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Abstract—This paper deals with one member of the class of
meshless methods, namely the Meshless Local Petrov–Galerkin
(MLPG) method, and explores its application to boundary-value
problems arising in the analysis of two-dimensional electromag-
netic wave propagation and scattering. This method shows some
similitude with the widespread finite element method (FEM),
like the discretization of weak forms and sparse global matrices.
MLPG and FEM differ in what regards the construction of an
unstructured mesh. In MLPG, there is no mesh, just a cloud
of nodes without connection to each other spread throughout
the domain. The suppression of the mesh is counterbalanced
by the use of special shape functions, constructed numerically.
This paper illustrates how to apply MLPG to wave scattering
problems through a number of cases, in which the results are
compared either to analytical solutions or to those provided by
other numerical methods.

Index Terms—Electromagnetic wave propagation, finite element
method (FEM), integral equations, meshless methods.

I. INTRODUCTION

M ESHLESS (or meshfree) methods comprise a large

class of numerical procedures whose seminal feature

is, as the name indicates, the ability to provide numerical

solutions to differential equations without the need of setting

up any kind of mesh or grid in the geometrical domain where

the problem is stated. There are resemblances with the finite

element method (FEM), to which meshfree methods aim to

be an alternative. The most patent ones are the following:

the operation with weak forms (the differential equation is

converted into an integral expression involving the function

to be approximated and test functions), the use of compactly

supported shape (or basis) functions, and the integration of

the weak forms in local domains, which leads to global sparse

matrices. Here, the concept of element loses its meaning. The

classical idea of an element with its “connectivity array” linking

nodes to edges is totally absent from the meshless approach.

These methods present a more simplistic scenario, in which
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only a simple cloud of nodes spread throughout the domain is

necessary.

The first studies concerning the use of meshfree techniques

were reported in the early past decade, and many challenges

concerning them remain to be studied [1]. They have success-

fully been applied in computational mechanics, and their use in

areas such as elastostatics and hydrodynamics is very well de-

veloped. In computational electromagnetics, otherwise, mesh-

free techniques are still far from the spotlight. There are works

based on partition of unity methods (PUM), such as the Method

of Overlapping Patches [2] and the Generalized Finite Element

Method (GFEM) [3]. PUM is a general technique that can be

used in mesh-based methods (like the GFEM) and in meshless

ones as well (like the Method of Overlapping Patches). A dis-

advantage of their use is the linear dependence and bad matrix

condition numbers that can arise in the resulting equations [4],

which can be circumvented by a redefinition of the basis func-

tions so that they are orthogonal [3].

In some works [5]–[7], the Element-Free Galerkin (EFG)

method has been employed. However, EFG is not regarded as a

truly meshless method because background cells are necessary

to perform the numerical integrations [1].

The Meshless Local Petrov–Galerkin (MLPG) method,

unlike EFG, is a truly meshless method, in which the numerical

integrations are carried out within certain local domains, which

dismisses the use of any kind of background cells. MLPG was

devised by S. Atluri within the framework of mechanics [8]

and employs two kinds of functions, shape functions and test

functions, which belong to two different function spaces. The

shape functions are constructed numerically through proce-

dures common to other meshless methods, whereas there are

many choices available to the test functions. There are reports

on the application of MLPG5 (the test function is a Heaviside

function) to solve 2-D electrostatic problems [9]. Soares Jr. also

solves problems concerning electromagnetic wave propagation

in time domain through MLPG, in which two choices for the

test function have been taken: Heaviside step functions and

Gaussian weight functions [10]. Yu and Chen, otherwise, devise

a meshless method whose formulation is quite different from

MLPG: They employ a type of collocation procedure based

on radial point interpolation (RPIM) shape functions in order

to solve time-domain electromagnetic problems [11], [12].

Collocation procedures are attractive because there are no

integrations. However, the nodal distribution employed in the

aforementioned papers is based on a Voronoi decomposition,

which makes the claim they are entirely meshless methods

somehow hard to accept. We are particularly interested in

MLPG4, whose test function is a solution to Green’s problem
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for Laplace’s equation (reasons behind this choice will be

addressed in Section IV). MLPG4 is also known as Local

Boundary Integral Equation (LBIE) method. This method has

been applied to 2-D electromagnetic wave scattering in [13],

although the formalism developed there is not as general as the

one that will be presented in this paper.

