
As early as 1935, migraine — which now affects >15% of 
the population worldwide — was referred to as a ‘hypo­
glycaemic headache’1. Despite this early connection 
between migraine and energy metabolism, clinical 
and basic research in migraine largely focused on the 
vasculature, neurovasculature and neurotransmission  
until Willem Amery revived the idea that metabolism is  
involved in the pathogenesis of migraine in his hypothesis­ 
generating review in 1982 (ref.2). Since then, accumu­
lating evidence — much of it clinical — indicates that 
migraine is at least partially an energy deficit syndrome 
with mitochondrial dysfunction. Technological advances 
(for example, in neuroimaging and genetics) have enabled 
examination of different aspects of cerebral metabolism 
in patients with migraine, and complementary animal 
research has deciphered possible links between metabolic 
factors and trigeminovascular activation in migraine 
pathophysiology. Evidence that cortical responsivity 
and sensory processing are abnormal in patients with 
migraine between attacks (reviewed elsewhere3) led to the 
suggestion that a combination of sensory overload and 
lowered energy reserve ignites the major pain­signalling 
system of the brain, the trigeminovascular system, leading  
to the migraine attack4.

In this Review, we describe the abnormalities of 
energy metabolism observed in migraine with a par­
ticular focus on clinical data, including phenotypic, 
biochemical, genetic and therapeutic studies. We also 
discuss experimental data to elaborate on the potential 
role of such metabolic abnormalities in migraine attack 
generation. Finally, we highlight therapeutic approaches 
to targeting of cerebral metabolism (antioxidants, 
nutraceuticals, pharmaceuticals and dietary ketogenesis).

Triggers and metabolic dysfunction

Two systematic reviews5,6 and a study of 1,207 patients 
with migraine7 have identified that the most common 
migraine trigger factors are stress or subsequent relaxa­
tion, fasting or skipping a meal, sleep changes (too 
much or too little), ovarian hormone changes (includ­
ing menstruation and oral contraception), weather 
changes (including certain winds, hypoxia and high 
altitude), physical exercise (including sexual activity), 
alcohol, strong odours (especially perfume or cigarette 
smoke), intense light (especially bright or blue light) and  
loud noises. The distinction between trigger factors 
and premonitory symptoms of migraine attacks is not 
always easy, as some premonitory symptoms might be 
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misinterpreted8. For example, premonitory photophobia 
could lead to interpretation of light as a trigger. Similarly, 
as a result of premonitory craving for sweets, chocolate is 
frequently mistaken as a trigger. Nevertheless, individ­
ual triggers seem to have an additive effect9, leading to 
an attack only when a threshold has been reached. This 
observation suggests that trigger factors act on common 
pathways.

Some triggers — such as skipping a meal or fasting, 
exercise, dehydration, hypoxia and lack of sleep — have 
a clear link to metabolism. However, many other trig­
gers, including hormonal changes, also have a potential 
common metabolic denominator: changes in mitochon­
drial metabolism and/or oxidative stress10. For instance, 
intense physical11,12 or psychological stress can increase 
oxidative stress in the CNS13. In healthy people, one 
night of sleep deprivation is enough to substantially 
reduce levels of glutathione, ATP, cysteine and homo­
cysteine14. Intense sensory stimuli, including odours15, 
perfumes containing phthalates16, blue light17 and loud 
noises18, can increase oxidative stress. Experimental 
hypoxia can trigger migraine headaches8,19 (less so 
migraine aura19), even in most healthy people20, and in 
line with this observation, migraine prevalence is higher 
in populations that live at high altitude21.

In animals, alcohol­ induced oxidative or nitrosative 
stress alters mitochondrial membrane properties in the 
brain22. In rodents, oestrogen and, to a lesser extent, 
progesterone increase susceptibility to cortical spread­
ing depression (CSD)23, the cause of migraine aura. 
These hormones also modulate the ability of 5­hydroxy­
tryptophan (the precursor of serotonin) to inhibit CSD24, 
and influence oxidative metabolism in the rat brain25. 
Furthermore, oestrogen, which greatly modulates the 
course of migraine in females, is involved in insulin sen­
sitivity, the regulation of insulin secretion and nutrient 
homeostasis26. In combination, these observations show 
that most migraine triggers or aggravating factors have a 
link to energy metabolism and oxidative stress.

Biochemical studies

A large number of biochemical studies in migraine point 
towards a variety of different metabolic abnormalities, 
discussed below, all of which are related to energy homeo­
stasis (Supplementary Tables 1 and 2). A combination  
of metabolic and endocrinological abnormalities, pos­
sibly together with abnormal cerebral responsivity, are 
likely to determine the migraine attack threshold of an 
individual. The cumulative number of abnormalities, in 
combination with unfavourable environmental factors, 
is likely to determine disease severity6.

Oxidative phosphorylation, ATP and lactate

Magnetic resonance spectroscopy (MRS) enables non­ 
invasive measurement of numerous substances in var­
ious tissues. Some of these substances, such as lactate, 
magnesium and ATP, provide pivotal information about 
energy metabolism, and this approach has been used in 
studies of migraine (Supplementary Table 1).

The use of 31P­ MRS has shown that mitochondrial 
oxidative phosphorylation is impaired in the brain of 
patients with migraine during27 and between migraine 
attacks28–34. This impairment is seen as increased levels 
of ADP, decreased levels of organic phosphate and a 
decreased phosphorylation potential. Similar patterns 
have been observed in skeletal muscles28,35,36, suggest­
ing a generalized rather than brain­ specific alteration 
(reviewed in detail elsewhere33,37). Subsequently, a modi­
fied 31P­ MRS methodology was used to directly quan­
tify brain ATP, which was found to be decreased by 16% 
between attacks in patients with migraine without aura 
compared with healthy controls38. The lowest ATP con­
centrations were detected in the most severely affected 
patients, a finding that agrees in part with those of other 
studies showing modest associations between brain 
hypometabolism and attack frequency31,35,38. Magnesium 
is often also measured in 31P­ MRS studies of neural 
metabolism because it is a crucial cofactor for ATP 
production. These measurements have shown that, in 
line with alterations in oxidative phosphorylation, cyto­
solic free magnesium is reduced in the occipital lobes of 
patients with migraine30,31,39.

The more widely available 1H­ MRS technique can 
be used to determine concentrations of lactate, a key 
cellular metabolite. Variability in methodologies and 
patient selection criteria in studies of brain lactate levels 
in patients with migraine mean that strong conclusions 
cannot be drawn33,37. Elevated levels of brain lactate have 
been found in patients with migraine with aura40,41 but 
not in those with migraine without aura42–45. Occipital 
baseline lactate levels were increased in patients who had 
strictly visual aura compared with healthy controls but 
not in those who had complex neurological auras; lactate 
levels increased considerably during photic stimulation in 
the latter group of patients but not in the former group40. 
An important consideration is that stimulus­ induced 
increases in cortical lactate levels are physiological46 and 
are explained by the astrocyte­ to­neuron lactate shuttle47, 
the mechanism by which astrocytes provide energy to 
neurons when they become activated. Hence, the absence 
of a stimulus­ induced increase in lactate levels in patients 
with migraine could be considered pathological, as it 

Key points

•	Prevalent	triggers	of	migraine	attacks	can	all	be	linked	to	unbalanced	cerebral	energy	
metabolism	and/or	oxidative	stress.

•	Magnetic	resonance	spectroscopy	studies	have	shown	that	mitochondrial	
phosphorylation	potential	and	ATP	are	decreased	in	the	brains	of	people	with	migraine	
between	attacks.	Glucose	(and	lipid)	metabolism	and	mitochondrial	functions	are	
abnormal	in	the	peripheral	blood.

