounds), independent of the mixing of
addition and exclusive-or. Decryption in MESH-64 uses the same framework in
Fig. 1 as encryption, but with transformed round subkeys. Formally, let the r-th
round encryption subkeys be denoted (Z(r)

1 , . . ., Z
(r)
7 ), for 1 ≤ r ≤ 8, and (Z(9)

1 ,
. . ., Z

(9)
4 ), for the OT. The decryption round subkeys are:

. ((Z(9)
1 )−1,−Z

(9)
2 ,−Z

(9)
3 , (Z(9)

4 )−1, Z
(8)
5 , Z

(8)
6 , Z

(8)
7 ), for the first round.

. (−Z
(10−r)
1 , (Z(10−r)

3 )−1, (Z(10−r)
2 )−1,−Z

(10−r)
4 , Z

(9−r)
5 , Z

(9−r)
6 , Z

(9−r)
7 ), for the

r-th even round, r ∈ {2, 4, 6, 8}.
. ((Z(9−r)

1 )−1,−Z
(9−r)
3 ,−Z

(9−r)
2 , (Z(9−r)

4 )−1, Z
(8−r)
5 , Z

(8−r)
6 , Z

(8−r)
7 ), for the r-

th odd round, r ∈ {3, 5, 7}.
. ((Z(1)

1 )−1,−Z
(1)
2 ,−Z

(1)
3 , (Z(1)

4 )−1), for the OT.

A similar procedure applies to the decryption subkeys of the other MESH ciphers.

4 The MESH-96 Block Cipher

MESH-96 is a 96-bit block cipher, with a 192-bit key, and 10.5 rounds (Fig. 2
and Table 1). The last 0.5 round is the output transformation (OT).

The key schedule for MESH-96 is defined as follows:

– The 16-bit constants ci are the same as defined for MESH-64.
– The 192-bit user key is partitioned into twelve 16-bit words Ki, for 0 ≤ i ≤

11, that are assigned to: Z
(1)
j+1 = Kj ⊕ cj , for 0 ≤ j ≤ 8, Z

(2)
1 = K9 ⊕ c9,

Z
(2)
2 = K10 ⊕ c10, and Z

(2)
3 = K11 ⊕ c11.

– Finally, each subsequent 16-bit subkey is defined as follows:

Z
(h(i))
l(i) = (((((Z(h(i−12))

l(i−12) ¢ Z
(h(i−8))
l(i−8) )⊕ Z

(h(i−6))
l(i−6) ) ¢

Z
(h(i−4))
l(i−4) )⊕ Z

(h(i−2))
l(i−2) ) ¢ Z

(h(i−1))
l(i−1) ) ≪ 9⊕ ci, (2)

for 12 ≤ i ≤ 95, ‘≪ 9’ is left rotation by 9 bits, h(i) = i div 9 + 1, and
l(i) = i mod 9 + 1.
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Fig. 2. Computational graph of the MESH-96 cipher.

The key schedule of MESH-96 is designed to achieve fast key avalanche due to
the use of the primitive polynomial x12+x11+x10+x8+x6+x4+1 in GF(2), and
the mixing of ¢ and ⊕ operations. All subkeys starting with Z

(2)
7 , already depend

(non-linearly) on all user key words. Decryption uses the same computational
framework as in Fig. 2 for encryption, but with transformed subkeys.

5 The MESH-128 Block Cipher

MESH-128 is a 128-bit block cipher, with a 256-bit key, and 12.5 rounds (Fig. 3
and Table 1). The last 0.5 round is the output transformation (OT). The key
schedule for MESH-128 is defined as follows:

– First, 16-bit constants ci are defined as in MESH-64.
– Next, the 256-bit user key is partitioned into sixteen 16-bit words Ki, 0 ≤ i ≤

15, and are assigned to Z
(1)
j+1 = Kj⊕cj , 0 ≤ j ≤ 11, and Z

(2)
t mod 12+1 = Kt⊕ct,

12 ≤ t ≤ 15.
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– Finally, each subsequent 16-bit subkey is generated as follows:

Z
(h(i))
l(i) = (((((Z(h(i−16))

l(i−16) ¢ Z
(h(i−13))
l(i−13) )⊕ Z

(h(i−12))
l(i−12) ) ¢ (3)

Z
(h(i−8))
l(i−8) )⊕ Z

(h(i−2))
l(i−2) ) ¢ Z

(h(i−1))
l(i−1) ) ≪ 11⊕ ci,

for 16 ≤ i ≤ 151; ‘≪ 11’ is left rotation by 11 bits; h(i) = i div 12 + 1, and
l(i) = i mod 12 + 1.
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Fig. 3. Computational graph of the MESH-128 block cipher.

The key schedule of MESH-128 achieves fast key avalanche due to the use of the
primitive polynomial r(x) = x16 + x15 + x14 + x8 + x4 + x3 + 1, and the mixing
of ¢ and ⊕ operations. All subkeys starting with Z

(2)
10 , already depend upon all

sixteen user key words. Decryption in MESH-128 uses the same framework as in
Fig. 3, but with transformed subkeys.
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Table 1 lists the main parameters for IDEA, and some MESH ciphers.

Table 1. Main parameters for IDEA and some MESH ciphers.

Cipher Block Size Key Size #Rounds #Operations #Subkeys
� ⊕ ¯ ¯ �

IDEA 64 128 8.5 34 48 34 34 18
MESH-64 64 128 8.5 42 48 42 42 18
MESH-96 96 192 10.5 73 90 83 53 43
MESH-128 128 256 12.5 148 144 148 100 52

6 Truncated Differential Analysis

Differential analysis of MESH ciphers followed the framework of Borst et al. [4].
The difference operator is bitwise exclusive-or.
6.1 Truncated Differential Attack on MESH-64

The truncated differential (4), with A,B, C, D, E, F, G, H ∈ ZZ16
2 , is used in an

attack on 3.5-round MESH-64.