MLPG4/LBIE proved to be a reliable method, and we have

been able to even blend it with an integral formulation [14]. The

method has been employed in the determination of the band

structure of photonic band-gap crystals [15]. Three-dimen-

sional problems have also been attacked in electrostatics [16]

and quantum mechanics [17].

The ideas presented in this paper unfold as follows. First, we

give a general overview on meshless methods (Section II) and

show how the shape functions are defined (Section III). Second,

there follows a thorough description of LBIE, discussing the

basic formulation in the frequency domain, weak forms, im-

position of boundary conditions, and the treatment of material

discontinuities (Section IV). Third, we take a look at the dis-

cretization process (Section V) and then proceed to discuss nu-

merical details like integration quadratures, error norms, and

the effect of imposing boundary conditions through the collo-

cation method (Section VI). Section VII is devoted to illustra-

tive examples showing how LBIE performs in several problems

coming from classical electrodynamics.

II. MESHLESS APPROACH

Let be a two-dimensional domain (whose global boundary

is ) in which a given differential equation is to be solved.

In order to find a numerical approximation for a function

, which stands for the solution of the differential equation, we

begin by spreading nodes across the domain. The nodal distri-

bution need not be uniform (even random distributions can be

used). A common practice employed to achieve better results

is to increase the nodal density where the solution is expected

to vary rapidly or near sharp edges. The next step is to define

shape functions associated to each node. These functions do not

have analytical expressions, demanding a numerical scheme to

be constructed (as addressed in Section III). Usually, a shape

function associated to a node depends on the relative positions

of neighboring nodes. Furthermore, shape functions are com-

pactly supported, i.e., they are different from zero only in a

small region surrounding the node (called the node’s influence

domain ). It is this very property that renders the global ma-

trix sparse. Thus, the collection of all shape functions ( runs

from 1 to the total number of nodes ) forms a set of two-di-

mensional compactly supported functions whose elements will

be used to approximate , i.e., given a point where

shall be calculated (Fig. 1), there follows

(1)

where the global index runs through all nodes whose

influence domains include point (in Fig. 1, , ,

, , ; hence it follows that there

are influencing nodes) and each is a coefficient

Fig. 1. Computational domain , its global boundary , and five nodes acting
on point .

that must be determined (also called nodal parameter). When

spreading the nodes, one constraint must be satisfied: The union

of the influence domains from all nodes must cover the whole

computational domain

(2)

Expression (2) means that no holes can be left behind, in order

to ensure the approximation everywhere inside the domain.

The size of the influence domains can be adjusted, but should

not be set too large, otherwise many nodes are able to extend

their influence domains until , which could lead to more

populated global matrices. Overlapping of influence domains

is freely allowed.

We assume all influence domains to be circles with the

same radius . That is not mandatory; one is free to choose any

form and size, although simpler ones are easier to deal with. For

example, in this paper we relied on a KdTree-based searching

procedure to determine the closest nodes to a given point .

From all nodes returned by the search, in order to find out if a

node extends its influence domain until , it suffices to verify

if .

III. SHAPE FUNCTIONS: THE MLS APPROXIMATION

The construction of the shape functions has been carried out

through theMoving Least Squares (MLS) approximation [1]. In

MLS, at a point is expressed as

(3)

where is a monomial basis with terms (e.g.,

for , which can be augmented in order to account for

quadratic, cubic terms, etc.) and is a vector of coefficients (to

be determined soon) that are functions of . A slightly different

approximation is then built by requiring the monomial basis to

be calculated at each node located at

(4)

The next step is to define a weighted functional , which is a

sum of squared differences between and the nodal
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parameter , multiplied by a window function centered at

( runs through all nodes whose influence domains

include point , like nodes 3, 7, 9, 17, and 20 in Fig. 1)

(5)

where is the radius of the influence domain associated

to node and is (for other choices, see [1])

otherwise.
(6)

Solving for the coefficients that minimize , we impose

for each . After some extensive matrix ma-

nipulations, one arrives at

(7)

where

(8)

(9)

(10)

which are given in terms of and

...
. . .

... (11)

...
. . .

...
(12)

The shape functions are then obtained by equating (1) to (3)

(13)

Fig. 2 shows a simple MLS shape function associated to a

node and its derivatives. From Fig. 2, one sees that is smooth,

even if a linear basis is employed, thanks to the window func-

tion . This is a great advantage when calculating the deriva-

tives of . Another feature is that MLS shape functions do not

satisfy the Kronecker delta property, i.e., . In order

to calculate the derivatives of the shape functions, more matrix

calculations are necessary [1]

(14)

where the subscript represents a partial derivative with respect

to or (i.e., or ). The vector in (14) is found

through .