•	Among	patients	with	migraine,	various	single	nucleotide	polymorphisms	are	present	
in	non-	coding	mitochondrial	DNA	and	nuclear-	encoded	mitochondrial	proteins;	
common	variants	associated	with	migraine	are	functionally	involved	in	mitochondrial	
metabolism.

•	Metabolic	enhancers,	such	as	riboflavin	and	coenzyme	Q10,	and	dietary	or	
pharmacological	ketogenesis	improve	migraine	but	novel,	more	efficient	metabolic	
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•	Experimental	studies	indicate	a	link	between	cerebral	energy	disequilibrium	and	
cortical	spreading	depression	and/or	trigeminovascular	system	activation;	calcitonin	
gene-	related	peptide	and	pituitary	adenylate	cyclase-	activating	peptide	could	also	
help	restore	energy	homeostasis.

•	Migraine	can	be	regarded	as	a	conserved,	adaptive	response	that	occurs	in	individuals	
with	a	genetic	predisposition	and	a	mismatch	between	the	brain’s	energy	reserve		
and	workload.
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might render them vulnerable to an energy crisis, par­
ticularly because neuronal activation is likely to have a 
higher energy demand in patients with migraine than in 
healthy individuals because their sensory information 
processing is abnormal48. A study that combines quanti­
fication of lactate in the cortex and electrophysiological 
testing of brain­ evoked responses would be able to clarify 
this relationship between function and metabolism.

Another useful method for assessing energy dynam­
ics in the brain is 18F­ fluorodeoxyglucose (18F­ FDG) PET. 
This procedure involves measuring positron emission 
from the systemically administered, radiotracer­labelled 
glucose analogue 18F­ FDG that is taken up by metaboli­
cally active tissue, although this technique does not 
allow glucose uptake by neurons to be distinguished 
from that by non­ neuronal cells such as astrocytes. In a  
study published in 2018, the use of 18F­ FDG­PET to 
compare glucose uptake at rest with that during inter­
ictal neuronal activation (visual evoked potentials) 
showed that glucose uptake during interictal neuronal 
activation exceeded glucose uptake in visual processing 
areas in 90% of patients with migraine without aura, but 
in only 15% of healthy controls49. Given that at least 50% 
of glucose taken up in the brain goes to the astrocytes, 
where energy is stored in the CNS, this observation sug­
gests that energy reserves are reduced in patients with 
migraine, thereby supporting our hypothesis that a mis­
match between brain activation and glucose metabolism 
is a cornerstone of migraine pathophysiology. Further 
studies are needed to confirm this hypothesis.

Peripheral metabolic abnormalities

Several metabolic abnormalities in peripheral tis­
sues have been described (Supplementary Table 2). 
These abnormalities include alterations in mitochon­
drial enzyme function, oxidative stress and glucose 
metabolism.

Mitochondrial enzyme function. Evidence that general­
ized metabolic dysfunction is a feature of migraine comes 
from studies showing that activity of mitochondrial 
enzymes, such as monoamine oxidase, succinate dehydro­
genase, NADH dehydrogenase, cyclooxygenase and  
citrate synthetase, is reduced in the platelets of patients 
with migraine with or without aura50,51. Interestingly, 
these biochemical changes are restricted to enzymes 
of the respiratory chain that are encoded by mitochon­
drial DNA (mtDNA), which is more vulnerable than 
nuclear DNA to oxidative stress and is, like migraine, 
chiefly maternally inherited. This observation suggests 
that both inherited and acquired mtDNA abnormalities 
play a role in migraine pathophysiology (see Genetic 
studies below). Elevated lactate and pyruvate levels in 
the plasma provide further evidence for mitochondrial 
abnormalities in migraine, although these abnormalities 
are mostly found in patients with migrainous stroke52,53.

Oxidative and nitrosative stress and antioxidant capac-

ity. As discussed above, all common migraine triggers 
are likely to increase levels of oxidative stress. This link is 
supported by studies in which markers of increased oxi­
dative or nitrosative stress and/or decreased antioxidant 

capacity have been directly examined54–67 (Supplementary 
Table 2). All studies of oxidative stress and/or antioxidant 
capacity in migraine have demonstrated that at least one 
marker is abnormal54–67. Of all biomarkers examined, 
superoxide dismutase activity seems to be the only one 
that is consistently reduced in patients with migraine, 
including interictally68. Inconsistent results for other 
markers could be due to differences in methodology, 
patient selection criteria (for example, low­ frequency 
versus high­ frequency migraine, or migraine with  
aura versus migraine without aura) and variations related 
to the migraine cycle — for example, nitrosative stress, 
oxidative stress67 and nitric oxide68 are elevated during 
migraine attacks, but not interictally.

Another possible marker of oxidative stress is heavy 
metals, levels of which can be increased in migraine69. 
For example, free iron is highly pro­ oxidant and accu­
mulates in the brainstem of patients with migraine in 
proportion to disease duration70.

Glucose metabolism. The human brain is highly depend­
ent on energy sources from the circulation owing to limi­
ted glycogen stores, high energy needs and the exclusion  
of large, energy­ dense molecules by the blood–brain 
barrier, so is particularly vulnerable to their shortages. 
Hypoglycaemia has been associated with migraine for 
almost a century1,71,72, and a simple comparison between 
migraine­ associated symptoms — premonitory symp­
toms in particular — and symptoms of hypoglycaemia73 
reveals several similarities. Shared symptoms include 
dizziness, pale skin, cold hands and feet, binge eating 
and/or sugar cravings, yawning, nausea, low blood pres­
sure, shaking, cognitive difficulties, tiredness, fatigue, 
visual dysfunction and slurred speech. All of these symp­
toms can be caused by an insufficient supply of glucose 
to the brain and/or by release of catecholamines as a 
result of sympathetic activation73.

The hypothalamus controls homeostasis and is activ­
ated early during the premonitory phase of triggered 
and spontaneous migraine attacks74–76. This activation 
could represent the underlying physiological corre­
late of premonitory symptoms or could be part of an 
adaptive behavioural response77 to a hypoglycaemic 
or energy­ compromised brain that initiates increased 
yawning (to increase brain levels of oxygen), craving  
(to restore energy balance), fatigue, sickness and hyper­
sensitivity (all energy­ conserving behaviours) and other 
symptoms.

Circumstantial evidence from early experimental 
studies suggests that metabolic changes induced by  
fasting or administration of glucose or insulin can trigger 
migraine attacks. Although insulin­ induced hypogly­
caemia elicited an attack in only 2 of 20 patients during  
an observation time of 2 h (ref.78), a 50 g glucose toler­
ance test (GTT) after 10 h of fasting initiated an attack  
within an 8­h test period in 6 of 10 patients with migraine 
whose attacks were associated with fasting or craving79. 
Interestingly, the metabolic responses in patients who 
developed an attack differed substantially from those in 
patients who did not: in those who developed an attack, 
free fatty acid and ketone body levels increased sub­
stantially before headache onset and increased further 
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during the attack, despite similar food intake by all 
patients79. No differences in glucose and glycerol levels 
were apparent between patients who developed attacks 
and those who did not. These findings suggest that, 
similar to attacks triggered by nitroglycerin80, attacks 
triggered by metabolic stress develop after a latency of 
several hours, which is probably needed for activation  
of the trigeminovascular system.

Abnormal metabolic responses have been observed 
in several studies in which the GTT has been used 
(Supplementary Table 2). Comparison of responses to an 
intravenous GTT during and outside attacks in patients 
with migraine with aura81 showed that, during an attack, 
glucose tolerance was impaired, levels of free fatty acid, 
ketone bodies, glycerol and cortisol were increased, 
and the ratio of β­ hydroxybutyrate to acetoacetate 
(both ketone bodies) was increased. However, insulin 
levels were decreased, which was considered to be an 
ictal stress response that was accompanied by increased 
lipolysis and ketogenesis. These increases in lipolysis 
and ketogenesis can also be interpreted as counter­ 
regulatory responses to a cerebral energy deficit. Given 
that ketone bodies are an efficient alternative fuel for the 
brain when glucose availability is low, their elevation 
would be expected to restore brain energy homeostasis. 
However, the Western carbohydrate­ laden diet means 
that in most people in Western countries the brain is 
not keto­ adapted so does not have the enzymatic com­
position and transporters to make use of ketone bodies 
produced during an energy crisis.