(A, 0, B, 0)2
−16

→ (C, 0, C, 0)
(0,0)

1→(0,0)→ (C, C, 0, 0)

(C,C, 0, 0) 1→(D,E, 0, 0)
(D,E)

2−32
→ (E,D)→ (0, D, 0, E)

(0, D, 0, E)2
−16

→ (0, F, 0, F )
(0,0)

1→(0,0)→ (0, 0, F, F )

(0, 0, F, F ) 1→(0, 0, G, H) . (4)

In each line of (4) the leftmost arrow indicates that the 4-word difference on the
left-hand side causes the difference in the middle after a key-mixing half-round,
with the indicated probability on top of the arrow. Further, the middle 4-word
difference causes the round output difference (on the right-hand side) across
an MA-box, with the indicated probability. The truncated differential (4) has
average probability 2−64 over all keys. A similar truncated differential, (10), is
listed in the Appendix. From (4), the attack recovers subkeys Z

(1)
1 , Z

(1)
3 , Z

(4)
3 ,

and Z
(4)
4 that satisfy equations (P1¯Z

(1)
1 )⊕(P ∗1¯Z

(1)
1 ) = (P3¢Z

(1)
3 )⊕(P ∗3 ¢Z

(1)
3 ),

and (C3 ¯ (Z(4)
3 )−1) ⊕ (C∗3 ¯ (Z(4)

3 )−1) = (C4 ¯ Z
(4)
4 ) ⊕ (C∗4 ¯ Z

(4)
4 ). Estimates

for the complexity of truncated differential attacks on MESH-64, using (4) are
based on experimental results on mini-MESH variants, following [4], and give2

232 ·231 ·2 ·216 ·2−3 ≈ 277 3.5-round MESH-64 encryptions, 264 chosen plaintexts,
and 232 64-bit blocks (memory). Note that the new key schedule does not allow
key bit overlap. Therefore, there is no reduction in complexity for a key-recovery
attack. An additional differential, (4), allows to recover Z

(1)
2 , Z

(1)
4 , Z

(4)
1 , and

Z
(4)
2 , with the same complexities.

2 (#structures)×(#surviving pairs per structure)×(#equations)×(#key pairs to find
per equation)× (#operations).
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6.2 Truncated Differential Attack on MESH-96

A truncated differential attack on 3.5-round MESH-96 can use the following
differential, where A, B, C, D, E, F , G, H, I, J , K, L ∈ ZZ16

2 :

(A,B, 0, C, D, 0)2
−32

→ (E, F, 0, E, F, 0)
(0,0,0)

1→(0,0,0)→ (E,E, F, F, 0, 0)

(E, E, F, F, 0, 0)2
−16

→ (G,H, I, G, 0, 0)
(0,H,I)

2−48
→ (I,H,G)→ (0, 0, H, 0, 0, I)

(0, 0,H, 0, 0, I)2
−16

→ (0, 0, J, 0, 0, J)
(0,0,0)

1→(0,0,0)→ (0, 0, 0, 0, J, J)

(0, 0, 0, 0, J, J) 1→(0, 0, 0, 0,K, L) , (5)

that has average probability 2−112, and allows recovery of Z
(1)
1 , Z

(1)
2 , Z

(1)
4 , Z

(1)
5 ,

Z
(4)
5 , and Z

(4)
6 . A differential attack on MESH-96 using (5) works similarly to

the attack on MESH-64, and has estimated complexity, based on experimental
results following [4], as follows: 232 · 263 · 3 · 216 · 1

13 ≈ 2109 3.5-round MESH-96
encryptions, 296 chosen plaintexts, and 264 96-bit blocks of memory. There are
two additional truncated differentials with the same probability, (11) and (12),
listed in the Appendix, that allows to recover Z

(1)
3 , Z

(1)
6 , Z

(4)
3 , Z

(4)
4 , Z

(4)
1 , and

Z
(4)
2 .

An attack on 4-round MESH-96 can guess subkeys Z
(4)
7 , Z

(4)
8 , Z

(4)
9 , and apply

the previous attack on 3.5 rounds, with time complexity 2109+48 = 2157 4-round
computations.

6.3 Truncated Differential Attack on MESH-128

A differential attack on 3.5-round MESH-128 can use the following differential,
with average probability 2−128, and with A, B, C, D, E, F , G, H, I, J , K, L,
M , N , O, P ∈ ZZ16

2 .:

(A, 0, 0, B, C, 0, 0, D)
2−32

→ (E, 0, 0, F, E, 0, 0, F )
(0,0,0,0)

1→(0,0,0,0)→ (E, E, 0, 0, 0, 0, F, F )

(E, E, 0, 0, 0, 0, F, F )
1→(G, H, 0, 0, 0, 0, I, J)

(G,H,I,J)
2−64
→ (J,I,H,G)→ (0, G, H, 0, 0, I, J, 0)

(0, G, H, 0, 0, I, J, 0)
2−32

→ (0, K, L, 0, 0, K, L, 0)
(0,0,0,0)

1→(0,0,0,0)→ (0, 0, K, L, K, L, 0, 0)

(0, 0, K, L, K, L, 0, 0)
1→(0, 0, M, N, O, P, 0, 0) . (6)

Conservative complexity estimates, based on experimental results following
[4], for a truncated differential attack on 3.5-round MESH-128 using (6) are as
follows: 264 ·263 ·4 ·216 · 6

116 ≈ 2141 3.5-round MESH-128 encryptions, 2128 chosen
plaintexts, and 264 128-bit blocks of memory, to recover Z

(1)
1 , Z

(1)
4 , Z

(1)
5 , Z

(1)
8 ,

Z
(4)
3 , Z

(4)
4 , Z

(4)
5 , Z

(4)
6 . An additional truncated differential, in the Appendix, can

be used to recover Z
(1)
2 , Z

(1)
3 , Z

(1)
6 , Z

(1)
7 , Z

(4)
1 , Z

(4)
2 , Z

(4)
7 , Z

(4)
8 . In total, using
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both differentials, 128-bit user keys are recovered. The remaining 128 key bits
can be found by exhaustive search.

An attack on 4-round MESH-128 can guess Z
(4)
9 , Z

(4)
10 , Z

(4)
11 , Z

(4)
12 , and apply

the previous attack on 3.5 rounds, with time complexity 2142+64 = 2206 4-round
computations.