IV. LOCAL BOUNDARY INTEGRAL EQUATIONMETHOD

We now proceed to lay down the mechanism of MLPG4/

LBIE. The approach herein developed differs from that pre-

sented in [8], [13], and [14], especially in what concerns the

Fig. 2. MLS shape function associated to a node located at (0.55, 0.65).
(a) Shape function . (b) Its derivative with respect to , . (c) Its
derivative with respect to , .

imposition of boundary conditions. We took some ideas re-

garding the treatment of interface conditions from [18]. In [16]

and [17], we applied to three-dimensional situations the very

same approach described in this paper, which proved to be

reliable and efficient. The illustrative examples will be taken

from the analysis of two-dimensional electromagnetic wave

scattering. Throughout the development, it is assumed that no

parameter depends on the -direction; thus . Besides

that, the fields are assumed to be time-harmonic (variation

). Thus, the characteristic equation to be dealt with is the

inhomogeneous Helmholtz equation

(15)
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Fig. 3. Scatterer within the computational domain . Node : .
Node : . The shadowed region (boundary ) is the test
domain that would be assigned to the boundary node if an intersection had to
be found out first.

For polarization, is the -component of the electric

field , is the relative magnetic permeability , and is the

relative electric permittivity . For polarization, is the

-component of the magnetic field , is the relative electric

permittivity , and is the relative magnetic permeability .

In both cases, is the free-space wavenumber ( ,

is the free-space wavelength), and is the source term.

Let be a scatterer (boundary ) whose properties and

are functions of position . In order to apply MLPG4, we

must consider also a free-space layer surrounding ; the global

boundary is placed away from the surface of the scatterer.

Hence, the computational domain is , in which and are set

equal to 1 in the free-space region outside and vary smoothly

with inside (Fig. 3). We begin by spreading nodes across

the computational domain. The nodes inside are called the

interior nodes, and those located exactly at are the boundary

nodes. To each node (interior and boundary nodes as well),

a shape function is associated, whose compact support is a

circle with radius . In addition to the shape function, another

function, called the test function, is associated to interior nodes

only. This test function acts in a specific region surrounding

the node, called the node’s test domain and represented by

(Fig. 3). In LBIE, the test domain is required to be a circle cen-

tered at each interior node . Other requirements that must be

satisfied by the function are

a Dirac delta at

at the boundary of the test domain (16)

The function satisfying the above requirements is

(17)

where is the radius of test domain . In general, for an in-

terior node, the radii and are different from each other, as

will be explained.

The test domains are the regions in which the integrations are

carried out. The simpler in form they are, the simpler it becomes

to employ the numerical quadratures. In what regards boundary

nodes, if circular test domains were ascribed to them, an inter-

section between the global domain and the circle would

have to be found in order to carry out the numerical integration.

Fig. 3 shows this: Had a test domain been assigned to node ,

then the numerical integration would have to be performed in

the shaded region. However, trying to find intersections between

curves is too cumbersome and hinders the whole process (we ac-

tually did it in [13] and [14]). This is the main reason why the

approach that uses test domains for boundary nodes was dis-

missed in favor of the more efficient one described in this paper

(Section IV-B). Thus, boundary nodes have no associated test

domains at all.

To avoid the intersection between the test domain asso-

ciated to an interior node and the global boundary (i.e.,

), the test domain radius is chosen as

(18)

where is the distance between the interior node at and

. This procedure ensures that if the interior node is too close

to the global boundary, the associated test domain is chosen so

that it just touches (node in Fig. 3). An interior node is

then characterized by four parameters (the two coordinates

and , the radius of its influence domain , and the radius of

its test domain ), whereas a boundary node is characterized by

three parameters only ( , , and ).

Now that both shape and test functions have been defined,

we proceed to get the weak form for (15). There are two ways

through which this task can be accomplished: One of them uses

the weighted residual method, and the other uses Green’s second

identity. The latter leads directly to boundary integral equations,

which lie at the core of LBIE method, and as such, will be pre-

sented in what follows.

