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Abstract

Background: Although cells require nutrients to proliferate, most nutrient exchange rates of the NCI60 panel of

cancer cell lines correlate poorly with their proliferation rate. Here, we provide evidence indicating that this

inconsistency is rooted in the variability of cell size.

Results: We integrate previously reported data characterizing genome copy number variations, gene expression,

protein expression and exchange fluxes with our own measurements of cell size and protein content in the NCI60

panel of cell lines. We show that protein content, DNA content, and protein synthesis per cell are proportional to

the cell volume, and that larger cells proliferate slower than smaller cells. We estimate the metabolic fluxes of these

cell lines and show that their magnitudes are proportional to their protein synthesis rate and, after correcting for

cell volume, to their proliferation rate. At the level of gene expression, we observe that genes expressed at higher

levels in smaller cells are enriched for genes involved in cell cycle, while genes expressed at higher levels in large

cells are enriched for genes expressed in mesenchymal cells. The latter finding is further corroborated by the

induction of those same genes following treatment with TGFβ, and the high vimentin but low E-cadherin protein

levels in the larger cells. We also find that aromatase inhibitors, statins and mTOR inhibitors preferentially inhibit the

in vitro growth of cancer cells with high protein synthesis rates per cell.

Conclusions: The NCI60 cell lines display various metabolic activities, and the type of metabolic activity that they

possess correlates with their cell volume and protein content. In addition to cell proliferation, cell volume and/or

biomarkers of protein synthesis may predict response to drugs targeting cancer metabolism.
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Background
Cancer cells exhibit metabolic phenotypes that distin-

guish them from normal tissue cells, in particular an in-

creased activity of metabolic pathways necessary for cell

growth [1,2]. In turn, accumulating evidence indicates

that major oncogenes, for example, Ras and Myc, posi-

tively regulate metabolic pathways that are upregulated

in cancer cells [2-6], whereas tumor suppressors like p53

negatively regulate them [7,8]. However, a parallel un-

derstanding of cancer metabolism from basic principles

is also needed, particularly in cases where the regulatory

mechanisms contradict what is expected from efficiency.

A good example is the Warburg effect [9]: the observa-

tion of a high glycolysis rate under normal oxygen

conditions (aerobic glycolysis). While we have some un-

derstanding of the regulatory mechanisms activating gly-

colysis, it is not clear why the less efficient glycolysis

(two ATP molecules per glucose molecule) is preferred

to the more efficient oxidative phosphorylation (oxida-

tive phosphorylation (OxPhos), 32 ATP molecules per

glucose molecule).

The yield of ATP per glucose molecule has generally

been used to compare the efficiency of glycolysis and

OxPhos. However, cell metabolism can also be con-

strained by the solvent capacity of the cell cytoplasm,

that is, the maximum amount of macromolecules that

can occupy the intracellular space [10,11]. The simultan-

eous consideration of glucose uptake and solvent
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capacity provides a theoretical explanation for the Warburg

effect [1]: at low glucose uptake rates when the glucose

uptake capacity is the limiting factor, mitochondrial

respiration is indeed the most efficient pathway for

ATP generation. Above a threshold glucose uptake rate,

however, the solvent capacity becomes the limiting factor,

resulting in gradual activation of aerobic glycolysis and

slight decrease of mitochondrial respiration. Therefore the

Warburg effect is a favorable catabolic state for all rapidly

proliferating mammalian cells with high glucose uptake

capacity. Although aerobic glycolysis is less efficient

than mitochondrial respiration in terms of ATP yield

per glucose uptake, it is more efficient in terms of the

required solvent capacity [1].

Our understanding of the amino-acid demand of cancer

cells remains incomplete as well. It has been recently

shown that the exchange rates of most nutrients correlate

poorly with their proliferation rate in 60 tumor-derived

cell lines (NCI60) growing in standard culture conditions

[12]. These cell lines have been utilized by the National

Cancer Institute (NCI) to screen for anticancer drugs [13]

and the understanding of their metabolism may aid in the

identification of small molecules targeting cancer metab-

olism. Here we investigate the origin of this apparent in-

consistency between metabolite exchange fluxes and cell

proliferation, taking into account the variability of cell size

and protein content among the NCI60 cell lines. We use

these insights to reassess the NCI drug screening data,

allowing us to start to personalize drug therapies targeting

cancer metabolism.

Methods
Cell-doubling times

The doubling times were obtained from the Developmental

Therapeutics Program of the NCI (http://dtp.nci.nih.gov/

docs/misc/common_files/cell_list.html), and have been con-

firmed for a subset of cell lines [12].

Protein synthesis rate estimation

The protein synthesis rate was estimated from the ex-

change fluxes of essential amino acids, as described in

Additional file 1.

Protein synthesis rate validation

Log-phase cells seeded in 6-well plates the previous

day were incubated with pre-warmed RPMI 1640

medium containing 2 μCi/mL (4,5-3H)-leucine (Moravek

Biochemicals and Radiochemicals, Brea, CA, USA) at 37°C.

