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The regulation of gene expression in response to nutrient availability is fundamental to the genotype–phenotype
relationship. The metabolic–genetic make-up of the cell, as reflected in auxotrophy, is hence likely to be a determinant of
gene expression. Here, we address the importance of the metabolic–genetic background by monitoring transcriptome,
proteome and metabolome in a repertoire of 16 Saccharomyces cerevisiae laboratory backgrounds, combinatorially
perturbed in histidine, leucine, methionine and uracil biosynthesis. The metabolic background affected up to 85% of the
coding genome. Suggesting widespread confounding, these transcriptional changes show, on average, 83% overlap
between unrelated auxotrophs and 35% with previously published transcriptomes generated for non-metabolic gene
knockouts. Background-dependent gene expression correlated with metabolic flux and acted, predominantly through
masking or suppression, on 88% of transcriptional interactions epistatically. As a consequence, the deletion of the same
metabolic gene in a different background could provoke an entirely different transcriptional response. Propagating to the
proteome and scaling up at the metabolome, metabolic background dependencies reveal the prevalence of metabolism-
dependent epistasis at all regulatory levels. Urging a fundamental change of the prevailing laboratory practice of using
auxotrophs and nutrient supplemented media, these results reveal epistatic intertwining of metabolism with gene
expression on the genomic scale.

M
etabolism is the largest functional system within a cell, and
as metabolic reactions are connected over a flux of metab-
olites, it assembles in a highly connected network1–7.

Metabolic activity needs to be adapted constantly to match cellular
physiology, nutrition, growth rate and stress situations. This dual
dependency on both cell-extrinsic and -intrinsic properties
renders metabolism a key mediator of gene–environment inter-
actions, while its size represents a quantitative factor in physiology
and gene expression8–10. Enumerating the total compendium of
metabolism-responsive genes is a difficult task, but transcriptional
changes that follow the metabolic oscillations of Saccharomyces
cerevisiae suggest that it could comprisemore than50%of the genome11.

One difficulty in studying genetic–metabolic interactions is
caused by the minimal redundancy within the metabolic network.
Other than secondary metabolic pathways, most metabolic
systems cannot be perturbed without system-wide consequences.
Exceptions to this are some metabolic pathways of amino-acid
and nucleobase biosynthesis, for which cells possess a preference
for uptake over self-synthesis for the product metabolites. These
biosynthetic pathways can be perturbed as long as the product is
provided extracellularly12. Single-gene auxotrophies in such path-
ways have been established as effective selection markers for genetic
experiments, so they have been crossed into a large number of labora-
tory strains. In the present work we exploit four suchmarkers to study
the importance of the metabolic background on gene expression in S.

cerevisiae and study the combinatorial effects resulting from HIS3
(ref. 13), LEU2 (ref. 14), URA3 (ref. 15) or MET15 (ref. 16) deletions
on the transcriptome, proteome and metabolome.

We report that metabolic background differences induce strong
but adaptive molecular signatures, even when growth is restored
by external nutrient supplementation. Gene expression is affected
in a metabolism-dependent manner, and on 88% of transcriptional
events involving 77% of the differentially expressed transcripts we
detect evidence for epistatic interactions occurring between meta-
bolic genes. These interactions are found to have a fundamental
impact on the gene expression response that follows gene deletions,
and reveal the metabolic genotype (or metabotype) to be, on a global
scale, responsible for context-dependent biological responses on the
transcriptome, proteome and metabolome. The global dependency
on metabotype substantiates an upstream, dynamic and key role for
cellular metabolic make-up in gene expression regulation.
Metabolic–genetic background differences, dismissively considered
to be harmless in pre-genomic times, could therefore have affected
the outcome of a large number of experiments.

Results
Molecular signatures of the metabolic–genetic background.
Previously, we have reported that even when S. cerevisiae histidine,
leucine, uracil and methionine auxotrophies are complemented, as
it is done in a typical laboratory experiment, some physiological
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differences are retained. These manifest as small to moderate
differences in growth rate, some of which show evidence for
epistatic interactions between the metabolic markers17. Starting
with an in-depth analysis of this growth data, we found that in
supplemented medium, LEU2 has a consistent effect on growth
rate, and the other markers exert minor effects that reveal
themselves only in a context- (or background-) dependent
manner. The overall growth rates are therefore well explained by
the leucine effect using either an additive model (Supplementary
Fig. 1a) or a multiple linear regression model that uses HIS3,
LEU2, URA3 and MET15 as categorical predictors (adj. R2 = 0.86,
P = 2.18 × 10–5; Supplementary Fig. 1a,b).

The molecular levels revealed a much more differentiated
picture. mRNA expression profiles were obtained from 16 strains

in triplicate exponentially grown cultures, each with an identical
cell density (optical density at 600 nm (OD600) of 0.8), by mRNA
sequencing, resulting in highly reproducible expression profiles
(Supplementary Fig. 2). A total of 5,011 transcripts from 5,923
expressed mRNAs (85% of the transcriptome) were significantly
differentially expressed (adj. P values (Benjamini and Hochberg,
BH, method) of <0.05) in auxotrophic strains compared with the
prototroph (Fig. 1b). A global transcriptional signature was
corroborated by robust median normalization (Supplementary
Fig. 3a). Hierarchical clustering revealed the strongest separation
by the LEU2 gene, followed by the MET15 gene, indicating that
these two perturbations leave the most consistent signature in
the transcriptome (Fig. 1c). In total, 573 transcripts (9.7% of the
transcriptome) were differentially expressed, not only significantly,
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Figure 1 | Gene expression response to 16 combinatorial differences in the metabolic–genetic background. a, Schematic overview of otherwise isogenic 16

S. cerevisiae strains possessing nutrient-complemented auxotrophies in histidine (his3Δ), leucine (leu2Δ), uracil (ura3Δ) and methionine (met15Δ) biosynthesis.

b, Differential gene expression with reference to the prototrophic yeast (volcano plot) illustrating gene expression (log2 scaling) and significance (–log10 scaling,

BH adj. P value) for the 16 metabotypes grown in synthetic complete medium, as determined by RNA sequencing (n= 3/strain). c, Hierarchical clustering of

mRNA expression profiles by means of Euclidean distance and complete linkage agglomeration, dividing the 16 strains first by leucine, followed by methionine

auxotrophy. d, Top 15 enriched Gene Ontology (GO):Process slim mapper (top) and GO:Function slim terms (bottom), across 573 differentially expressed

transcripts with greater than twofold change, adj. P <0.05 with reference to the prototrophic strain. MP, metabolic process. e, Confounding effects of

metabotype on transcriptome. Overlap between genes highly and significantly (fold change >2, adj. P <0.05) differentially expressed in the auxotrophic strains

and those detected to be differentially expressed across previously published microarray experiments conducted on single gene deletions in the BY4741

auxotrophic background. Expression profiles are sorted according to number of differentially expressed transcripts (ascending). Insets: Average overlaps between

the ArrayExpress data and the transcriptomes obtained for all four auxotrophic markers present in BY4741, or those differing in just one marker at a time.
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but more than twofold (Fig. 1b). These were enriched for
metabolic activity (Gene Ontology (GO) Process terms) and
enzymatic function (GO Function terms) (Fig. 1d) and, according
to hypergeometric testing, for amino acid and carbohydrate
metabolic pathways (Supplementary Fig. 3b). Thus, auxotrophic
background differences are reflected by gene expression
differences detected on three-quarters of the coding genome, with
∼600 mostly metabolism-associated genes being strongly
differentially expressed.