A. Green’s Second Identity and Local Boundary Integral

Equations

This approach is valid only in regions where the function

is a constant (for example, in problems where is constant

throughout the domain or in each of the subregions of where

is piecewise constant). If is constant, then (15) can be written

as

(19)

Now one takes Green’s second identity for the two functions

and , and then performs the integrations in the test domain

(and at its boundary ) for each interior node

(20)

As and at the boundary [from

(16)], and taking from (19), one arrives at the following

expression:

(21)

where is the value of evaluated at , the location of

the interior node . It is due to weak forms disguised under the

form of boundary integral equations that the method described
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in this paper also bears the name of Local Boundary Integral

Equation (LBIE) method.

B. Imposing Boundary Conditions

The information concerning the boundary conditions at

comes into the problem through the boundary nodes (which, ac-

cording to Section IV, have no associated test domains). The

boundary conditions are therefore imposed by a meshless col-

location scheme, based on the approximation described by (1).

Let us suppose that a node (coordinates )

lies at a portion of the global boundary where the boundary

conditions are expressed in general form as

(22)

where and are given functions of the position along

, and is a known function of . In (22), three types of

boundary conditions are embedded. If Dirichlet conditions are

to be imposed, then and . In the case of

Neumann conditions, then and . In treating

Robin conditions, and . Hence, based on the

approximation (1), and for a boundary node located at ,

there follows

(23)

Expanding (23), we have a nodal equation

(24)

where the global index runs through all nodes whose

influence domains include point (in Fig. 4, and the

global indices are , , , ,

and . Since the distance from node to is zero,

the window function centered at is exactly 1 at ),

is the shape function associated to the influencing

node evaluated at the point , is the

normal derivative of the shape function associated to node

evaluated at , and is the nodal parameter associated

to node (unknown). This meshless collocation procedure

enforces the boundary conditions in a fairly simple way—nei-

ther finding intersections between domains nor performing

numerical integrations is necessary.

C. Handling Material Discontinuities

Care must be taken when dealing with problems in which

some material property [described by the function in (15)]

is discontinuous across an interface. This is so because the shape

functions are smooth (i.e., the functions themselves and their

derivatives are continuous). Shape functions inherit the order

of continuity from the window function (in this work, a

function, being the nodal influence domain). In electromag-

netic wave scattering analysis, when the unknown function is

the electric field ( polarization) and when there are no

magnetic materials inside the domain ( ev-

erywhere), one knows that the normal derivative must

Fig. 4. Computational domain in which there is a material discontinuity at the
interface . A double layer of nodes is placed along . and are dual
nodes. The boundary of test domain associated to node just touches the
interface . The nodes inside its influence domain and located at the other side
of (inside the dashed portion of the larger circumference centered at ) are
not influenced by .

be continuous across the interface between two dielectric media

( at one side and at the other side). This

poses no problem when expressing the electric field as an ex-

pansion like (1) because the shape functions are known to be

smooth and thus able to reproduce the continuity of .

However, there is a small issue when it comes to polar-

ization: The magnetic field experiences a discontinuity in

its normal derivative across the interface between two dielec-

tric media

(25)

where is the magnetic field at one side of the interface and

is the field at the other side. The function is

discontinuous across an interface, and there is not a direct way

of inserting (25) in the governing equation (15). If one tries to

solve (15) without giving this issue its due attention, only an ap-

proximate solution for will be obtained (smoother than the

real one) since the shape functions used to represent the mag-

netic field are smooth and thus unable to reproduce a disconti-

nuity such as (25). In order to deal with material discontinuities

in polarization, we employ a technique described in [18].

Let us assume a relative permittivity that is piecewise ho-

mogeneous: Each subregion has a relative permittivity . In

Fig. 4, there are two such subregions, each one with its relative

permittivity, separated by an interface . Nodes from one region

are required not to influence the other, even if theoretically their

influence domains could extend over there (in Fig. 4, node

lies in region 2, so nodes from region 1 lying inside the dashed

curve are not influenced by this node, even if they are located

within the influence domain of ). Moreover, the test domains

assigned to interior nodes from one region just touch the inter-

face (interior circle associated to node ). Now, in addition

to interior nodes and to boundary nodes, this situation demands

a new kind of node: an interface node. Along the interface is

placed a double layer of nodes, i.e., nodes lying at the interface

are doubled: Each interface node is actually considered equiv-

alent to two nodes, one belonging to region 1 and the other to

region 2. Each interface node has its dual; they are placed at
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exactly the same location, but are two distinct entities, to each

one being assigned a nodal parameter and thus a row in the

global matrix (Fig. 4, nodes and ). A restriction is then

imposed: Node influences (and is influenced by) only nodes

from region 1; node influences (and is influenced by) only

nodes from region 2. No test domains are assigned to interface

nodes: A meshless collocation scheme, like that one described

in Section IV-B, is enforced at each dual-interface node, one

dealing with interface conditions on the function itself and

the other with conditions on the normal derivative .