Interictal impairments of glucose tolerance and insu­
lin resistance have been found in various other studies of 
migraine82,83 (Supplementary Table 2). Insulin is the key 
regulator of glucose homeostasis, promoting absorption 
of glucose from the blood into predominantly fat and 
muscle cells with the help of insulin­ sensitive glucose 
transporters (GLUTs), in particular GLUT4. Insulin 
also blocks carnitine transporters and, consequently, 
penetration of free fatty acids into cells. In the endo­
thelial cells of the blood–brain barrier and in astrocytes 
and oligodendrocytes, insulin­ independent GLUT1 is 
responsible for glucose transport under basal conditions. 
Multiple studies have provided evidence for an associa­
tion between migraine and insulin resistance (reviewed 
elsewhere84), although this association was not seen at 
all in one study85 and only in women with migraine in 
another86. One study has shown that β­ cell function, 
and therefore insulin production, is normal in patients 
with migraine but that the degree of insulin resistance 
correlates with disease severity87.

Rather than being directly involved in migraine 
pathogenesis, reduced insulin sensitivity could be part 
of a temporary adaptive response to ensure that the 
brain’s energy needs are met. Such a ‘glucose­ sparing’ 
effect is typically observed when glucose availability is 
low (for example, during fasting or carbohydrate restric­
tion)88–90. Some evidence suggests that diabetes mellitus 
protects against migraine91,92, and this finding supports 
the hypothesis that insulin resistance is an adaptive 
response to migraine that increases energy supply to 
the brain rather than a causal factor. In the long­ term, 
however, chronic insulin resistance might contribute to 

metabolic diseases, such as the metabolic syndrome that 
is associated with migraine with aura93 and with chronic 
migraine in women94. Whether metabolic derange­
ments are risk factors for or consequences of migraine, 
however, remains unclear. Findings in relation to BMI, 
for instance, have shown that this measure is associ­
ated with frequency of attacks but not with migraine 
prevalence95.

Elevated interictal cortisol levels have been observed 
in episodic86,96 and chronic migraine97, as well as dur­
ing migraine attacks81, although a review of the evi­
dence published in 2017 concluded that the results are 
mixed overall98. High catecholamine levels have also 
been associated with early morning migraine99. The 
observed increases in cortisol and catecholamines were 
not accompanied by the increase in glucose that would 
be expected, indicating that prior glucose levels were 
low but corrected by a hypoglycaemia­ induced stress 
response. The body’s physiological reaction to hypo­
glycaemia does involve secretion of cortisol, adrenaline 
and noradrenaline, which protect cells by increasing 
gluconeogenesis and glycogenolysis100, stimulating  
protein catabolism and blocking the action of insulin. 
These mechanisms ensure that prolonged hypoglycaemia  
is avoided at all costs, even if this requires constant 
elevation of stress hormone levels. For this reason, 
and because a migraine attack can take several hours 
to develop, hypoglycaemia might not be detectable as 
a trigger101, unless blood glucose levels are monitored 
over a long time period.

The body’s response to hypoglycaemia also involves 
the release of glucagon, the antagonist of insulin. In one 
study, increases in blood glucose levels in response to 
glucagon injection were less pronounced in patients 
with migraine than in healthy controls102. This reduced 
response to glucagon could lead to a deficiency in energy 
compensation that partly explains migraine attacks that 
are induced by fasting.

Investigation of other hormones involved in energy 
homeostasis, such as leptin and adipocytokines, in 
migraine has produced conflicting data103. Low leptin 
levels were identified in patients with episodic migraine 
in one study104 and could exacerbate a cellular energy 
deficit. However, another study showed that levels of lep­
tin and adiponectin are increased in migraine, and these 
increases could increase inflammation103,105.

Genetic studies

Genetic studies (Supplementary Table 3) directly and 
indirectly support the hypothesis that people with 
migraine have an increased vulnerability to oxidative 
stress, suboptimal mitochondrial functioning and/or  
altered metabolism. In contrast to nuclear DNA, mtDNA 
is particularly sensitive to reactive oxygen species 
(ROS)106,107. However, whether accumulation of mtDNA 
damage as a result of oxidative stress over time has a role 
in migraine chronification and increased vascular risk 
remains to be determined. As pointed out in a previous 
review108, epigenetic mechanisms, particularly mito­
chondrial methylation, could be a new avenue of investi­
gation for exploring the underpinnings of mitochondrial 
dysfunction in migraine, as the mtDNA epigenetic status 
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of healthy individuals differs from that of individuals 
with complex neurological disorders.

Coding mitochondrial DNA

Migraine is approximately threefold more prevalent 
among women than men109, and maternal transmission 
of the condition is more common than paternal trans­
mission110, suggesting that either an X­linked form of 
inheritance is involved or that mtDNA has a role. The 
prevalence of migraine among people with mitochondrial 
disorders (29–35.5% of patients) is more than double that 
among the general population111,112 and migraine­like 
attacks in mitochondrial encephalo myopathy, lactic 
acidosis and stroke­like episodes (MELAS) are espe­
cially severe and prolonged113. Furthermore, the life­
time prevalence of migraine among healthy carriers 
of the Ala3243Gly mutation in coding mtDNA that 
causes MELAS is significantly higher than among the 
general population (58% versus 18%; P < 0.001)114. 
Among patients with the mitochondrial Ala8344Gly 
mutation in the MTTK gene, which causes myoclonic 
epilepsy with ragged red fibres (MERRF), 52% also have 
migraine115. These findings suggest a clinical association 
between a monogenic inherited disorder of mtDNA and  
susceptibility to migraine.

In contrast to these studies of migraine prevalence in 
mitochondriopathies, most genetic studies in patients 
with migraine have not identified the classic muta­
tions in coding mtDNA116–122 (Supplementary Table 3). 
However, such mutations have been associated with 
migrainous stroke episodes123.

Non- coding mitochondrial DNA

Mitochondrial function could be impaired in migraine 
as a result of single nucleotide polymorphisms (SNPs) in 
the non­ coding portion of mtDNA, which could influ­
ence mitochondrial metabolism. Specific mitochondrial 
haplogroups, defined by specific combinations of highly 
conserved polymorphisms in non­ coding mtDNA, are 
associated with specific metabolic profiles. For example, 
haplogroup H confers an advantage in oxidative phos­
phorylation function124,125 and is associated with a poorer 
response to metabolism­ stimulating treatment with 
riboflavin than that associated with other haplogroups126 
(Supplementary Table 3). A high prevalence of specific 
SNPs in non­ coding mtDNA has been seen in patients 
with migraine and occipital stroke associated with haplo­
group U127, as well as in migraine without aura and in  
cyclic vomiting, a childhood equivalent of migraine128. 
In a similar patient population, the prevalence of the 
common Cys16519Thr polymorphism in non­ coding 
mtDNA was greater than in healthy controls, and the 
difference from controls was even greater for the com­
bination of this polymorphism with the less common 
Gly3010Ala polymorphism129. A high prevalence of 
these two polymorphisms has also been associated with 
chronic fatigue syndrome and depression130. As is the 
case when studying nuclear DNA, large cohort studies of 
cases and controls are needed to detect small to moder­
ate associations between mtDNA variants and a complex 
disease such as migraine; a lack of such studies might 
explain why some results have not been replicated118.

