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Abstract— A meshless numerical technique based on ra-
dial point interpolation is introduced for electromagnetic
simulations in time domain. The general class of meshless
methods presents very attractive properties for addressing
future challenges of electromagnetic modeling. Among the
interesting aspects, the ability to handle arbitrary node
distributions for conformal and multi-scale modeling can be
mentioned first. Furthermore, the possibility of modifying
the node distribution dynamically opens new perspectives for
adaptive computations and optimization. The mathematical
background of the radial point interpolation method and
a two-dimensional implementation are presented here. The
advantages of this meshless method are discussed and applied
to a model consisting of a 90 degree H-plane waveguide bend.
It is shown that solutions converge much faster using the
ability of conformal modeling compared to a similar analysis
in rectangular grids.

Index Terms— Meshless Methods, Time domain analysis,
Radial Point Interpolation Method

I. INTRODUCTION

This paper describes the implementation of a meshless
simulation technique, the local radial point interpolation
method (RPIM), as a time-domain solver for electro-
magnetics. Meshless methods provides unique advantages
over conventional methods in numerical simulation of
electromagnetic fields. Meshless methods do not require
a detailed description of a mesh to perform numerical
simulations, but are rather applied on a nearly arbitrary
node distribution that describes the geometry of interest.
A big advantage is the freedom in node placement which
allows conformal modeling and provides multi-scale capa-
bilities. A further advantage is the ability to move or add
nodes, which facilitates dynamic adaptation of a model
for increasing simulation accuracy, or changes in geometry
for the optimization of structures. Finally, the potential of
the method for multi-physics modeling is facilitated by
the properties of the interpolation method, e.g. to include
thermal, relativistic or quantum effects, or to describe
semiconductors or plasmon gases.

Meshless methods are known in the fields of astro-
physics and hydrodynamics for decades ([1], [2]). Many
variations have emerged since then, e.g. Mean Least
Squares (MLS) method, Smoothed Particle Hydrodynam-
ics (SPH), or the reproducing kernel particle method

(RKPM). In computational mechanics, RPIM was in-
troduced in [3] and applied to electro- or magnetostat-
ics, e.g. [4], [5]. An implementation for the collocation
method in conjunction with wavelets was presented in
[6]. Concerning electromagnetics, a meshless time-domain
implementation based on SPH was recently presented in
[7]. The interpolation method used in the present pa-
per, i.e. RPIM, provides several advantages over SPH.
First, RPIM is based on a local support domain instead
of a global domain, which allows simulating large-scale
problems. Second, the consistency of unevenly distributed
nodal distributions is retained intrinsically in RPIM, which
saves costly consistency restoring techniques. Third, no
additional geometrical information such as the surrounding
volume of a particular node is necessary.

In this paper we investigates some of the advantageous
properties of RPIM in a specific example, a 90 degree
H-plane waveguide bend. In this example conformal mod-
eling provides great advantages in simulation accuracy and
fast convergence, since stair-casing effects of the regular
rectangular grids are avoided.

The paper is structured as follows. Sec. II gives a
theoretical introduction to the local radial point interpo-
lation method and its implementation to electromagnetics.
The model under investigation and simulation results are
described in Sec. III.

II. THE RPI METHOD

The principle of the presently implemented meshless
method relies on fundamental properties of the underlying
interpolation method, i.e. the local radial point interpola-
tion (RPI) method. The interpolation itself provides several
advantages over other existing interpolation techniques,
namely the ability to interpolate arbitrarily scattered data
and its local nature [8]. This allows interpolating over
unstructured node distributions and facilitates node adap-
tation at the cost of only a small overhead.

RPI provides a fitting curve for the instantaneous spatial
distribution of the field components. A very interesting
property of the interpolation is that the spatial derivatives
can also be estimated accurately based on the same algo-
rithm. Hence, partial differential equations can be solved in
combination with a suitable scheme for time-derivatives. In
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the present case the discretized Maxwell curl equations are
solved, but it should be mentioned that also other physical
laws can be incorporated and solved in combination with
Maxwell equations.

The field distribution around a particular node is inter-
polated locally by considering only a limited number of
points within a local area, called support domain (Fig. 1).
At the present stage of development the node distribution
is assumed to remain unchanged during simulation, even
though dynamic node adaptation techniques are considered
for future work. Therefore, all interpolation parameters can
be computed during preprocessing only, using the basis
functions described in the following.

Fig. 1. Support domains of several nodes in the computational domain.

A. Interpolation Method

The radial basis point interpolation technique uses a
combination of radial and monomial basis functions for
the interpolation of the field distribution around a node.
The approximation of a field component u is defined as
follows:

〈u(x)〉 =
N∑

n=1

rn(x)an +
M∑

m=1

pm(x)bm (1)

with rn(x) the radial basis function, pm(x) the monomial
basis function, and an, bn the associated interpolation
coefficients. N is the number of points in the support
domain and represents a relevant parameter of the RPI
algorithm, which delimits the nearest neighbor search.
M stands for the order of the monomial basis. In the
present case linear monomial basis functions of the form
[ 1 x y ] were chosen (M = 3). x = (x, y) is the
position where the value of u is to be approximated. The
angle brackets 〈.〉 denote the fact that this value is only an
approximation of the actual field.

