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ABSTRACT Using stochastic geometry tools, we develop a systematic framework to characterize the

meta distributions of the downlink SIR/SNR and data rate of the typical device in a cellular network with

coexisting sub-6GHz and millimeter wave (mm-wave) spectrums. Macro base-stations (MBSs) transmit

on sub-6GHz channels (which we term “microwave” channels), whereas small base-stations (SBSs)

communicate with devices on mm-wave channels. The SBSs are connected to MBSs via a microwave

(µwave) wireless backhaul. The µwave channels are interference limited and mm-wave channels are

noise limited; therefore, we have the meta distribution of SIR and SNR in µwave and mm-wave channels,

respectively. To model the line-of-sight (LOS) nature of mm-wave channels, we use Nakagami-m fading

model. To derive the meta distribution of SIR/SNR, we characterize the conditional success probability

(CSP) (or equivalently reliability) and its bth moment for the typical device (a) when it associates to a µwave

MBS for direct transmission, and (b) when it associates to a mm-wave SBS for dual-hop transmission

(backhaul and access transmission). Performance metrics such as the mean and variance of the local delay

(network jitter), mean of the CSP (coverage probability), and variance of the CSP are derived. Closed-

form expressions are presented for special scenarios. The extensions of the developed framework to the

µwave-only network or mm-wave only networks where SBSs have mm-wave backhauls are discussed.

Numerical results validate the analytical results. Insights are extracted related to the reliability, coverage

probability, and latency of the considered network.

INDEX TERMS 5G cellular networks, millimeter wave, meta distribution, reliability, latency, wireless

backhaul, Nakagami fading, stochastic geometry.

I. INTRODUCTION

THE SUB-6GHZ spectrum is running out of bandwidth

to support a huge number of devices in the cellular

networks. Therefore, cellular operators of the upcoming 5G

networks will tap into the millimeter-wave (mm-wave) spec-

trum to use wider bandwidths. The mm-wave spectrum has

wider bandwidths that can meet higher traffic demands and

support data rates into the order of gigabits per second.

The use of mm-wave spectrum is one of the key enablers

of 5G and beyond networks [2] and will coexist with sub-

6GHz frequencies [3], [4]. However, mm-wave transmissions

are highly susceptible to blockages and penetration losses;

therefore the mm-wave spectrum will complement the sub-

6GHz spectrum in 5G networks [5]–[8]. Self-backhauling

offers a simple cost-saving strategy to enable dense millime-

ter wave cellular networks since the optical fiber connection

is always expensive [9]–[13].

In this article, we develop a framework to characterize

the meta distributions of SIR/SNR as well as data rate in

the coexisting sub-6GHz and mm-wave cellular network.

We assume a two-tier network architecture as illustrated

in Fig. 1. Tier 1 consists of macro base stations (MBSs)

and tier 2 is composed of small base stations (SBSs).

A MBS communicates with SBSs on backhaul links in the
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FIGURE 1. Coexisting sub-6GHz and mm-wave cellular networks.

microwave spectrum. SBSs communicate with devices on

access links in the mm-wave spectrum. This scenario sup-

ports dual-hop communications between MBSs and devices.

Devices can also communicate with MBSs via direct links

in the microwave spectrum, as shown in Fig. 1. Given

the hybrid spectrum network, it is crucial to develop new

theoretic frameworks to characterize the performance of

such networks. Within this context, we consider the use of

meta distributions to study the performance of such hybrid

spectrum networks.

The meta distribution is first introduced by Haenggi [14]

to provide a fine-grained reliability and latency analysis of

wireless networks. A meta distribution1 is defined as the

distribution of the conditional success probability (CSP) of

the transmission link (also termed as link reliability), con-

ditioned on the locations of the wireless transmitters. In

addition to the standard coverage (or success) probability

which is equivalent to the mean of CSP, the meta distribu-

tion can capture important network performance measures

such as the mean of the local transmission delay, the variance

of the local transmission delay (referred to as network jit-

ter), and the variance of the CSP which depicts the variation

of the devices’ performance from the mean coverage proba-

bility. Evidently, the standard coverage probability provides

limited information about the performance of the typical

wireless network [15]–[17]. In this article, we develop a

novel stochastic geometry framework based on meta distribu-

tions to estimate and analyze the communication latency and

reliability of devices in a coexisting sub-6GHz and mm-wave

cellular network.

A. RELATED WORK

A variety of research works studied the coverage probability

of mm-wave only cellular networks [18]–[20]. Di Renzo [18]

proposed a general mathematical model to analyze multi-

tier mm-wave cellular networks. Bai and Heath [19] derived

the coverage and rate performance of mm-wave cellular

1. A meta distribution is a fine-grained unified performance metric that
enables us to evaluate the reliability and latency of next generation wireless
networks, in addition to the conventional coverage probability. The meta
distribution provides answers to questions such as “What fraction of devices
can achieve x% transmission success probability?” whereas the conventional
success probability answers questions such as “What fraction of devices
experience transmission success?” [14].

networks. Different parameters of Nakagami fading are

assumed for LOS and NLOS links. Turgut and Gursoy [20]

investigated heterogeneous downlink mm-wave cellular

networks consisting of K tiers of randomly located BSs

where each tier operates in a mm-wave frequency band.

They derived coverage probability for the entire network

using tools from stochastic geometry. They used Nakagami

fading to model small-scale fading. Deng et al. [21] derived

the success probability at the typical receiver in mm-wave

device-to-device (D2D) networks. The authors considered

Nakagami fading and incorporated directional beamforming.

Some recent studies analyzed the coverage or success

probability of coexisting µwave and mm-wave cellular

networks. A hybrid cellular network was considered by

Singh et al. [10] to estimate the uplink-downlink coverage

and rate distribution of self-backhauled mm-wave networks.

Elshaer et al. [3] developed an analytical model to character-

ize decoupled uplink and downlink cell association strategies.

The authors showed the superiority of this technique com-

pared to the traditional coupled association in a network with

traditional MBSs coexisting with denser mm-wave SBSs.

Singh et al. [10] and Elshaer et al. [3] modeled the fading

power as Rayleigh fading to enable better tractability.

Compared to traditional coverage analysis conducted

in [3], [19], [20], Deng and Haenggi [22] analyzed the

meta distribution of the SIR in mm-wave only single-hop

D2D networks using the Poisson bipolar model and Rayleigh

fading channels for analytical tractability.

B. CONTRIBUTIONS

To the best of our knowledge, our work is the first to

characterize the meta distributions of SIR/SNR and data

rate for coexisting µwave and mm-wave networks. Different

from [3], [19], [20], [22], we develop a stochastic geome-

try framework that considers (i) coexistence of two different

network tiers with completely different channel propagation,

interference, and fading models, (ii) dual-hop transmissions

enabled by two different spectrums, one in each network

tier, and (iii) Nakagami-m fading2 model with shape param-

eter m for LOS mm-wave channels. The analysis presented

in Lemma 3 to derive the b-th moment of conditional suc-

cess probability (CSP) of the typical user, considering two

hops with two different channel distributions along with a

direct link, is a primary novelty. Such a theoretical result

is not reported yet in the existing research works related to

the meta-distribution. The evaluation of Lemma 3 requires

Lemma 2 and Lemma 1. Another fundamental novelty is

the consideration of Nakagami-m fading channels which

requires a novel approach to derive the b-th moment of the

CSP at each of the access link, backhaul link, and direct link.

As such, the results presented in Lemma 4 and Lemma 5

2. Nakagami-m fading is a generic distribution that includes Rayleigh
distribution (for non-LOS fading) as its special case when m = 1 and can
well approximate the Rician fading distribution for 1 ≤ m ≤ ∞ (for LOS
fading).

1214 VOLUME 1, 2020



are novel and not reported yet in the existing research works

related to the meta distribution.

We assume a hybrid spectrum network architecture as

illustrated in Fig. 1. Since microwave transmissions are

interference limited and mm-wave transmission are noise

limited,3 we study the meta distributions of the SIR and

SNR in µwave and mm-wave channels, respectively.

Our contributions and methodology include the following:

(a) Different from existing works, we characterize the

CSP (which is equivalent to reliability) of the typi-

cal device and its bth moment when the device either

associates to (1) µwave MBS for direct transmission or

(2) mm-wave SBS for dual-hop transmission (access

and backhaul transmission). Using the novel moment

expressions in the two scenarios, we derive a novel

expression for the cumulative moment Mb,T of the

considered hybrid spectrum network.

(b) Using the cumulative moment Mb,T, we character-

ize the exact and approximate meta distributions of

the data rate and downlink SIR/SNR of the typi-

cal device. Since the expression of Mb,T relies on a

binomial expansion of power b, the results for the

meta distribution requiring complex values of b are

obtained by applying Newton’s generalized binomial

theorem.

(c) We characterize important network performance met-

rics such as coverage probability, mean local delay

(which is equivalent to latency), and variance of the

local delay (network jitter), using the derived cumu-

lative moment Mb,T. For metrics with negative values

of b, we apply the binomial theorem for negative

integers.

(d) To model the LOS nature of mm-wave, we con-

sider the versatile Nakagami-m fading channel model.

To the best of our knowledge, the meta distribu-

tion for the Nakagami-m fading channel has not been

investigated yet. (e) We demonstrate the application

of this framework to other specialized network sce-

narios where (i) SBSs are connected to MBSs via

a mm-wave wireless backhaul and (ii) a network

where all transmissions are conducted in µwave spec-

trum. Closed-form results are provided for special

cases and asymptotic scenarios. We validate analyt-

ical results using Monte-Carlo simulations. Numerical

results give valuable insights related to the reliabil-

ity, mean local delay, variance of CSP, and standard

success probability of a device.