Nuclear- encoded mitochondrial proteins

Given that most proteins involved in mitochondrial 
function are encoded by nuclear DNA, the role of genes 
that encode nuclear­ encoded mitochondrial proteins 
(NEMPs) in migraine susceptibility is a promising 
line of investigation, yet has received little attention131. 
A gene­ centric association analysis of NEMPs within the 
genetically isolated Norfolk Island population revealed 
an association between migraine and three genes that 
encode NEMPs involved in phosphorylation, fatty 
acid metabolism and oxidative demethylation132. This 
finding provides further evidence for a link between 
mitochondrial function and migraine susceptibility.

Non- mitochondrial genes

Some evidence suggests that genetic predisposition can 
lead to reduced antioxidant capacity or increased oxi­
dative stress in migraine. For example, a polymorphism  
(the rs4880 TT (Val/Val) genotype) in the gene that 
enco des superoxide dismutase 2 (SOD2), a crucial 
enzyme in the clearance of mitochondrial ROS, has been 
associated with unilateral cranial autonomic symptoms 
in patients with migraine with aura133. In paediatric 
patients with migraine, the C–T genotype and C allele  
at position 16 of SOD2 and the A–A genotype and  
A allele at position 21 of CAT (which encodes catalase) 
were more frequent among patients with migraine 
with or without aura than among healthy controls134. 
Both enzymes act in concert to reduce ROS accumu­
lation, and the polymorphisms reported in this study 
are thought be associated with reduced transcriptional 
and/or enzyme activity, meaning people with migraine 
are more vulnerable to oxidative stress.

Other genetic variants that affect oxidative stress have 
also been identified in migraine. For example, migraine, 
particularly migraine with aura, has been associated 
with the Cys677Thr mutation in the gene that encodes 
methylenetetrahydrofolate reductase (MTHFR)135,136. 
This mutation diminishes the enzyme’s capacity to 
remethylate homocysteine to form methionine135,136, and 
increased homocysteine levels favour vascular patholo­
gies in humans and induce oxidative stress and reduce 
antioxidant capacity in rats137, although in a Finnish pop­
ulation of patients with migraine with aura, the asso­
ciation between MTHFR and migraine could not be 
replicated138. Next­ generation nuclear DNA sequencing 
has also revealed an association between cyclic vomiting 
syndrome, which is considered to be a migraine equiv­
alent, and variants in RYR2, which encodes a stress­ 
induced calcium channel; this association could favour 
ROS­ mediated mitochondrial damage139.

Further genetic findings that indicate alterations in 
metabolism in migraine include associations of the con­
dition with polymorphisms in insulin­ related genes140–143. 
Similarly, GLUT1 deficiency syndrome, a genetic condi­
tion of impaired glucose transport to the brain, has been 
linked to hemiplegic migraine and migraine with aura144.

Genome- wide associated loci

Genome­ wide association studies (GWAS) have identi­
fied 38 gene loci that are associated with migraine145. In a 
study published in 2016, data from GWAS were integrated 
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with high­ resolution spatial gene expression data from 
normal adult brains to identify specific brain regions and 
molecular pathways that might be involved in migraine 
pathophysiology146. Genes associated with mitochon­
drial function were enriched in migraine­ associated loci 
identified by GWAS, a finding that establishes a genetic 
link between mitochondrial function and migraine146. 
Similarly, genes related to mitochondrial function are 
differentially expressed in adolescent patients with  
menstrual migraine compared with healthy controls147.

Therapeutic studies

A large number of metabolic treatments have already 
been investigated in migraine (Supplementary Table 4) 
and most therapeutic agents used in migraine preven­
tion can influence metabolism and mitochondrial func­
tioning via several possible mechanisms of action (fig. 1). 
The fact that some of these treatments are effective in 
migraine does not prove that migraine is primarily a 
disorder of brain energetics, but reinforces the idea that 
migraine is a multifactorial disorder in which the pre­
dominant pathophysiology can vary between patients. 
Nevertheless, the observed benefits do strongly suggest 
that these metabolic treatments act by improving brain 
energetics in some patients, although assessment of 
brain metabolism before and after treatment is needed 
to enable definitive conclusions to be drawn.

Acute treatment

Only two abortive migraine treatments have a proven 
link to energy metabolism. Corticosteroids that stimu late 
gluconeogenesis, are amongst the most effective drugs 
for abortion of prolonged migraine attacks and status 
migrainosus148. Caffeine (>100 mg), on the other hand, 
has a beneficial (though small) analgesic effect, at least 
when used in conjunction with common analgesics149.  
Besides its suppression of transient receptor potential 
A1 (TRPA1) activity150, caffeine also stimu lates cortisol 
secretion151,152 and, consequently, gluco neogenesis153. 
In addition, caffeine increases levels of free fatty acids 
and decreases insulin responses152, effects that are 
similar to the metabolic changes that occur during a 
migraine attack81. This similarity supports the idea 
that the ictal metabolic abnormalities reflect counter­ 
regulatory effects rather than pathogenic changes. 
Long­ term use of excess caffeine, however, is associated  
with insulin resistance154 and migraine chronification155, 
whereas caffeine discontinuation is associated with 
higher efficacy of acute migraine treatment156.

Prophylactic nutraceuticals

Several nutraceuticals157 have been shown to be beneficial 
in migraine prevention158, and most of these can be linked 
to energy metabolism and/or mitochondrial function159. 
The level of evidence, however, is variable (Table 1), and 
not all of them are included in international guidelines for 
migraine prevention. They are almost devoid of adverse  
effects, in contrast to most classic preventive drugs.

Riboflavin. Riboflavin has an important role in the 
metabolism of carbohydrates, proteins and fats and in 
the recycling of oxidized glutathione, and is a precursor 

of flavin nucleotides, which are necessary for activity of 
flavoenzymes that participate in the electron transport 
chain160,161. Furthermore, riboflavin has neuroprotective 
properties, as it alleviates oxidative stress, mitochon­
drial dysfunction, neuroinflammation and glutamate 
excitotoxicity161,162. Several studies have demonstrated 
the efficacy of high­ dose (200–400 mg daily) riboflavin 
for migraine prevention in adults and children163–166, 
but not of a low dose (50 mg daily)167. In a single­ blind, 
comparative, parallel group study (n = 90), 400 mg ribo­
flavin daily was as effective as 500 mg sodium valproate 
daily for migraine prevention168. A systematic review 
published in 2017 showed that high­ dose riboflavin 
(400 mg daily) is well tolerated, inexpensive and effec­
tively reduces migraine headache frequency169. In one 
study, mtDNA haplogroup influenced the therapeutic 
response to riboflavin126: most patients who responded 
had non­ H haplogroups, whereas most patients who did 
not respond had haplogroup H with the best oxidative 
phosphorylation function.

Coenzyme Q10. Coenzyme Q10 (CoQ10; known as 
ubiquinone in its oxidized form and ubiquinol in its 
reduced form) is an essential cofactor of the electron 
transport chain with strong antioxidant properties170,171. 
In four placebo­ controlled double­ blind trials and two 
open­ label studies, CoQ10 treatment (400 mg capsules 
or 300 mg liquid suspension daily) reduced migraine 
frequency in adults172–175. In another randomized con­
trolled trial in children and adolescents with migraine, 
a 100 mg dose of CoQ10 was not superior to placebo176, 
but did have beneficial preventive effects in paediatric 
patients with migraine and low CoQ10 blood levels in 
an open­ label study177.