In analysis, the interface conditions are

(26)

(27)

where the global index runs through all nodes from

region 1 whose influence domains include point (in Fig. 4,

they are depicted inside the semicircle surrounding ), and

through all nodes from region 2 whose influence

domains include point (nodes inside the semicircle sur-

rounding ). Hence, through the collocation scheme, the

interface conditions for polarization can be imposed

without relying on any kind of numerical integration: Simple

nodal equations such as (26) and (27) are able to impose the

discontinuity condition expressed by (25).

V. LBIE DISCRETIZATION

Let be the computational domain in which the given dif-

ferential equation (15) is to be solved. One begins by spreading

nodes within (the interior nodes) and along (the boundary

nodes), where some kind of boundary condition is imposed. If

that is the case of there being a curve separating two media,

then along is placed a double layer of nodes, the interface

nodes. After the nodal distribution is set up, one proceeds to

evaluate the weak forms (21).

Suppose is the global index for an interior node. After

defining its circular test domain [whose radius is found

through (18)], the next step is to express as a weighted sum

of shape functions, like (1), which is substituted in (21). As the

nodal parameters stand for the unknowns of the problem, this

leads to a linear system, in a way quite similar to FEM

(28)

The interaction between global nodes and is given by ,

i.e., the element located at row and column in the global

matrix

(29)

In (29), if the shape function associated to global node does

not extend its influence domain over some portion of the test

domain associated to global node , then is obviously

equal to zero. Because the shape functions are compactly sup-

ported, this will happen whenever nodes and are not close

enough to each other. The global matrix is therefore sparse. Ex-

pression (29) is to be enforced at each interior node. The com-

ponent of the excitation vector is

(30)

In what regards boundary nodes, let be a global node located

at . From (24), one gets

(31)

The interface conditions are imposed through (26) and (27).

Let it be an interface node whose global index is (e.g. in

Fig. 4), and suppose that its dual has global index (e.g. in

Fig. 4). Then

(32)

(33)

It must be remembered that, as explained in Section IV, if the

global node is at the same side of the interface as , it in-

fluences only (i.e., only ); it does not influence , i.e.,

(it does not influence ). The same holds if node

is located at the same side of the interface as : It influences

only (i.e., only ); it does not influence , i.e.,

(it does not influence ).

VI. NUMERICAL ASPECTS

A. Integration of Weak Forms

One should observe that as the shape functions do not have

analytical expressions, the integrals in (29) and (30) must be

carried out numerically, usually through a Gaussian quadrature.

Here lies the main drawback of MLPG: The more refined are

the integrations of (29) and (30), the greater is the number of

Gaussian points required. The cost of this reflects directly in

the process of filling up the global matrix . Efficient ways of

filling the global matrices are currently a topic of research [19],

and a discussion about the impact of different approaches to the

integration of weak forms on the overall performance of the

MLPG procedure falls outside the scope of this paper. In this

work, we employ a simple Gaussian quadrature. Let us consider

the area integral first [third term of (29); (30) is treated in exactly

the same way]. As the test domains are circles, “local” polar

coordinates revealed to be extremely useful. We take a

test domain and divide it up into “cells,” determined by lines

of constant and . If we represent each cell by , we see that

is the union of a disjoint set of such cells

(34)
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The “local” polar coordinate system is centered at the node’s lo-

cation , and the conversion to rectangular coordinates is given

by . The third term in (29)

is treated as follows:

(35)

where . Each integration cell is lim-

ited by radii and and by angles and . Since the

cells are disjoint, the integral in the right side of (35) can be sub-

stituted by a sum of integrals evaluated at each cell

(36)

We applied a two-point Gaussian quadrature to and in

(four Gaussian points per cell). Therefore

(37)

where the coordinates of the Gaussian points are

(38)

(39)

The parameters for the two-point Gaussian quadrature are

and , . According to (17), the

test function has a singularity exactly at the location of node

(i.e., at , center of ). By dividing up into cells in the way

described above, we guarantee that no Gaussian point coincides

with the center of . To see why, suppose that is a cell

located in the innermost layer, i.e., and . From

(38), we see that there is no way in which could be zero. In

this paper, we employed 18 cells [ in (34)], which yields

72 Gaussian points per test domain.

The line integral [second term in (29)] is simpler to deal with,

as is constant (namely, the radius of the test domain ). Thus

(40)

where , and are angular

segments. We approximate the integrals in (40) as

(41)

In solving the examples, we took 20 segments for each of the

test domains [ in (40)].