At predetermined time points (5, 15 and 30 minutes),

monolayers were washed twice with ice cold PBS and

0.5 ml of ice cold 10% perchloric acid was added to each

well. After 20 minutes incubation, the plates were

scraped into a microcentrifuge tube and the samples

were centrifuged at 15,000 × g for 10 minutes. The pellet

was washed with 10% perchloric acid, centrifuged again and

then solubilized with 0.2 M NaOH. The sample was added

to a scintillation tube containing 2.5 mL of Ultima-Gold

liquid scintillation cocktail (Perkin-Elmer, Waltham, MA,

USA), vortexed until the solution was clear and 3H counts

per minute (CPM) were determined using an LS6000SC

Beckman Coulter liquid scintillation counter. At each time

point CPMs were normalized by the cell number count:

(4,5-3H)-leucine incorporation rate was determined as

the slope of the plot of CPM/cell as a function of time

(Additional file 1: Figure S1).

Cell size measurements

Cells were grown in RPMI 1640 medium containing 5%

FBS and 2 mM L-glutamine at 37°C and 5% CO2, as

described previously. Each cell sample was pipetted

into the disposable counting chamber and bright-field

images were captured for image analysis in duplicate.

Cell diameter was measured with the Cellometer Auto T4

(Nexcelom Bioscience LLC, Lawrence, MA, USA). This

image cytometer utilizes a bright-field (BR) light micros-

copy optical setup for image cytometric analysis [14]. The

combination of microscope objective (4×) and digital

camera provides resolution of approximately 1.05 μm2/pixel,

which is utilized to calculate accurate cell size of the target

sample. The system has a motorized assembly that automat-

ically acquires bright-field images of the target sample. The

disposable counting chamber holds precisely 20 μL of the

cell sample. Two separate areas are imaged and analyzed on

the imaging platform, where the target cells are identified

and counted by the Cellometer software. The cell volume

was estimated assuming a spherical shape. The validity of

the latter assumption is supported by the reported linear

relationship between the estimated cell volume and the

measured protein content, a surrogate of cell size. The cell

size data will be available on the Nexcelom Biosciences

website (http://www.nexcelom.com).

Protein content measurements

NCI60 cell lines were grown in complete medium

containing RPMI 1640, with 2 mM L-glutamine and 5%

FBS. Cells were seeded in triplicate wells in 6-well plates

and maintained at 37°C, 5% CO2 until reaching 70 to 80%

confluency. Cells were then trypsinized and collected for

cell count and total protein extraction. Cell number was

determined using the Vi-CELL Cell Viability Analyzer

(Beckman Coulter, Indianapolis, IN, USA). The remaining

cells from each well were centrifuged at 1500 g for 5 min

and washed with 1X PBS. Cell lysates were prepared in

radioimmunoprecipitation assay (RIPA) buffer with 1%

protease inhibitor cocktail. Protein concentration was

determined by Bradford assay (Bio-Rad, Hercules, CA,

USA). Protein content/cell was calculated based on total

protein content/well and total cell number/well.
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DNA content estimation

The DNA content was estimated from previously re-

ported karyotypes for the NCI60 cell lines [15] and

the chromosome sizes reported by Ensembl. DNA

content inferred from copy number profiles is in close

correspondence with DNA content measured by flow

cytometry [16].

Statistical test for volume dependence

Given a test quantity Yi (protein content, DNA content

or protein synthesis rate) measured across i = 1,…,n cell

lines with cell volumes Vi, we assume that:

Y i ¼ μV α
i þ σV

β
i X i

where μ and σ are model parameters and α = β = 0 for the

volume independent (I) model, α = 1 and β = 0 for the vol-

ume dependent mean (VDM), and α = β = 1 for the vol-

ume dependent mean and variance (VDMV) model, and

Xi are independent random variables with a standard nor-

mal distribution. For each model, we assign to μ and σ

their maximum likelihood estimates (Additional file 1).

The validity of each model is then quantified applying the

Shapiro-Wilk normality test to:

X i ¼ Y i−μV
α
i

� �

=σV
β=2
i

A model is rejected if the resulting statistical signifi-

cance falls below 0.05.

Personalized metabolic models

Personalized metabolic models are described in Additional

file 1.

Gene expression profiles

Affymetrix HG-U133 Plus 2.0 gene expression arrays for

the NCI60 cell lines were reported previously [17] and these

were downloaded from CellMiner, (http://discover.nci.nih.

gov/cellminer/loadDownload.do), GCRMA normalization.

Log2 expression values were used for analysis.

Protein expression profiles

The expression of 194 proteins and phosphoproteins in

the NCI60 cell lines was previously reported [18] and

these were downloaded from CellMiner, (http://discover.

nci.nih.gov/cellminer/loadDownload.do) Log2 protein ex-

pression values were used for analysis.

Gene ontology (GO) analysis

Given the list of genes associated with a GO term, a

hypergeometric test was performed to determine the

significant enrichment of those genes within the list

of genes with at least one Affymetrix HG-U133 Plus

2.0 probe that is positively (negatively) correlated with

cell volume.

Correlation analysis

All reported correlations between metabolic fluxes and

cell variables were quantified using the Pearson correl-

ation coefficient (PCC). The statistical significance of the

observed PCC was estimated using a permutation test.