7 Linear Attack

Our linear analysis on MESH ciphers followed the framework of Daemen et al.
[6]. Initially, all one-round linear relations under weak-key assumptions were
exhaustively obtained for MESH-64, MESH-96, and MESH-128.

7.1 Linear Attack on MESH-64

For MESH-64, an example of a linear relation under weak-key assumption is
(0, 0, 0, 1) → (0, 0, 1, 0), provided Z

(1)
4 , Z

(1)
6 , Z

(1)
7 ∈ {0, 1} (an odd-numbered

round). According to the key schedule, the user key words are xored to fixed
constants ci, 0 ≤ i ≤ 7, and are used as the first eight subkey words. It means
that the subkey restrictions Z

(1)
4 , Z

(1)
6 , Z

(1)
7 ∈ {0, 1} can be satisfied if the most

significant 15 bits of the key words match the corresponding bits of the associated
constants. Multiple-round linear relations are obtained by concatenating one-
round linear relations, and deriving the corresponding fraction of keys from the
key space from which the relation holds. This fraction of keys can be derived
from the restrictions on subkeys in the one-round linear relations. Nonetheless,
the key schedule of MESH-64 does not have a simple mapping of subkey bits to
user key bits such as in IDEA. The fraction of keys for the linear relations in
MESH-64 was estimated from the weak-key class sizes obtained by exhaustive
key search in a mini-version of MESH-64 with3 16-bit blocks, denoted MESH-
64(16), where the key size is 32 bits. Analysis of MESH-64(16) indicated that
each subkey restriction (most significant three bits equal to zero) is satisfied for
a fraction of 2−3 or less per subkey. This observation allowed to estimate the
fraction of keys (and the weak-key class size) that satisfy a linear relation for
MESH-64 as 2−15 per subkey.

The longest linear relations obtained (starting from the first round) are as
follows:

. (0, 1, 0, 1)1r→(0, 0, 1, 1)1r→(1, 0, 1, 0)1r→(1, 1, 0, 0)1r→(0, 1, 0, 1)1r→(0, 0, 1, 1), provided
Z

(1)
4 , Z

(2)
3 , Z

(2)
5 , Z

(2)
6 , Z

(3)
1 , Z

(4)
2 , Z

(4)
5 , Z

(4)
6 , Z

(5)
4 ∈ {0, 1}. For MESH-64(16)

this relation holds for a weak-key class of size 4, which corresponds to a frac-
tion of 4·2−32 = 2−30 of its key space. This fraction is less than 2−3∗9 = 2−27,
that is to be expected if each subkey restriction held independently. For
MESH-64, the weak-key class size is estimated as 2128−15∗8 = 28 for 4 rounds
at most;

3 With left rotation by 3 bits per word in the key schedule.
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. (1, 0, 1, 0)1r→(1, 1, 0, 0)1r→(0, 1, 0, 1)1r→(0, 0, 1, 1)1r→(1, 0, 1, 0)1r→(1, 1, 0, 0), provided
Z

(1)
1 , Z

(2)
2 , Z

(2)
5 , Z

(2)
6 , Z

(3)
4 , Z

(4)
4 , Z

(4)
5 , Z

(4)
6 , Z

(5)
1 ∈ {0, 1}. For MESH-64(16)

this relation holds for a weak-key class of size 5, which is a fraction of
5·2−32 ≈ 2−30 of its key space. This fraction is less than 2−3∗9 = 2−27, that is
to be expected if each subkey restriction held independently. For MESH-64,
the weak-key class size is estimated as 2128−15∗8 = 28 for 4 rounds.

These linear relations can distinguish the first four rounds of MESH-64 from
a random permutation, under weak-key assumptions, or can be used in a 0.5R
attack on 4.5-round MESH-64 to recover at least one of the subkeys Z

(5)
i , 1 ≤

i ≤ 4, using N ≈ 8 · (2−1)−2 = 32 known plaintexts and about 32 · 216 = 221

parity computations.

7.2 Linear Attack on MESH-96

The MA-box of MESH-96 effectively avoids many one-round linear relations, as
can be observed in Table 5, because it contains multiplications in which sub-
keys are not directly involved as operands. The approach to a linear attack on
MESH-96 is similar to that on MESH-64. Exhaustive key search was applied
to a mini-version MESH-96 with 4-bit words, denoted MESH-96(24), in order
to estimate the weak-key class size from the fraction of the key space satisfy-
ing the weak-key restrictions. The longest linear relation (starting from the first
round) uses the one-round iterative relation: (1, 1, 1, 1, 1, 1)1r→(1, 1, 1, 1, 1, 1), re-
peated for 3.5 rounds, provided Z

(1)
1 , Z

(1)
3 , Z

(1)
5 , Z

(2)
2 , Z

(2)
4 , Z

(2)
6 , Z

(3)
1 , Z

(3)
3 , Z

(3)
5 ,

Z
(4)
2 , Z

(4)
4 , Z

(4)
6 ∈ {0, 1}, for MESH-96(24) the weak-key class size is 620, which

corresponds to a fraction of 29.27−48 ≈ 2−38.72 of its key space. This fraction is
smaller than 2−3∗12 = 2−36 that would be expected if each subkey restriction
held independently. For MESH-96, the weak-key class size is estimated as at
most 2192−15∗12 ≈ 212. This linear relation can distinguish the first 3.5-round
MESH-96 from a random permutation, or can be used in a key-recovery attack
on 4-round MESH-96, to find Z

(4)
7 , Z

(4)
8 , Z

(4)
9 , with N ≈ 8 · (2−1)−2 = 32 chosen

plaintexts, and 32 ·248 = 253 parity computations. Attacking 4.5 rounds requires
guessing six subkeys of the fifth key-mixing layer, leading to a complexity of
296+53 = 2149 parity computations.