II. SYSTEM MODEL AND ASSUMPTIONS

In this section, we describe the network deployment model

(Section II-A), antenna model (Section II-B), channel model

(Section II-C), device association criteria (Section II-D),

3. Given highly directional beams and high sensitivity to blockage, recent
studies showed that mm-wave networks can be considered as noise limited
rather than interference limited [10], [23]–[27].

and SNR/SIR models for access and backhaul transmissions

(Section II-E).

A. NETWORK DEPLOYMENT AND SPECTRUM

ALLOCATION MODEL

We assume a two-tier cellular network architecture as shown

in Fig. 1 in which the locations of the MBSs and SBSs are

modeled as a two-dimensional (2D) homogeneous Poisson

point process (PPP) �k = {yk,1, yk,2, . . . , } of density λk,

where yk,i is the location of ith MBS (when k = 1) or the ith

SBS (when k = 2). Let the MBS tier be tier 1 (k = 1) and

the SBSs constitute tier 2 (k = 2). The locations of devices

in the network are modeled as a stationary and ergodic point

process of arbitrary positive intensity. We consider the typical

outdoor device is located at the origin. The typical device

is denoted by 0 and its tagged BS is denoted by yk,0, i.e.,

tagged MBS (when k = 1) or tagged SBS (when k = 2). All

BSs in the kth tier transmit with the same transmit power

Pk in the downlink.

We assume that a portion ηW1 of the frequency band W1 is

reserved for the access transmission and the rest (1−η)W1 is

reserved for the backhaul transmission, where W1, and W2

denote the total available µwave spectrum and mm-wave

spectrum, respectively, and 0 ≤ η ≤ 1. Determining the

optimal spectrum allocation ratio η will be studied in our

future work.

B. ANTENNA MODEL

We assume that all MBSs are equipped with omnidirectional

antennas with gain denoted by Go
1 dB. We consider SBSs

and devices are equipped with directional antennas with sec-

torized gain patterns as in [18], [22], [24] to approximate

the actual antenna pattern. The sectorized gain pattern is

given by:

Ga(θ) =
{

Gmax
a if |θ | ≤ θa

2

Gmin
a otherwise ,

(1)

where subscript a ∈ {2,D} denotes for SBSs and devices,

respectively. Considering a
√
N×

√
N uniform planar square

antenna array with N elements,4 the antenna parameters of a

uniform planar square antenna array can be given as in [22],

i.e., Gmax
a = N is the main lobe antenna gain, Gmin

a =
1/ sin2( 3π

2
√
N

) is the side lobe antenna gain, θ ∈ [−π, π)

is the angle of the boresight direction, and θa =
√

3√
N

is

the main lobe beam width. A perfect beam alignment is

assumed between a device and its serving SBS [3], [19].

The antenna beams of the desired access links are assumed

to be perfectly aligned, i.e., the direction of arrival (DoA)

between the transmitter and receiver is known a priori at the

BS and the effective gain on the intended access link can

thus be denoted as Gmax
2 Gmax

D
. This can be done by assuming

that the serving mm-wave SBS and device can adjust their

4. The antenna elements N can also be realized in practice as N × 1

instead of
√
N×

√
N. As such, we believe that the arrangement of antenna

elements will not effect the insights related to it obtained in from model.
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antenna steering orientation using the estimated angles of

arrivals. The analysis of the alignment errors on the desired

link is beyond the scope of this work.

C. CHANNEL MODEL

1) PATH-LOSS MODEL

The signal power decay is modeled as L(r) = rα , where L(r)

is the path loss for the typical receiver located at a distance

r from the transmitter and α is the path loss exponent (PLE).

Let L1(r) = ‖r1,D‖α1 denotes the path loss of the typical

device associated with the MBS tier, where α1 is the PLE.

Similarly, L2(r) = ‖r2,D‖α2,l denotes the path loss of the

typical device associated with the SBS tier where α2,l = α2,L

is the PLE in the case of LOS and α2,l = α2,N is the

PLE in the case of NLOS. It has been shown that mm-

wave LOS and NLOS conditions have markedly different

PLEs [28]. Also, we consider the near-field path loss factor

ζ = (
carrier wavelength

4π
)2 at 1 m [3], i.e., different path loss for

different frequencies at the reference distance.

2) FADING MODEL

For outdoor mm-wave channels, we consider the versatile

Nakagami-m fading channel model due to its analytical

tractability and following the previous line of research stud-

ies [19]–[21], [29], [30]. Nakagami-m fading is a general and

tractable model to characterize mm-wave channels. Also,

in several scenarios, Nakagami-m can approximate Rician

fading for 1 ≤ m ≤ ∞ (for LOS fading) [31], [32]. Rician

fading is commonly used to model LOS transmissions but not

tractable for meta distribution modeling since its CDF defini-

tion involves the Marcum Q-function which is not tractable.

The fading parameter ml ∈ [1, 2, . . . ,∞) where l ∈ {L,N}
denotes LOS and NLOS transmission links, respectively,

and the mean fading power is denoted by 	l. The fading

channel power hl follows a gamma distribution given as

fhl(x) = m
ml
l xml−1

	
ml
l Ŵ(ml)

exp(
−mlx
	l

), x > 0, where Ŵ(.) is the gamma

function, ml is the shape (or fading) parameter, and ml
	l

is

the scale parameter. That is, we consider hl ∼ Ŵ(mL, 1/mL)

for the LOS links and hl ∼ Ŵ(mN, 1/mN) for the NLOS

links. Rayleigh fading is a special case of Nakagami-m for

mL = mN = 1. Due to the NLOS nature of µwave chan-

nels, we assume Rayleigh fading with power normalization,

i.e., the channel gain g(x, y) ∼ exp(1), is independently

distributed with the unit mean.

3) BLOCKAGE MODEL FOR MM-WAVE ACCESS LINKS

For mm-wave channels, LOS transmissions are vulnerable to

significant penetration losses [28]; thus LOS transmissions

can be blocked with a certain probability. Following [19],

[29], [33], [34], we consider the actual LOS region of a

device as a fixed LOS ball referred to as “equivalent LOS

ball”. For the sake of mathematical tractability, we consider

a distance dependent blockage probability p(r) that a mm-

wave link of length r observes, i.e., the LOS probability

pL(r) if the mm-wave desired link length is less than d and

pN(r) otherwise. As such, there is a dependency in terms of

the link distance r. That is, SBSs within a LOS ball of radius

d are marked LOS with probability pL(r), while the SBSs

outside that LOS ball are marked as NLOS with probability

pN(r). Note that we will drop the notation (r) in both pL(r)

and pN(r) from this point onwards and we will use only pL
and pN , respectively.

D. ASSOCIATION MECHANISM

Each device associates with either a MBS or a SBS depend-

ing on the maximum biased received power in the downlink.

The association criterion at the typical device can be written

mathematically as follows:

PkBkGkζkLk(r)
−1 ≥ PjBjGjζjLmin,j(r)

−1,

∀j ∈ {1, 2}, j 
= k, (2)

where P(·), B(·), G(·), and ζ(·) denote the transmission power,

biasing factor, effective antenna gain, and near-field path loss

at 1 m of the intended link, respectively, in the corresponding

tier (which is determined by the index in the subscript). Let

Lmin,j(r)
−1 be the minimum path loss of the typical device

from a BS in the jth tier. When a device associates with a

mm-wave SBS in tier-2, i.e., k = 2, the antenna gain of the

intended link is G2 = Gmax
2 Gmax

D
, otherwise G1 = Go

1GD,

where Go
1 is defined as the omnidirectional antenna gain of

MBSs and GD is the device antenna gain while operating

in µwave spectrum. On the other hand, the SBS associates

with a MBS offering the maximum received power in the

downlink.

E. SNR/SIR MODELS FOR ACCESS AND BACKHAUL

TRANSMISSIONS

The device associates to either a MBS for direct transmission

or a SBS for dual-hop transmission. The first link (backhaul

link) transmissions occur on the µwave spectrum between

MBSs and SBSs and the second link (access link) transmis-

sions take place in the mm-wave spectrum between SBSs

and devices. Let θ2 denotes the predefined SIR threshold

for SBSs in the backhaul link and θD denotes the predefined

SIR/SNR threshold for devices. Throughout the paper, we

use subscripts “1, 2”, “2,D”, “1,D”, “D”, “BH” to denote

backhaul link, access link, direct link, device, and backhaul,

respectively.

1) BACKHAUL TRANSMISSION

The SIR of the typical SBS associated with a MBS is

modeled as:

SIR1,2 =
P1r

−α1

1,2 g(0, y)

I1,2
, (3)

where I1,2 = P1

∑

y∈�1\{y1,0} ‖y‖−α1g(0, y) denote the back-

haul interference received at a SBS from MBSs that are

scheduled to transmit on the same resource block excluding

the tagged MBS.
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2) DIRECT TRANSMISSION

The SIR of the typical device associated directly with a MBS

is modeled as:

SIR1,D =
P1r

−α1

1,D
g(0, y)

I1,D

, (4)

where I1,D denotes the interference received at the typical

device from MBSs excluding the tagged MBS. Then I1,D

can be calculated as: I1,D = P1

∑

y∈�1\{y1,0} ‖y‖−α1g(0, y).