As HIS3, LEU2, MET15 and URA3 have frequently been
exploited as genetic selection markers, these results suggest that
metabolic transcriptional signatures could have confounded pre-
vious gene expression experiments. mRNA expression data collected
for a variety of single gene knockouts (the vast majority being
non-metabolic genes) in different contexts and laboratories, but
all generated in auxotrophic BY4741 backgrounds (listed in
Supplementary File 1), were obtained from ArrayExpress18 and
reprocessed to achieve identical cutoff criteria (fold change > 2,
BH adj. P < 0.05). On average, 34% of differentially expressed
mRNAs overlapped with those induced by HIS3, LEU2, MET15
or URA3 deletions greater than twofold (Fig. 1e). Even if strains
that differ only by a single marker are compared, 18% of transcrip-
tional changes, on average, overlap (Fig. 1e). A similar picture was
obtained for a further set of ∼70 microarray experiments that
studied different conditions (Supplementary Fig. 4a and
Supplementary File 1). We notice a significant correlation (r = –0.52,
P = 0.0001186), such that transcription profiles with a larger number
of differentially expressed genes are better distinguished from the
metabolic background signature (Fig. 1e).

Next, we questioned whether this overlap would be the same, or
larger, for metabolic genes. We compared each combination of
HIS3, LEU2, URA3 or MET15 deletions with differential gene
expression induced by the other markers. A substantially larger
overlap of 83% was detected (Supplementary Fig. 4b). Hence, a
notable proportion of differential gene expression overlaps with
the transcriptional signatures of the metabolic markers. On comparing
more than a hundred transcriptomes, we detected, on average, an
overlap of approximately one-third for cases where a non-metabolic
gene was deleted and, on the basis of our data set, approximately
three-quarters in cases where one of the auxotrophy-causing
metabolic genes was deleted.

Metabolism-induced gene expression signatures are context-
dependent and correlate with flux. We noted that expression
signatures were qualitatively and quantitatively dependent not
only on the metabolic deficiencies, but also on their combination.
First, strains possessing three or four auxotrophies did not have
more transcripts induced than strains possessing one or two
deficiencies (Fig. 2a and Supplementary Fig. 3c). This result was
confirmed by normalization strategies referred to the median,
ruling out this result being a consequence of wild-type bias
(Supplementary Fig. 3e,f ). In addition, different transcripts
responded to individual or to combinatorial perturbation. For
instance, 112 transcripts were differentially expressed exclusively
in the combinatorial knockouts, but not in the corresponding
single knockouts (adj. P < 0.05, fold change of 2, Fig. 2c), while
128 transcripts were differentially expressed solely in a unique
strain (Fig. 2b). Qualitatively similar results were obtained without
fold-change cutoffs (Supplementary Fig. 3g,h).

These results raised the question of whether specific transcrip-
tionally responsive genes could be assigned to HIS3, URA3, LEU2
and MET15 deletions, or whether the transcriptome responds
differently depending on the metabolic background. We compared,
four times, eight complementary strain pairs that differed from each
other only in one auxotrophy (graphically exemplified for HIS3 in
Fig. 2d). Each gene deletion induced a strong transcriptional

response (Supplementary Fig. 6a,b), but in each background,
different gene sets responded to the same gene deletion (Fig. 2d).
Indeed, universal targets were the exception. Virtually the only con-
sistent hits were the deleted genes themselves (Fig. 2d). Consistently,
transcriptional changes induced by deletion of the same gene in
different backgrounds did not correlate with each other, except for
a small subset of LEU2 responsive genes (Supplementary Fig. 6d).
An analogous picture was obtained when considering all signifi-
cantly differentially expressed transcripts, ruling out a thresholding
bias (Supplementary Fig. 6b,c).

We speculated that strain-specific transcriptional profiles might
originate from different metabolic flux. Context-dependent gene
expression changes did correlate strongly (r = 0.78, P = 5.77 × 10–4)
with flux, as determined by flux variability analysis19,20 on constrain-
ing the model with experimentally measured amino-acid uptake and
growth rates for the 16 strains (Fig. 2e, Supplementary Note 2 and
Supplementary File 2). Metabolic reactions with the highest corre-
lation between gene expression and calculated fluxes were enriched
for intermediate metabolic pathways (Supplementary Fig. 7).

Metabolic perturbations interact epistatically. In principle, a target
transcript could respond irrespective of whether a metabolic pathway
is perturbed alone or in combination, or the response could be
sensitive to epistatic interactions between the pathways. Of the
differentially expressed transcripts, 77% responded in more than
one auxotroph and thus may fall into one of these categories
(Fig. 2c). To identify the epistatic interactions, we applied both
additive models, as introduced by Fisher21, and multiplicative
models. On our large and systematic data set, both strategies
yielded to a large extent (97%) the same transcripts when applied
on gene expression data scaled to fold changes and considering
only genes that were both significantly (adj. P < 0.05) and highly
(greater than twofold) differentially expressed (Fig. 3a). In
accordance with the growth rates, we therefore subdivided the
epistatic interactions using the additive model (Fig. 3b). Epistatic
interactions were detected on 88% of transcripts differentially
expressed in two or more auxotrophs. Most frequent were
suppressive or masking (dominant) interactions (Fig. 3d).
Suppressive interactions were distributed among all markers, while
masking interactions were dominated by LEU2 (Fig. 3d, right
panel). The second most frequent were positive and negative
interactions, in which the effect of two alleles acting in concert was
stronger or weaker than the value expected from the individual
alleles (Fig. 3d). Their case was complemented by a special case of
suppression: we applied the term ‘pseudo-masking’ when a second
mutation weakened the effect of a masking allele. Illustrating the
dynamic and context-dependent nature of epistasis, 37% of
transcripts falling into a particular epistatic category in one case
could fall into any category in another, depending on the
metabolic background (Fig. 3e).

Highly connected and conserved genes are buffered against
metabolism-induced epistasis. It has been suggested that most
connected nodes (‘hubs’) in a genetic interaction network are
more stable in terms of expression change compared with less
connected genes22 and are thus less likely to be affected by
epistatic interactions. Indeed, epistatically responding transcripts
were significantly less connected in genetic interaction23 and
protein–protein interaction networks (Fig. 3f ), but were more
likely to be co-expressed24 (Supplementary Fig. 8g). In contrast,
GO terms and functional classification (Supplementary Fig. 8a),
co-citation frequency, co-occurrence of protein domains and
three-dimensional protein structure networks of interacting
orthologous proteins as obtained from YeastNet.v324

(Supplementary Fig. 8b–f ) did not differ between epistatically
responding and non-responding transcripts.
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It has also been observed that more important and conserved
genes are more stable to expression changes and that epistasis deter-
mines sequence conservation25,26. We compared the evolutionary
conservation and essentiality27 of affected and unaffected transcripts.
Transcripts sensitive to metabolic epistasis had significantly fewer
orthologues as identified by PSI-BLAST (P = 1.6 × 10–7; Fig. 3g) and
were significantly less likely to be essential (P = 1.04 × 10–17;
Fig. 3h). Epistatic metabolic interactions thus manifest prevalently
on the least connected and conserved genes, while highly conserved
genes and most connected genes appear to be buffered.