7.3 Linear Attack on MESH-128

The MA-box of MESH-128, similar to that of MESH-96, also avoids, for the same
reasons, many one-round relations, as can be observed in Table 6. Estimates for
the weak-key class size of MESH-128 are derived similarly to that of MESH-64
and MESH-96, namely, assuming a fraction of 2−15 of the key space satisfies each
subkey restriction. The longest linear relation (starting from the first round),
uses the one-round iterative relation: (1, 1, 1, 1, 1, 1, 1, 1)1r→(1, 1, 1, 1, 1, 1, 1, 1), re-
peated for 3.5 rounds, provided Z

(1)
1 , Z

(1)
3 , Z

(1)
6 , Z

(1)
8 , Z

(2)
2 , Z

(2)
4 , Z

(2)
5 , Z

(2)
7 , Z

(3)
1 ,
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Z
(3)
3 , Z

(3)
6 , Z

(3)
8 , Z

(4)
2 , Z

(4)
4 , Z

(4)
5 , Z

(4)
7 ∈ {0, 1}, this relation implies a weak-key

class of estimated size 2256−15∗16 = 216.
This linear relation can distinguish the first 3.5 rounds of MESH-128 from a

random permutation, or can be used in a 0.5R attack on 4-round MESH-128, to
recover subkeys Z

(4)
9 , Z

(4)
10 , Z

(4)
11 , Z

(4)
12 , with about N ≈ 8 · (2−1)−2 = 32 chosen

plaintexts and 32 · 264 = 269 parity computations. Attacking 4.5 rounds involves
guessing eight subkeys of the fifth key-mixing layer, leading to a complexity of
269+128 = 2197 parity computations.

8 Impossible Differential Attacks

Impossible differential (ID) attacks on MESH ciphers follow a similar setting of
Biham et al. [2].

8.1 Impossible Differential Attack of MESH-64

A key-recovery ID attack on 3.5-round MESH-64 uses the 2.5-round impossible
differential (a, 0, a, 0) 6→ (b, b, 0, 0), with a, b 6= 0, starting after the first key
mixing until the end of the third round. Let (X1

1 , X1
2 , X1

3 , X1
4 ) be a plaintext

block, and (Y 4
1 , Y 4

2 , Y 4
3 , Y 4

4 ) the corresponding ciphertext block. The attack
chooses a structure of 232 plaintexts with fixed X1

2 and X1
4 , and all possible

values for X1
1 and X1

3 . There are about 232 · (232 − 1)/2 ≈ 263 plaintext pairs
with xor difference (X1′

1 , 0, X1′
3 , 0). Collect about 231 pairs from the structure

whose ciphertext difference after 3.5 rounds satisfies Y 4′
3 = 0 and Y 4′

4 = 0. For
each such pair try all 232 subkeys (Z(1)

1 , Z
(1)
3 ) and partially encrypt (X1

1 , X1
3 )

in each of the two plaintexts of the pair. Collect about 216 subkeys (Z(1)
1 , Z

(1)
3 )

satisfying (X1
1 ¯ Z

(1)
1 ) ⊕ (X1∗

1 ¯ Z
(1)
1 ) = (X1

3 ¢ Z
(1)
3 ) ⊕ (X1∗

3 ¢ Z
(1)
3 ). This step

takes 217 time, and 216 memory. Next, try all 232 subkeys (Z(4)
1 , Z

(4)
2 ) to partially

decrypt (Y 4
1 , Y 4

2 ) in each of the two ciphertexts of the pair. Collect about 216

subkeys (Z(4)
1 , Z

(4)
2 ) such that (Y 4

1 ¯ Z
(4)
1 )⊕ (Y 4∗

1 ¯ Z
(4)
1 ) = (Y 4

2 ¯ (Z(4)
2 )−1)⊕

(Y 4∗
2 ¯ (Z(4)

2 )−1). This step takes 217 time and 216 memory. Make a list of all
232 64-bit subkeys (Z(1)

1 , Z
(1)
3 , Z

(4)
1 , Z

(4)
2 ), combining the two previous steps.

Those subkeys cannot be the correct values, because they lead to a pair of the
impossible differential. Each pair defines a list of about 232 64-bit wrong subkey
values. It is expected that after 90 structures, the number of remaining wrong
subkeys is: 264 · (1− 232

264 )2
31·90 ≈ 264

e45 ≈ 2−0.92. Therefore, the correct subkey can
be uniquely identified. The attack requires 90 ·232 ≈ 238.5 chosen plaintexts. The
memory complexity is 261 bytes, dominated by the sieving of the correct 64-bit
subkey. The time complexity is 231 · 90 · (217 + 217) ≈ 256 steps. The 2.5-round
impossible differential (0, a, 0, a) 6→ (0, 0, b, b), with a, b 6= 0, can be used to
discover (Z(1)

2 , Z
(1)
4 , Z

(4)
3 , Z

(4)
4 ). The joint time complexity is about 257 steps. If

a step consists of a modular multiplication and there are 17 multiplications in 3.5
rounds then the latter corresponds to 257 · 1/17 ≈ 253 3.5-round computations.
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Data complexity amounts to 239.5 chosen plaintexts, and 261 bytes of memory.
In total, the first 64 user key bits are recovered, and the remaining 64 key bits
can be obtained by exhaustive search, and the final time complexity becomes 264

3.5-round computations. To attack 4-round MESH-64, the subkeys Z
(4)
5 , Z

(4)
6 ,

Z
(4)
7 are guessed, and the previous attack on 3.5 rounds is performed. The time

complexity increases to 264+48 = 2112 steps.

8.2 Impossible Differential Attack of MESH-96

An ID attack on MESH-96 can use the 2.5-round distinguishers (a, 0, 0, a, 0, 0) 6→
(b, b, c, c, 0, 0), (0, a, 0, 0, a, 0) 6→ (0, 0, b, b, c, c), and (0, 0, a, 0, 0, a) 6→ (b, b, 0, 0, c, c),
with a, b, c 6= 0, each one starting after the first key-mixing half-round, until the
end of the third round. The attack discovers (Z(1)

i , Z
(4)
i ), 1 ≤ i ≤ 6, and is analo-

gous to the attack on MESH-64. Data complexity is about 257 chosen plaintexts,
293 bytes of memory, and time equivalent to 273.5 steps. In total, the first 96 user
key bits were directly recovered, and the remaining 96 key bits can be found by
exhaustive search, which leads to a final time complexity of 296 3.5-round com-
putations.