3) ACCESS TRANSMISSION

The SNR of the typical device associated with a mm-wave

SBS is modeled as:

SNR2,D =
P2G2ζ2

∥
∥r2,D

∥
∥

−α2,lhl
(

0, y2,0

)

σ 2
2

, (5)

where ζ2 is the near-field path loss at 1 m for mm-

wave channels, and σ 2
2 is the variance of the additive

white Gaussian noise at the device receiver. Given highly

directional beams and high sensitivity to blockage, recent

studies showed that mm-wave networks are typically noise

limited [10], [23], [24].

III. THE META DISTRIBUTION: MATHEMATICAL

PRELIMINARIES

In this section, we define the meta distribution of the SIR

of the typical device and highlight exact and approximate

methods to evaluate the meta distribution.

Definition 1 (Meta Distribution of the SIR and CSP): The

meta distribution F̄Ps(x) is the complementary cumulative

distribution function (CCDF) of the CSP (or reliability) Ps(θ)

and given by [14]:

F̄Ps(x)
�= P(Ps(θ) > x), x ∈ [0, 1], (6)

where, conditioned on the locations of the transmitters and

that the desired transmitter is active, the CSP Ps(θ) of the

typical device [14] can be given as Ps(θ)
�= P(SIR >

θ |�, tx) where θ is the desired SIR.

Physically, the meta distribution provides the fraction of

the active links whose CSP (or reliability) is greater than the

reliability threshold x. Given Mb(θ) denotes the bth moment

of Ps(θ), i.e., Mb(θ)
�= E(Ps(θ)b), b ∈ C, the exact meta

distribution can be given using the Gil-Pelaez theorem [35]

as [14]:

F̄Ps(x) = 1

2
+ 1

π

∫ ∞

0

ℑ
(

e−jt log xMjt(θ)
)

t
dt, (7)

where ℑ(w) is imaginary part of w ∈ C and Mjt(θ)

denotes the imaginary moments of Ps(θ), i.e., j
�=

√
−1.

Using moment matching techniques and taking β
�=

(M1(θ)−M2(θ))(1−M1(θ))

M2(θ)−M1(θ)2 , the meta distribution of the CSP can

be approximated using the beta distribution as follows:

F̄Ps(x) ≈ 1 − Ix

(
βM1(θ)

1 −M1(θ)
, β

)

, x ∈ [0, 1], (8)

where M1(θ) and M2(θ) are the first and the second

moments, respectively; Ix(a, b) is the regularized incomplete

beta function Ix(a, b)
�=

∫ x
0 t

a−1(1−t)b−1dt

B(a,b)
and B(a, b) is the

beta function.

IV. THE META DISTRIBUTION OF THE SIR/SNR IN

HYBRID SPECTRUM NETWORKS

To characterize the meta distribution of the SIR/SNR of the

typical device that can associate with either a µwave MBS

with probability A1 or with a wireless backhauled mm-wave

SBS with probability A2, the methodology of analysis is

listed as follows:

1) Derive the probability of the typical device associating

with µwave MBSs A1, LOS mm-wave SBSs A2,L, and

NLOS mm-wave SBSs A2,N where A2 = A2,L+A2,N

(Section IV-A).

2) Formulate the meta distribution of the SIR/SNR of a

device in the hybrid network (F̄bPs,T(x)) considering the

direct link and dual-hop link with wireless backhaul

transmission (Section IV-B).

3) Formulate the CSP (Ps,T(θ)) and its bth moment (Mb,T)

(Section IV-B).

4) Derive the CSP at backhaul link Ps,BH(θ2), CSP at

access link Ps,2(θD), and CSP at direct link Ps,1(θD).

Derive the bth moments of CSPs, i.e., Mb,BH(θ2),

Mb,2(θD), and Mb,1(θD) for backhaul link, access link,

and direct link transmissions, respectively (Section V).

5) Obtain the meta distributions of SIR/SNR and data rate

in hybrid spectrum network using Gil-Pelaez inversion

and the beta approximation (Section VI).

A. ASSOCIATION PROBABILITIES IN HYBRID

SPECTRUM NETWORKS

In this subsection, we characterize the probabilities with

which the typical device associates with µwave MBSs (A1)

or mm-wave SBSs (A2). The results are presented in the

following.

Lemma 1 (The Probability of Associating with mm-

wave SBSs): The probability of the typical device to associate

with a mm-wave SBS, using the association scheme in

Eq. (2), can be expressed as:

A2 = 1 − 2πλ1

âα1

⎛

⎜
⎝

∫ d
α2,L

0

H(l1)e
−πλ2pLl

2
α2,L
1 dl1

+
∫ d

α2,N

d
α2,L

H(l1)e
−πλ2pLd

2

dl1 +
∫ ∞

d
α2,N

H(l1)

× e
−πλ2

[

(pL−pN )d2+pN l
2

α2,N
1

]

dl1

⎞

⎟
⎠, (9)

where â
�= P2B2G2ζ2

P1B1G1ζ1
and H(l1)

�= (
l1
â
)

2
α1

−1
exp(−πλ1(

l1
â
)

2
α1 ).

Subsequently, the probability of a device to associate with a

µwave MBS can be given as A1 = 1 −A2. The conditional
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association probability for the typical device to associate

with SBS is as follows:

Â2(l1) = 1 −

⎛

⎜
⎝e

−πλ2pL(âl1)
2

α2,L + e−πλ2pLd
2

+ e
−πλ2

[

(pL−pN )d2+pN(âl1)
2

α2,N

]⎞

⎟
⎠, (10)

where f (l1) is given in Appendix A of our technical

report [36], subsequently, Â1(l1) = 1 − Â2(l1).

Proof: Using the approach in [3], we derive Lemma 1 in

Appendix A of our technical report [36].

A closed-form expression of A1 can be derived for a case

of practical interest as follows.

Corollary 1: When α1 = 4, α2,L = 2, and α2,N = 4, then

A1 can be given in closed-form in Eq. (11) as shown at

the bottom of the page, where �(·) is the error function,

C = πλ2
1

4âpLλ2
and C1 = π(λ1 +

√
âpNλ2) and A2 = 1 − A1.

It can be seen from Corollary 1 that when the number

of antenna elements N goes to infinity, i.e., G2 → ∞,

â → ∞, then A1 can be simplified as A1 = �[
√

πλ2pLd
2]√

pLλ2/â
+

ed
2π(pN−pL)λ2

C1/2â
, which shows that association probability to

MBS will be very small. Similar insights can be extracted

for other parameters.

In order to derive the bth moment of CSP Ps,2(θD)

on an access link when a device associates with a SBS

(the CSP will be discussed later in Lemma 3), we have

to derive the probability of a device to associate with

LOS SBS A2,L and NLOS SBS A2,N which are defined

follows.

Lemma 2 (The Probability of Associating with LOS and

NLOS mm-wave SBSs): When the typical device associates

with the mm-wave SBS tier, this typical device has two

possibilities to connect to (a) a LOS mm-wave SBS with

association probability A2,L and (b) a NLOS mm-wave SBS

with association probability A2,N which are characterized,

respectively, as follows:

A2,L =
∫ d

α2,L

0

Â2,L

(

l2,L

)

f2,L

(

l2,L

)

dl2,L,

A2,N =
∫ ∞

d
α2,N

Â2,N

(

l2,N

)

f2,N

(

l2,N

)

dl2,N, (12)

where Â2,L(l2,L) and Â2,N(l2,N) are the conditional probabil-

ities with which the typical device may associate to the LOS

and NLOS mm-wave SBSs, respectively, and are defined as

follows:

Â2,L

(

l2,L

) �= exp

(

−πλ1

(

āl2,L

) 2
α1 − πλ2pLl

2
α2,L

2,L

)

,

Â2,N

(

l2,N

) �= exp

(

− πλ1

(

āl2,N

) 2
α1

− πλ2

[

pLd
2 + pN

(

l

2
α2,N

2,N − d2

)])

,

where f2,L(l2,L) and f2,N(l2,N) are given in [36, Eqn. (10)

in Appendix B] and ā
�= P1B1G1ζ1

P2B2G2ζ2
, Â2(l2) = Â2,L(l2,N) +

Â2,N(l2,N) and A2 = A2,L + A2,N .

Proof: Using the approach in [20], we derive in

[36, Lemma 2 in Appendix B].

A case of interest is when the number of antenna elements

at mm-wave SBSs increases asymptotically. In such a case,

the LOS and NLOS association probabilities can be given as.

Corollary 2: When the number of antenna elements

at mm-wave SBSs increases, i.e., N → ∞, α1 = 4,

α2,L = 2, and α2,N = 4, then ā → 0. The associ-

ation probabilities can be given in closed-form as fol-

lows: A2,L=1 − e−πpLd
2λ2 , A2,N=ed2π(−pL+pN )λ2(1 −

πpNd
2λ21F1[1; 2;πpNd

2λ2]), where 1F1[a; b; z] is the

Kummer Confluent Hypergeometric function.

An interesting insight from Corollary 2 can be seen when

the intensity of SBSs λ2 → ∞ or d is large, the probability

of association to LOS SBSs A2,L becomes almost 1. On the

other hand, when λ2 → 0 or d is small, 1F1[a; b; 0] = 1

thus A2,N becomes almost 1.

B. FORMULATION OF THE META DISTRIBUTION, CSP

AND ITS BTH MOMENT IN THE HYBRID NETWORK

When a device associates with a mm-wave SBS, the overall

CSP depends on the CSPs of the SIR and SNR on both the

backhaul link and the access link, respectively. On the other

hand, when a device associates to MBS the CSP depends on

the SIR of the direct link. It is thus necessary to formulate

the relationship between the meta distribution, CSP, and its

bth moment in the considered hybrid network as follows.