The statistical significance P was computed as the frac-

tion of times the PCC of the permuted variables was as

large as, or larger than the observed value in 108 such

permutations.

Results
The exchange of essential amino acids is proportional to

their abundance in the proteome

Proteins make up about 70% of cell dry weight. This

high protein-content is associated with high metabolic

demand for protein synthesis, to balance the basal pro-

tein turnover and sustain cell growth [2]. A component

of this metabolic demand is the import of essential

amino acids (that is, amino acids that cannot be synthe-

sized by human cells) for subsequent protein synthesis.

We hypothesized that the import rate of an essential

amino acid is proportional to the protein synthesis rate,

with a coefficient of proportionality matching its relative

abundance in the proteome (Additional file 1: Table S1).

The validity of this assumption was tested using the

measured metabolic exchange fluxes reported for the

NCI60 panel of tumor-derived cell lines [12]. Plotting of

the import rate of one essential amino acid versus an-

other produces an evident linear relationship between

the two (Figure 1a, symbols). More importantly, the

slope matches the ratio of their relative abundance in

the human proteome (Figure 1a, red line). Exploiting

this relationship, we obtained a maximum likelihood

estimate (MLE) of the protein synthesis rate for each

cell line in the NCI60 panel. A posteriori, we plotted

the import rate of essential amino acids as a function of

the MLE protein synthesis rate, corroborating their

proportionality (Additional file 1: Figure S1). To valid-

ate the MLE protein synthesis rate we quantified the

protein synthesis rates of selected cell lines by measur-

ing the rate of (4,5-3H)-leucine incorporation into pro-

tein. The measurements obtained from both methods

are proportional to each other (PCC = 0.99) (Additional

file 1: Figure S2).

The overall exchange of serine and glycine matches the

requirements of protein synthesis

Next, we investigated the exchange rate of the non-

essential amino acids, serine and glycine, in relation to

the estimated protein synthesis rates. Serine was

imported from the growth medium in all the reported

cancer cell lines, at a magnitude that is proportional

but higher than the expected serine demand for protein

synthesis (Figure 1b). In contrast, glycine was either
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imported or exported (that is, secreted into the growth

medium) at a magnitude that was proportional, but lower

than the expected glycine demand for protein synthesis

(Figure 1c). Interestingly, when both contributions are

added up, the overall serine + glycine exchange matches

what is required for protein synthesis in all NCI60 cell

lines (Figure 1d). These data indicate that to a variable ex-

tent, in all cancer cells there is a putative net conversion

of serine to glycine, catalyzed either by the cytosolic or

mitochondrial serine hydroxymethyl transferase (SHMT1

and SHMT2, respectively). Furthermore, the net putative

SHMTactivity was approximately proportional to the pro-

tein synthesis rate (Figure 1e). However, since serine and

glycine participate in metabolic pathways other than pro-

tein synthesis, we cannot establish a causal link between

the protein synthesis rate and the overall exchange rate of

serine and glycine.

The rate of aerobic glycolysis is consistent with the ATP

demand of protein synthesis

Protein synthesis is an energy-demanding biosynthetic

process. As most cancer cells have a high rate of glycolysis,

Figure 1 Import rate of amino acids. Each square symbol represents a cell line, the red solid lines indicate the expected amount given the

demand of protein synthesis and the dashed red lines are linear fits to the data points. (a) Valine versus leucine import rate. (b) The import rate

of serine as a function of the maximum likelihood estimate (MLE) protein synthesis rate. (c) The import rate of glycine as a function of the MLE

protein synthesis rate. The cell lines below the blue dashed-dotted line export glycine. (d) The sum of serine and glycine exchange rates results

in a net import that matches the overall serine and glycine requirements for protein synthesis. (e) Putative rate of serine to glycine conversion

(catalyzed by serine hydroxymethyl transferase), calculated as the expected glycine supply for protein synthesis minus the observed glycine

exchange. (f) Lactate excretion as a function of the glucose uptake rate. (g) Lactate excretion as a function of the MLE protein synthesis rate. The

red line represents the ATP demand of protein synthesis (4.27 ATP/amino acid [19]). (h) Glycine exchange rate as a function of the proliferation

rate. (i) Glycine exchange rate as a function of the DNA synthesis rate.
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we first focused on this pathway. As reported previously

by Jain et al. [12], we also found that a significant fraction

of glucose (approximately 70%) was converted to lactate in

proportion to the glucose uptake rate (aerobic glycolysis,

Figure 1f). Assuming that most of the excreted lactate is

formed from glucose and that most of the lactate pro-

duced from glucose is excreted, the lactate excretion rate

is a surrogate for ATP production from aerobic glycolysis.

Surprisingly, the lactate excretion rates were approxi-

mately proportional to the protein synthesis rates in a ra-

tio close to the energy demands of protein synthesis

(Figure 1g). This scaling relationship indicates that the

amount of ATP generated by aerobic glycolysis is approxi-

mately equal to the energy requirements for protein syn-

thesis in cancer cells.

