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The metabolome 18 years on: a concept comes of age
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Abstract

Background The term ‘metabolome’ was introduced to the

scientific literature in September 1998.

Aim and key scientific concepts of the review To mark its

18-year-old ‘coming of age’, two of the co-authors of that

paper review the genesis of metabolomics, whence it has

come and where it may be going.

Keywords Metabolome � Functional genomics � Systems

biology � Precision medicine

1 Introduction

The great advances in biology leading up to the discovery of

the structure of DNA and the definition of the genetic code

(Cobb 2015; Judson 1979), and the tremendous strides made

since then, have been mainly pioneered by molecular genetic

studies on model organisms such as Escherichia coli and

yeasts (Saccharomyces cerevisiae and Schizosaccha-

romyces pombe) (Castrillo and Oliver 2004). The genius of

molecular genetics lay in the design of experiments whereby

fundamental theories of the workings of living cells at the

molecular level could be rigorously tested by performing

experiments that had a qualitative read-out (either the cells

grew or they did not; either colonies were blue or they were

not). This was set to change when the first chromosome

sequence to be completed (that of S. cerevisiae chromosome

III; Oliver et al. 1992) revealed that only about 20 % of the

protein-encoding genes had previously been discovered by

classical genetics augmented by recombinant DNA tech-

nology. It was immediately evident that the normal course of

genetic research, which proceeds from mutant phenotypes to

the definition of the corresponding genotype, had to be

reversed. Since DNA sequencing would define all the genes,

in the future we would need to move from gene to function,

rather than from function to gene (Kell and Oliver 2004)

(Fig. 1). This functional analysis would need to be con-

ducted using techniques that were every bit as comprehen-

sive as genome sequencing, and so the different levels of

’omic analysis were conceived (Oliver 1996).

Transcriptomics (the analysis of the complete comple-

ment of (m)RNA molecules in a cell, tissue, or organ) had the

twin advantages of being most closely related to genomics

and that it could be pursued using similar techniques—either

by hybridisation of complementary nucleic acid strands or

cDNA sequencing. Like the other functional’omes the

transcriptome is context-dependent—it changes with the

changing physiological, pathological, or developmental

state of the cell. For yeast cells, the relationship between the

genome and transcriptome is approximately one-to-one;

introns and, therefore, differential splicing of mRNAs are
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rare in yeast (Hirschman et al. 2006; Stajich et al. 2007).

Proteomics (Wilkins et al. 1996) (the analysis of the com-

plete complement of protein molecules) was also context-

dependent, but the relationship (even in yeast) was one-to-

many due to post-translational processing and modification

of the primary polypeptides generated by protein synthesis.

These were the ‘‘natural’’ ’omes that followed from the

maxim that ‘‘DNA makes RNA makes protein’’ (and then

apparently stops), a maxim that signalled still that ‘molecular

biology’ for most people meant ‘macromolecular biology’.

Despite its obvious importance in biotechnology (e.g.

Bu’lock 1961; Dikicioglu et al. 2013; Nielsen and Keasling

2016), metabolism was seen at that time as something of a

Cinderella subject (Griffin 2006), and only a few had pio-

neered such analyses.

2 A little pre-history

Although it was not called metabolomics, a few early

workers had developed interests in using more or less

comprehensive metabolic profiling systems to understand

complex biological systems. Thus Williams, an early

advocate of what we would now call ‘precision medicine’

(Williams 1956), recognised the potential utility of such

methods, and the Hornings and their colleagues were at the

forefront of instrumental implementations (Dalgliesh et al.

1966; Horning and Horning 1971). DBK carried out his D.

Phil (1975–1978) in the laboratory of F. R. (‘Bob’)

Whatley, whose colleague Bill Greenaway was explicitly

developing GC–MS methods for the analysis of pathogenic

fungi and the mode of action of fungicides. Partly because

of the help of an anonymous donor with an interest in the

health-giving properties of propolis (Greenaway et al.

1991), the pressure to publish then was not so intense, and

this kind of work only appeared rather subsequently (Grant

et al. 1988). (It was also based on a naı̈ve interpretation of

the ‘crossover theorem’ (Chance and Williams 1955), and

lacked the theoretical foundations that metabolic control

analysis and systems biology—see below—could provide.)

At the time, much of it involved improving the repro-

ducibility, and the production (on a 5Mbyte ‘‘Winchester’’

hard disk the size of a bicycle wheel) of a database of mass

spectra. Plus ça change, one might say!