Metabolic epistasis translates into the proteome and amplifies at
the metabolome. Next, we generated protein expression profiles via
liquid chromatography tandem mass spectrometry (LC-MS/MS).
We chose a data-independent acquisition (DIA) strategy
(HDMSE)28,29 that identifies fewer proteins than shotgun methods,
but is advantageous in large-sample series as the same peptides
are consistently quantified in each injection replicate.
Furthermore, facilitated by the large systematic data set, we
improved the precision compared with conventional strategies by
using covariance statistics to choose peptides best suited for

protein quantification. Across the 48 proteomes, this strategy
yielded precise and reproducible quantities for 442 proteins
associated with 446 genes (Supplementary Fig. 9). Applying the
same criteria as used for transcriptomics, 11% of proteins were
found to be differentially expressed (Fig. 4a). Hierarchical clusters
of transcriptome and proteome were fully correlated (co-
phylogenetic correlation = 0.92) and divided the 16 strains in a
similar fashion (Fig. 4b). The correlation of principal components
revealed coherent regulation at the transcriptome and proteome,
and the first principal components, explaining 26.36 and 46.52%
of the overall variation, were fully correlated (r = 0.96, P = 6.3 × 10–9;
Fig. 4c). Both regulatory layers were correlated with growth rates
(Supplementary Fig. 10), suggesting a common regulatory response
for growth and metabolism.

Furthermore, in strains with a high level of differential gene
expression, proteome and transcriptome abundance values
corresponded with one another (Pearson correlation coefficient
(PCC) > 0.7; Fig. 4d). A weak correlation could be observed in the
strains in which few differentially expressed proteins were captured
(Fig. 4d). Intriguingly, for differentially expressed genes also, the
fold changes significantly correlated. This quantitative correlation
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was better for metabolic enzymes than it was for other genes
(Fig. 4e). On all assessed levels, the proteome was found to be simi-
larly dependent on the metabolic background as the transcriptome.

Also, metabolic epistasis was observed at the proteome level to a
similar extent as found for the transcriptome. Of 257 epistatic tran-
scripts differentially expressed more than twofold, we were able to
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d, Classification of epistatic events. Additive events (12%), considered non-epistatic according to ref. 21, contrast with epistatic interactions classified as

masking and suppression, positive and negative epistasis and pseudo-masking. Values are given as the sum of all events across the 38 neighbourhood pairs

illustrated in Fig. 3c. Suppressive interactions were found to be frequent for all four alleles, and masking interactions are dominated by LEU2. e, Transcripts

affected by epistatic interactions switch between subcategories depending on the metabotype. Compared are transcripts differentially expressed according to

the median (greater than twofold change; adj. P < 0.05). f, Degree of distribution of transcripts affected by metabolism-induced epistasis and all other

transcripts in a genetic interaction network23 and a protein–protein interaction network24. Genes encoding for epistatic transcripts are significantly less

connected compared with the average gene. g, Density distribution of PSI-BLAST identified orthologues of epistatically responding and all other genes. Those

affected by metabolism-induced epistasis are significantly less conserved. h, Distribution of essential genes across epistatically responding and all other

transcripts, according to viability in S. cerevisiae. Genes affected by metabolism-induced epistasis are less often essential.

NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2015.30 ARTICLES

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 5

© 2016 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nmicrobiol.2015.30
http://www.nature.com/naturemicrobiology


Δ
H

M

Δ
H

Δ
H

U

Δ
U

Δ
H

U
M

Δ
H

LU
M

Δ
H

LM Δ
M

Δ
LM

Δ
H

L

Δ
LU

M

Δ
H

LU

Δ
LU Δ

L

Slope of regression between mRNA
expression and proteins expression changes

Epistasis score, e

T
ra

n
sc

ri
p

to
m

e
P

ro
te

o
m

e

M
et

ab
o

lo
m

e

Una�ected proteins
(405)

Epistatic in
transcriptome

(6)

Epistatic in
proteome

(9)

Epistatic in both
transcriptome and

proteome
(26)

D
en

si
ty

Protein expression change,
log2(fold change)

mRNA expression data, PC 1, 26.36%

mRNA expression data, PC 1, 26.36%

P value = 6.3 × 10−9
r = 0.96

LEU2

P
ro

te
in

 e
xp

re
ss

io
n

 d
at

a,
 P

C
 1

, 4
6

.5
2

%
M

et
ab

o
lit

e 
d

at
a,

 P
C

 2
, 2

0
.6

%

−30 0 30 60

mRNA expression
log2(fold change)

mRNA expression
log2(fold change)

P
ro

te
in

ex
p

re
ss

io
n

lo
g

2
(f

o
ld

 c
h

an
g

e)

P
ro

te
in

 e
xp

re
ss

io
n

 c
h

an
g

e,
−

lo
g

10
(P

 v
al

u
e)

C
o

rr
el

at
io

n
 c

o
e�

ci
en

t 
(p

ro
te

in
 e

xp
re

ss
io

n
ch

an
g

e 
~ 

m
R

N
A

 e
xp

re
ss

io
n

 c
h

an
g

e)

P
ro

te
in

 e
xp

re
ss

io
n

lo
g

2
(f

o
ld

 c
h

an
g

e)

Non-enzyme

mRNA expression
variation across

samples, CV

P
ro

te
in

 io
n

 in
te

n
si

ty
va

ri
at

io
n

 a
cr

o
ss

sa
m

p
le

s,
 C

V

Enzyme

−4

−1.0

−5.0

−30 300 60

5.0

−2.5

2.5

0.0

0.0

0.2

0.4

0.6

0.8

1.0

−0.5 0.0 0.5 1.0

0

0.50

0.50

−3

−20

−10

0

10

20

0

4

8

12

16a

d

f g h

b c

e

−2 −1 1 2 30

0.5

0

0

D
en

si
ty

1

1
r = 0.66

1

−3 −2

−2
−4

4

0

−4

4

0

0

1

0.50

r = 0.79
r = 0

−1 0

0

1 2

2

−2 0 2

Δ
U

M

ΔM
ΔMΔU

ΔUΔUM
ΔUM

ΔHUM ΔHUM

ΔHLM ΔHLM

ΔHLM

ΔHLU ΔHLU
ΔHL

Transcriptome
based cluster

(446 transcripts)

Cluster correlation (r = 0.92)

Proteome
based cluster

(446 proteins)

ΔHL

ΔLUM ΔLUM

ΔLUM

leu2Δ
ΔLM ΔLM

ΔLU
ΔLU

ΔLM

ΔHM

ΔU

ΔH

ΔHU
ΔHUM

ΔUM

Prototroph

ΔHL

ΔL

ΔLU

ΔHLU

ΔL
ΔL

ΔHLUM ΔHLUM

ΔHLUM

P value = 4.7 × 10−3
r = 0.67

LEU2

ΔHLM

ΔLUM

leu2Δ

ΔLM

ΔHM

ΔM

ΔU
ΔH

ΔHU

ΔHUM

ΔUM

Prototroph

ΔHL

ΔL

ΔLU

ΔHLU

ΔHLUM

ΔHM ΔHM

ΔH
ΔH

Prototroph Prototroph

ΔHU
ΔHU

ΔM

Figure 4 | Metabolism-induced epistasis propagates to the proteome and increases at the metabolome. a, Differential protein expression in 16

metabotypes grown in supplemented SC medium determined by HDMSE, illustrated in a volcano plot, with log2 expression values on the x axis and

–log10 adj. P values on the y axis. n = 3/strain. b, Hierarchical clusters based on Euclidean distance and complete linkage agglomeration of gene and protein

expression profiles correspond to each other (r =0.92). The transcriptome and proteome cluster the strains in a similar fashion. c, Correlation of the major

principal components of mRNA and protein expression. Strains are colour-coded according to the presence or absence of the LEU2 gene, which has the most

consistent (least epistatic) profile. d, Pearson’s correlation coefficient of mRNA and protein expression values for 446 proteins and transcripts as identified in

a. The transcriptome and proteome correlate quantitatively in strains with differential protein expression (insets). e, The transcript and protein dynamic range

correspond for metabolic enzymes. Regression slope of gene and protein expression dynamic range distinguishes enzymatic and non-enzymatic genes.