An attack on 4 rounds can guess Z
(4)
7 , Z

(4)
8 , Z

(4)
9 , and apply the previous

attack on 3.5 rounds. The time complexity becomes 296+48 = 2144 4-round com-
putations.

8.3 Impossible Differential Attack of MESH-128

The best trade-off ID attack uses the following 2.5-round distinguishers: (a, b, 0,
0, a, b, 0, 0) 6→ (c, c, d, e, d, e, 0, 0), (0, 0, a, b, 0, 0, a, b) 6→ (c, c, 0, d, 0, d, e,
e) with a, b, c, d, e 6= 0. The attack proceeds similar to the one on MESH-96, and
recovers (Z(1)

i , Z
(4)
i ) for 1 ≤ i ≤ 8. Data complexity is 265 chosen plaintexts, 2157

bytes of memory and time equivalent to 2107 3.5-round computations. In total,
the first 128 user key bits are effectively recovered, and from the key schedule,
Z

(4)
i , 1 ≤ i ≤ 8 do not provide enough information to deduce the remaining

128 user key bits, which are then recovered by exhaustive search, leading to a
final time complexity of 2128 3.5-round MESH-128 computations. An attack 4
rounds can guess (Z(4)

9 , Z
(4)
10 , Z

(4)
11 , Z

(4)
12 ), and apply the attack on 3.5 rounds.

Time complexity increases to 2128+64 = 2192 steps.

9 Demirci’s Attack

This section follows the work of Demirci in [9].

9.1 Demirci’s Attack on MESH-64

Demirci’s attack using 1st-order integrals [10, 7] can be adapted to MESH-64
starting from the 2nd round, or any other even round. The integral operator is
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exclusive-or. Consider a multiset of the form (P P P A), namely, with the first
three words constant (passive) and the 4th word active. Let C(i) = (C(i)

1 , C
(i)
2 ,

C
(i)
3 , C

(i)
4 ) denote the ciphertext after i rounds. After 1-round MESH-64, the

output multiset has the form (? ? A ∗), that is, the first two words are garbled,
the 3rd word is active and the 4th is balanced. The multiset after 1.5-round
becomes (? ? A ?) but the least significant bit of C

(1.5)
2 is constant because it is

a combination of only active words from the MA-box of the initial round. This
property is used as a distinguisher for Demirci’s attack on 2-round MESH-64:

LSB(C(2)
2 ⊕ C

(2)
3 ⊕ Z

(3)
6 ¯ ((C(2)

1 ⊕ C
(2)
2 )¯ Z

(3)
5 ¢ (C(2)

3 ⊕ C
(2)
4 ))) = 0, (7)

where LSB denotes the least significant bit function. Therefore, over a multiset,
equation (7) can be used to find (Z(3)

5 , Z
(3)
6 ). It provides a one-bit condition,

thus, this search over 32 key bits requires 32 ·216 = 221 chosen plaintexts, and an
effort of 232 · 216 + 231 · 216 + . . . 21 · 216 ≈ 249 half-round computations or about
247 2-round computations. An attack on 2.5 rounds can guess (Z(4)

1 , Z
(4)
2 , Z

(4)
3 ,

Z
(4)
4 ) and apply the previous attack, at the cost of 247 · 264 = 2111 2.5-round

MESH-64 computations.

9.2 Demirci’s Attack on MESH-96

For MESH-96, Demirci’s attack on 2 rounds can use 1st-order multisets of the
form (P P P P P A) with only the 8th input word active, and the distinguisher:

LSB (C
(2)
3 ⊕ C

(2)
5 ⊕ (Z

(2)
7 ¯ (C

(2)
1 ⊕ C

(2)
2 )� (C

(2)
4 ⊕ C

(2)
3 ))¯ (8)

(Z
(2)
8 � (C

(2)
1 ⊕ C

(2)
2 )¯ Z

(2)
7 � (C

(2)
4 ⊕ C

(2)
3 )¯ (C

(2)
5 ⊕ C

(2)
6 ))) = 0,

where (C(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 , C

(i)
5 , C

(i)
6 ) is the ciphertext after i rounds. The at-

tack is analogous to that on MESH-64. Equation (9) allows to recover (Z(2)
7 ,

Z
(2)
8 ) using 32 · 216 = 221 chosen plaintexts and time about 249 2-round MESH-

96 computations. To attack 2.5 rounds guess (Z(3)
1 , Z

(3)
2 , Z

(3)
3 , Z

(3)
4 , Z

(3)
5 , Z

(3)
6 )

and apply the previous attack, leading to 249 · 296 = 2145 2.5-round MESH-96
computations.

9.3 Demirci’s Attack on MESH-128

For MESH-128, Demirci’s attack with 1st-order integrals does not apply, because
the four layers in its MA-box do not allow any balanced output word, not even
their LSBs, which is a necessary condition for the attack. Nonetheless, there are
alternative attacks using higher-order integrals [9, 10] that can cross the 4-layer
MA-box. A 2nd-order Demirci’s attack on 2-round MESH-128 can use, for in-
stance, multisets in which the first and fourth input words are jointly active, and
all the other six words are passive. Such multiset requires 232 chosen plaintexts.
The multiset after 1.5 rounds contains only balanced words. In particular, the
integral of the inputs to the MA-box of the second round all sum to zero. Some
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terminology for the attack description follows: let (C(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 , C

(i)
5 ,

C
(i)
6 , C

(i)
7 , C

(i)
8 ) be the ciphertext multiset after i rounds, and p = C

(2)
1 ⊕ C

(2)
2 ,

q = C
(2)
3 ⊕C

(2)
5 , r = C

(2)
4 ⊕C

(2)
6 , and s = C

(2)
7 ⊕C

(2)
8 . The distinguisher for the

higher-order Demirci’s attack is obtained by exploring the least significant bit
of the leftmost two output words of the MA-box of the second round:

LSB (C(2)
4 ⊕ C

(2)
7 ⊕ C

(1)
4 ¯ Z

(2)
4 ⊕ C

(1)
7 ¯ Z

(2)
7 ) =

LSB (Z(2)
11 ¯ (p¯ Z

(2)
9 ¢ (p¯ Z

(2)
9 ¢ q)¯

(r ¯ (p¯ Z
(2)
9 ¢ q) ¢ (r ¯ (p¯ Z

(2)
9 ¢ q) ¢ s)¯ Z

(2)
10 ))). (9)

Over the given plaintext multiset, the integral of LSB(C(2)
4 ⊕ C

(2)
7 ⊕ C

(1)
4 ¯

Z
(2)
4 ⊕C

(1)
7 ¯Z

(2)
7 ) is zero, because the subkeys are fixed, and the corresponding

intermediate values are balanced. Therefore, (9) provides a one-bit condition to
recover Z

(2)
9 , Z

(2)
10 and Z

(2)
11 . The data requirements are 48 · 232 = 237.6 chosen

plaintexts, and time equivalent to 248 ·232+247 ·232+. . . 2·232 = 232 ·2·(248−1) ≈
281 half-round computations, or about 279 2-round computations.

10 Performance

The software performance figures for MESH ciphers are shown in Table 2, and
are estimated from the number of multiplications compared to those in IDEA.
Simulations demonstrate that one ¯ costs about three times more than an ¢ or
an ⊕ operation. Comparison with the performances of triple-DES [?] and AES
[?], on a commom platform (Pentium III under Linux) and under similarly opti-
mized software code, come from experiments conducted at the NESSIE Project
[?], which comprise an independent performance evaluation of the three mentioned
ciphers. Note that 8.5-round MESH-64 uses 42 multiplications (Table 1), com-
pared to 34 in IDEA. Since both encrypt the same amount of bits, an estimate
for the number of cycles per byte in MESH-64 is 56 · (42/34) ≈ 70, which is
about 25% slower than IDEA. Simulations show performance about 30% slower
than IDEA, due to the unaccounted number of modular additions. MESH-96
with 10.5 rounds uses 83 multiplications, but encrypts 12 bytes in comparison to
8 bytes of IDEA. This implies 56 · (83/34) · (8/12) ≈ 92 cycles per byte, or about
64% slower than IDEA. MESH-128, with 12.5 rounds uses 148 multiplications
(Table 1), but encrypts 16 bytes instead of 8 in IDEA. This implies a cost of
roughly 56 · (148/34) · (8/16) ≈ 122 cycles per byte, an 118% overhead.

11 Conclusions

This paper described the MESH block ciphers, which are based on the same group
operations of IDEA, but with a number of novel features:

. flexible block sizes in steps of 32 bits. For more than ten years since the pub-
lication of IDEA [11], no IDEA variant has been proposed with block sizes
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Table 2. Performance estimates of MESH ciphers, IDEA, triple-DES and AES.

Cipher Block Size Key Size #Rounds #Cycles/Byte

AES 128 128 10 25
128 192 12 30
128 256 14 34

triple-DES 64 168 48 154
IDEA 64 128 8.5 56

MESH-64 64 128 8.5 70
MESH-96 96 192 10.5 92
MESH-128 128 256 12.5 122

larger than 64 bits or word sizes larger than 16 bits. Maybe such attempts
were hindered by the fact that 232 + 1 is not a prime number, and thus,
ZZ∗232+1 is not a field. The MESH ciphers provide an alternative approach
that do not depend on the need for larger word sizes or finite fields.

. new key schedule algorithms with fast key avalanche. Each subkey of IDEA
depends (linearly) on exactly 16 user key bits, while in MESH all subkeys
after the second round depend (non-linearly) on all user key words. Moreover,
the new key schedules avoid (differential and linear) weak keys as existing in
IDEA. Software simulations4 of the key schedule give about 1888 cycles/key-
setup for IDEA, 2054 cycles/key-setup for MESH-64, 3869 cycles/key-setup
for MESH-96, and 5536 cycles/key-setup for MESH-128.

. larger MA-boxes designed to better resist differential and linear attacks.

. distinct key-mixing layers, originally designed to counter slide attacks [3], but
also proved useful against Demirci’s attack [9]. The design of the MESH
ciphers incorporates measures to counter a number of modern cryptana-
lytic attacks developed along the past 12 years [2–4, 6, 9–11, 13]. The security
margin of MESH ciphers, as well as of IDEA, against the described attacks
seems relatively high. Table 3 in Appendix A details the attack complexity
figures for IDEA and MESH ciphers, where linear attacks are restricted to
a weak-key class; ‘KP’ means Known Plaintext and ‘CP’, Chosen Plaintext.
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A Attack Summary

This appendix lists the attack complexities on MESH ciphers and compares them
with previous attacks on IDEA.

4 On a Pentium III 667 MHz under Linux.
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Table 3. Summary of attack complexities on IDEA and MESH ciphers.

Cipher Block Size Key Size Attack #Rounds Data Memory Time

IDEA 64 128 Demirci 2 23 CP 23 264

Demirci 2.5 55 CP 55 281

(8.5 rounds) Demirci 3 71 CP 71 271

Demirci 3 233 CP 233 282

Demirci 3.5 103 CP 103 2103

Trunc. Diff. 3.5 256 CP 232 267

Imp. Diff. 3.5 238.5CP 237 253

Demirci 4 234 CP 234 2114

Imp. Diff. 4 238.5 CP 237 270

Imp. Diff. 4.5 264 CP 232 2112

MESH-64 64 128 Demirci 2 221 CP 216 247

Demirci 2.5 221 CP 216 2111

(8.5 rounds) Imp. Diff. 3.5 239.5 CP 261 264

Trunc. Diff. 3.5 264 CP 232 278

Imp. Diff. 4 239.5 CP 261 2112

Trunc. Diff. 4 264 CP 232 2126

Linear 4.5 32 KP 32 221

MESH-96 96 192 Demirci 2 221 CP 216 247

Demirci 2.5 221 CP 216 2143

(10.5 rounds) Imp. Diff. 3.5 256 CP 293 296

Trunc. Diff. 3.5 296 CP 264 2109

Linear 4 32 KP 32 253

Imp. Diff. 4 256 CP 293 2144

Trunc. Diff. 4 296 CP 264 2157

Linear 4.5 32 KP 32 2149

MESH-128 128 256 Demirci 2 237.6 CP 237.6 279

Demirci 2.5 237.6 CP 237.6 2143

(12.5 rounds) Imp. Diff. 3.5 265 CP 2157 2128

Trunc. Diff. 3.5 2128 CP 264 2142

Linear 4 32 KP 32 269

Imp. Diff. 4 265 CP 2157 2192

Trunc. Diff. 4 2128 CP 264 2206

Linear 4.5 32 KP 32 2197
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B Additional Truncated Differentials