The correlation between protein synthesis and aerobic

glycolysis rates is supported by previous investigations of

protein translation and the mTOR pathway, which plays

a major role in its regulation. Treatment with translation

initiation inhibitors decreases the glucose uptake and

the lactate excretion of cancer cell lines grown in vitro

[20]. mTORC1 activation increases glucose uptake,

whereas treatment with the mTOR inhibitor, rapamycin,

decreases glucose uptake [21]. However, further experi-

ments are required to establish a causal link between the

energy demands of protein synthesis and the rate of

aerobic glycolysis.

Glycine exchange is correlated with proliferation and DNA

synthesis rates

As previously noted by Jain et al. [12], we corrobo-

rated that the glycine exchange rate is significantly

correlated with the proliferation rate of the NCI60 cell

lines (PCC= 0.51, P= 7 × 10-6) (Figure 1h). Furthermore,

experiments with 13C-labelled glycine demonstrated the

incorporation of glycine carbons into purine nucleotides

[12]. However, the relationship between glycine exchange

and DNA synthesis rates has not been determined. Using

the reported karyotypes for the NCI60 cell lines [15], we

estimated the DNA content of each cell line. Next we

estimated the DNA synthesis rate by multiplying the

DNA content by the proliferation rate. We found that

the glycine exchange rate was significantly correlated

with the DNA synthesis rate (PCC = 0.37, P = 0.0026)

(Figure 1i).

The protein synthesis rates are proportional to the cell

volumes

The estimated protein synthesis rates for the NCI60

panel of cancer cell lines were not significantly corre-

lated with their proliferation rate (PCC = 0.088, P = 0.25)

(Additional file 1: Figure S3). Given that the reported ex-

change fluxes were reported per cell number, we hypoth-

esized that variations in cell size may be responsible for

the lack of correlation. To gain further insight into this

issue, we measured cell size and protein content of each

cell line in the NCI60 panel, and estimated the cell vol-

ume assuming a spherical shape. The estimated cell line

volumes are distributed between 1 and 4 pL. Examples

of both extremes are shown in Figure 2a and b. There

was a positive correlation between cell volumes and the

reported doubling times (PCC = 0.45, P = 0.00027), in-

dicating that, on average, slowly dividing cells tended

to be larger (Figure 2c). Similarly, the protein content

per cell was positively correlated with cell doubling

time (PCC = 0.38, P = 0.0026). However, the estimated

DNA content of the NCI60 cell lines did not significantly

correlate with their proliferation rate (PCC = 0.17, P =

0.092). As anticipated by the correlation of both the pro-

tein content and cell volume with the doubling time, we

observed positive correlation between the protein content

and the cell volume (PCC= 0.69 P <10-6), with a typical

protein concentration of 0.14 g/mL (Figure 2d). The DNA

content was also positively correlated with the cell volume

(PCC = 0.51, P = 0.000032) (Figure 2e) and with the

protein synthesis rate (PCC = 0.43, P = 0.00078). Finally,

the protein synthesis rate per cell was also positively

correlated with the cell volume (PCC = 0.55, P = 0.000011)

(Figure 2f), with a typical rate of 38.1 mmol/L/h.

From Figure 2d we observe that the spread of the pro-

tein content around the dashed red line increases with

increasing the cell volume. This observation suggests

that not only the average but also the variance of the

protein content may be a function of the cell volume.

The same trend is evident both for the DNA content

(Figure 2e) and the protein synthesis rate (Figure 2f ).

To account for this possibility, we tested three different

models representing the dependence of each quantity

with the cell volume. The first model assumes that the

tested quantity (protein content, DNA content or pro-

tein synthesis) is independent of the cell volume, inde-

pendent (I). The second model assumes that the

expected value of the tested quantity increases with the

cell volume but the variance is independent of the cell

volume, volume dependent mean (VDM). The third

model assumes that both the expected value and the

variance of the tested quantity increase with the cell vol-

ume, volume dependent mean and variance (VDMV).

For the three quantities we can rule out the independent

model (protein content, pI = 0.0039; DNA content, pI =

0.0077; protein synthesis, pI = 0.00028). In the case of

the protein content, we could not reject the VDM model

(pVDM = 0.55), neither the VDMV model (pVDVM = 0.93),

although the VDMV seems more likely (pVDVM = 0.93 vs

pVDM = 0.55). In the case of the DNA content, we can

rule out the VDM model (pVDM = 0.0057) whereas the

VDMV model is a good representation of the data

(pVDMV = 0.83). In contrast, for the protein synthesis rate
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we can rule out the VDMV model (pVDMV = 0.0069)

while the VDM model is a good representation of the

data (pVDM = 0.57). Taken together, these statistical ana-

lyses indicate that the average and the standard deviation

of the protein and DNA content across cell lines in-

creases proportionally to the cell volumes. The average

protein synthesis rate across cell lines also increases with

the cell volumes, but with a standard deviation that is

independent of the cell volume.

Association between protein synthesis rates and internal

metabolic fluxes

To further understand the impact of cell size and pro-

tein synthesis rates on cell metabolism, we developed

personalized metabolic models for each cell line in the

NCI60 panel, by taking into account their measured cell

volume, estimated DNA content and previously reported

exchange fluxes. However, we did not constrain the

model by the protein content of each cell line. As dis-

cussed above, the rate of protein synthesis and the asso-

ciated protein content can be deduced from the

exchange fluxes of essential amino acids. In this way, the

comparison of the model-predicted protein content and

the measured values may be used as an independent

validation. The model-predicted protein synthesis rates

are highly correlated with the MLE values (PCC = 0.97,

P <10-6) (Additional file 1: Figure S4a). As theoretically

expected, the model predicts slightly lower values. The

MLE predicts a protein synthesis rate that is a consensus

between the observed essential amino acids import rates.