Alpha- lipoic acid. Alpha­ lipoic acid (ALA; also known 
as thioctic acid) is a water­ soluble and fat­ soluble anti­
oxidant that can reduce oxidative stress directly by 
removing reactive species, or indirectly by chelating 
transition metal ions178,179. Results of a randomized 
placebo­ controlled trial of 600 mg ALA daily for  
3 months indicated a trend towards reduction of attack 
frequency, number of headache days and headache 
severity180. In an open­ label trial of ALA in patients 
with migraine and insulin resistance, a 50% response 
was seen in 69% of participants181. In another study, 
combined treatment with topiramate and ALA for  
1 month was more effective for migraine prevention 
than either drug alone182.

Other B vitamins. In double­ blind randomized placebo­ 
controlled trials, a 2 mg daily dose of folic acid (vitamin B9)  
combined with 25 mg pyridoxine (vitamin B6) and 400 μg 
cobalamin (vitamin B12) reduced migraine­ related dis­
ability and the frequency and severity of migraine with 
aura183,184. In this trial, the greatest clinical effects and 
reductions in homocysteine levels were seen in carriers 
of the C allele of the MTHFR Cys677Thr variant and of  
the A allele of the Ala66Gly variant of the gene that 
encodes methionine synthase reductase184. The same 
vitamin B combination with a 1 mg dose of folic acid 
was not superior to placebo185. According to a systematic 
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review186 in which nine open studies were identified, 
niacin (nicotinic acid or vitamin B3) might also have 
a prophylactic effect in migraine, but randomized 
controlled trials are lacking.

Magnesium. Magnesium acts as a cofactor for as many as 
300 enzymes and has a vital role in energy metabolism. 
Blood levels of magnesium are reduced in migraine31,39,187 
and a meta­ analysis of randomized controlled trials 
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Fig. 1 | Cerebral metabolomics that might be involved in migraine pathogenesis and therapeutic targets. Glucose 

crosses the blood–brain barrier via insulin- independent glucose transporter 1 (GLUT1) (step 1), deficiency of which can 

contribute to migraine, as can insufficient glucose, oxygen, water or minerals. GLUT1 is expressed by capillary endothelial 

cells and astrocytes. Non- oxidative glucose metabolism produces pyruvate (step 2), which is converted to lactate and 

shuttled to neurons through monocarboxylate transporters (MCTs; mainly MCT1 and MCT4 in astrocytes and MCT2 in 

neurons). In neurons, this lactate can be used as an energy substrate following its conversion to pyruvate, which can be 

converted into acetyl- coenzyme A (Acetyl- CoA) and fed in turn into the tricarboxylic acid cycle (TCA) (step 3). Neurons can 

also take up glucose via neuronal GLUT3 (step 4), which is insulin- dependent and can be influenced by insulin resistance. 

Ketone bodies (β- hydroxybutyrate (BHB) and acetoacetate (AcAc)) cross the blood–brain barrier via MCT1 transporters (step 5), 

and penetrate astrocytes via MCT1 or MCT4 (step 6) and neurons via MCT2 (step 7). BHB provides an alternative to glucose  

as a substrate for oxidative phosphorylation; it is converted to AcAc and, subsequently , acetyl- CoA , which enters the TCA to 

produce ATP (step 8). BHB also has antioxidant properties and, compared with glucose, its conversion to ATP produces fewer 

reactive oxygen species (ROS) per oxygen molecule consumed. Increased ROS, nitric oxide, lack of energy substrates or lack 

of necessary co- enzymes inhibit mitochondrial function and reduce ATP levels (step 9). Antioxidants and co- enzymes, such  

as riboflavin, other B vitamins, coenzyme Q10 (CoQ10), magnesium, α- lipoic acid (AL A), l- carnitine and the anticonvulsant 

topiramate, support mitochondrial function and protect against migraine. AQP4, aquaporin 4; ETC, electron transport chain.
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provides evidence that intravenous magnesium has 
a modest beneficial effect on acute migraine attacks 
and that oral magnesium reduces attack frequency and 
intensity188. A randomized controlled trial published in 
2019 showed that 500 mg magnesium oxide daily had a 
similar preventive effect in migraine as 400 mg sodium 
valproate daily189.

l- Carnitine. l­ Carnitine transports fatty acids into the 
mitochondria for lipid oxidation and energy produc­
tion. Trials of l­ carnitine for migraine prevention have 
been conducted, but results are conflicting. In a large 
(133 patients) but single­ blinded study the effects of daily 
administration of 500 mg l­ carnitine, 500 mg magnesium 
oxide or both for 3 months were compared with each 
other and with routine treatment190. Migraine attacks and 
days decreased significantly in all patient groups, although 
this decrease was greater among patients who received 
magnesium oxide alone190. By contrast, in a random­
ized crossover trial with successive 3­month treatment  
periods separated by a 4­week washout, the effect of 3 g 
acetyl l­ carnitine daily was not significantly different 
from that of placebo191. In a randomized controlled trial 
published in 2019, a combination of 500 mg l­ carnitine 
and 30 mg CoQ10 daily was significantly more effective 
than placebo in reducing headache severity, frequency 
and duration during an 8­week treatment period175.

Ketogenic diet and exercise

A ketogenic diet mimics, to some extent, the state of 
fasting and promotes hepatic production of an alter­
native to glucose as an energy substrate for the brain. 

Ketone body transport is not GLUT1­dependent and 
ketosis has a variety of other effects that are potentially 
beneficial in migraine pathophysiology, including:  
increased mitochondrial biogenesis; increased anti­
oxidant capacity; upregulation of GLUT1 and ketone body  
transporters; increased GABA but inhibition of gluta­
mate transport and, therefore, reduced excitatory syn­
aptic transmission pain and inflammation (reviewed in 
detail elsewhere192,193). Ketone bodies can also stabilize 
neuronal excitability by inhibiting ATP­ sensitive potas­
sium channels (KATP) that might play a crucial role in 
migraine attack generation194 (see below). Several case 
studies have shown that ketosis can protect against 
migraine195–200. In addition, in a 1­month observational 
study of the ketone diet in 96 patients with migraine 
as part of a weight­ loss programme, attack frequency, 
attack severity and acute medication use were reduced 
by up to 80%199. Similarly, in a study of 18 patients 
with episodic migraine, the same intervention reduced 
migraine days by 62.5%, and this reduction was accom­
panied by normalization of interictal deficits in habitu­
ation of visual evoked responses200. In a double­ blind 
study published in 2019, a very low­ calorie ketogenic 
diet and a very low­ calorie non­ ketogenic diet were 
compared in a 2­month crossover study in a population 
of 35 overweight individuals with episodic migraine201. 
The ketogenic diet was superior to the non­ ketogenic 
diet for reducing monthly migraine days, and the 50% 
response rate was much higher (74.3% of patients on the 
ketogenic diet and 8.6% of patients on the non­ ketogenic 
diet)201. The potential for supplementation with the 
ketone body β­ hydroxybutyrate without a strict dietary 

Table 1 | Evidence levels for treatment of migraine with nutraceuticals and steroids and classic preventive drugs

Treatment Recommendation and evidence level

European Headache Federation264 American Academy of Neurology  
and American Headache Society265–268

Canadian Headache Society269

Nutraceuticals and steroids

Riboflavin Drug of third choice (level C, possibly 
effective)

Should be considered (level B, probably 
effective)

Strong recommendation,  
low- quality evidence

Coenzyme Q10 Drug of third choice (level C, possibly 
effective)

May be considered (level C, possibly 
effective)

Strong recommendation,  
low- quality evidence

Magnesium Drug of third choice (level C, possibly 
effective)

Should be considered (level B, probably 
effective)

Strong recommendation,  
low- quality evidence

Caffeine Level A (effective) (aspirin +  
paracetamol + caffeine)

Level A (aspirin + paracetamol + caffeine) Not specified

Steroids Expert consensus but not 
evidence-based (for status migrainosus)

Level C, possibly effective Limited evidence; limit to short 
courses

Classic preventive drugs

Antiepileptic drugs 
(topiramate, valproate)

Drug of first choice (level A , effective) Should be offered (level A , established 
efficacy)

Strong recommendation, high- 
quality evidence for topiramate; 
weak recommendation for valproate

Beta- blockers 
(metoprolol, propranolol)

Drug of first choice (level A , effective) Should be offered (level A , established 
efficacy)

Strong recommendation,  
high- quality evidence

Flunarizine Drug of first choice (level A , effective) Not available Weak recommendation,  
high- quality evidence

Amitriptyline Drug of second choice (level B, probably 
effective)

Should be considered (level B, probably 
effective)

Strong recommendation,  
high- quality evidence

Gabapentin Drug of third choice (level C, possibly 
effective)

Level U, inadequate or conflicting data  
to support or refute medication use

Strong recommendation, 
moderate- quality evidence
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change to prevent migraine is currently being examined 
in a randomized controlled trial202.