B. Error Convergence

In order to determine the performance of MLPG4 when

the number of nodes in increases, we take a well-behaved

Dirichlet problem: a uniform plane wave propagating in

the direction. Let us consider a square portion of free space

, and assume that we know the incident electric field at

all points of the boundary . Since we are dealing with free

space, the problem we are concerned with is

in

at
(42)

As there are neither sources (radiated fields) nor dielectric mate-

rials (scattered fields) within , the electric field is undisturbed.

Therefore, the solution to (42) is V/m for all points

.

We now proceed to calculate the difference between the nu-

merical and exact solutions. Given a nodal distribution over

the computational domain , we first find the discretization

length , calculated as the maximum internodal distance, i.e.,

for each node we find the distance to its closest neighbor

node, thus forming a set , where

is the total number of nodes. The discretization length is the

greatest element of

(43)

After the solution of (42) for a given nodal distribution, we

compute the relative error (ratio of the norm of the difference

between the solutions to the norm of the exact solution)

(44)

This procedure was carried out for populations whose number of

nodes varies from 60 to approximately 3000. We took a 1-GHz

incident plane wave, and is a square whose side is given by

. The same analysis has been extended to FEM [with first-

order elements since the MLS shape functions employ a linear

basis (3)], from whose meshes we took the nodal distributions

and defined as in (43). The result that shows how the error

norm behaves as a function of is shown in Fig. 5. A linear

regression reveals the convergence rate to be 2.484 for MLPG4/

LBIE and 1.791 for FEM.As the number of nodes increases and,

consequently decreases, the condition number of the global

matrix varies from 34 to 940.

The codes regarding this and all other examples in this paper

are implemented in MATLAB. Besides providing a friendly en-

vironment for developing numerical computations, MATLAB

has a built-in matrix solver based on LU factorization with par-

tial pivoting. The global linear systems (28) for all problems can

therefore be solved directly; writing specific codes for solving

linear systems is not among the tasks we have set up to accom-

plish in this work.
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Fig. 5. Graph in logarithmic scale showing the relative errors for MLPG4/
LBIE and FEM. The discretization length is measured in meters.

Fig. 6. Square computational domain set up for problem (42):
m m at 1 GHz. The graph depicts the absolute value of

the difference between the MLPG4 and the exact solution
for a total of 1760 nodes (40 40 nodes uniformly distributed within , and
40 nodes at each one of the four edges).

C. Boundary Conditions and the Collocation Method

Not ascribing test domains to boundary nodes gives rise to

tiny regions in that are not covered by such domains, i.e., (2)

does not hold when the influence domains are replaced by the

’s. These regions are so small that they can barely be noticed.

Moreover, all points from the global boundary are uncov-

ered by test domains (for the test domains of the interior nodes

just touch , as explained earlier in Section IV). To make sure

that this issue has no significant influence on the precision of

the results at the uncovered regions, Fig. 6 shows a comparison

between the exact and the numerical solutions for problem (42)

at all points in the computational domain . The absolute value

of the difference between the numerical and the exact solutions

seems to distribute around the center of the domain (where no

collocation procedure is used). Although this difference reaches

a higher value near the left and right edges of , on the other

hand it assumes extremely low values near the top and bottom

edges. Numerical experiments suggest that the collocation pro-

Fig. 7. First example (Green’s problem): (a) MLPG4 numerical result and
(b) the analytical solution.

cedure is able to effectively impose the boundary conditions,

insofar as the highest errors are attained in the central regions,

away from the global boundary .