Lemma 3 (Meta Distribution of the Typical Device in

the Hybrid Network): The combined meta distribution of

the SIR/SNR in the hybrid spectrum network can be

characterized as follows:

F̄Ps,T(x) = 1

2
+ 1

π

∫ ∞

0

ℑ
(

e−jt log xMjt,T(θ)
)

t
dt, (13)

A1 =
eC
(

�

[√
C +

√

πλ2pLd2
]

− �

[√
C
])

√

pLλ2/â
+
e−d

2πpLλ2

(

e−πλ1

√
d2/â − e−πλ1

√
d4/â

)

πλ1/2â
+

ed
2π(pN−pL)λ2−C1

√
d4/â

)

C1/2â
(11)
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where Mjt,T(θ) can be characterized by deriving the bth

moment of the Ps,T(θ).5

Mb,T(θ) = Mb,Dual−Hop +Mb,Single−Hop,

(a)= El1,l2

[

Â2(l2)P
b
s,Dual−Hop(θ2)

]

+ El1

[

Â1(l1)P
b
s,1(θD)

]

,

(b)= El1,l2

[

Â2(l2)
(

Ps,BH(θ2)Ps,2(θD)
)b
]

+ El1

[

Â1(l1)P
b
s,1(θD)

]

,

(c)= El1

[

Ps,BH(θ2)
b
]

El2

[

Â2(l2)Ps,2(θD)b
]

+ El1

[

Â1(l1)P
b
s,1(θD)

]

,

(d)= El1

[

Ps,BH(θ2)
b
]

× El2

[(

Â2,L

(

l2,L

)

+ Â2,N

(

l2,N

)
)

Ps,2(θD)b
]

+ El1

[

Â1(l1)P
b
s,1(θD)

]

,

(e)= Mb,BH(θ2)Mb,2(θD)
︸ ︷︷ ︸

Device Associated with SBS

+ Mb,1(θD)
︸ ︷︷ ︸

Device Associated with MBS

,

(14)

where Mb,Dual−Hop is the bth moment of the SIR/SNR when

a device associates to mm-wave SBS for dual-hop transmis-

sion and Mb,Single−Hop is the bth moment of the SIR when

a device associates to MBS for direct transmission. After

reformulation, we define Mb,BH(θ2) as the unconditional bth

moment of the backhaul SIR, Mb,2(θD) as the unconditional

bth moment of the SNR at access link when a device asso-

ciates to mm-wave SBS, and Mb,1(θD) as the unconditional

bth moment of the SIR at direct link when a device associates

to µwave BS. Note that Ps,1(θD)
�= P(SIR1,D > θD|�1, tx)

denotes the CSP of device over the direct link, Ps,BH(θ2)
�=

P(SIR1,2 > θ2|�1, tx) denotes the CSP at backhaul link,

and Ps,2(θD)
�= P(SNR2,D > θD|�2, tx) denotes the CSP

for the access link transmission.

Proof: Step (a) follows from breaking the correlation

between �1 and �2 for tractability and the results show

that the correlation is weak and also follows from the fact

that the bth moment of the SIR or SNR of a device associated

to tier i can be defined as M
(i)
b = E[ÂiMb|i] where Âi is the

conditional association probability to tier i and Mb|i = Pbs,i

5. The bth moment of a random variable X is the expected value of
random variable to the power b, i.e., E[Xb].

is the conditional bth moment of the SIR or SNR in tier i.

In our case, we have Â2(l2) which is the conditional associ-

ation probability to mm-wave SBS where l2 ∈ {L,N} since

a device can associate to either LOS or NLOS mm-wave

SBS. The step (b) follows from the fact that the CSP of the

dual-hop transmission depends on the CSP of access and

backhaul link; therefore, we have a product of the access

and backhaul CSPs, i.e., Ps,BH(θ2)Ps,2(θD) that are indepen-

dent random variables. There is no correlation since µwave

backhaul does not interfere with mm-wave transmissions.

The step (c) follows from the fact if X and Y are inde-

pendent then E[(XY)b] = E[Xb]E[Yb]. Finally, the step (d)

follows from the definition of Â2(l2) in Lemma 2 and the

step (e) follows by applying the definition of moments.

In the next section, we derive the CSP of access, backhaul,

and direct links along with their respective bth moments, as

needed in Lemma 4 to characterize the overall moment as

well as the meta distribution.

V. CHARACTERIZATION OF THE CSPS AND MOMENTS

In this section, we derive the CSPs Ps,BH(θ2), Ps,2(θD),

Ps,1(θD) and the bth moments Mb,BH(θ2), Mb,2(θD), and

Mb,1(θD) for backhaul link, access link, and direct link,

respectively.

A. CSP AND THE BTH MOMENT - ACCESS LINK

We condition on having a device at the origin which becomes

the typical device. The CSP of the typical device at the origin

associating with the mm-wave SBS-tier (when k = 2) can

be described as follows:

Ps,2(θD) = pLPs,2,L(θD) + pNPs,2,N(θD). (15)

The CSP of the SNR of a device on the access link

with LOS can be defined by substituting SNR2,D defined in

Eq. (5) into Definition 1 as follows:

Ps,2,L(θD) = P

(

hL(0, y) >
θDr

α2,L

2,D
σ 2

2

P2G2ζ2
|�1,�2, tx

)

,

(a)= 1 −
γ

(

mL,
mL
	L

νL

)

Ŵ(mL)

(b)=
Ŵ

(

mL,
mL
	L

νL

)

Ŵ(mL)
, (16)

where (a) follows from the definition of νL
�= θDr

α2,L
2,D

σ 2
2

P2G2ζ2

and the fact that the channel gain hL(0, y) is a normalized

gamma random variable and γ (., .) is the lower incomplete

gamma function and Ŵ(s) = γ (s, x) + Ŵ(s, x), where Ŵ(., .)

is the upper incomplete gamma function. Similarly, CSP of

Mb,2(θD) =
b
∑

k=0

(
b

k

)

(−1)k

⎛

⎝pbL

mLk∑

k̂=0

(
mLk

k̂

)

(−1)k̂
∫ d

α2,L

0

e−ζL k̂ν̂Ll2,LÂ2,L(l2,L)dl2,L

+ pbN

mNk∑

k̂=0

(
mNk

k̂

)

(−1)k̂
∫ ∞

d
α2,N

e−ζN k̂ν̂N l2,NÂ2,N(l2,N)dl2,N

⎞

⎠ (18)
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the SNR on the access link for NLOS case can be given

as follows:

Ps,2,N(θD) =
Ŵ

(

mN,
mN
	N

νN

)

Ŵ(mN)
, (17)

where νN
�= θDr

α2,N
2,D

σ 2
2

P2G2
. As such, the bth moment of the CSP

on the access link for the typical device when it is served

by the mm-wave SBS tier is given by the following.

Lemma 4: The bth moment of the SNR at an “access

link” when a device associates with a mm-wave SBS can

be characterized in Eq. (18) as shown at the bottom of the

previous page, where Â2,L(l2,L) and Â2,N(l2,N) are given

in Lemma 2, ζL
�= mL(mL!)−1/mL , νL

�= θDr
α2,L
2,D

σ 2
2

P2G2ζ2
, ζN

�=

mN(mN!)−1/mN , and νN
�= θDr

α2,N
2,D

σ 2
2

P2G2
, ν̂L

�= νL
r
α2,L = νL

l2,L
=

θDσ 2
2

P2G2
and ν̂N

�= νN
r
α2,N = νN

l2,N
= θDσ 2

2
P2G2

.

Proof: See Appendix A.

For α1 = 4, α2,L = 2, and α2,N = 4, we can get Mb,2(θD)

in closed-form using Corollary 1. Also, for scenarios where

N → ∞, α1 = 4, α2,L = 2, and α2,N = 4, then ā → 0. Also,

ν̂L → 0 and ν̂N → 0, we can get Mb,2(θD) in closed-form

using Corollary 2.

B. CSP AND MOMENT - BACKHAUL LINK

For the backhaul link, we condition on having a SBS at the

origin which becomes the typical SBS. Using the expression

of SIR1,2 in Eq. (3) the CSP of the backhaul link Ps,BH(θ2)

can be given as:

Ps,BH(θ2) = P

(

g(0, y) >
θ2r

α1

1,2

P1
I1,2|�1,�2, tx

)

,

(a)= E

⎡

⎣exp

⎛

⎝−θ2r
α1

1,2

∑

y∈�1\{y1,0}
‖y‖−α1g(0, y)

⎞

⎠

⎤

⎦,

=
∏

y∈�1\{y1,0}
E

[

exp
(

−θ2r
α1

1,2‖y‖
−α1g(0, y)

)]

,

(b)=
∏

y∈�1\{y1,0}

1

1 + θ2

(
r1,2

‖y‖

)α1
. (19)

where (a) follows from the Rayleigh fading channel gain

g(0, y) ∼ exp(1) and (b) is found by taking the expectation

with respect to g(0, y). Following [14], the bth moment of

the CSP on the backhaul link is given as:

Mb,BH(θ2) = E

[

Ps,BH(θ2)
b
]

,

= E

⎡

⎢
⎣

∏

y∈�1\{y1,0}

1
(

1 + θ2

(
r1,2

‖y‖

)α1
)b

⎤

⎥
⎦,

(a)=
(

1 + 2

∫ 1

0

(

1 − 1

(1 + θ2rα1)b

)

r−3dr

)−1

,

= 1

2F1

(

b,− 2
α1

; 1 − 2
α1

;−θ2

) , (20)

where (a) follows from the probability generating func-

tional (PGFL) of the relative distance process generated

by a PPP, i.e., GR[f ]
�= E

∏

x∈R f (x) = 1

1+2
∫ 1

0 (1−f (x))x−3dx

[37, Lemma 1] and 2F1(., .; .; .) represents Gauss’ hyperge-

ometric function where R is the relative distance process

defined in [37, Definition 2].