Inset: Fold-change across all differentially expressed genes, comparing mRNA and protein level change. f, A majority of genes affected by epistasis in the

transcriptome are also epistatic in the proteome; P <0.05, fold change > 2, Z score >2σ or <−2σ. g, Metabolic epistasis affects the transcriptome and

proteome to a similar extent, but has a broader impact on metabolite concentrations (represented by the absolute quantities in 50 essential metabolites;

Supplementary Fig. 11); the distribution is expressed as ‘epistasis score’ e, describing the relative deviation of expression quantity from a linear relationship in

pairwise interactions, and shown as a density plot of all quantified transcripts, proteins and metabolites. The transcriptome and proteome show the same

distribution of e, but it is increased in the metabolome. h, Correlation between the first principal component of transcriptome data (26.36%) and the

second principal component of metabolome data (20.6%). Strains are coloured according to the presence and absence of the LEU2 gene, which had the

strongest loading.
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capture quantities for 32 proteins, of which 26 were significantly
epistatic (P < 0.05; Fig. 4f).

To relate these results to the metabolome, we used liquid chrom-
atography selected reaction monitoring (LC-SRM) to absolutely
quantify 50 important metabolites (Supplementary Fig. 11a and
Supplementary Note 1). Of all metabolites differentially concen-
trated more than twofold, 75% were found to be affected by epistatic
interactions between the metabolic markers (Supplementary
Fig. 11b,c). Because of the different biologies of the metabolite con-
centrations, a direct comparison with transcriptome/proteome data
is limited by nature. However, when calculating an epistasis score
for all quantified transcripts, proteins or metabolites, metabolite
concentrations revealed the broadest distribution (Fig. 4g).
Metabolism-induced epistasis therefore appears to manifest more
strongly on metabolite concentration than on transcriptome and
proteome. Indeed, metabolite concentrations have, with allostery
and post-translational regulation, additional layers where epistasis
can manifest. Consistently, transcriptome and proteome were only
the secondary determinant of metabolite concentration changes.
The first principal components (PCs) of neither the proteome nor
transcriptome correlated with the first PC of the metabolome
(Supplementary Fig. 11d). Instead, the second principal component,
explaining 20.6% of the variation in metabolite level, did show a signifi-
cant agreement with the transcriptome (r = 0.67, P = 4.7 × 10–3) and
proteome (r = 0.72, P = 1.6 × 10–3; Fig. 4h).

Discussion
Metabolic genes are often nicknamed ‘housekeeping’ genes, which
incorrectly implies that the metabolism is static in nature. Indeed,
it is increasingly recognized that the chemical–physical environ-
ment of a cell is dynamic in terms of metabolite load, redox poten-
tial or pH and that metabolic networks are flexible and dynamically
regulated. The size and physiological importance of the metabolic
network exclude the possibility that gene expression is inert to
these adaptations30–32. Here, we attempt a system-wide analysis of
the impact of the metabolic–genetic background on transcriptome,
proteome and metabolome. We exploit 16 combinatorial auxo-
trophs that would be tolerated as the background in a typical
S. cerevisiae genetic and genomic experiment. Several studies have
found evidence of the physiological importance of metabolic back-
ground deficiencies17,33–36, but in the absence of a comparative,
systems-scale analysis, the magnitude and nature of these effects
has remained unclear. One objective of the present work was thus
to provide systematic high-quality data to allow the impact of meta-
bolic–genetic backgrounds to be accessed by the scientific commu-
nity. The obtained data sets are valuable for elaborating the
relationship between transcriptome, proteome and metabolome in
response to metabolic perturbation and reveal a surprisingly high
agreement between transcriptional and proteomics results.
Transcriptome and proteome did agree in terms of the level of
mRNA and protein expression, in the dynamic range, in the corre-
lation of the first principal component, as well as in a concordant
level of epistasis (Fig. 4). At least, on inducing metabolic pertur-
bations in exponentially growing cells and when using high pre-
cision technology, the correlation of transcriptome and proteome
can thus achieve higher values as frequently assumed37,38.

Despite moderate growth rate differences, which were mostly
driven by the LEU2 gene, all 16 metabotypes and all four auxo-
trophic markers had a strong molecular impact. In fact, when study-
ing just these four out of many possible metabolic perturbations, we
find three-quarters of the coding genome to be affected. Moreover,
metabolism-induced gene expression was characterized by a high
degree of epistasis. Despite the deletion of HIS3, LEU2, MET15 or
URA3 causing strong signatures with hundreds of differentially
expressed genes, there were virtually no transcripts that would
always respond to their deletion; transcriptional profiles were

hence critically sensitive to the metabolic–genetic background.
The analysis of 32 strain pairs that differed in one marker at a
time allowed the nature of these transcriptional interactions to be
categorized. A total of 77% induced transcripts and 88% transcrip-
tional events reflected epistatic interactions between the metabolic
genes. The ‘epistatic transcriptome’ was dominated by the less con-
served and less connected genes, which were most commonly
affected by masking/suppressive interactions followed by positive
or negative quantitative interactions. We note, however, that the
nature of epistasis is also dynamic; a transcript falling into one cat-
egory in one strain pair could have another type of epistasis in
another situation. These context-dependent gene expression inter-
actions correlated with flux, implying that the molecular signatures
are concordant with metabolic activity (Supplementary Note 2).
The metabolic make-up of the cell is hence a systemic determinant
of the outcome of a gene expression response.

The association with flux implied that metabolic background
effects are strongest for metabolic genes. Indeed, the overlap of
transcriptional changes between metabolic gene deletion and the
background (83%) was substantially larger than for a random
(non-metabolic) gene and the background (34%; Fig. 1e and
Supplementary Fig. 4). The metabolic background hence confounds
gene expression profiles both for non-metabolic and metabolic
genes, but for the latter category, the effects are stronger. Potential
consequences of this observation are illustrated by the following
gedankenexperiment. If a subset of our omics data sets were ana-
lysed in isolation (that is, one analysis would just use the data
recorded in the his3Δ backgrounds, and the other the HIS3 data)
one would identify different gene expression changes following del-
etion of URA3,MET15 or LEU2. These differences could propagate;
that is, two studies could report different Gene Ontology, signalling
or gene regulatory networks and eventually claim different func-
tions for URA3, MET15 and LEU2. Differences in the metabolic–
genetic background could thus negatively impact cross-laboratory
reproducibility. This finding is consistent with the importance of
the genetic background in defining gene essentiality and phenotype
penetrance. A total of 10% of gene deletions have a different pheno-
type in the closely related S. cerevisiae strains S288c and Sigma
1278b39, with 57 being essential in just one of the two strains40.
We have shown previously that metabolism is implicated in such
effects, with 13 synthetic lethal phenotypes in the S288c background
rescued on repairing just three auxotrophies17.

In summary, we have addressed the importance of the meta-
bolic–genetic background for gene expression interactions found
on the transcriptome, proteome and metabolome. Sixteen combina-
torial deficiencies in histidine, leucine, uracil and methionine
biosynthesis—four, in principle, unrelated model metabolic path-
ways—retained a strong molecular signature upon complementa-
tion and caused a system-wide response involving up to 85% of
the coding genome. The metabolic genes interacted epistatically
on 77% of differentially expressed genes, and these interactions
determined to a large extent the transcriptional outcome of a (meta-
bolic and non-metabolic) gene deletion. Metabolism-induced epis-
tasis manifested across all molecular levels, and transcriptome and
proteome were highly correlated and did in part influence an
increasingly variable metabolome. It is thus essential to examine
the role of background and metabolism-induced epistasis in
genetic and genomic experiments and to elucidate its role in gene
regulatory networks. Overall, the metabolic make-up of a cell is a
key molecular factor in defining the consequence of gene loss
across the transcriptome, proteome and metabolome.