3 The metabolome

Meanwhile, and while proteomics appeared daunting, per-

forming functional analysis at the level of the metabolites

appeared far more tractable since we calculated (wrongly, as

it turned out: Jewison et al. 2012) that there were only

600–700 metabolites in the yeast cell—about an order of

magnitude less than the number of protein-encoding genes

(Goffeau et al. 1996). The complete complement of

metabolites was also context-dependent, but there was no

direct link to the genome since many genes may determine

the synthesis and turnover of a single metabolite. Another

major difficulty compared with the transcriptome and pro-

teome was the recognition that the physical properties of

metabolites were much more widely varied making the

metabolites much more differentially extractable, and also

that many were quite labile. On the other hand, the metabolic

profile was directly and immediately linked to function, and

potentially comprehensive methods of analysis (especially

mass spectrometry and nuclear magnetic resonance) were

available. Metabolic control analysis (MCA) (Fell

1992, 1996; Heinrich and Rapoport 1974; Heinrich and

Schuster 1996; Kacser and Burns 1973; Kell et al. 1989; Kell

and Westerhoff 1986), a precursor of modern metabolic

network biology (Palsson 2006), had long explained why

changes in the levels of individual genes or transcripts had

relatively little effect on metabolic fluxes, but that they could

necessarily—and for precisely the same reasons—have

potentially very large effects on metabolite concentrations.

Thus, we reasoned, also given that microbes tend to favour

growth rate over growth yield (Westerhoff et al. 1983), that

in order to maintain the fluxes through the metabolic net-

works at a relatively constant level, microbial cells would

have to vary the concentrations of their constituent

metabolites over a wide range—thus the concept, and the

term, ‘metabolome’ was born (Oliver et al. 1998).

The initial test of the concept was pioneered in a collabo-

rative effort between our laboratories (then in Manchester and

Aberystwyth) and those of Kevin Brindle (in Cambridge) and

Fig. 1 The ‘forward’ and ‘reverse’ strategies that have been used to

link genes and phenotypes. Classically, one would start with a

function and seek gene(s) responsible. As it became clearer that most

genes were phenotypically silent, it emerged from the systematic

genome sequencing programs that only a small fraction of genes had

been discovered in this way. The systematic genome sequencing

programs also served to change this completely, as once one ‘had’ the

genes it was necessary to discover their function. A similar story can

be written for drug discovery (Kell 2013)
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Hans Westerhoff/Karel van Dam (in Amsterdam). The idea

was that we should be able to elucidate the role of genes of

unknown function by comparing the metabolomes of their

deletion mutants with those of the deletion mutants of genes of

known function. This concept, often called ‘‘guilt by associa-

tion’’ (Oliver 2000), and a standard strategy in the older ‘op-

erational fingerprinting’ (Meuzelaar et al. 1982) and the newer

machine learning (Goodacre et al. 1998), was to become a

prevalent one in functional genomics. In this specific example,

the use of metabolomics to reveal similarities between yeast

mutants was termed FANCY, for Functional ANalysis by Co-

responses in Yeast, by Bas Teusink (Teusink et al. 1998)—an

acronym which, for better or worse, never caught on. For all

that, the concept was robustly validated by the association of

the metabolomes of pfk26 and pfk27 deletants, and also those

of a number of nuclear petite mutants (Raamsdonk et al. 2001;

Cornish-Bowden and Cárdenas 2001). What was remarkable

about this proof-of-principle study was that it worked at all,

given the small number of metabolites identified in the NMR

analyses. The notion that it was only necessary to monitor the

most connected metabolites was tested in Kevin Brindle’s lab,

using classical biochemical analyses, but this only served to

emphasise the importance of using just one analytical tech-

nique to quantify all metabolites. The discriminatory power of

just a limited metabolome inspired DBK to suggest monitoring

the metabolites excreted into the growth medium—the meta-

bolic ‘footprint’ or exometabolome (Allen et al. 2003, 2004;

Kaderbhai et al. 2003; Kell et al. 2005), of which more later.

We also recognised that Direct Injection Mass Spectrometry

(DIMS) could be used to speciate intact bacterial cells (Vai-

dyanathan et al. 2001) and other substances (Goodacre et al.

2002), and this DIMS approach has recently been exploited to

great effect by Uwe Sauer and colleagues (Link et al. 2015) to

analyse the endometabolome by directly injecting living cells

into a high-resolution mass spectrometer.

However, the most important outcome of this study was

that metabolomics was rapidly embraced across the biolog-

ical research community, and especially by plant biologists

(Fiehn 2002; Fiehn et al. 2000; Jenkins et al. 2004) despite

(or perhaps because of; Quanbeck et al. 2012) the fact that

higher plants are considered to have the largest and most

complex metabolomes in the living world. (However, we

note as a caveat that most microbes have still not been

brought into laboratory culture and their many secondary

metabolites decrypted (Kell et al. 2015a; Lewis et al. 2010)).