C. CSP AND MOMENT - DIRECT LINK

Using the expression of SIR1,D in Eq. (4), we calculate the

CSP of the direct link Ps,1(θD) as follows:

Ps,1(θD) = P

(

g(0, y) >
θDr

α1

1,D

P1
I1,D|�1,�2, tx

)

,

(a)= E

⎡

⎣exp

⎛

⎝−θDr
α1

1,D

∑

y∈�1\{y1,0}
‖y‖−α1g(0, y)

⎞

⎠

⎤

⎦,

=
∏

y∈�1\{y1,0}
E

[

exp
(

−θDr
α1

1,D
‖y‖−α1g(0, y)

)]

,

(b)=
∏

y∈�1\{y1,0}

1

1 + θD

(
r1,D

‖y‖

)α1
, (21)

where (a) follows from the channel gain g(0, y) ∼ exp(1)

and is independently exponentially distributed with unit mean

and (b) is obtained by taking the expectation with respect to

g(0, y). While taking the association probabilities into con-

sideration, the bth moment of the CSP Ps,1(θD) of the typical

device when it is served by a µwave MBS is characterized

in the following lemma.

Lemma 5 [The bth moment of the CSP (Ps,1(θD)) when a

device associates with a MBS]: The bth moment of the CSP

experienced by a device, when the device associates with

a MBS, can be characterized in Eq. (22) as shown at the

bottom of the page.

Proof: See Appendix B.

Mb,1(θD) = 2πλ1

âα1

{
∫ d

α2,L

0

H(l1) exp

(

−πλ2pLl

2
α2,L

1

)

dl1 +
∫ d

α2,N

d
α2,L

H(l1) exp
(

−πλ2pLd
2
)

dl1 +
∫ ∞

d
α2,N

H(l1)

× exp

(

−πλ2

[

pLd
2 + pN

(

l

2
α2,N

1 − d2

)])

dl1

}

× exp

⎛

⎜
⎝

−2λ1π l
2
α1

1

α1

∫ 1

0

[

1 − 1

(1 + θDv)
b

]
1

v
2
α1

+1
dv

⎞

⎟
⎠

(22)
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Note that
∫ 1

0 [1 − 1
(1+θDv)

b ] 1

v
2
α1

+1
dv is independent of l1,

thus where N → ∞ or α1 = 4, α2,L = 2, and α2,N = 4,

then we can get a closed-form for the three integral over l1
using Corollary 1 and Corollary 2.

D. COMBINED BTH MOMENT OF THE CSP IN HYBRID

NETWORKS

After substituting the values of Mb,BH(θ2), Mb,2(θD), and

Mb,1(θD) in Eq. (20), Eq. (18), and Eq. (22), respectively

into the total meta distribution for the entire network in

Eq. (14), we get the bth moment of the CSP at the typical

device as shown in Eq. (23) as shown at the bottom of the

page.

In the next section, we use the combined bth moment

in (23) to compute the meta distributions of SIR/SNR

and data rate using Gil-Pelaez inversion and the beta

approximation.

VI. COMPUTING THE META DISTRIBUTIONS AND

SPECIAL CASES

In this section, we compute the meta distribution of SIR/SNR

using Gil-Pelaez inversion and beta approximation by apply-

ing the derived result of Mb,T. Special cases where b = 1

provides the standard coverage probability and b = −1 pro-

vides the mean local delay are discussed. Further, we show

how to evaluate the data rate meta distribution from the

derived framework.

A. COMPUTING THE META DISTRIBUTION OF SIR/SNR

Technically, substituting b = jt in (23), we should obtain the

imaginary moments Mjt,T. However, since the expression of

Mjt,T relies on a binomial expansion of power b, the results

cannot be obtained directly through substitution. Therefore,

we apply Newton’s generalized binomial theorem given as

follows.

Definition 2: The binomial expansion for an imaginary

power r is given as follows (x+y)r =
∑r

k=0

(
r
k

)

xr−kyk using
the Isaac Newton‘s generalized binomial theorem to allow

real exponents other than non-negative integers, i.e., imagi-

nary exponent r, as
(
r
k

)

= r(r−1)···(r−k+1)
k!

= (r)k
k!

, where (.)k
is the Pochhammer symbol, which stands here for a falling

factorial.

Applying Definition 2 in step (e) of Appendix C, we

then obtain the expression for Mjt,T as shown in Eq. (24) as

shown at the bottom of the page.

The imaginary moments can be substituted in the Gil-

Pelaez inversion theorem as in Definition 1 to obtain F̄Ps,T.

Furthermore, we follow [14], [16], [38] to approximate

the meta distribution by a beta distribution by matching

the first and second moments, which are easily obtained

from the general result in Eq. (23) by substituting b = 1

and b = 2 to get M1,T and M2,T, respectively. Taking

β
�= (M1,T−M2,T)(1−M1,T)

M2,T−M2
1,T

, the meta distribution using beta

approximation can be given as follows:

F̄Ps,T(x) ≈ 1 − Ix

(
βM1,T

1 −M1,T
, β

)

, x ∈ [0, 1]. (25)

B. MEAN AND VARIANCE OF THE LOCAL DELAY

The mean local delay is the mean number of transmission

attempts, i.e., re-transmissions, needed to successfully trans-

mit a packet to the target receiver. The mean local delay

M−1,T which is the −1st moment of the CSP of the typ-

ical device should be calculated by substituting b = −1

in Eq. (23). However, since the expression of Mb,T relies

on a binomial expansion of power b, the results cannot be

obtained directly through substitution. Therefore, we apply

binomial theorem for the negative integers as follows: the

binomial theorem for a negative integer power n can be

given [39] as

(x+ y)n =
∞
∑

k=0

(−1)k
(−n+ k − 1

k

)

yn−kxk, (26)

Applying Eq. (26) in step (e) of Appendix C, we then

obtain the expression for M−1,T as in Eq. (27) at the bottom

of the next page.

Mb,T = 1

2F1

(

b,− 2
α1

; 1 − 2
α1

;−θ2

) ×

⎧

⎨

⎩

b
∑

k=0

(
b

k

)

(−1)k

⎛

⎝pbL

mLk∑

k̂=0

(
mLk

k̂

)

(−1)k̂
∫ d

α2,L

0

e−ζL k̂ν̂Ll2,LÂ2,L

(

l2,L

)

dl2,L

+ pbN

mNk∑

k̂=0

(
mNk

k̂

)

(−1)k̂
∫ ∞

d
α2,N

e−ζN k̂ν̂N l2,NÂ2,N

(

l2,N

)

dl2,N

⎞

⎠

⎫

⎬

⎭

+ Mb,1(θD) (23)

Mjt,T = 1

2F1

(

jt,− 2
α1

; 1 − 2
α1

;−θ2

) ×

⎧

⎨

⎩
p
jt
L

∞
∑

k=0

(jt)k

k!
(−1)k

mLk∑

k̂=0

(
mLk

k̂

)

(−1)k̂
∫ d

α2,L

0

e−ζL k̂ν̂Ll2,LÂ2,L

(

l2,L

)

dl2,L + p
jt
N

∞
∑

k=0

(jt)k

k!

× (−1)k
mNk∑

k̂=0

(
mNk

k̂

)

(−1)k̂
∫ ∞

d
α2,N

e−ζN k̂ν̂N l2,NÂ2,N

(

l2,N

)

dl2,N

⎫

⎬

⎭
+Mjt,1(θD) (24)
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Remark: In order to better characterize the fluctuation of

the local delay, the variance of the local delay also referred

to as network jitter can be given by NJ = M−2,T −M2
−1,T.

C. THE META DISTRIBUTION OF THE DATA RATE IN

HYBRID SPECTRUM NETWORKS

Let T denote the data rate (in bits/sec) of the typical device

on a specific transmission link which is a random variable

and is defined as R = W log2(1 + SIR) using Shannon

capacity. Using the meta distribution of the SIR, the meta

distribution of the data rate can be derived to present the

fraction of active devices in each realization of the point

process that have a data rate R greater than T with proba-

bility at least x, i.e., devices data rate reliability threshold.

That is, first deriving the CSP of the data rate as follows:

P[R > T |�, tx] = P
[

W log2(1 + SIR) > T |�, tx
]

,

= P

[

SIR > 2
T
W − 1|�, tx

]

, (28)

where Ps(2
T
W − 1)

�= P(SIR > 2
T
W − 1|�1, tx) denote the

CSP of the device data rate over single link. Finally, deriving

the bth moment of the CSP of the data rate and applying

Gil-Pelaez inversion we can obtain the meta distribution of

the data rate.