Several choices are possible as radial basis rn, e.g.
multiquadratics or spline functions. In the present im-
plementation a Gaussian basis of the form r(x) =
exp(−c|x/dmax|2) has been chosen for simplicity: A
single parameter c controls the shape of the Gaussian basis.
In the case of very large values for c, r(x) converges
towards the Dirac delta function. Equation (1) can be
written in vector form as

〈u(x)〉 = rT (x)a + pT (x)b (2)

with the basis functions

rT (x) = [ r(x1), r(x2), . . . , r(xN ) ] (3)

pT (x) = [ 1 x y ]. (4)

The interpolation around the considered node is applied
to all points in the support domain and can be written in
matrix form

〈û〉 = R0a + P0b (5)

with û = [u1, ..., uN ] the interpolated values at the nodes
in the support domain. The matrices R0 and P0 represent
the basis functions evaluated at the positions of the N
nodes

R0 =

 r1(x1, y1) . . . rN (x1, y1)
...

...
...

r1(xN , yN ) . . . rN (xN , yN )


N×N

(6)

P0 =

 pT (x1, y1)
...

pT (xN , yN )


N×M

. (7)

The symmetry of R0 is given by the symmetric nature
of the radial basis function. There are several ways to
compute the coefficients a, b from (5). The approach
given by Wang et al. in [3] is applied here. To grant
uniqueness of the solutions, constraints given in [9] are
applied in the form of PT

0 a = 0. Combining the locally
evaluated matrices R0 and P0 in a matrix G, interpolation
coefficients can be found according to[

R0 P0

PT
0 0

]
︸ ︷︷ ︸

G

{
a
b

}
=

{
ue

0

}
(8)

→
{

a
b

}
= G−1

{
ue

0

}
. (9)

The vector ue = [u1, u2, ..., uN ]T holds the considered
field component values of all nodes in the support domain.
Taking a closer look at (8) and (9) reveals that the
interpolation coefficients a, b are obtained by multiplying
the inverse of G with the values ue. Thus, introduc-
ing (9) in (5) with the matrix G−1, a shape function
Ψ(x) = [Ψ1(x),Ψ2(x), . . . ,ΨN (x)] can be defined in the
following way:

〈u(x)〉 = [ rT (x) bT (x) ]G−1

{
ue

0

}
= Ψ(x)ue.

(10)

The interpretation of (10) is that the interpolation of the
field value at a specific node can be obtained by weighting
the field values of the surrounding points with the shape
function Ψ. The shape function is only dependent on
the values of the basis functions since G is considered
constant within the support domain. The shape functions
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describe a partition of unity within the local support
domain and hence have to fulfill the following condition:

N∑
n=1

Ψn(x) = 1. (11)

A powerful feature of the RPI algorithm is that it fulfills
the following property for the spatial derivation

〈∂κu(x)〉 = [ ∂κrT (x) ∂κbT (x) ]G−1

{
ue

0

}
= ∂κΨ(x)ue (12)

with κ = x, y. Therefore, since G remains unchanged,
only the spatial derivatives of the basis functions are
necessary to approximate ∂κΨ(x). Consequently, also the
spatial derivative of an interpolated field component can
be retrieved as a linear combination of the field values of
the nodes in the support domain.

The condition of the matrix G containing the locally
evaluated basis functions is influenced by the number
N of nodes in the support domain, the parameter c of
the Gaussian basis function and the order M of the
monomial basis. For example, increasing the parameter c
to large values lets the Gaussian basis function converge
towards the Dirac delta δ(x), and therefore the matrix
R0 towards the identity matrix. This means that all nodes
other than the node to be interpolated have no influence
on the approximation, which decreases the accuracy of
the algorithm. On the other hand values for c too small
yield a nearly singular matrix G that cannot be inverted.
It should be also mentioned that the choice of numbers
of points in the support domain determines the size of
G and thus heavily influences the computational effort
necessary for the matrix inversion. A consequence of
an improper choice for the above parameters is an ill-
conditioned matrix G. Numerical inversion of such a
matrix is inaccurate and results in not fulfilling condition
(11). Consequently, the simulation might become unstable
independent of the chosen time-step. The characterization
and determination of reliable parameters will be the focus
of future communications.

B. Application to Electromagnetics

In the current paper a two-dimensional TE-mode im-
plementation for the simulation of 2D waveguides is
chosen for simplicity. As depicted in Fig. 2, the E-
field is perpendicular and the H-fields are parallel to the
propagation plane {x, y}. The nodes are staggered in space
and time, which for a regular node distribution is similar
to the 2D Yee cell. For a more general node distribution
the spatial staggering is achieved starting from a specific
node distribution for the E-nodes and applying a Voronoi
decomposition to find H-nodes on the edges of the Voronoi

Fig. 2. Physical model of the 90 degree H-plane waveguide bend.
The waveguide is specified as WR-229 and operates monomode from
3.22 GHz to 4.90 GHz. Dimensions are a = 5.82 cm and r = 7.62 cm.

cells. Both E and H node types can in principle be
dynamically adapted during simulation.