Aerobic exercise is often recommended in migraine 
management, and a randomized study showed that 
regular aerobic exercise is associated with a decrease in 
migraine frequency comparable to that achieved with 
topiramate, a prophylactic drug with level A evidence 
for efficacy203. The metabolic effects of aerobic exercise 
mimic those of ketosis and include upregulation of mul­
tiple proteins that are involved in brain energy metabo­
lism, such as enzymes involved in glucose catabolism, 
ATP synthesis and hydrolysis, and glutamate turnover204. 
Furthermore, in mice, exercise training increases the 
number of mitochondria not only in muscle but also in 
the brain205.

Prophylactic pharmaceuticals

The level of evidence for the classic preventive migraine 
drugs is higher overall than that for nutraceuticals 
(Table 1). The precise mechanisms of action of most drugs 
used in migraine prophylaxis are not known, but many 
downregulate neuronal reactivity206 and might, therefore, 
reduce the energy demands of the brain. Certain pro­
phylactic agents can also have direct metabolic effects. 
For instance, topiramate protects against oxidative 
stress, inflammation207 and mitochondrial membrane 
depolarization208, prolongs mitochondrial survival208, 
slightly increases lipolysis in children209 and increases the  
sensitivity of adipocytes to insulin in female rats210.

Other drugs used for prevention of migraine treat­
ment have clear metabolic effects. Amitriptyline also 
reduces markers of oxidative stress and increases anti­
oxidant capacity65. Valproate attenuates nitroglycerin­ 
induced trigeminovascular activation by preserving 
mitochondrial function in a rat model of migraine211 and  
increases mitochondrial biogenesis212. Amitriptyline  
and flunarizine increase serum levels of leptin and insu­
lin and increase BMI after 12 weeks of therapy in patients 
with migraine213. Gabapentin, atenolol, verapamil, val­
proate, pizotifen and amitriptyline all increase body 
weight in a substantial number of patients after 6 months 
of use214. Beta­ blockers decrease the whole­ body meta­
bolic rate and body fat215, thereby theoretically leaving 
more energy for the brain. In addition, beta­ blockers 
reduce rebound headache that often follows stress in 
patients with migraine216, and this effect could result 
from regulation of noradrenaline­mediated consumption 
of energy reserves100 during stress. Together, the findings 
suggest that the double action of prophylactic drugs — 
on neurons and metabolism — favours the equilibrium 
between metabo lic needs and available energy that is 
necessary to maintain cerebral homeostasis.

Metabolism and migraine pathophysiology

Above, we highlight the clinical evidence that sug­
gests a role for energy metabolism and mitochondrial 
function in migraine pathophysiology. In this section, 
we examine how such abnormalities could lead to a 
migraine attack. We consider these changes in relation 
to three hallmarks of the pathophysiological migraine 
cascade: hypo thalamic and brainstem activation 
(which is thought to initiate and modulate the attack),  

CSD (which is responsible for the aura) and trigemino­
vascular activation (which causes the headache and 
associated symptoms). For this purpose, we mainly draw 
upon experimental data obtained in rodents.

Hypothalamic and brainstem activation

The hypothalamus is activated early in migraine attack 
initiation, during the premonitory phase75,76. What 
activates the hypothalamus is not known; possibili­
ties include an intrinsic biorhythm, an environmental 
trigger or stimulation from a CNS centre that is highly 
connected to the hypothalamus, such as the amygdala79. 
The hypothalamus can sense a metabolic disequilibrium 
in the brain, owing to the presence of chemosensitive 
neurons, and in the periphery, partly because some 
hypothalamic areas lack a fully functional blood–brain 
barrier. Chemosensitive neurons, notably those that  
detect oxygen, form a network that extends from the 
thalamus to the brainstem217. Therefore, we hypo thesize 
that metabolic changes in the brain and/or in the blood 
might activate these neuronal systems and ignite a 
migraine attack.

Involvement of the amygdala in activation of the 
hypothalamus in migraine, as suggested above, could 
provide a link between mitochondrial function and 
the sexual dimorphism of migraine. In the human 
and mouse basolateral amygdala, mitochondrion­ related 
biological pathways are the most strongly associated 
with sexual dimorphism and, in females, genes related 
to mitochondrial function are downregulated whereas 
genes related to regulation of the circadian rhythm are 
upregulated218.

Cortical spreading depression

CSD is the pathophysiological cause of migraine aura. 
Susceptibility to CSD is strongly modulated by meta­
bolic factors. For example, cerebral glucose availability 
modulates induced CSD219,220. Hypoglycaemia prolongs 
CSD219 and inhibition of cerebral glycogen reduces 
the threshold for CSD in vivo220. Hyperglycaemia pro­
tects against induction of CSD219. In rats, supply of an 
energy substrate other than glucose via short­ term and 
long­ term treatment with a medium­ chain triglyceride­ 
enriched ketogenic diet has a similar protective effect 
against CSD221.

Hypoxia negatively influences energy metabolism 
and can trigger CSD222,223. Its effects in mice and rats 
include inhibition of astroglial mitochondrial respir­
ation, leading to mitochondrial depolarization, produc­
tion of free radicals, lipid peroxidation and release of 
calcium ions from intracellular stores224. When hypoxia 
is preceded by pharmacological mitochondrial inhibi­
tion, hypoxia­ induced CSD in rat hippocampal slices is 
greatly facilitated222. This observation suggests a mech­
anism by which genetic or acquired mitochondrial 
dysfunction could exacerbate the impact of a metabolic 
stressor.

Trigeminovascular system

In experimental animals, CSD can activate the trigemino­
vascular system225. One mechanism of this process is the 
opening of pannexin 1 large­ pore channels in neurons, 
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which are associated with the ligand­ gated ion channels 
P2X7 (ref.226), leading to downstream activation of the 
inflammatory pathway in astrocytes and — via cytokines 
and prostanoids — to sensitization of meningeal noci­
ceptors227 (fig. 2). In addition, CSD and subsequent 
restoration of ion homeostasis have an extremely high 
energy demand228. Moreover, in mice, CSD causes tissue 
hypoxia223,229 and increases expression of mitochondrial 
uncoupling proteins, which decreases ATP synthesis and 
increases thermogenesis230. These changes could create a 
vicious circle in which the metabolic disequilibrium that 
favours or triggers CSD, and hence trigemino vascular 
system activation, is perpetuated. CSD also induces 
oxidative stress in the trigeminal nociceptive system231.  

For example, hydrogen peroxide production can activate 
TRPA1 and acid­ sensing ion channels (ASICs), thereby 
promoting release of calcitonin gene­ related peptide 
(CGRP) from meningeal nociceptors, which is known 
to be pivotal in mediating the headache of the migraine 
attack232–234 (fig. 2).