This appendix details alternative diagrams for truncated differential attacks on
MESH ciphers.

(0, A, 0, B)
2−16

→ (0, C, 0, C)
(0,0)

1→(0,0)→ (0, 0, C, C)

(0, 0, C, C)
1→(0, 0, D, E)

(D,E)
2−32
→ (E,D)→ (D, 0, E, 0)

(D, 0, E, 0)
2−16

→ (F, 0, F, 0)
(0,0)

1→(0,0)→ (F, F, 0, 0)

(F, F, 0, 0)
1→(G, H, 0, 0) (10)

(A, 0, B, C, 0, D)
2−32

→ (E, 0, F, E, 0, F )
(0,0,0)

1→(0,0,0)→ (E, E, 0, 0, F, F )

(E, E, 0, 0, F, F )
2−16

→ (G, H, 0, 0, H, I)
(G,0,I)

2−48
→ (I,H,G)→ (0, G, 0, 0, I, 0)

(0, G, 0, 0, I, 0)
2−16

→ (0, J, 0, 0, J, 0)
(0,0,0)

1→(0,0,0)→ (0, 0, J, J, 0, 0)

(0, 0, J, J, 0, 0)
1→(0, 0, K, L, 0, 0) (11)

(0, A, B, 0, C, D)
2−32

→ (0, E, F, 0, E, F )
(0,0,0)

1→(0,0,0)→ (0, 0, E, E, F, F )

(0, 0, E, E, F, F )
2−16

→ (0, 0, G, H, I, G)
(H,I,0)

2−48
→ (G,I,H)→ (H, 0, 0, I, 0, 0)

(H, 0, 0, I, 0, 0)
2−16

→ (J, 0, 0, J, 0, 0)
(0,0,0)

1→(0,0,0)→ (J, J, 0, 0, 0, 0)

(J, J, 0, 0, 0, 0)
1→(K, L, 0, 0, 0, 0) (12)

(0, A, B, 0, 0, C, D, 0)
2−32

→ (0, E, F, 0, 0, E, F, 0)
(0,0,0,0)

1→(0,0,0,0)→ (0, 0, E, F, E, F, 0, 0)

(0, 0, E, F, E, F, 0, 0)
1→(0, 0, G, H, I, J, 0, 0)

(I,J,G,H)
2−64
→ (H,G,J,I)→ (I, 0, 0, G, J, 0, 0, H)

(I, 0, 0, G, J, 0, 0, H)
2−32

→ (K, 0, 0, L, K, 0, 0, L)
(0,0,0,0)

1→(0,0,0,0)→ (K, K, 0, 0, 0, 0, L, L)

(K, K, 0, 0, 0, 0, L, L)
1→(M, N, 0, 0, 0, 0, O, P ) (13)

C One-round linear relations for MESH ciphers

This appendix lists one-round linear relations for MESH ciphers, under weak-key
assumptions.
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Table 4. One-round linear relations for MESH-64, and subkey restrictions.

one-round odd-round subkeys even-round subkeys

linear relation Z
(i)
1 Z

(i)
4 Z

(i)
5 Z

(i)
6 Z

(i)
7 Z

(i)
2 Z

(i)
3 Z

(i)
5 Z

(i)
6 Z

(i)
7

(0, 0, 0, 1) → (0, 0, 1, 0) – {0,1} – {0,1} {0,1} – – – {0,1} {0,1}
(0, 0, 1, 0) → (1, 0, 0, 0) – – {0,1} – {0,1} – {0,1} {0,1} – {0,1}
(0, 0, 1, 1) → (1, 0, 1, 0) – {0,1} {0,1} {0,1} – – {0,1} {0,1} {0,1} –
(0, 1, 0, 0) → (0, 0, 0, 1) – – – {0,1} {0,1} {0,1} – – {0,1} {0,1}
(0, 1, 0, 1) → (0, 0, 1, 1) – {0,1} – – – {0,1} – – – –
(0, 1, 1, 0) → (1, 0, 0, 1) – – {0,1} {0,1} – {0,1} {0,1} {0,1} {0,1} –
(0, 1, 1, 1) → (1, 0, 1, 1) – {0,1} {0,1} – {0,1} {0,1} {0,1} {0,1} – {0,1}
(1, 0, 0, 0) → (0, 1, 0, 0) {0,1} – {0,1} – {0,1} – – {0,1} – {0,1}
(1, 0, 0, 1) → (0, 1, 1, 0) {0,1} {0,1} {0,1} {0,1} – – – {0,1} {0,1} –
(1, 0, 1, 0) → (1, 1, 0, 0) {0,1} – – – – – {0,1} – – –
(1, 0, 1, 1) → (1, 1, 1, 0) {0,1} {0,1} – {0,1} {0,1} – {0,1} – {0,1} {0,1}
(1, 1, 0, 0) → (0, 1, 0, 1) {0,1} – {0,1} {0,1} – {0,1} – {0,1} {0,1} –
(1, 1, 0, 1) → (0, 1, 1, 1) {0,1} {0,1} {0,1} – {0,1} {0,1} – {0,1} – {0,1}
(1, 1, 1, 0) → (1, 1, 0, 1) {0,1} – – {0,1} {0,1} {0,1} {0,1} – {0,1} {0,1}
(1, 1, 1, 1) → (1, 1, 1, 1) {0,1} {0,1} – – – {0,1} {0,1} – – –