Starting from the two-dimensional Maxwell curl formu-
lation in time-domain, applying the approximations for the
spatial derivations (∂x,yΨ(x)) and the leap-frog scheme
for time-update yields

H
n+ 1

2
x,i = H

n− 1
2

x,i − ∆t

µ

∑
j

En
z,j∂yΨj (13)

H
n+ 1

2
y,i = H

n− 1
2

y,i +
∆t

µ

∑
j

En
z,j∂xΨj (14)

En+1
z,i = En

z,i +
∆t

ε

∑
j

H
n+ 1

2
y,j ∂xΨj −

∑
j

H
n+ 1

2
x,j ∂yΨj


(15)

with i the updated node and j denoting the summation
over N nodes in the support domain.

It is interesting to note that for a rectangular node
distribution with constant distance and a support domain
that contains four nodes, the shape functions take values
that bring the scheme to the formulation of the finite-
difference time-domain (FDTD) method.

Using a stability criterion similar to the CFL limit for
FDTD yields stable simulations. The stability criterion is
determined using the shortest distance dmin,i between any
two nodes in the computational domain:

∆t ≤ min
i

(dmin,i
√

µε). (16)

III. NUMERICAL EXPERIMENT

Numerical experiments have been performed in a 90
degree H-plane waveguide bend. This specific geometry
has been chosen to illustrate one particular advantage of
the meshless method, namely the ability to conformally
model a geometry. The physical properties of the chosen
waveguide are depicted in Fig 2.

In order to evaluate the performance of the RPI method,
a conformal node distribution is applied using a constant
node spacing in r- and ϕ- direction of the bend (Fig.
3(a)). Before and after the bend, a regular rectangular node
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(a) Conformal model
approximation with
meshless method

(b) Rectangular regular grid
similar to Yee-scheme in
FDTD

Fig. 3. Comparison of discretizations using conformal or regular node
distribution.

distribution is applied. Using such a node placement allows
correct modeling of the curved perfect electric conductor
(PEC) at the waveguide boundaries. This conformal nodal
distribution is compared to a fully regular rectangular node
distribution with different discretizations (Fig. 3(b)). The
support domain for the presented numerical experiments
has been set to include a minimum of N ≥ 4 nodes.

Both node distributions are expected to converge with
increased node density. For the conformal model reliable
results should be achieved for relatively coarse discretiza-
tions already. For regular node distributions stair-casing
effects will pose problems for coarse discretizations. Thus
comparable results can be expected for very fine discretiza-
tion where the physical model is properly approximated.
The parameter investigated, the voltage standing wave
ratio (VSWR), is numerically measured by recording the
field values at the sensor location shown in Fig. 2 with
a distance of h = 7.14 cm from the bend. To compute
the VSWR of the bend, the recorded fields are compared
to a reference solution provided by a very long straight
waveguide in positive y-direction. Simulations were per-
formed for discretizations [λ/8, λ/17, λ/26, λ/34, λ/43]
where λ corresponds to the freespace wavelength of the
highest operation frequency (4.9 GHz). Fig. 4(a) shows the
convergence for the regular node distribution. Due to stair-
casing effects, a very fine discretization of at least λ/43 is
required to achieve reliable simulation results. The results
in Fig. 4(b) on the other hand converge much faster. For
discretizations finer than λ/17 no significant improvement
can be seen.

IV. CONCLUSION

A meshless method for numerical electromagnetic anal-
ysis, the RPI method, has been introduced and discussed.
An overview of the mathematical properties has been
given. As illustration a two-dimensional implementation
for TE-modes has been used to simulate the input reflec-
tions of a 90 degree H-plane waveguide bend. It could be
confirmed that the ability for arbitrary node placement sig-
nificantly increases the simulation accuracy over the usage
of conventional rectangular grids. The VSWR converges
much faster in the case of conformal node placement

f r e q u e n c y [ G H z ]
V SWR
3 . 5 4 4 . 511 . 1
1 . 21 . 3 λ / 8λ / 1 7λ / 2 6λ / 3 4λ / 4 3λ / 5 1λ / 8λ / 1 7λ / 2 6λ / 3 4λ / 4 3λ / 5 1

(a) Convergence of VSWR for the regular
rectangular node distribution.

f r e q u e n c y [ G H z ]
V SWR
3 . 5 4 4 . 511 . 1
1 . 2 λ / 8λ / 1 7λ / 2 6λ / 3 4λ / 8λ / 1 7λ / 2 6λ / 3 4

(b) Convergence of VSWR for the conformal
node distribution.

Fig. 4. Convergence for the VSWR in rectangular and conformal grid.

compared to the results in the rectangular grid where stair-
casing effects impair the simulation accuracy.

In a future investigations, steps towards the development
of adaptive grid adaptation techniques will be taken to
achieve a numerical method with dynamic increase of
accuracy.
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