Corollary 3: Similar to the meta distribution of the

SIR/SNR derived in Lemma 3 and conditioned on the loca-

tion of the point process, we derive the meta distribution

of the data rate in hybrid 5G cellular networks, using the

moment Qb of the conditional data rate as follows:

Qb(T )

= E

[

Â2(l2)P
0

(

Ps,BH

(

2
TBH

(1−η)W1 − 1

)

Ps,2

(

2
T2
W2 − 1

)

> x

)]

+ E

[

Â1(l1)P
0

(

Ps,1

(

2
T1
ηW1 − 1

)

> x

)]

,

= Mb,BH

(

2
TBH

(1−η)W1 − 1

)

Mb,2

(

2
T2
W2 − 1

)

+Mb,1

(

2
T1
ηW1 − 1

)

,

(29)

where Ps,1(2
T1
ηW1 − 1)

�= P(SIR1,D > 2
T1
ηW1 − 1|�1, tx),

Ps,BH(2
TBH

(1−η)W1 − 1)
�= P(SIR1,2 > 2

TBH
(1−η)W1 − 1|�1, tx), and

Ps,2(2
T2
W2 − 1)

�= P(SNR2,D > 2
T2
W2 − 1|�2, tx) denote the

CSP of the device data rate on the direct, backhaul, and

access link, respectively.

In the following section, we discuss the application of this

framework to two scenarios (i) µwave only network and (ii)

mm-wave backhauls and microwave access links.

VII. EXTENSIONS OF THE MODEL TO OTHER NETWORK

ARCHITECTURES

The framework discussed above can be flexibly applied to

different network architectures. In this section we discuss

how to extend the framework to two other network architec-

tures: 1) both tiers operating in the sub-6GHz (microwave)

spectrum as in traditional cellular networks; and 2) the two

tiers operating in two millimeter-wave spectrums that are

orthogonal to each other. Due to space limitation, we pro-

vide only general directions of how to extend the earlier

framework to these two other network architectures.

A. THE META DISTRIBUTION OF THE SIR IN

MICROWAVE-ONLY CELLULAR NETWORKS

We characterize the meta distribution of the downlink SIR

attained at the typical device in a µwave-only cellular

network, i.e., the access and backhaul links of SBSs operate

in the µwave frequency. A device associates with either a

serving MBS for direct transmissions (when k = 1) or a SBS

for dual-hop transmissions (when k = 2), depending on the

biased received signal power criterion. MBSs and SBSs are

assumed to operate on orthogonal spectrums; thus, there is

no inter-tier interference. On the other hand, each SBS asso-

ciates with a MBS based on the maximum received power

at the SBS. The association criterion for the typical device

can be described as follows [40]:

PkBk

(

min
i

∥
∥yk,i − x

∥
∥

)−αk

≥ PjBj

(

min
i′

∥
∥yj,i′ − x

∥
∥

)−αj

,∀j

(30)

where ‖.‖ denotes the Euclidean distance. The typical device

associates with a serving node (given by Eq. (30)), which is

termed the tagged SBS. For the sake of clarity, we define

P̂jk
�= Pj

Pk
, B̂jk

�= Bj
Bk
, λ̂jk

�= λj
λk
. As derived in [40], the

conditional association probability for the typical device con-

necting to the kth tier (conditional over the desired link

distance rD,k) is as follows:

P
(

n = k|rD,k

)

=
∏

j 
=k
e
−πλj

(

P̂jkB̂jk

)2/αj
r2

, (31)

where n denotes the index of the tier associating with

the typical device. We calculate the CSP Ps,2′(θD) (when

k = 2) of the access link operating in the µwave band as

M−1,T = 1

2F1

(

−1,− 2
α1

; 1 − 2
α1

;−θ2

) ×

⎧

⎨

⎩
p−1
L

∞
∑

k=0

mLk∑

k̂=0

(
mLk

k̂

)

(−1)k̂
∫ d

α2,L

0

e−ζL k̂ν̂Ll2,LÂ2,L

(

l2,L

)

dl2,L + p−1
N

∞
∑

k=0

mNk∑

k̂=0

(
mNk

k̂

)

× (−1)k̂
∫ ∞

d
α2,N

e−ζN k̂ν̂N l2,NÂ2,N

(

l2,N

)

dl2,N

⎫

⎬

⎭
+M−1,1(θD) (27)
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follows:

Ps,2′(θD)

= P

(

g
(

0, y2,0

)

>
θDr

α2

2,D

P2
I2,D|�1,�2, tx

)

,

(a)= E

⎡

⎣exp

⎛

⎝−θDr
α2

2,D

∑

y2,i∈�2\{y2,0}

∥
∥y2,i

∥
∥

−α2g
(

0, y2,i

)

⎞

⎠

⎤

⎦,

(b)=
∏

y2,i∈�2\{y2,0}

1

1 + θD

(
r2,D

‖y2,i‖
)α2

. (32)

where (a) follows from the channel gain g(0, y2,0) ∼ exp(1)

and is independently exponentially distributed with unit mean

and (b) is obtained by taking the expectation with respect

to g(0, y2,i).

Lemma 6: Using Eq. (21) and Eq. (32), we calculate a

general expression for the bth moment of the CSP on direct

link Mb,k’ (when k = 2) and the bth moment of the CSP at

access link (when k = 1) as:

Mb,k’ = 1

∑

j 
=k
λ̂jk

(

P̂jkB̂jk

)2/αj
+2 F1

(

b,− 2
αk

; 1 − 2
αk

;−θD

) .

(33)

Proof: See Appendix C.

Note that Lemma 5 is novel and different from [41] where

we derive the bth moment of CSP for orthogonal spectrum

two tier network while the work in [41] is done for shared

spectrum tiers. Similarly, the moment of the CSP of the

typical device with offloading biases is as follows:

Mb,T = Mb,dual-hop
︸ ︷︷ ︸

Dual-hop transmission

+ Mb,1′(θD)
︸ ︷︷ ︸

Direct transmission

,

(a)= Mb,BH(θ2)Mb,2′(θD) +Mb,1′(θD), (34)

where Mb,BH(θ2), Mb,2′(θD), and Mb,1′(θD) are defined in

Eq. (20), Eq. (33) (when k = 2), and Eq. (33) (when k = 1),

respectively. The step (a) follows from the similar approach

as taken in Lemma 4.

Mb,dual-hop

= E

⎡

⎣Ps,BH(θ2)
b ×

∏

j 
=k
e
−πλj

(

P̂jkB̂jk

)2/αj
r2

Ps,2′(θD)b

⎤

⎦,

(a)= E

[

Ps,BH(θ2)
b
]

︸ ︷︷ ︸

Mb,BH(θ2)(Backhaul link)

E

⎡

⎣

∏

j 
=k
e
−πλj

(

P̂jkB̂jk

)2/αj
r2

Ps,2′(θD)b

⎤

⎦

︸ ︷︷ ︸

Mb,2(θD)(access link)

,

(b)= 1

2F1

(

b,− 2
α1

; 1 − 2
α1

;−θ2

)

× 1

λ̂12

(

P̂12B̂12

)2/α1 +2 F1

(

b,− 2
α2

; 1 − 2
α2

;−θD

) , (35)

where (a) follows from the independence between the loca-

tion of the MBSs and SBSs. In step (b) we substitute

Mb,BH(θ2) from Eq. (20) and Mb,2’(θD) into Eq. (33) when

k = 2. By substituting Eq. (35) and Eq. (33) (when k = 1)

in Eq. (34), we get the bth moment Mb,T. Finally, by substi-

tuting Mb,T in Eq. (34) into either Eq. (13) or Eq. (8), we

get the meta distribution.

B. EXTENSIONS TO MILLIMETER-WAVE BACKHAULS

NETWORKS

The proposed framework can be extended to a scenario

where the backhaul and access transmissions are conducted

on orthogonal mm-wave spectrums. Note that Eq. (3) will

be changed similar to Eq. (5). Then, only the first term,

Mb,BH(θ2) in the main Eq. (14) of our model that char-

acterizes the moment of the CSP in the backhaul will be

re-defined as Mb,BH(θ2) = E[Pbs,2(θ2)].The framework can

also be extended to a scenario where the backhaul trans-

missions are conducted on the mm-wave spectrum and the

access links of SBSs operate on µ-wave. In this case, we

will need to use the results in Section VII-A while redefining

the term Mb,BH(θ2) as Mb,BH(θ2) = E[Pbs,2(θ2)] in (35).

VIII. NUMERICAL RESULTS AND DISCUSSIONS

We present the simulation parameters in Section VIII-A.

Then, we validate our numerical results using Monte-Carlo

simulations in Section VIII-B. In Section VIII-B, we use

the developed analytical models to obtain insights related to

the meta distribution of the SIR/SNR of the typical device,

mean and variance of the success probability, transmission

delay, and the reliability of the typical device in the downlink

direction.

A. SIMULATION PARAMETERS

Unless otherwise stated, we use the following simulation

parameters throughout our numerical results. The trans-

mission powers of MBSs and SBSs in the downlink are

P1 = 50 Watts and P2 = 5 Watts, respectively. The size

of the simulated network is 90km × 90km. We assume

that the density of MBSs is λ1 = 2 MBSs/km2 and the

density of SBSs is λ2 = 70 SBSs/km2. The offloading

biases for the MBSs and the SBSs are B1 = B2 = 1,

respectively. The PLE for MBSs is set to α1 = 4 and

for mm-wave SBSs, α2,L = 2 in the case of LOS and

α2,N = 4 in the case of NLOS. The network downlink

bandwidth is 100 MHz for µwave MBSs and 1 GHz for

mm-wave SBSs with channel frequency 28 GHz. The LOS

(NLOS) states are modeled by large (small) values of m,

i.e., mL = 2 and mN = 1 [20]. SBSs number of antenna

elements is N = 10. The receiver noise is calculated

as [10] σ 2
2 = −174 dBm/Hz+ 10 log10(W2)+ 10 dB, where

W2 = 1 GHz is bandwidth allocated to the mm-wave SBSs.