Instead, the metabolic model predicts the protein syn-

thesis rate that is consistent with the limiting essential

amino acid, that is, the essential amino acid whose ex-

change rate results in the lowest protein synthesis rate

when assuming that all other essential amino acids can

be imported at any rate. The model predicted protein

content is also significantly correlated with the measured

protein content (PCC = 0.49, P = 0.00039) (Additional

file 1: Figure S4b). We note that the agreement is not

perfect. The differences could be attributed in part to

the lack of cell line-specific measurements of the basal

protein degradation rate, among other factors. Neverthe-

less, the model captures the right trend and it can be

used to investigate the correlation between internal

fluxes and the proliferation or protein synthesis rate.

The model-predicted metabolic fluxes can be roughly

divided in three major categories based on their magni-

tude. Glycolysis is in the first category, with rates as high

Figure 2 Correlation between biomass components and doubling time or cell size. (a) Culture image of the relatively smaller colon cancer

cell line HCT-116. (b) Culture image of the relatively larger renal cancer cell line A498. (c) The cell volume scales in proportion with the doubling

time. The diamond and circle represent the HCT-116 and A498 cell lines, respectively. (d-f) The protein content, DNA content and protein synthesis

rate scale in proportion to the cell volume. The blue dashed-dotted line in panel (e) represents the DNA content associated with the diploid genome

of a normal cell. All other lines represent linear fits to the data points.
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as 1 pmol/cell/h (Figure 3a,b). We also note an ATP

synthase catalyzed flux rate in that range (Figure 3c),

indicating that OxPhos in the mitochondria contributes

to energy generation in an amount comparable to

that by glycolysis. Glutaminolysis is in a second cate-

gory, with intermediate rates around 1/10 pmol/cell/h

(Figure 3d). Overall, the imported glutamine is utilized

as a precursor amino acid in protein synthesis and con-

verted to glutamate. The produced glutamate is also uti-

lized as a precursor amino acid in protein synthesis,

converted to α-ketoglutarate by different transaminases in

the cytosol and the mitochondria (Figure 3e), and excreted

(Figure 3f). Among the transaminases, phosphoserine

transaminase (PSAT) links serine synthesis from 3-

phosphoglycerate to glutaminolysis (Figure 3g), as previ-

ously reported for breast cancer and melanoma cell

lines [22,23]. Finally, the third category comprises reac-

tions with fluxes in the range of 1/100 pmol/cell/h, includ-

ing the oxidative branch of the pentose phosphate pathway

(PPPox, Figure 3h), and the reactions catalyzed by pyru-

vate dehydrogenase (PDH, Figure 3i) and pyruvate carb-

oxylase (PC, Figure 3j). The rate of all these reactions is

significantly correlated with the protein synthesis rate, as

can be observed from direct inspection of the panels in

Figure 3, and as quantified in Table 1, with the notable ex-

ceptions of aspartate and glycine exchange rates.

Figure 3 Metabolic flux distribution as a function of the protein synthesis rate. (a-j) Selected metabolic pathways are shown. Shown are

rates of the reaction indicated in the y-axis as a function of the maximum likelihood estimate (MLE) protein synthesis rate (x-axis) for the NCI60

cell lines. Panels with no error bars represent exchange fluxes that were used as input to the model. Panels with error bars represent flux

estimates using our personalized metabolic models. In the latter, each point represents the median over the range of kinetic parameters

explored (Additional file 1) and the error bars represent the 90% CI. The dashed lines are linear fits through the origin.
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Metabolic fluxes correlate with proliferation rate after

correcting for cell volume

These analyses may raise the impression that the prolif-

eration rate has no impact on the metabolism of cancer

cells. However, after correcting for cell volume and con-

verting the fluxes from per cell to per-cell volume we

obtained significant correlation with the proliferation

rate. The protein synthesis rate per cell volume was

positively correlated with the proliferation rate (PCC =

0.55, P = 4 × 10-6, Figure 4). Therefore, although larger

cells tend to have a higher rate of protein synthesis per

cell (Figure 2f ), they have a lower protein synthesis rate

per cell volume (Figure 4). In contrast, smaller cells tend

to have a lower rate of protein synthesis per cell, but a

higher protein synthesis rate per cell volume due to their

relatively higher proliferation rates (Figure 4).