Table 5. One-round linear relations for MESH-96, and subkey restrictions.

one-round odd-round subkeys even-round subkeys

linear relation Z
(i)
1 Z

(i)
3 Z

(i)
5 Z

(i)
7 Z

(i)
9 Z

(i)
2 Z

(i)
4 Z

(i)
6 Z

(i)
7 Z

(i)
9

(1, 0, 0, 1, 0, 0) → (1, 1, 0, 0, 0, 0) {0,1} – – – – – {0,1} – – –
(0, 1, 0, 0, 1, 0) → (0, 0, 1, 1, 0, 0) – – {0,1} – – {0,1} – – – –
(0, 0, 1, 0, 0, 1) → (0, 0, 0, 0, 1, 1) – {0,1} – – – – – {0,1} – –
(1, 1, 0, 1, 1, 0) → (1, 1, 1, 1, 0, 0) {0,1} – {0,1} – – {0,1} {0,1} – – –
(1, 0, 1, 1, 0, 1) → (1, 1, 0, 0, 1, 1) {0,1} {0,1} – – – – {0,1} {0,1} – –
(0, 1, 1, 0, 1, 1) → (0, 0, 1, 1, 1, 1) – {0,1} {0,1} – – {0,1} – {0,1} – –
(1, 1, 1, 1, 1, 1) → (1, 1, 1, 1, 1, 1) {0,1} {0,1} {0,1} – – {0,1} {0,1} {0,1} – –
(1, 0, 0, 1, 1, 0) → (0, 0, 1, 0, 0, 0) {0,1} – {0,1} {0,1} {0,1} – {0,1} – {0,1} {0,1}
(0, 0, 0, 0, 1, 0) → (1, 1, 1, 0, 0, 0) – – {0,1} {0,1} {0,1} – – – {0,1} {0,1}
(1, 1, 0, 1, 0, 0) → (0, 0, 0, 1, 0, 0) {0,1} – – {0,1} {0,1} {0,1} {0,1} – {0,1} {0,1}
(0, 1, 0, 0, 0, 0) → (1, 1, 0, 1, 0, 0) – – – {0,1} {0,1} {0,1} – – {0,1} {0,1}
(1, 1, 1, 1, 0, 1) → (0, 0, 0, 1, 1, 1) {0,1} {0,1} – {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}
(1, 0, 1, 1, 1, 1) → (0, 0, 1, 0, 1, 1) {0,1} {0,1} {0,1} {0,1} {0,1} – {0,1} {0,1} {0,1} {0,1}
(0, 1, 1, 0, 0, 1) → (1, 1, 0, 1, 1, 1) – {0,1} – {0,1} {0,1} {0,1} – {0,1} {0,1} {0,1}
(0, 0, 1, 0, 1, 1) → (1, 1, 1, 0, 1, 1) – {0,1} {0,1} {0,1} {0,1} – – {0,1} {0,1} {0,1}
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Table 6. One-round linear relations for MESH-128, and subkey restrictions.

one-round odd-round subkeys even-round subkeys

linear relation Z
(i)
1 Z

(i)
3 Z

(i)
6 Z

(i)
8 Z

(i)
2 Z

(i)
4 Z

(i)
5 Z

(i)
7

(1, 0, 0, 0, 1, 0, 0, 0) → (1, 1, 0, 0, 0, 0, 0, 0) {0,1} – – – – – {0,1} –
(0, 1, 0, 0, 0, 1, 0, 0) → (0, 0, 1, 0, 1, 0, 0, 0) – – {0,1} – {0,1} – – –
(0, 0, 1, 0, 0, 0, 1, 0) → (0, 0, 0, 1, 0, 1, 0, 0) – {0,1} – – – – – {0,1}
(0, 0, 0, 1, 0, 0, 0, 1) → (0, 0, 0, 0, 0, 0, 1, 1) – – – {0,1} – {0,1} – –
(1, 1, 0, 0, 1, 1, 0, 0) → (1, 1, 1, 0, 1, 0, 0, 0) {0,1} – {0,1} – {0,1} – {0,1} –
(1, 0, 1, 0, 1, 0, 1, 0) → (1, 1, 0, 1, 0, 1, 0, 0) {0,1} {0,1} – – – – {0,1} {0,1}
(1, 0, 0, 1, 1, 0, 0, 1) → (1, 1, 0, 0, 0, 0, 1, 1) {0,1} – – {0,1} – {0,1} {0,1} –
(0, 1, 1, 0, 0, 1, 1, 0) → (0, 0, 1, 1, 1, 1, 0, 0) – {0,1} {0,1} – {0,1} – – {0,1}
(0, 1, 0, 1, 0, 1, 0, 1) → (0, 0, 1, 0, 1, 0, 1, 1) – – {0,1} {0,1} {0,1} {0,1} – –
(0, 0, 1, 1, 0, 0, 1, 1) → (0, 0, 0, 1, 0, 1, 1, 1) – {0,1} – {0,1} – {0,1} – {0,1}
(1, 1, 1, 0, 1, 1, 1, 0) → (1, 1, 1, 1, 1, 1, 0, 0) {0,1} {0,1} {0,1} – {0,1} – {0,1} {0,1}
(1, 1, 0, 1, 1, 1, 0, 1) → (1, 1, 1, 0, 1, 0, 1, 1) {0,1} – {0,1} {0,1} {0,1} {0,1} {0,1} –
(1, 0, 1, 1, 1, 0, 1, 1) → (1, 1, 0, 1, 0, 1, 1, 1) {0,1} {0,1} – {0,1} – {0,1} {0,1} {0,1}
(0, 1, 1, 1, 0, 1, 1, 1) → (0, 0, 1, 1, 1, 1, 1, 1) – {0,1} {0,1} {0,1} {0,1} {0,1} – {0,1}
(1, 1, 1, 1, 1, 1, 1, 1) → (1, 1, 1, 1, 1, 1, 1, 1) {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}
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