Methods
Sampling for transcriptomics and proteomics. Main cultures were inoculated
into 50 ml synthetic complete medium as described in ref. 17 at a starting OD600 of
0.15 (30 °C, 180 r.p.m.). Strains were then grown for 6–19 h until reaching an OD600

of 0.8, at which point the cells were collected by centrifugation (2 min, 3,000g)
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and the supernatant discarded. The pellet was resuspended in 1 ml H2O and
aliquoted. The cells were then collected (0.5 min, 5,000g), the supernatant
removed with a pipette, and the sample snap-frozen and stored at –80 °C until
further processing.

Transcriptomics
Sample preparation. RNA for transcriptomics was prepared using the yeast RNA
mini kit (Zymo Research) followed by DNase treatment, and processed using the
TruSeq RNA library preparation kit (Illumina) following the manufacturer’s
instructions. Twelve samples each were pooled, loaded on a full lane, and sequenced
with 2 × 50 bp paired end on a HiSeq 2000 (Illumina), yielding cluster densities of
between 730,000 and 806,000 (that is, ∼10,000,000 fragments/1 GB of data per
sample). The paired-end reads were aligned using tophat with default parameters
against the yeast genome (ENSEMBL Version EF4). To generate gene-wise read
counts for gene expression estimation, the htseq tool was applied with the following
parameters (htseq-count–mode=intersection-nonempty,–stranded=no), on average
achieving a median coverage of between 294 and 942 per covered gene of iGenomes
EF4 gene annotation (Supplementary Table 1).

RNAseq data processing. RNAs with very low read count values (<50 counts across
all replicates, both raw and normalized read counts) were removed, so that, in total,
5,923 genes were considered expressed in at least one strain. ‘DEseq’41 in R was used
for normalization (leading to a median coverage of 757 to 788 per RNA) and
calculation of the P values for differential expression of RNAseq data. The gene
expression fold change between strains was calculated by dividing the average
normalized read count values from all replicates. Hierarchical clustering was based
on Euclidean distance and complete linkage agglomeration.

Differential mRNA expression. Differential mRNA expression was calculated with
reference (1) to the prototrophic strain, (2) to median values of each transcript across
all 16 strains or (3) the fully auxotrophic strain BY4741, as indicated. P values were
adjusted for multiple test correction using the BH method42, using the p.adjust
function in R. The threshold values for differentially expressed mRNAs were
adj. P < 0.05, fold change of >2 for upregulated genes and fold change
of <0.5 for downregulated genes, and a read count of >50 in both strains.
A list of differentially expressed genes from any strain were annotated with
GO terms (GO:Process and GO:Functions) by the GO slim mapper tool
(http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl; ref. 43).

Proteomics
Sample preparation. For data-independent acquisition proteomics, the 16 strains
were grown and analysed in three biological replicates, adding to 48 samples.
Proteins were extracted using SDS-containing extraction buffer as described
previously44, combined with protein precipitation with 10% trichloroacetic acid
(TCA)45. Protein pellets were resuspended in 0.1% Rapigest and 50 mM
triethylammonium bicarbonate buffer. Protein (100 µg) was reduced by 5 mM
dithiothreitol (DTT) for 30 min at 37 °C, alkylated with 15 mM iodoacetamide at
room temperature for 1 h and digested with trypsin at a 1:20 ratio of protein to trypsin
overnight, as described previously46.

LC-MS/MS proteomics. Approximately 500 ng of peptides were separated
chromatographically (NanoACQUITY, Waters). The LC aqueous mobile phase
(buffer A) contained 0.1% formic acid in water and the organic mobile phase
(buffer B) contained 0.1% formic acid in 100% acetonitrile. The samples were
trapped on column (Symmetry C18 5 µm, 180 µm × 20 mm, Waters) and desalted
for 5 min at a 5 µl min–1 flow rate of aqueous mobile phase. The separation was
performed on a T3 1.8 μM, 75 µm × 250 mm column (Waters) at 300 nl min–1 flow
rates using a 90 min linear gradient elution (from 3% to 35% organic mobile phase).
The column was then washed with 80% organic mobile phase for 5 min and re-
equilibrated with 3% organic mobile phase for 15 min. The analytical column
temperature was maintained at 40 °C. Eluting peptides were analysed on SYNAPT
G2 hybrid IMS-MS system (Waters). Data were acquired in IMS-MSEmode with low
and high energy scans of 900 ms. The collision energy was linearly ramped from
21 to 44 V in the Transfer region of TriWave during high energy scans. The emitters
employed were manufactured by etching a fused-silica line with hydrofluoric acid as
described in ref. 47. [Glu-1]-fibrinopeptide B (500 fmol µl–1) was infused with a
lockspray ion probe at a flow rate of 500 nl min–1 using an auxiliary pump and was
acquired once every 30 s for a 1 s period.

Proteome data processing. The raw data were initially processed with the ProteinLynx
Global Server (PLGS) 2.5.2 to generate a list of precursor and fragment exact mass
retention times (EMRTs) and associations between them based on a similarity of
retention time and drift time. The thresholds for low-energy ions, high-energy ions
and low-energy EMRT pairs were set to 100, 15 and 750 counts, respectively. The
data were lock-mass corrected post-acquisition using [Glu-1]-fibrinopeptide as a
lock mass compound with 785.84 m/z for z = 2 and 0.25 Da tolerance window. The
EMRTs were then searched against the UniProt S. cerevisiae database using an ion
accounting algorithm as described previously48. A peptide required at least one
fragment and a protein required at least three fragments and one peptide for

identification. The database search was performed at 100% false discovery rate
(FDR) to identify real and decoy peptides for subsequent filtering by q-value.
Peptide identifications from strain 1 replicates 1 and 3 and strain 16 replicate 1 were
combined to produce a master in silico run, which was used to transfer
identifications to all other acquisitions using the synapter algorithm as described
previously49. To account for potential sources of technical variation in proteomic
experiments, we removed peptides, which were not detected in all 48 samples. For
each protein a Spearman’s rank correlation coefficient was then calculated between
each pair of peptides across all samples. Peptides displaying overall low co-
correlation (with a shorth50,51 correlation of <0.3) were removed from subsequent
analysis. Such a procedure assumes that the signals of peptides coming from the
same protein have to be correlated. This selection thus identifies non-specific
peptides, or peptides that are not linear for other reasons (that is, post-translational
modifications present to a varying extend). Finally, for each protein, the signals of all
detected peptides were geometrically averaged and subsequently accounted for
differential expression using modified eBayes t-test using the limma package52

implemented in R.