Theoretically, the protein synthesis rate per cell vol-

ume (fP) should be a function of the protein density

(Pd), the average molecular weight of an amino acid in

expressed proteins (waa), the basal rate of protein

turnover (kD) and the proliferation rate (μ), following

the equation:

f P ¼
Pd

waa

kD þ μð Þ ð1Þ

As discussed above, the linear scaling of the protein

content as a function of the cell volume (Figure 2d)

Table 1 Correlation of exchange fluxes with proliferation rate and protein synthesis rate

Flux per cell versus
proliferation rate

Flux per cell versus protein
synthesis rate

Flux per cell volume versus
proliferation rate

PCC P PCC P PCC P

Protein synthesis 0.09 0.250214 1.00 0.000000 0.55 0.000004

Essential amino acids Isoleucine 0.05 0.349331 0.96 0.000000 0.48 0.000082

Leucine 0.08 0.281351 0.98 0.000000 0.54 0.000008

Lysine 0.16 0.108393 0.95 0.000000 0.56 0.000003

Methionine 0.20 0.065968 0.92 0.000000 0.65 0.000000

Phenylalanine 0.12 0.184280 0.97 0.000000 0.59 0.000001

Threonine −0.01 0.466997 0.92 0.000000 0.42 0.000519

Tryptophan 0.01 0.459913 0.83 0.000000 0.37 0.002299

Valine 0.06 0.333105 0.97 0.000000 0.49 0.000068

Non-essential amino acids Alanine 0.38 0.000912 −0.55 0.000040 0.11 0.200642

Arginine 0.10 0.230809 0.45 0.001921 0.39 0.001534

Asparagine 0.15 0.134489 0.51 0.000448 0.43 0.000407

Aspartate 0.04 0.373865 0.18 0.081690 0.14 0.151826

Glutamine −0.23 0.032499 0.78 0.000000 0.13 0.156961

Glutamate 0.26 0.018120 −0.59 0.000080 0.14 0.137636

Glycine 0.51 0.000007 −0.12 0.179629 0.47 0.000066

Proline 0.21 0.047898 −0.30 0.014511 0.03 0.398548

Serine −0.10 0.226831 0.83 0.000000 0.29 0.012954

Tyrosine 0.07 0.282791 0.96 0.000000 0.52 0.000014

Other Glucose −0.17 0.092456 0.80 0.000000 0.21 0.058257

Lactate 0.22 0.043187 −0.76 0.000000 −0.13 0.157716

PPPox 0.34 0.004365 0.66 0.000000 1.00 0.000000

PSAT −0.16 0.104559 0.73 0.000000 0.24 0.033800

PDH 0.48 0.000078 0.29 0.018433 0.72 0.000000

PC 0.02 0.445333 0.52 0.000207 0.35 0.003715

Glutamate→α-KG 0.05 0.358935 0.80 0.000000 0.64 0.000000

ATP synthase 0.00 0.491256 0.94 0.000000 0.52 0.000014

Correlations between the exchange fluxes of amino acids, lactate and glucose and the predicted flux of selected reactions, with either the protein synthesis rate

per cell, the proliferation rate, or the proliferation rate after normalizing by cell volume. PCC, Pearson correlation coefficient; P, associated statistical significance;

PPPox, oxidative branch of the pentose phosphate pathway; PSAT, phosphoserine transaminase PC, pyruvate carboxylase; α-KG, α-ketoglutarate. Values in bold

indicate significance below P <0.05.
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suggest an approximately constant protein density across

cell lines of Pd = 0.14 g/mL. waa can be estimated by tak-

ing into account the average amino acid composition of

expressed proteins and the amino acids molecular

weight (Additional file 1), obtaining waa = 108.89 g/mol.

Finally, the basal protein turnover is about kD = 0.01/h

[24]. Using these parameter estimates we can plot the

theoretically expected line of the protein synthesis rate

per cell volume as a function of the proliferation rate

(Equation 1). This theoretical prediction is in very good

agreement with the experimental data (Figure 4). If we

instead use kD as a free parameter and fit the theoretical

line to the experimental points in Figure 4, we obtain

kD =mean 0.015 ± SD 0.002 protein/h, which is in very

good agreement with the previous experimental report of

kD = 0.01/h [24], again supporting the validity of the

theoretical line (Equation 1).

Similarly, the exchange flux of all essential amino

acids, some non-essential amino acids (arginine, aspara-

gine, glycine, serine, tyrosine) and some of the reported

internal fluxes (PPPox, PD, PC, glutamate→ αKG, ATP

synthase) are also significantly correlated with the prolif-

eration rate when normalized by the cell volume

(Table 1). There are some notable exceptions, including

the exchange flux of the non-essential amino acids ala-

nine, aspartate, glutamate, glutamine and proline, uptake

of glucose (marginally correlated), and lactate excretion

(Table 1). Furthermore, as demonstrated previously [12]

and above (Figure 1h, Table 1), correlation between

glycine and the proliferation rate is evident even without

normalizing by the cell size.

Large cells manifest gene expression patterns of

mesenchymal cells

To further investigate the differences between small/

highly-proliferative cells and large/slowly-proliferating

cells we analyzed previously reported basal gene expres-

sion profiles for the NCI60 panel of cell lines [17]. We

selected genes with expression manifesting high positive

correlation with the cell volumes (PCC >0.5) (Additional

file 1: Table S2). The expression of these genes clearly

increases when going from smaller to larger cell lines

(Figure 5a). Similarly, we selected genes with expression

manifesting high negative correlation with the cell vol-

umes (PCC < −0.5) (Additional file 1: Table S2). The ex-

pression of these genes clearly decreases when going

from smaller to larger cell lines (Figure 5a). The posi-

tively and negatively correlated gene lists were subjected

to GO analysis, to determine the association between

annotated pathways and cell volume. The genes with de-

creased expression in cells with larger cell volume were

enriched in GO terms related to DNA replication, cell

cycle and DNA repair (Figure 5b), corroborating the

negative correlation between cell volume and prolifera-

tion rate. In contrast, the genes with increased expres-

sion in cells with larger cell volume were enriched in

GO terms related to changes in cell morphology, traf-

ficking of proteins between cellular organelles and au-

tophagy (Figure 5c).