The antenna gains of MBSs are Go
1 = 0 dB and devices

directional antenna gain is Gmax
D

= 10 dB.
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FIGURE 2. Coverage probability M1,T and variance M2,T − M2
1,T

as a function of θ

considering Nakagami-m fading when B1 = B2 = 1 and d = 200m.

FIGURE 3. Coverage probability M1,T and variance M2,T − M2
1,T

as a function of θ

for Rayleigh fading (i.e., mL = mN = 1, when B1 = B2 = 1 and d = 200m).

B. NUMERICAL RESULTS AND DISCUSSIONS

1) COVERAGE AND VARIANCE AS A FUNCTION OF

SIR/SNR THRESHOLD IN HYBRID SPECTRUM

NETWORKS

Fig. 2 illustrates the standard success probability M1,T and

its variance M2,T − M2
1,T as a function of target SIR/SNR

threshold θ of devices in a hybrid spectrum network. As we

can see in Fig. 2 that the simulation results match the ana-

lytical results, however the slight gap is due to the Alzer’s

inequality considered in Appendix C. This gap will be zero

when Nakagami fading turns into Rayleigh fading as shown

in the next figure. By examining Fig. 2, a numerical evalu-

ation shows that the variance is maximized at θ = −3 dB

where the success is M1,T = 0.49. For moderate values of θ ,

there is a trade-off between maximizing coverage or reduc-

ing variance because the variance first increases and then

decreases while the coverage probability is monotonically

decreasing. For higher values of θ , lower coverage proba-

bilities have lower variance so its a low-reliability regime

where more devices’ performances are spread around low

coverage probability. As such, the low values of θ provides

a higher reliability regime.

Fig. 3 illustrates the standard success probability M1,T and

the variance as a function of θ with Rayleigh fading (i.e.,

mL = mN = 1). As we can see in Fig. 3 that the simulation

FIGURE 4. Coverage probability M1,T and variance M2,T − M2
1,T

as a function of N

for hybrid spectrum network when B1 = B2 = 1, and d = 200m.

FIGURE 5. Coverage probability M1,T and variance M2,T − M2
1,T

as a function of θ

for µwave-only network when α1 = α2 = 4, B1 = 1, and B2 = 1 and 30.

results closely match the analytical results. The reason is that

the approximation of the incomplete gamma function (also

referred to as Alzer’s inequality) becomes exact when mL
becomes equal to unity. Subsequently, this figure explains the

reason for the gap between the simulation and the analytical

curves in Fig. 2.

2) COVERAGE AND VARIANCE AS A FUNCTION OF THE

NUMBER OF ANTENNA ARRAY ELEMENTS IN HYBRID

SPECTRUM NETWORKS

Fig. 4 depicts the coverage probability and variance as a

function of θ considering the number of antenna array ele-

ments as N = 10, 20, and 30 to show the effect of higher

directional antenna gains. The general trends for the cover-

age probability and its variance are found to be the same as

in previous figures. The main observation is that although

the coverage enhancement is not significant with increasing

antenna elements, the reduction in the variance is notice-

able which supports higher directional antenna gains and

the importance of analyzing the higher moments of the CSP.

3) COVERAGE AND VARIANCE AS A FUNCTION OF B2 IN

µWAVE-ONLY NETWORKS

In Fig. 5, we study the effect of offloading devices from the

MBS tier to the SBSs tier in terms of the coverage probability
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FIGURE 6. Mean local delay M
−1,T as a function of λ2 for the hybrid spectrum

network when λ1 = 2 MBS/km2, B1 = 1, B2 = 10, α1 = 4, d = 200m, and

θ = θD = θ2 = −10 dB.

(which is the mean reliability) and the variance of the CSP

(or reliability). By offloading devices from the MBS tier to

the SBSs tier when B2 = 30, the coverage probability M1,T

suffers due to the dual-hop transmission effect in wireless

backhauled SBSs; however the variance of the results reduces

which is a novel and positive insight. Another observation

is that the variance of the CSP in µwave-only network is

high compared to the hybrid network. This can be shown by

comparing points V1 = (1, 0.1) in Fig. 4 and V2 = (4, 0.19)

in Fig. 5, for the case of B1 = B2 = 1. We noticed that

the variance has decreased from 0.19 to 0.1 when the SBS

antenna array size is increased to N = 20. This implies that

the hybrid spectrum network outperforms the µwave-only

network due to the directional antenna gains.

4) MEAN LOCAL DELAY (µWAVE VS MM-WAVE SBSS)

Fig. 6 depicts the mean local delay experienced by the typical

device as a function of the SBSs density λ2 in a hybrid spec-

trum network. The mean local delay is the mean number of

transmission attempts to successfully transmit a packet. The

mean local delay increases by increasing λ2. After the SBS

density reaches λ2 = 20 SBSs/km2, the mean local delay

stays constant at value 1.11. This result can be intuitively

explained as follows. When the mm-wave SBS density is low,

the typical device has a higher probability to connect to a

MBS, i.e., the mean local delay of the network results from

only one hop communication (from the MBS to the device).

However, when the λ2 increases, the typical device has a

higher probability to connect to a mm-wave SBS, i.e., the

network local delay results from two hops communication

(from the MBS to the SBS then from the SBS to the device).

Furthermore, the beamforming high directional gain steer-

able antennas will push more devices to associate with SBSs

thus a higher network delay is observed. Fig. 7 shows that, all

else being equal, the mean local delay of the hybrid spectrum

network is lower than that of the µwave-only network.

Fig. 7 depicts the mean local delay for a µwave-only

network as a function of λ2. When λ2 increases the mean

local delay of the total network increases again due to the

FIGURE 7. Mean local delay M
−1,T as a function of λ2 for the µwave-only network

when λ1 = 2 MBS/km2, B1 = 1 and B2 = 10, α1 = α2 = 3 and 4, and

θ = θD = θ2 = −10 dB.

FIGURE 8. The meta distribution of the achievable data rate as a function of

reliability x for different number of antenna elements N with rate threshold

T = 1 Gbps.

increase in interference which is not the case in the hybrid

spectrum network. The network mean local delay in the case

of α1 = α2 = 3 is higher than that in the case of α1 = α2 = 4

due to higher path loss degradation for higher PLEs.

5) THE META DISTRIBUTION OF THE ACHIEVABLE DATA

RATE IN HYBRID SPECTRUM NETWORKS

Fig. 8 depicts the meta distribution of the data rate in hybrid

spectrum networks as a function of reliability x for different

number of antenna elements N = 10, 20, 40, and 50 with

rate threshold T = 1 Gbps. As shown in Fig. 8, the fraction

of devices achieving a required rate increases as the number

of antennas elements increases. In other words, increasing

the number of antenna elements of SBSs has a positive effect

on the achievable rate and its meta distribution. This insight

helps 5G cellular network operators to find the most efficient

operating antenna configuration to achieve certain reliability

for certain 5G applications.

6) THE META DISTRIBUTION IN A MICROWAVE-ONLY

NETWORK

In Fig. 9, we validate our analysis by depicting the exact (Gil-

Pelaez) meta distribution in a µwave-only network defined in

Eq. (13), and the beta approximation for the meta distribution
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FIGURE 9. The meta distribution as a function of reliability x for θ = θD = θ2 =10,

1, and 0.1 for SBSs in a µwave-only network when B1 = B2 = 1 and α1 = α2 = 4.

defined in Eq. (8). Our simulation result provides a good

match for a wide range of θ values and this validates the

accuracy of our analytical model. The small gap between the

analytical model and simulation results when θ = 1 is due to

breaking the correlation between �1 and �2 for tractability

in Lemma 3. Fig. 9 also serves as an illustration of the meta

distribution of the SIR of the typical device in a µwave-only

network. We note that about 23% of devices (when θ = 10),

72% of devices (when θ = 1), and 98% of devices (when

θ = 0.1) have reliability, i.e., success probability, at least

0.3.

IX. CONCLUSION

This paper characterizes the meta distributions of the

SIR/SNR and data rate of the typical device in a hybrid

spectrum network. The meta distribution is evaluated first

by formulating and then characterizing the moments of the

CSP of the typical device in the hybrid network. Important

performance metrics such as the mean local delay, cov-

erage probability, network jitter, and variance of the CSP

(or reliability) are studied. Numerical results demonstrate

the significance of evaluating the meta distribution which

requires a systematic evaluation of the generalized moment

of order b that helps in evaluating network metric such as

coverage probability when b = 1, mean local delay when

b = −1, network jitter using b = −2 and b = −1, etc.