Clinically, most patients with migraine never expe­
rience an aura. Therefore, triggers of the trigemino­
vascular system other than CSD must exist. TRP channels,  
which are expressed in meningeal nociceptive nerve 
terminals, might contribute to generation of a migraine 
attack235, as they can be directly activated by various 
exogenous and endogenous agents that are associated 
with migraine, and their activation induces the release 
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Fig. 2 | Metabolic face of migraine attack generation and resolution. In genetically predisposed individuals, migraine 

triggers can increase oxidative and nitrosative stress and/or reduce cerebral ATP and glycogen levels. These processes 

ignite a cascade of events that assists restoration of cerebral energy homeostasis but also favours cortical spreading 

depression (CSD), trigeminovascular activation via activation of transient receptor potential channel A1 (TRPA1), acid- 

sensing ion channels (ASICs) and the pannexin-1–P2X7 pore complex, which leads to release of calcitonin gene- related 

peptide (CGRP) and pituitary adenylate cyclase- activating peptide (PACAP) and opening of ATP- sensitive potassium 

channels (KATP). Together, this molecular cascade can produce the symptoms of migraine. In this way , the factors that  

are known to participate in generation of migraine attacks might also be involved in its resolution. Dashed lines indicate 

mechanisms by which metabolic homeostasis may be restored. AcAc, acetoacetate; BHB, β- hydroxybutyrate; FFA ,  

free fatty acid; GLUT1, glucose transporter 1.
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of CGRP234. TRP channels are also inhibited or desensi­
tized by abortive migraine drugs235. These channels can 
also sense reactive species indirectly through second 
messengers or directly via oxidative modification of 
cysteine residues236, and the subchannel TRPA1 is 
strongly activated by oxidative, nitrosative and electro­
philic stress235,236. In combination, these obser vations 
suggest a mechanism by which known migraine trigger 
factors that increase oxidative stress could lead to 
migraine pain.

Cerebral energy deficiency caused by inhibition of 
glycogen use in the brain was recently shown to cause 
CSD­ independent opening of pannexin 1 large pore 
channels in neurons220, which leads to activation of 
meningeal nociceptors227. Furthermore, a study pub­
lished in 2017 showed that metabolic changes can 
directly modify activity of central trigeminovascular 
nociceptors — changes in blood glucose levels after 
injection of insulin, glucagon or leptin were associated 
with changes in baseline firing of dural responsive noci­
ceptive neurons in the spinal trigeminal nucleus237. Recent  
evidence indicates that KATP channels link metabolic 
stress with activation of trigeminovascular nociceptors. 
These channels are located in cranial arteries and the 
trigeminal ganglion and are modulated by the intra­
cellular ratio of ATP to ADP and levels of cAMP and 
cGMP. In a study published in 2019, intravenous infu­
sion of the KATP channel opener levcromakalim induced 
migraine headache in 16 of 16 patients with migraine, 
whereas placebo treatment did so in only 1 of these 
16 patients194 (box 1). The role of KATP channels in the 
metabolic aspects of migraine pathophysiology might 
not, however, be restricted to cranial vessels and the 

trigeminovascular system. In slice preparations of rodent 
cerebrum, ketone bodies238 or a decrease in extracellular 
glucose levels239 can open KATP channels and decrease the 
excitability of central neurons. This process is thought to 
be mediated by pannexin 1 hemichannel­ mediated ATP 
release and activation of adenosine receptors239 (fig. 2).

High nitric oxide concentrations stimulate CGRP 
release and activate the trigeminovascular system, and 
nitric oxide can also modulate mitochondrial activity 
via various mechanisms240. The mitochondrial effects of 
nitric oxide could, therefore, explain the headache expe­
rienced by patients with migraine upon administration 
of nitric oxide donors241. Examples of the mitochondrial 
effects of nitric oxide in animals include inhibition of 
the mitochondrial respiratory chain in cultured astro­
cytes242. By contrast, use of 1H­ MRS in rats has shown 
that cortical lactate increases as early as 10 min after 
intraperitoneal injection of nitroglycerin, suggesting that 
the widely used nitroglycerin model of migraine involves 
metabolic, in addition to vascular, changes243.

Finally, limited evidence from animal experiments 
suggests that the migraine attack itself can affect mito­
chondrial energy metabolism in the trigeminal ganglion. 
In a rat model of chronic migraine in which an inflam­
matory soup is applied to the dura mater, abnormal 
mitochondrial dynamics and impaired mitochondrial 
biogenesis were observed in the trigeminal ganglion244,245.

Metabolic functions of CGRP and PACAP

CGRP is known to play a role in spontaneous and trig­
gered migraine headache232,233. Blood levels of CGRP 
are elevated during attacks246, CGRP triggers attacks 
in patients with migraine247, and blocking the action of 
CGRP transiently (with CGRP antagonists) or durably 
(with monoclonal antibodies) aborts attacks or reduces 
attack frequency, respectively248. As a consequence, 
CGRP is overwhelmingly considered to be the ‘villain’  
in migraine pathophysiology. However, in CGRP­ 
triggered migraine attacks, only 28% of patients with 
migraine with aura experience an aura249, and CGRP 
does not elicit premonitory symptoms114. These obser­
vations suggest that CGRP does not trigger a complete 
migraine attack, but is the physiological correlate of the 
headache pain and the headache­ related behaviour.

Some evidence suggests that CGRP release is a 
response to oxidative stress or cerebral energy disequi­
librium and might be part of an adaptive response, thereby 
challenging the perception that CGRP is the patho­
physiological trigger of migraine. For example, CGRP  
has antioxidant and anti­ inflammatory actions250–253, sup­
porting the hypothesis that its release mediates an adap­
tive response to oxidative stress and/or energy deficiency. 
The idea that CGRP increases endogenous energy avail­
ability for the brain is also supported by rodent studies 
in which CGRP inhibited insulin­stimulated glucose 
transport254, decreased tolerance to glucose in the GTT 
without altering plasma insulin levels255, inhibited muscle 
glycogen synthesis and caused insulin resistance upon 
activation of skeletal muscle sensory nerves256. In addi­
tion, intravenous injections of CGRP in the rat increased 
plasma glucose concentrations255, an effect that could 
help to restore energy homeostasis.

Box 1 | The link between altered bioenergetics and trigeminovascular activation

Numerous	studies	have	provided	evidence	for	alterations	in	energy	metabolism	at	the	
cortical	level	in	patients	with	migraine	(discussed	in	this	Review).	Similarly,	vast	research	
has	shown	that	patients	with	migraine	exhibit	increased	cerebral	reactivity	to	sensory	
stimuli	in	almost	every	sensory	modality262.	Together,	this	evidence	suggests	that	in	
patients	with	migraine,	the	brain	not	only	has	reduced	energy	supplies	but	also	has	
increased	energy	needs.	This	possibility	has	been	assessed	in	one	study	in	which		
the	ratio	between	the	magnitude	of	visually	evoked	cortical	responses	and	cerebral	
glucose uptake	in	the	visual	cortex	in	patients	with	migraine	was	compared	with	that		
in	healthy	controls49.	The	ratio	was	almost	threefold	higher	in	patients	with	migraine,	
suggesting	that	their	metabolic	reserves	are	barely	sufficient	to	meet	high	energy	
needs,	a	scenario	that	renders	them	vulnerable	to	disruption	of	cortical	homeostasis.	
However,	one	link	seems	to	be	missing:	how	can	alterations	in	cortical	homeostasis	
trigger	migraine	headache?