Cell morphology remodeling is a characteristic pheno-

type of mesenchymal cells. We hypothesized that those

genes for which expression increases/decreases with in-

creasing cell volume may manifest a similar profile dur-

ing an epithelial mesenchymal transition (EMT). To test

this hypothesis we analyzed previously reported gene ex-

pression profiles [25], characterizing the response of the

relatively small A549 cell line (indicated by the arrow in

Figure 5a) to treatment with transforming growth factor

(TGF)β, a canonical inducer of the EMT. The genes with

expression that was highly correlated with the cell vol-

ume manifested a similar pattern of expression when go-

ing from smaller to larger cell lines (Figure 5a) than

when treating the A549 cell line with TGFβ (Figure 5d).

The set of genes with expression that increased in cells

with large cell-volume exhibited increased expression

after TGFβ treatment. Similarly, the set of genes with

decreasing expression in cells with larger cell volume

manifested decreased expression after TGFβ treatment.

If larger cells are characterized by a mesenchymal

phenotype then they should express markers of mesenchy-

mal cells. To test this hypothesis we analyzed recently re-

ported reverse-phase protein array quantification of 194

proteins and phosphoproteins in the NCI60 cell lines [18].

Figure 4 Correlation between protein synthesis and

proliferation rates after normalization by cell volume. The

protein (prot.) synthesis rate per cell volume as a function of the

proliferation rate. Each symbol represents a cell line in the NCI60

panel. The red line represents the theoretical

expectation (Equation 1).
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The highest positive correlation between protein expres-

sion and cell volume was observed for vimentin (PCC =

0.36, P = 0.0017) (Additional file 1: Table S3), a standard

marker of mesenchymal cells. This significant correl-

ation is visualized in Figure 5c, showing that the pro-

tein expression of vimentin is strongly correlated with

the cell volume, and both are inversely correlated

with the proliferation rate. In contrast, the epithelial

marker E-cadherin exhibits the second highest nega-

tive correlation between protein expression and cell

volume (PCC = −0.20, P = 0.062) (Additional file 1:

Table S3), which is visually corroborated in Figure 5c.

Taken together these data indicate that the larger

cells manifest expression signatures of mesenchymal

cells.

Food and Drug Administration (FDA)-approved drugs

targeting cells with high protein synthesis or proliferation

rate

These observations indicate that there are metabolically

distinct, slowly proliferating large cancer cells with high

protein-synthesis rates per cell, and rapidly proliferating

Figure 5 Gene expression signatures of small/large cells. (a) Gene expression profile of genes with expression that increased (bottom) or

decreased (top) with increasing cell volumes (left to right) across the NCI60 cell lines. (b) Gene ontology (GO) terms enriched in genes with

expression that decreased from small to large cell lines, quantified by the enrichment significance (y-axis). (c) GO terms enriched in genes with

expression that increased from small to large cell lines. (d) Gene expression profiles of the same genes in the cell line A549 before and after

treatment with transforming growth factor (TGF)β. (e) Protein expression of vimentin and E-cadherin across the NCI60 cell lines in relation to the

cell volume (increases left to right) and the proliferation rate.
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small cancer cells with low protein-synthesis rates per

cell. We hypothesized that this metabolic difference may

have a significant impact on the response to targeted

therapies against cancer metabolism. To test this hy-

pothesis, we analyzed in vitro data reporting the re-

sponse of the NCI60 cell lines to 103 FDA-approved

drugs [26] (Additional file 1: Table S4). Using our previ-

ously established methodology [27], we identified drugs

with extremely low IC50 values in cells with high prolif-

eration rates relative to those with low proliferation

rates, and drugs with extremely low IC50 values in cells

with high protein-synthesis rates relative to those with

low protein-synthesis rates. In agreement with our

current knowledge, we found several antimetabolites

among the agents that are selective for highly prolifer-

ating cells, together with some toposiomerase I/II in-

hibitors and one alkylating agent (Figure 6). Among

the antimetabolites, methotrexate and 5-fluorouracil

manifested the highest selectivity (Figure 6). In con-

trast, we found that aromatase inhibitors, statins and

mTOR inhibitors are selectively inhibitory for cells

more slowly proliferating with high protein synthesis

rates per cell (Figure 6).