APPENDIX A

PROOF OF LEMMA 4

The bth moment of the CSP of the typical device served by

the mm-wave SBS is derived as:

Mb,2(θD) = El

⎡

⎢
⎢
⎣
P
(

n = 2|L2,min = l2
)

︸ ︷︷ ︸

Â2(l2)

Ps,2(θD)b

⎤

⎥
⎥
⎦

,

= El

[

Â2(l2)
(

pLPs,2,L(θD) + pNPs,2,N(θD)
)b
]

,

(a)= El

⎡

⎢
⎣Â2(l2)

⎛

⎝pL

Ŵ

(

mL,
mL
	L

νL

)

Ŵ(mL)
+ pN

Ŵ

(

mN ,
mN
	N

νN

)

Ŵ(mN)

⎞

⎠

b
⎤

⎥
⎦,

= El

⎡

⎢
⎣

(

Â2,L

(

l2,L

)

+ Â2,N

(

l2,N

)
)

×

⎛

⎝pL

Ŵ

(

mL,
mL
	L

νL

)

Ŵ(mL)
+ pN

Ŵ

(

mN ,
mN
	N

νN

)

Ŵ(mN)

⎞

⎠

b
⎤

⎥
⎦,

(b)= El

⎡

⎢
⎣Â2,L

(

l2,L

)

⎛

⎝pL

Ŵ

(

mL,
mL
	L

νL

)

Ŵ(mL)

⎞

⎠

b
⎤

⎥
⎦

+ El

⎡

⎢
⎣Â2,N

(

l2,N

)

⎛

⎝pN

Ŵ

(

mN ,
mN
	N

νN

)

Ŵ(mN)

⎞

⎠

b
⎤

⎥
⎦,

(c)= El

⎡

⎢
⎣Â2,L

(

l2,L

)

pbL

⎛

⎝1 −
γ

(

mL,
mL
	L

νL

)

Ŵ(mL)

⎞

⎠

b
⎤

⎥
⎦

+ El

⎡

⎢
⎣Â2,N

(

l2,N

)

pbN

⎛

⎝1 −
γ

(

mN ,
mN
	N

νN

)

Ŵ(mN)

⎞

⎠

b
⎤

⎥
⎦,

(d)
≈ El

[

Â2,L

(

l2,L

)

pbL

(

1 −
[

1 − e−ζLνL
]mL
)b
]

+ El

[

Â2,N

(

l2,N

)

pbN

(

1 −
[

1 − e−ζNνN
]mN

)b
]

,

(e)= El

[

Â2,L

(

l2,L

)

pbL

b
∑

k=0

(
b

k

)
(

−
[

1 − e−ζLνL
]mL
)k
]

+ El

[

Â2,N

(

l2,N

)

pbN

b
∑

k=0

(
b

k

)
(

−
[

1 − e−ζNνN
]mN

)k
]

,

(f )= El

⎡

⎣Â2,L

(

l2,L

)

pbL

b
∑

k=0

mLk∑

k̂=0

(
b

k

)(
mLk

k̂

)

(−1)k̂+ke−ζLνL k̂

⎤

⎦

+ El

⎡

⎣Â2,N

(

l2,N

)

pbN

b
∑

k=0

mNk∑

k̂=0

(
b

k

)(
mNk

k̂

)

× (−1)k̂+ke−ζNνN k̂

⎤

⎦,

where (a) follows from substituting the value of Ps,2,L(θD)

and Ps,2,N(θD) from Eq. (16) and Eq. (17), respectively, (b)

follows from l2,L = r
α2,L

2,D
and l2,N = r

α2,N

2,D
and the considered

blockage model where pL = 1 when mm-wave intended link

distance r2,D < d and pN = 1 when mm-wave intended

link distance r2,D > d, (c) follows from Ŵ(s) = γ (s, x) +
Ŵ(s, x), (d) follows from the CDF of gamma random variable

which can be tightly upper bounded by
γ (mL,

mL
	L

νL)

Ŵ(mL)
< [1 −

e−ζLνL ]mL [42], where ζL
�= mL(mL!)−1/mL , νL

�= θDr
α2,L
2,D

σ 2
2

P2G2ζ2
,

ζN
�= mN(mN!)−1/mN , and νN

�= θDr
α2,N
2,D

σ 2
2

P2G2
[19]. The steps

in (e) and (f) are done by following the binomial expansion

theorem. Finally, the Lemma 4 follows from de-conditioning

on l and using the definitions ν̂L
�= νL

r
α2,L
2,D

= νL
l2,L

= θDσ 2
2

P2G2
and

ν̂N
�= νN

r
α2,N
2,D

= νN
l2,N

= θDσ 2
2

P2G2
.
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APPENDIX B

PROOF OF LEMMA 5

The bth moment of the CSP of the typical device when

associated to µwave MBS is derived as:

Mb,1(θD)

= El1

⎡

⎢
⎢
⎣
P
(

n = 1|L1,min = l1
)

︸ ︷︷ ︸

Â1(l1)

Ps,1(θD)b

⎤

⎥
⎥
⎦

,

(a)= El1

⎡

⎢
⎣Â1(l1)

∏

y1,i∈�1\{y1,0}

1
(

1 + θD

(
r1,D

‖y1,i‖
)α1
)b

⎤

⎥
⎦,

(b)= El1

⎡

⎢
⎣Â1(l1) exp

⎛

⎜
⎝

∫ ∞

r

−2λ1π

⎡

⎢
⎣1 − 1

(

1 + θD

(
r
y

)α1
)b

⎤

⎥
⎦ydy

⎞

⎟
⎠

⎤

⎥
⎦

(c)= El1

⎡

⎢
⎣Â1(l1) exp

⎛

⎜
⎝

∫ ∞

l

1
α1
1

−2λ1π

⎡

⎢
⎣1 − 1

(

1 + θD
l1
yα1

)b

⎤

⎥
⎦ydy

⎞

⎟
⎠,

(d)= El1

[

Â1(l1) exp

(
∫ 1

0

−2λ1π

[

1 − 1

(1 + θDv)
b

]

v−1 y
2

α1
dv

)]

,

(e)= El1

⎡

⎢
⎣Â1(l1) × exp

⎛

⎜
⎝

−2λ1π l
2

α1

1

α1

∫ 1

0

[

1 − 1

(1 + θDv)
b

]
1

v
2

α1
+1

dv

⎞

⎟
⎠

⎤

⎥
⎦,

where (a) follows from taking expectation over l1 = rα1

and considering the conditional association probability for

the typical device connecting to the MBSs tier given in

Lemma (1) and substituting the value of Ps,1(θD) from

Eq. (21). In step (b) we apply PGFL of the PPP [43, Ch. 4].

Step (c) follows from averaging over l1. In step (d), we

use the change of variable v = l1
yα1 , dy = −1

α1l1y
−α1−1 dv =

−1
α1
v−1ydv, when y = l

1
α1

1 → v = 1 and when y = ∞ →
v = 0 and we swap the integral limits and multiply by −1,

(e) follows from y2 = l
2
α1

1 /v
2
α1 and doing some mathematical

manipulations.

APPENDIX C

PROOF OF LEMMA 6

While taking the association biases effect in consideration,

the bth moment of the CSP Ps,k(θD) of the typical device

when it is served by the kth tier is given as follows:

Mb,k’(θD)

= Erk,D

[

P
(

n = k|rk,D
)

Ps,k′ (θD)b
]

,

(a)= Erk,D

⎡

⎢
⎣

∏

j 
=k
e
−πλj

(

P̂jkB̂jk

)2/αj
r2

×
∏

yk,i∈�k\{yk,0}

1
(

1 + θD

(
rk,D

‖yk,i‖
)αk
)b

⎤

⎥
⎦,

(b)= Erk,D

⎡

⎢
⎣

∏

j 
=k
e
−πλj

(

P̂jkB̂jk

)2/αj
r2

× exp

⎛

⎜
⎝

∫ ∞

rk,D

−2λkπ

⎡

⎢
⎣1 − 1

(

1 + θD

(
rk,D
y

)αk
)b

⎤

⎥
⎦ydy

⎞

⎟
⎠

⎤

⎥
⎦,

(c)=
∫ ∞

0

2λkπre
−λkπr

2

e
−
∑

j
=k
λj

(

P̂jkB̂jk

)2/αj
πr2

× exp

⎛

⎜
⎝

∫ ∞

r

−2λkπ

⎡

⎢
⎣1 − 1

(

1 + θD

(
r
y

)αk
)b

⎤

⎥
⎦ydy

⎞

⎟
⎠dr,

(d)=
∫ ∞

0

e−qe
−q

∑

j
=k
λ̂jk

(

P̂jkB̂jk

)2/αj

× exp

(

−2q

∫ 1

0

[

1 − 1

(1 + θDv
αk )b

]

v−3dv

)

dq,

(e)=
∫ ∞

0

e−qe
−q

∑

j
=k
λ̂jk

(

P̂jkB̂jk

)2/αj

× exp

(

−q
∫ ∞

1

[

1 − 1
(

1 + θDu
−αk/2

)b

]

du

)

dq,

(f )=
∫ ∞

0

e−qe
−q

∑

j
=k
λ̂jk

(

P̂jkB̂jk

)2/αj

× exp

(

−q
[

2F1

(

b,− 2

αk
; 1 − 2

αk
;−θD

)

− 1

])

dq,

= 1

∑

j 
=k
λ̂jk

(

P̂jkB̂jk

)2/αj
+2 F1

(

b,− 2
αk

; 1 − 2
αk

;−θD

) .

where (a) follows from considering the conditional associ-

ation probability for the typical device connecting to the

kth tier given in Eq. (31). In step (b), we apply PGFL of

the PPP [43, Ch. 4]. Step (c) follows from averaging over

rk,D, step (d) is by using variable substitution q = πλkr
2

and v = r/y. In step (e), we perform variable substitution

v = u(P̂jkB̂jk)
−1/αj and step (f) follows from the fact that

2F1(b,− 2
α
; 1 − 2

α
;−θ) ≡ 1 +

∫∞
1 (1 − 1

(1+θh−α/2)b
)dh.
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