VII. NUMERICAL EXAMPLES

A. First Example: Green’s Problem

The first example simulates the electric field inside a

cavity excited by a line of current, i.e., one is interested in

Green’s problem

(45)

Equation (45) is to be solved inside a square region

m m where rad/m and the

condition is imposed along the global boundary

(a perfect conductor). The current source is located at

m m . A total of 1796 nodes have been

spread across the computational domain, and each node in-

fluences, approximately, 16 other nodes. Fig. 7 compares the

analytical solution for this problem [20, Ch. 5] to the numerical
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one provided by MLPG4/LBIE. The concordance is quite

reasonable, as observed.

B. Second Example: TM Scattering

The second problem addresses the scattering of a plane

wave by a dielectric circular cylinder. The electric incident field

is , and the frequency is 1 GHz. The scatterer is

modeled by a circle (boundary , radius ) within which

the relative permittivity is given. In order to deal with scattered

fields, a first-order Bayliss–Turkel radiation boundary condi-

tion (RBC) is imposed at a circumference placed away from the

scatterer [21]

(46)

where is the scattered field and is the radius of . As

explained in Section IV, there is a free-space layer between the

scatterer surface and the circumference where the RBC is

imposed, i.e., the global boundary ( and are con-

centric circumferences). Because we employ a first-order RBC,

the radius of was chosen three times larger than the radius

of the scatterer . According to (15), the function

everywhere, whereas be-

tween and , and within . Besides that, the

excitation term is zero everywhere.

As we are interested in the total field , we substitute

in (46) and thus find a boundary condition for

(47)

A comparison to (22) then reveals that ,

, and , which is a

known expression, since the incident field is given. We per-

formed two simulations, in each one of which we compared the

numerical results regarding the modulus and the phase of the

electric field to the analytical solutions [22]. In simulation 1,

, and its relative permittivity is ; the

total number of nodes spread in the computational domain is

189. In simulation 2, , and the relative permit-

tivity is , whereas the total number of nodes is 626.

These simulations show good concordance when compared to

the analytical solutions, as shown in Fig. 8, which plots the so-

lutions along a horizontal line passing through the center of the

cylinder.

C. Third Example: TE Scattering

The third example is similar to the second, but takes the

polarization into account. The incident magnetic field is

, and the frequency is also 1 GHz. As far as boundary

conditions are concerned, the same treatment dispensed to

polarization is employed here; (47) is still valid, but the elec-

tric field is substituted by the magnetic field, i.e.,

and . The difference between the two polarizations

lies in the fact that there is a discontinuity in the normal deriva-

tive of at the air–dielectric interface, as explained earlier in

Section IV. This issue is solved through a subdivision of the

computational domain, in which the nodes from one subregion

do not influence the nodes from the other, and through a double

Fig. 8. Second example: (a) amplitude and (b) phase of . The abscissa cor-
responds to a line in the -direction passing through the center of the cylinder.
The distance is normalized to the cylinder radius (i.e., distance ).

layer of nodes placed along the interface between these subre-

gions. In this problem, one subregion is the free-space layer be-

tween and , where [according to (15)] ,

whereas the other subregion is the interior of the scatterer (cir-

cular region ), where . The function

is equal to 1 everywhere. Fig. 9(b) illustrates the test domains

from both regions; it is clearly seen that nodes from one side of

do not extend their test domains to the other side. We per-

formed also two simulations. In simulation 1, and

; the total number of nodes spread throughout the compu-

tational domain amounts to 494. In simulation 2,

and , whereas the total number of nodes is

759. The concordance between numerical and analytical solu-

tions is again very good, as Fig. 10 indicates. These simulations

show that the collocation procedure proved to be quite handy in

treating interface conditions.

D. Fourth Example: Scattering by Many Objects—The Flow

of Light Down a Photonic Crystal

A two-dimensional photonic band-gap crystal is a periodic

array of dielectric structures, the most remarkable property of

which is that it is able to select what wavelengths can actually

propagate through it. This phenomenon can be verified if one

sketches the crystal’s dispersion curve, from which it can be
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Fig. 9. Portion of the computational domain. (a) Global boundary , the
scatterer , and the scatterer’s boundary , which coincides with the air–di-
electric interface . Some interior nodes, boundary nodes (three little squares
at ), and also the double layer of interface nodes (small points at ) are
shown. (b) Profusion of test domains covering the computational domain. The
problem is broken up into two subregions: one between and , and the
other within the scatterer . Only the interior nodes of both subregions are as-
signed test domains, which can be seen just touching the interface or the global
boundary .

seen that certain wavelengths inside an interval cannot propa-

gate (there are no modes supporting these wavelengths). The

“forbidden” wavelengths form a band-gap, i.e., every incoming

wave whose wavelength falls inside the band-gap is unable to

propagate through the crystal. There is a wide range of applica-

tions concerning these photonic band-gap crystals; details about

the theory underlying them can be found in [23] and [24].