Discussion
Our analyses here indicate that cancer cells grown

in vitro can be roughly divided into fast proliferating

small cells (hyperplastic) with relatively low protein syn-

thesis rates per cell, and slowly proliferating large cells

(hypertrophic) with high protein synthesis rates per cell

and mesenchymal expression signatures. In turn, the as-

sessment of in vitro growth inhibition data provides can-

didate drugs for the treatment of cancer cells in the

hyperplastic and hypertrophic class. As expected, the

sensitivity to several antimetabolites correlated with

higher proliferation rates, in agreement with previous re-

ports [28,29]. In contrast, high protein synthesis rate is

associated with increased sensitivity to mTOR, aroma-

tase, and cholesterol synthesis inhibitors. mTOR is a

master regulator of protein synthesis [30] and, therefore,

the selectivity of mTOR inhibitors against cancer cells

with high protein synthesis rates is not surprising.

Statins and aromatase inhibitors target the cholesterol

and estradiol synthesis pathways, respectively, and are

not widely considered to have activity against protein

synthesis. Statins are currently under intense investiga-

tion for their cancer prevention potential [31,32]. The

Figure 6 Implications of cell protein synthesis and proliferation rates for cancer treatment. Statistical significance is shown for increased

in vitro sensitivity in cell lines with high protein synthesis rate per cell versus the statistical significance for increased sensitivity in cell lines with

high proliferation rate. The horizontal/vertical dashed lines represent the threshold statistical significance of 0.05. Different symbols emphasize

different drug classes as indicated in the legend, except for the solid squares that represent other mechanisms not indicated.
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most recent large study, on the entire Danish popula-

tion, indicates that statin treatment prior to cancer

diagnosis is associated with reduced rate of cancer devel-

opment [31]. The hypothesis for these observations is

that the availability of cholesterol may limit the cellular

proliferation required for cancer growth. However, the

mechanism of action behind this association and

whether it holds in vivo remains to be determined. In

addition to inhibition of cholesterol synthesis by statins,

there are reports of statin off-target effects resulting in

inhibition of protein synthesis, although a mechanistic

understanding of this inhibition is missing [33,34]. From

our analysis, we cannot exclude the possibility that lar-

ger cancer cells contain more cell membrane and thus

require more cholesterol for their proliferation. Activa-

tion of mTOR1 increases both protein synthesis and

sterol synthesis [21], indicating that these two pathways

may be co-regulated. If that were the case, then the asso-

ciation between response to statins and protein synthesis

rate could be explained by the correlation between cell

volume and protein synthesis rate and a potential correl-

ation between lipid synthesis and cell volume. Therefore,

it will be important to investigate whether lipid content

and lipid synthesis also correlate with cell volume or sur-

face area in the NCI60 panel.

In the case of aromatase inhibitors we lack a hypoth-

esis for their in vitro specificity against large cells with

high protein-synthesis rates. Aromatase inhibitors

block estrogen synthesis and they are currently used

for the treatment of estrogen receptor-positive breast

cancer [35]. Further work is required to determine the

relevance of this association in the context of other

cancer types.

It also remains to be explained why the exchange rate

of some amino acids is correlated with the proliferation

rate but not with the protein synthesis rate, glycine be-

ing the most prominent example. Experiments with 13C-

labelled glycine demonstrate the incorporation of glycine

carbons into purine nucleotides, suggesting a role in

DNA synthesis [12]. Here, we have shown that the gly-

cine exchange rate is significantly correlated with the

rate of DNA synthesis in the NCI60 panel of cell lines

grown in vitro. However, the reason why glycine is only

imported in highly proliferating cells remains unclear.

Indeed, cells could instead increase the serine import

and convert serine to glycine, as is the case in slowly

proliferating large cells. In general, the switch from one

metabolic mode to another takes place when cell metab-

olism reaches a physico-chemical constraint. A limita-

tion in the serine uptake capacity is unlikely because

among cells importing glycine there is a high variability

in the uptake of serine. On a different line of reasoning,

we note that glycine and the other amino acids showing

an atypical behavior (alanine, glutamate, glutamine, and

proline) have in common their use as organic osmolytes

[36-38]. Thus, the exchange fluxes of these amino acids

may be coupled to some mechanism of cell volume

regulation. In fact, the glycine exchange rate is also

highly correlated with the volume of the NCI60 cell lines

(PCC = 0.36, P = 0.0029). While at the current stage this

is just a hypothesis, it points to a potential relationship

between cell volume regulation and molecular crowding

in cancer metabolism.

Conclusions
The NCI60 cell lines display various metabolic activ-

ities, and the type of metabolic activity that they possess

correlates with their cell volume and protein content.

Protein content, DNA content, and protein synthesis

rate per cell are proportional to the cell volume. Smaller

cells tend to have shorter doubling times. Estimated

metabolic fluxes are proportional to the protein synthe-

sis rate and, after correcting for cell volume, to the pro-

liferation rate. Genes overexpressed in smaller cells are

enriched for genes involved in cell cycle, while genes

overexpressed in large cells are enriched for genes

expressed in mesenchymal cells. The later is further

corroborated by the induction of those same genes fol-

lowing treatment with TGFβ, and the overexpression of

vimentin at the protein level in the larger cells. In

addition to cell proliferation, cell volume and/or bio-

markers of protein synthesis may predict response to

drugs targeting cancer metabolism.

Additional file

Additional file 1: Maximum likelihood method to estimate the

protein synthesis rate, personalized metabolic model of cell

metabolism, and supplementary figures and tables.
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