Metabolomics. Pre-cultures of the 16 strains were prepared in synthetic complete
(SC) medium and cultured for 12–20 h in a 96-well plate (30 °C, 250 r.p.m.). Main
cultures were inoculated into fresh SC medium, and cultivation, sample collection,
quenching and metabolite extraction were performed according to ref. 53. Specifically,
the yeast strains were cultured in 96-well fritted plates (1 strain per two wells; Nunc)
with a 4 mm glass bead in each well for mixing. For quenching, a 48-well plate
containing 3.6 ml of −40 °C quenching solution (60%methanol, 10 mMNH4-acetate)
per well was prepared and put into a vacuummanifold. Mid-exponential cultures were
put on top of the 48-well plate and sucked into the quenching solution. The quenched
cultures were centrifuged for 5 min at 4,000 r.p.m. and −9 °C and the supernatant was
discarded. Subsequently, the plate with the cell pellets was transferred into a −50 °C
ethanol bath with dry ice. For extraction, the cell pellets were resuspended in 1 ml
precooled extraction solution (75% ethanol, 10 mM NH4-acetate) and 50 µl 13C-
yeast internal standard was added. To complete extraction, the plate was transferred
into an 80 °C water bath for 3 min with vortexing steps every 30–45 s. The extracts
were stored at −80 °C until they were dried overnight with a vacuum centrifuge
(Christ-RVC 2–33 CD plus, Kuehner AG). LC-MS measurements were performed
as described previously54. Specifically, the dried extracts were dissolved in 50–100 µl
ddH2O and 15 µl were injected for LC-MS analysis. The metabolites were separated
with a Waters Acquity T3 end-capped reversed-phase column (150 mm × 2.1 mm ×
1.8 µm) on an Acquity UPLC (Waters) system. For mass spectrometric detection of
the metabolites we used a TSQ Quantum Ultra triple quadrupole mass spectrometer
(Thermo Fisher Scientific) with a heated electrospray ionization source operating in
negative mode with selective reaction monitoring. Peak areas were determined by
summing raw intensities from peak start to peak end using MatLab. The metabolite
peak areas were further normalized to the 13C internal standard and to biomass as
determined by optical density (OD600).

Metabolic pathway enrichment. Metabolic pathway enrichment was determined
by hypergeometric testing using the phyper function in R. The FDR was
calculated according to ref. 55. Thresholds for significant enrichment were an
FDR of <0.05, P < 0.05 and a number of enriched genes of one-third of the
pathway size.

Epistasis. To avoid an error propagation problem in the epistasis analysis, we
normalized the gene expression values given in Fig. 3 and in several of the
Supplementary figures as indicated to the median expression value of all strains.
This strategy yielded largely similar results to normalization to the prototrophic
strain, as its expression profile is close to that of the median (Supplementary Fig. 3i).
Normalization to the median is, however, better suited for the epistasis analysis in
our experimental setup as it (1) avoids unequal error propagation of the wild-type
strain measurement error and (2) allows a comparison of all 16 strains with
one another.

To calculate epistasis from the median-normalized data, Fisher’s additive
model was used as a basis to obtain an epistasis score (e) for mRNA expression,
protein expression, metabolite concentration and growth data21: epistasis score
(e) = observed (WAB) – expected (WA +WB), where WAB , WA and WB are per cent
changes in either gene expression, protein expression, metabolite concentration or
growth rate of knockout strain expressed in per cent56–58. The calculation was
performed by comparing strains representing closest neighbours in a genetic
dependence network (Fig. 3c), comparing all 38 possible strain pairs in total. P
values (BH adjusted) for the differential expression of genes in all 38 strains pairs
were calculated with reference to the respective product strains. Expression fold
change was calculated by dividing the average expression values in each strain with
the respective wild-type, median value or any other reference strain as indicated. The
epistasis score was transformed to a standard epistasis score (Z score). mRNAs,
proteins or metabolites with significant P values (<0.05) in at least one strain, plus a
Z score of >2σ or <−2σ were considered epistatic. As illustrated in Fig. 3b, the
standard epistasis score and P value (adjusted) for differential expression were used
to subgroup epistatic genes into masking, suppression, pseudo-masking or positive
and negative epistasis. Categorization was conducted for differential expression in all
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38 strain pairs representing closest neighbourhoods (Fig. 3c), and fold changes with
respect to the median value were used for normalization as follows: (a) masking,
where the expression value is explained by the allele with quantitative stronger effect;
(b) suppression, where the expression value is explained by the allele with
quantitative lower effect; (c) pseudo-masking, where the expression value depends on
both alleles, but the effect is lower than expected from the strong allele and larger
than expected from the weak allele; (d) positive epistasis, where the expression value
is larger than expected from additivity of the single alleles; and (e) negative epistasis,
where the expression value is lower than expected from additivity of the two single
alleles and lower than each individual value.

Gene essentiality and conservation. A list of essential S. cerevisiae genes was taken
from the Database of Essential Genes (DEG) (http://www.essentialgene.org)59. The
result of PSI-BLAST60 analysis of S. cerevisiae from the SGD database43 was used to
count the number of species in which a gene is conserved.

Confounding effects of metabolism-induced transcriptional changes in
transcriptomics. The gene expression data for a total of 118 yeast knockout
microarray experiments, conducted in 14 studies in different context and
laboratories61–72 (see ‘Accession numbers’ section) was downloaded from
ArrayExpress. All of these studies are based on the BY4741 background, auxotroph
in histidine, leucine, uracil and methionine, as used in our study. We categorize these
data sets into single gene knockout experiments (49 arrays, as used in Fig. 1e) or all
other conditions (69 arrays from four studies, Supplementary Fig. 4a). The raw data
from Affymetrix GeneChip Yeast Genome 2.0 and S98 Arrays were re-analysed by
applying the same stringent quality filtering criteria as used on our RNASeq
data (FDR-adjusted P < 0.05 and fold change >2). The lists of differentially
expressed genes in 49 microarray experiments were compared with differentially
expressed genes affected by the auxotrophic markers in the respective yeast
strain background.

Flux variability analysis. The NAD-corrected yeast genome-scale metabolic model
iMM90473,74 was used in a flux variability analysis (FVA)19,20. The model was
constrained by setting the biomass flux according to the experimentally determined
growth rates17 and metabolite uptake rates for amino acids and glucose as measured
in the present study (Supplementary File 2). On including both growth rate and
nutrient uptake rates, the FVA predicts a feasible flux range for every reaction of the
model and for every strain. Differences in metabolic flux (maximum flux –
minimum flux) are expressed as fold change and are calculated with reference to the
prototrophic wild-type strain. Flux range is considered to be significantly different
when it deviates by two standard deviations from the mean.

Accession numbers. Transcriptome data has been deposited at ArrayExpress18

(https://www.ebi.ac.uk/arrayexpress/) under accession no. E-MTAB-3991.
Proteomics data has been deposited at ProteomeXchange (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository75with the data set identifier
PXD001491. Metabolome data has been deposited at Metabolights76

(http://www.ebi.ac.uk/metabolights/) with the accession no. MTBLS168. Processed
data are provided in Supplementary File 2. Previously reported gene expression data
that was reanalysed in this study can be found in ArrayExpress under accession
numbers E-GEOD-31774 (ref. 61), E-GEOD-31326 (ref. 62), E-TABM-638 (ref. 63),
E-GEOD-18994 (ref. 64), E-GEOD-29530 (ref. 65), E-MTAB-1059 (ref. 66),
E-GEOD-21571 (ref. 67), E-GEOD-56702 (ref. 68), E-GEOD-31176 (ref. 69),
E-MTAB-2539 (ref. 70), E-MEXP-3150 (ref. 71), E-GEOD-18644 (ref. 72),
E-GEOD-25582, E-GEOD-28794.

Received 12 September 2015; accepted 17 December 2015;

published 1 February 2016

References
1. Albert, R. Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005).
2. Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s

functional organization. Nature Rev. Genet. 5, 101–113 (2004).
3. Herrgård, M. J. et al. A consensus yeast metabolic network reconstruction

obtained from a community approach to systems biology. Nature Biotechnol. 26,
1155–1160 (2008).

4. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale
organization of metabolic networks. Nature 407, 651–654 (2000).