The	most	plausible	answer	involves	pannexin	channels.	These	megachannels	in	
neurons	open	under	conditions	of	distress,	acting	as	sensors	of	cortical	homeostasis,	
and	form	a	pore	complex	with	the	ligand-	gated	ion	channel	P2X7	(ref.225).	Their	
opening	triggers	a	cascade	of	biochemical	events	involving	molecules	of	the	alarmin	
family.	The	final	result	of	this	cascade	is	trigeminovascular	activation	and	calcitonin	
gene-	related	peptide	release	in	the	extradural	space227,	which	leads	to	headache.	
Reduction	of	metabolic	substrates	available	for	neurons	in	the	cortex	directly	activates	
pannexin	1	channels,	which	could	explain	the	pathogenesis	of	migraine	without	aura220.	
Similarly,	metabolic	distress	lowers	the	threshold	for	cortical	spreading	depression220,	
which	can	aggravate	metabolic	alterations	and	cause	migraine	with	aura.	Alternatively,	
diencephalic	and	brainstem	chemosensitive	neurons217	could	sense	metabolic	changes	
and	sensitizes	the	trigeminovascular	system,	either	directly	or	via	descending	
pathways.	Therefore,	the	downstream	molecular	events	activated	by	pannexin	channel	
opening	could	be	the	missing	link	between	energy	disequilibrium	at	the	cortical	level	
and	the	migraine	attack.
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Moreover, CGRP is widely distributed in the brain­
stem and diencephalon, including a network that 
includes hypothalamic nuclei, the locus coeruleus, the 
area postrema and the nucleus tractus solitarius, and 
is involved in energy homeostasis257. Several of these 
nuclei do not have a functional blood–brain barrier 
and are therefore accessible to CGRP therapies that are 
administered systemically.

Pituitary adenylate cyclase­ activating peptide (PACAP)  
is also released during migraine attacks and induces 
migraine­ like headache when administered to patients 
with migraine. Consequently, PACAP is another prom­
ising molecular target for migraine treatment. PACAP 
is present in the trigemino­ parasympathetic viscero­ 
autonomic circuit, where it contributes to headache pain 
and associated autonomic symptoms, but it also has a 
role in the hypothalamus, where it modulates circadian 
rhythms and food anticipatory behaviour (reviewed 
elsewhere257). In rats, PACAP stimulated glucose pro­
duction via sympathetic hepatic innervation, indicating 
the PACAP release could also be an adaptive response to 
restore energy homeostasis258.

Summary

Cerebral energy deficiency and/or increased oxidative 
stress decrease the threshold for CSD and activate TRP 
channels and ASICs, thereby stimulating CGRP and 
PACAP release. These peptides are pivotal in eliciting 
the migraine headache and associated symptoms, but 
we hypothesize that they also induce an antioxidant 
response and various metabolic changes that, together 
with energy­ conserving behavioural changes, decrease 
oxidative stress levels and increase glucose and ketone 
body availability for the brain to help restore energy 
homeostasis (fig. 2).

Future research

Studies that combine assessments of brain and mito­
chondrial metabolism with those of sensory processing 
are necessary to disentangle the disequilibrium between 
metabolic reserve and brain activity in migraine. In these 
studies, age­ related adaptive increases in glucose uptake 

in the brainstem and in visual areas must be taken into 
account259. Similarly, studies to examine the role of spe­
cific alterations in mitochondrial function and/or energy 
metabolism in migraine subgroups are needed. More 
data are also needed to determine whether therapeutic 
interventions that improve mitochondrial function lead 
to changes in sensory processing and cerebral energy 
availability that correlate with treatment responses.

Despite the need for more data, the findings described 
in this Review already have several potential therapeu­
tic implications. We suggest a four­ step approach to 
improve mitochondrial function and energy metabolism 
in migraine (box 2).

Conclusion

The evidence discussed in this Review indicates that, 
from a metabolic perspective, migraine is a conserved 
adaptive response77 that helps to reduce harmful oxida­
tive stress levels and restore brain energy homeostasis,  
a concept that was proposed by Edward Liveing as early as  
1873 (ref.260). Given the high prevalence of migraine and 
the fact that it is associated with common gene poly­
morphisms, a migraine­ prone nervous system might be,  
or at least might have been, associated with reproductive or  
survival advantages77,261 from an evolutionary perspec­
tive. Over time, possibly owing to changes in nutrition, 
our environment might have become inadequate or 
suboptimal for the conserved adaptive genetic response 
patterns. Alternatively, migraine could be the price 
the human species has to pay for having a developed, 
high­ performing and energy­ consuming brain.

Commonly reported migraine trigger factors can be 
linked to energy disequilibrium and oxidative stress, 
and numerous biochemical and genetic studies point 
towards a variety of different metabolic abnormalities 
in migraine. Most preventive migraine treatments can 
improve metabolic functioning in addition to their effects 
on brain responsiveness and excitability. Disruption  
of cerebral metabolic homeostasis is a plausible trigger of 
the trigeminovascular system and its limbic connections 
via induction of CSD, stimulation of chemosensitive 
brainstem neurons or direct activation of TRP channels 

Box 2 | Suggested approach to improving mitochondrial function and energy metabolism in migraine

	1.	Individualize supplementation of micronutrients.	To	ensure	that	all	micronutrients	needed	for	mitochondrial	function	
are	available,	laboratory	tests	can	be	used	to	individualize	supplementation	with	minerals,	hydrophobic	and	lipophilic	
vitamins	and	trace	minerals	that	are	deficient177.

	2.	Reduce oxidative stress and increase antioxidants.	Measurement	of	oxidative	and/or	nitrosative	stress	levels	and	
antioxidant	status	in	individuals	could	detect	a	potential	mismatch	between	oxidative	stress	levels	and	antioxidant	
capacity	and	enable	therapeutic	adjustments	to	be	made,	although	studies	are	needed	to	prove	that	such	an	approach	
improves	migraine	management.	Strategies	to	reduce	oxidative	stress	could	include	elimination	or	reduction	of	
processed	food,	food	with	a	high	glycaemic	index	and	alcohol,	use	of	green	or	blue	light	filtering	glasses263,	interruption	
of	hormone-	based	contraception,	lifestyle	changes	and	addition	of	antioxidants,	such	as	polyphenols,	coenzyme	Q10,	
α-	lipoic	acid	or	β-	hydroxybutyrate	mineral	salts,	to	the	diet.

	3.	Stabilize blood glucose levels.	An	oral	glucose	tolerance	test	should	be	undertaken	in	patients	with	migraine	and	
clinical	features	that	suggest	glucose	intolerance	or	a	family	history	of	glucose	intolerance.	Patients	with	reactive	
hyperinsulinaemia	and	reactive	hypoglycaemia	are	likely	to	benefit	from	stabilization	of	blood	glucose	levels,	which	can	
often	be	achieved	with	dietary	adjustments.

	4.	Provide an alternative energy substrate for the brain.	For	patients	with	compromised	energy	metabolism,	an	alternative	
source	of	fuel	for	the	brain,	in	addition	to	glucose	and	lactate,	might	be	beneficial.	This	source	can	be	generated	with	a	
ketogenic	diet196,199,200	and/or	use	of	exogenous	ketogenic	substances,	such	as	medium-	chain	triglycerides	or	exogenous	
ketone	body	salts.	Further	placebo-	controlled	trials	are	needed	to	validate	ketogenic	therapies	in	migraine.
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and/or ASICs that stimulate CGRP and PACAP release 
by meningeal nociceptive fibres, or modulation of KATP 
channels, which might be the final common pathway in 
activation of trigeminal nociceptors. These neuropeptide 
pathways are the likely culprits for the migraine headache 
and associated symptoms, but they could also partici­
pate in an antioxidant response and various metabolic 
changes that help restore energy homeostasis.

Looking at the metabolic face of migraine has several 
potential therapeutic implications (box 2). Some progress 

has been made in developing anti­ migraine therapies 
that target metabolism, and novel strategies, such as 
ketone body supplementation, are being explored. More 
research is needed on different metabolic subtypes, the 
association between metabolic phenotypes and geno­
types and treatment responses to metabolic agents, inter­
actions between the sensory system and metabolism, 
and metabolic nutraceutical treatments for migraine.
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