Let it be a periodic array of dielectric circular rods, whose

relative permittivity is , whereas that of the surrounding

medium is 1. Each of these rods has a radius , here normalized

to 1. Besides that, the distance between a rod and its neighbor is

also . (It should be kept in mind that this structure is three-di-

mensional; it is a collection of cylindrical dielectric rods placed

side by side, forming a kind of “forest” immersed in a medium

where . It is not a planar device such as a microstrip

antenna printed on a flat surface. Because no magnitude de-

pends on , we are concerned here only with the cross sec-

tion of this structure, whose analysis leads to a two-dimensional

problem.) Simulations show that a wave whose wavenumber

is 1 falls within a band-gap, and then is unable

to propagate along this structure [25]. Now, given a photonic

Fig. 10. Third example: (a) amplitude and (b) phase of . The abscissa cor-
responds to a line in the -direction passing through the center of the cylinder.
The distance is normalized to the cylinder radius (i.e., distance ).

crystal and an incoming wave unable to propagate through it,

if some rods are removed from the structure, forming a path,

then this incoming wave will be able to propagate only within

the “carved” path. Thus, the incoming lightwave can be guided

along a path through the crystal.

The photonic crystal studied in this work has also been

analyzed in [25], which employed FEM and another tech-

nique (FLAME). Given a periodic structure, we removed

some rods, forming an L-shaped path as can be seen in

Fig. 11(a), which shows the whole computational domain

. We have studied what happens to an incident plane

wave , where , as it impinges upon this

structure. The differential equation to be solved is (15), where

everywhere, outside the rods,

and inside each rod. According to [25] and [26],

for band-gap operation and in order to eliminate errors due to

imperfect absorbing boundary conditions, Dirichlet conditions

corresponding to the incident field are imposed on the whole

global boundary (i.e., on ).

Fig. 11(b) shows the real part of the electric field along the

dashed line in Fig. 11(a). The concordance between the results

provided by LBIE/MLPG4 and FEM is excellent. Neverthe-

less, according to [26], FEM uses more than 100 000 degrees

of freedom (DoF) to attain this result, whereas our meshless
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Fig. 11. (a) Photonic crystal, with some rods removed, forming an L-shaped
path. (b) Real part of the electric field along the line , .

method uses 2700 DoF (1 DoF per node). Fig. 12 shows the real

and imaginary parts of the electric field across the whole com-

putational domain, where the bending of the flow of light can

clearly be observed. The incoming wave whose wavenumber

enters the crystal through the “carved” path formed by

the removed rods. Once there, the only way available for this

wave is to follow this path until the end, as it cannot “leak”

into the bulk of the crystal, because in this region there are

no conditions for propagation (the wavenumber falls

within a band-gap). Thus, the photonic crystal described here

is able to bend the flow of light in 90 in a completely lossless

way (the dielectric rods do not absorb radiation since they

are lossless). There is a great resemblance between Fig. 12(b)

and [25, Fig. 17], both depicting the imaginary part of

throughout the computational domain.

VIII. CONCLUSION

In this paper, we had the opportunity to illustrate the appli-

cation of MLPG4/LBIE to a myriad of problems concerning

the propagation and scattering of electromagnetic waves. Prob-

lems involving radiation boundary conditions, collocation pro-

cedures, material discontinuities, excitation by current sources,

and scattering by multiple objects have all been addressed with

detail. The approach herein presented is such that numerical

Fig. 12. MLPG4 numerical results for the electric field throughout the whole
computational domain . (a) Real part. (b) Imaginary part. It can be observed
that the light propagates only within the path formed by removed rods.

integrations are required for interior nodes only. Special collo-

cation schemes have been shown to be able to accurately deal

with boundary and interface conditions. Better results can be at-

tained by increasing the number of nodes or refining the numer-

ical integrations in each test domain. MLPG4/LBIE somehow

resembles FEM in what regards the operation with weak forms

and the sparse global matrices; the only major difference is the

absence of a mesh. Finally, we can say that this paper succeeded

in its task of introducing LBIE to wave scattering analysis. We

expect that the insights and the experience drawn from this work

could serve as a source of information for future research.
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