5. Newman, M. E. J. Modularity and community structure in networks. Proc. Natl
Acad. Sci. 103, 8577–8582 (2006).

6. Romero, P. et al. Computational prediction of human metabolic pathways from
the complete human genome. Genome Biol. 6, R2 (2005).

7. Thiele, I. et al. A community-driven global reconstruction of human
metabolism. Nature Biotechnol. 31, 419–425 (2013).

8. Clark, A. G. & Fucito, C. D. Stress tolerance and metabolic response to stress in
Drosophila melanogaster. Heredity 81, 514–527 (1998).

9. Ihmels, J., Levy, R. & Barkai, N. Principles of transcriptional control in the
metabolic network of Saccharomyces cerevisiae. Nature Biotechnol. 22,
86–92 (2004).

10. Liu, L., Li, Y. & Tollefsbol, T. O. Gene–environment interactions and epigenetic
basis of human diseases. Curr. Issues Mol. Biol. 10, 25–36 (2008).

11. Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast
metabolic cycle: temporal compartmentalization of cellular processes. Science
310, 1152–1158 (2005).

12. Campbell, K. et al. Self-establishing communities enable cooperative metabolite
exchange in a eukaryote. eLife http://dx.doi.org/10.7554/eLife.09943 (2015).

13. Fink, G. R. Gene–enzyme relations inHistidine biosynthesis in yeast. Science 146,
525–527 (1964).

14. Satyanarayana, T., Umbarger, H. E. & Lindegren, G. Biosynthesis of branched-
chain amino acids in yeast: regulation of leucine biosynthesis in prototrophic
and leucine auxotrophic strains. J. Bacteriol. 96, 2018–2024 (1968).

15. Lacroute, F. Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae.
J. Bacteriol. 95, 824–832 (1968).

16. Masselot, M. & De Robichon-Szulmajster, H. Methionine biosynthesis in
Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants.Mol. Gen.
Genet. 139, 121–132 (1975).

17. Mülleder, M. et al. A prototrophic deletion mutant collection for yeast
metabolomics and systems biology. Nature Biotechnol. 30, 1176–1178 (2012).

18. Brazma, A. et al. ArrayExpress—a public repository for microarray gene
expression data at the EBI. Nucleic Acids Res. 31, 68–71 (2003).

19. Mahadevan, R. & Schilling, C. H. The effects of alternate optimal solutions
in constraint-based genome-scale metabolic models. Metab. Eng. 5,
264–276 (2003).

20. Schellenberger, J. et al. Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA Toolbox v2.0. Nature Protoc. 6,
1290–1307 (2011).

21. Fisher, R. A. The correlation between relatives on the supposition of Mendelian
inheritance. Trans. R. Soc. Edin. 52, 399–433 (1918).

22. Park, S. & Lehner, B. Epigenetic epistatic interactions constrain the evolution of
gene expression. Mol. Syst. Biol. 9, 645 (2013).

23. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).
24. Kim, H. et al. YeastNet v3: a public database of data-specific and integrated

functional gene networks for Saccharomyces cerevisiae. Nucleic Acids Res. 42,
D731–D736 (2014).

25. Breen, M. S., Kemena, C., Vlasov, P. K., Notredame, C. & Kondrashov, F. A.
Epistasis as the primary factor in molecular evolution. Nature 490,
535–538 (2012).

26. Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory networks
and an abundance of gene-specific repressors. Cell 157, 740–752 (2014).

27. Alam, M. T., Medema, M. H., Takano, E. & Breitling, R. Comparative genome-
scale metabolic modeling of actinomycetes: the topology of essential core
metabolism. FEBS Lett. 585, 2389–2394 (2011).

28. Shliaha, P. V., Bond, N. J., Gatto, L. & Lilley, K. S. Effects of traveling wave ion
mobility separation on data independent acquisition in proteomics studies.
J. Proteome Res. 12, 2323–2339 (2013).

29. Silva, J. C. et al. Quantitative proteomic analysis by accurate mass retention time
pairs. Anal. Chem. 77, 2187–2200 (2005).

30. Grüning, N.-M., Lehrach, H. & Ralser, M. Regulatory crosstalk of the metabolic
network. Trends Biochem. Sci. 35, 220–227 (2010).

31. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS
accelerated by disease mutation. Cell 162, 1066–1077 (2015).

32. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome
integrates intrinsic and environmental signals. Nature Genet. 33,
245–254 (2003).

33. Hashimoto, S. et al. Isolation of auxotrophic mutants of diploid industrial yeast
strains after UV mutagenesis. Appl. Environ. Microbiol. 71, 312–319 (2005).

34. Kokina, A., Kibilds, J. & Liepins, J. Adenine auxotrophy—be aware: some effects
of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A. FEMS Yeast
Res. 14, 697–707 (2014).

35. Low, B. Rapid mapping of conditional and auxotrophic mutations in Escherichia
coli K-12. J. Bacteriol. 113, 798–812 (1973).

36. Pronk, J. T. Auxotrophic yeast strains in fundamental and applied research. Appl.
Environ. Microbiol. 68, 2095–2100 (2002).

37. Hack, C. J. Integrated transcriptome and proteome data: the challenges ahead.
Brief. Funct. Genom. Proteom. 3, 212–219 (2004).

38. Payne, S. H. The utility of protein and mRNA correlation. Trends Biochem. Sci.
40, 1–3 (2015).

39. Ryan, O. et al. Global gene deletion analysis exploring yeast filamentous growth.
Science 337, 1353–1356 (2012).

40. Dowell, R. D. et al. Genotype to phenotype: a complex problem. Science 328,
469 (2010).

41. Anders, S. & Huber, W. Differential expression analysis for sequence count data.
Genome Biol. 11, R106 (2010).

42. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57,
289–300 (1995).

43. Cherry, J. M. et al. Saccharomyces Genome Database: the genomics resource of
budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).

NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2015.30 ARTICLES

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 9

© 2016 Macmillan Publishers Limited. All rights reserved

http://www.essentialgene.org
https://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment &eAccession=E-MTAB-3991
http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD001491
http://www.ebi.ac.uk/metabolights/
http://www.ebi.ac.uk/metabolights/MTBLS168
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-31774
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-31326
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-TABM-638
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-18994
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-29530
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-MTAB-1059
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-21571
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-56702
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-31176
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-MTAB-2539
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-MEXP-3150
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-18644
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-25582
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-GEOD-28794
http://dx.doi.org/10.7554/eLife.09943
http://dx.doi.org/10.1038/nmicrobiol.2015.30
http://www.nature.com/naturemicrobiology


44. von der Haar, T. Optimized protein extraction for quantitative proteomics of
yeasts. PLoS ONE 2, e1078 (2007).

45. Fic, E., Kedracka-Krok, S., Jankowska, U., Pirog, A. & Dziedzicka-Wasylewska,
M. Comparison of protein precipitation methods for various rat brain structures
prior to proteomic analysis. Electrophoresis 31, 3573–3579 (2010).

46. Vowinckel, J. et al. The beauty of being (label)-free: sample preparation methods
for SWATH-MS and next-generation targeted proteomics. F1000Research 2,
272 (2014).

47. Kelly, R. T. et al. Chemically etched open tubular and monolithic emitters for
nanoelectrospray ionization mass spectrometry. Anal. Chem. 78,
7796–7801 (2006).

48. Li, G.-Z. et al. Database searching and accounting of multiplexed precursor and
product ion spectra from the data independent analysis of simple and complex
peptide mixtures. Proteomics 9, 1696–1719 (2009).

49. Bond, N. J., Shliaha, P. V., Lilley, K. S. & Gatto, L. Improving qualitative and
quantitative performance for MSE-based label-free proteomics. J. Proteome Res.
12, 2340–2353 (2013).

50. Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A. & Dudoit, S. (eds)
Bioinformatics and Computational Biology Solutions Using R and Bioconductor
(Springer, 2005).

51. Andrews, D. Robust Estimates of Location (Princeton Univ. Press, 1972).
52. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
53. Ewald, J. C., Heux, S. & Zamboni, N. High-throughput quantitative

metabolomics: workflow for cultivation, quenching, and analysis of yeast in a
multiwell format. Anal. Chem. 81, 3623–3629 (2009).

54. Buescher, J. M. et al. Global network reorganization during dynamic adaptations
of Bacillus subtilis metabolism. Science 335, 1099–1103 (2012).

55. Boyle, E. I. et al. GO::TermFinder—open source software for accessing Gene
Ontology information and finding significantly enriched Gene Ontology terms
associated with a list of genes. Bioinformatics 20, 3710–3715 (2004).

56. Dixon, S. J., Costanzo, M., Baryshnikova, A., Andrews, B. & Boone, C.
Systematic mapping of genetic interaction networks. Annu. Rev. Genet. 43,
601–625 (2009).

57. Mani, R., St. Onge, R. P., Hartman, J. L., Giaever, G. & Roth, F. P. Defining
genetic interaction. Proc. Natl Acad. Sci. USA 105, 3461–3466 (2008).

58. Segrè, D., Deluna, A., Church, G. M. & Kishony, R. Modular epistasis in yeast
metabolism. Nature Genet. 37, 77–83 (2005).

59. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome.
Nature 418, 387–391 (2002).

60. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

61. Ansari, S. A. et al. Distinct role of Mediator tail module in regulation of
SAGAdependent, TATA-containing genes in yeast. EMBO J. 31, 44–57 (2012).

62. Dymond, J. S. et al. Synthetic chromosome arms function in yeast and generate
phenotypic diversity by design. Nature 477, 471–476 (2011).

63. Fournier, M. L. et al. Delayed correlation of mRNA and protein expression in
rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin.
Mol. Cell. Proteom. 9, 271–284 (2010).

64. Jimeno, S. et al. New suppressors of THO mutations identify Thp3 (Ypr045c)-
Csn12 as a protein complex involved in transcription elongation.Mol. Cell. Biol.
31, 674–685 (2011).

65. Lu, L., Roberts, G. G., Oszust, C. & Hudson, A. P. The YJR127C/ZMS1 gene
product is involved in glycerol-based respiratory growth of the yeast
Saccharomyces cerevisiae. Curr. Genet. 48, 235–246 (2005).

66. Miller, C. et al.Mediator phosphorylation prevents stress response transcription
during non-stress conditions. J. Biol. Chem. 287, 44017–44026 (2012).

67. Morillo-Huesca, M., Clemente-Ruiz, M., Andújar, E. & Prado, F. The SWR1
histone replacement complex causes genetic instability and genome-wide
transcription misregulation in the absence of H2A.Z. PloS ONE 5,
e12143 (2010).

68. Santos-Pereira, J. M., García-Rubio, M. L., González-Aguilera, C., Luna, R. &
Aguilera, A. A genome-wide function of THSC/TREX-2 at active genes prevents
transcription–replication collisions. Nucleic Acids Res. 42, 12000–12014 (2014).

69. Sanz, A. B. et al. Chromatin remodeling by the SWI/SNF complex is essential for
transcription mediated by the yeast cell wall integrity MAPK pathway.Mol. Biol.
Cell 23, 2805–2817 (2012).

70. Schulz, D., Pirkl, N., Lehmann, E. & Cramer, P. Rpb4 functions mainly in
mRNA synthesis by RNA polymerase II. J. Biol. Chem. 289,
17446–17752 (2014).

71. Seizl, M., Larivière, L., Pfaffeneder, T., Wenzeck, L. & Cramer, P. Mediator head
subcomplex Med11/22 contains a common helix bundle building block with a
specific function in transcription initiation complex stabilization. Nucleic Acids
Res. 39, 6291–6304 (2011).

72. Tauber, E. et al. Functional gene expression profiling in yeast implicates
translational dysfunction in mutant huntingtin toxicity. J. Biol. Chem. 286,
410–419 (2011).

73. Mo, M. L., Palsson, B. O. & Herrgård, M. J. Connecting extracellular
metabolomics measurements to intracellular flux states in yeast. BMC Syst. Biol.
3, 37 (2009).

74. Szappanos, B. et al. An integrated approach to characterize genetic interaction
networks in yeast metabolism. Nature Genet. 43, 656–662 (2011).

75. Vizcaíno, J. A. et al. The PRoteomics IDEntifications (PRIDE) database and
associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).

76. Haug, K. et al. MetaboLights—an open-access general-purpose repository for
metabolomics studies and associated meta-data. Nucleic Acids Res. 41,
D781–D786 (2013).

Acknowledgements
The authors thank U. Sauer (ETH Zurich) for support with metabolite measurements and

scientific discussions and M. Werber and S. Klages (Max Planck Institute for Molecular

Genetics) for support with RNA sequencing analysis. The authors acknowledge the

Wellcome Trust (RG 093735/Z/10/Z), the ERC (starting grant 260809), the Isaac Newton

Trust (RG 68998) and the Darwin Trust of Edinburgh for a studentship for P.V.S. A.Z. is an

EMBO fellow. M.R. is aWellcome Trust Research Career Development andWellcome-Beit

Prize fellow.

Author contributions
M.T.A., A.Z., R.S., E.R. and S.B. performed data analysis. M.M., P.S. and S.C. carried out raw

data processing. M.M., P.S., F.C., J.V., A.K., E.C., S.M. and S.C. conducted the experiments.

K.R.P., B.T., K.S.L. and M.R. conceived the study. M.R. wrote the first draft. M.T.A., A.Z.

and M.R. wrote the paper. All authors contributed to preparing the final version.

Additional information
Supplementary information is available online. Reprints and permissions information is

available online atwww.nature.com/reprints. Correspondence and requests formaterials should

be addressed to M.R.

Competing interests
The authors declare no competing financial interests.

ARTICLES NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2015.30

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology10

© 2016 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nmicrobiol.2015.30
http://www.nature.com/reprints
http://dx.doi.org/10.1038/nmicrobiol.2015.30
http://www.nature.com/naturemicrobiology

	The metabolic background is a global player in Saccharomyces gene expression epistasis
	Results
	Molecular signatures of the metabolic–genetic background
	Metabolism-induced gene expression signatures are context-dependent and correlate with flux
	Metabolic perturbations interact epistatically
	Highly connected and conserved genes are buffered against metabolism-induced epistasis
	Metabolic epistasis translates into the proteome and amplifies at the metabolome

	Discussion
	Methods
	Sampling for transcriptomics and proteomics
	Transcriptomics
	Sample preparation
	RNAseq data processing
	Differential mRNA expression

	Proteomics
	Sample preparation
	LC-MS/MS proteomics
	Proteome data processing

	Metabolomics
	Metabolic pathway enrichment
	Epistasis
	Gene essentiality and conservation
	Confounding effects of metabolism-induced transcriptional changes in transcriptomics
	Flux variability analysis
	Accession numbers

	Figure 1  Gene expression response to 16 combinatorial differences in the metabolic–genetic background.
	Figure 2  Transcriptional response to a metabolic gene deletion is sensitive to the metabolic–genetic background.
	Figure 3  Metabolic perturbations interact epistatically and dominate quantitative expression profiles.
	Figure 4  Metabolism-induced epistasis propagates to the proteome and increases at the metabolome.
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing interests