4 The previous 18 years

In a 2004 review (Kell 2004), one of us used the methods

of text mining to analyse the areas in which metabolomics

research was then most focused, identifying three main

clusters: technological developments, the integration of

metabolomics with other ’omics (Castrillo et al. 2007), and

its use in predicting higher order properties such as disease.

Shortly afterwards the Metabolomics Society and this

journal were founded, with the annual meetings now

attracting almost 1000 participants. The annual numbers of

papers with the term metabolom* in their title or abstract

continue to rise, and in 2015 amounted, at Web of

Knowledge, to 3130 (in a total exceeding 18,000).

Consequently, the space available does not permit us to be

even faintly comprehensive about the development of

metabolomics—the papers in this journal provide an excel-

lent starting point—but the massive improvement in mass

spectrometric and chromatographic methods is clearly a

huge driver (Dettmer et al. 2007; Makarov et al. 2006)) and

has been so for us (e.g. (Begley et al. 2009; Dunn et al.

2011, 2015; Goodacre et al. 2004; O’Hagan et al. 2005;

Zelena et al. 2009), as are improvements in mass precision

and metabolite identifiability (Brown et al. 2009; Dunn et al.

2013; Kind and Fiehn 2007; Weber et al. 2011). We have also

found the development of metabolic footprinting (Allen et al.

2003, 2004; Kell et al. 2005) (‘exometabolomics’) to be of

value, and like many others have used both untargeted

metabolomics and the related metabolic profiling (Goodacre

et al. 2004) to discover new disease biomarkers (e.g. (Dunn

et al. 2007; Kenny et al. 2005, 2010)).

The importance of metabolomics databases (Haug et al.

2013; Skogerson et al. 2011; Wishart et al. 2013; Zhu et al.

2013) and the need to make metabolomics data publically

available (Rocca-Serra et al. 2016; Salek et al. 2015)

cannot be stressed too highly.

An important trend is the use of 13C labelling for mea-

suring fluxes (Zamboni et al. 2009), as well as the inte-

gration of experimental metabolomics with the genome-

wide metabolic networks that are becoming available

(Herrgård et al. 2008; Swainston et al. 2016; Thiele et al.

2013). Equivalently, and sadly, an important non-trend is

any major improvement in the proper use of statistical and

related (machine learning) methods in biological (Ioannidis

2005) and especially metabolomics (Broadhurst and Kell

2006) studies.

5 Quo vadis? How will the full potential
of metabolomics be revealed?

‘‘It has been said that we always overestimate what

we can do in two years and underestimate what we

can do in twenty.’’

P. Ball & L. Garwin (Ball and Garwin 1992)

Given the above caveat, we do not seek to be overly

predictive, but some trends are obvious. The improvement

in sample scale (with (Dunn et al. 2011, 2015) or
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potentially without (Lewis et al. 2016) the need for drift

correction) is clearly one, and this will be aided by the

continuing development of inter-laboratory comparisons

(Abate-Pella et al. 2015) and standards for data, data

analysis, and interoperability and data integration (Good-

acre et al. 2007; Grapov et al. 2015; Salek et al.

2013, 2015; Sansone et al. 2007). Such things will assist

greatly in the development of personalised medicine and its

integration with wearable technologies. As well as the

anticipated trends in sensitivity, moving towards the nec-

essary single-cell analyses, it is clear that many more

metabolites remain to be discovered, even in simple hosts

(Carbonell et al. 2013, 2014) (probably as a result of

enzyme promiscuity Currin et al. 2015; Jeffryes et al.

2015). Such analyses are greatly aided by the use of proper

descriptors of small molecule structures, such as SMILES

(Weininger 1988) and InChI (Coles et al. 2005; Heller et al.

2013; Spjuth et al. 2013), that allow cheminformatic rea-

soning about properties such as drug-metabolite similari-

ties (Dobson et al. 2009b; O’Hagan and Kell 2015b,

O’Hagan and Kell 2016; O’Hagan et al. 2015).

Another trend will be further automation of instrument

tuning (Bradbury et al. 2015), non-invasive methods (Rat-

tray et al. 2014), and an increased portability of instrumen-

tation such that it may even be used in the field (as is now the

case for genomics (Ashton et al. 2015; Kilianski et al. 2015)

and biometrics). This is clearly assisted by ‘ambient mass

spectrometry’ (Cooks et al. 2006), and the impressive

‘iKnife’ (Alexander et al. 2016; Balog et al. 2013) pioneering

of such measurements in the operating theatre. This kind of

development will be especially important in terms of envi-

ronmental metabolomics (Bundy et al. 2009) and the ‘ex-

posome’ (the integrated load of xenobiotics that an

individual has accumulated in his/her lifetime) (Athersuch

and Keun 2015; Rappaport et al. 2014). The extensive data

that will be generated will be harvested via the ‘Internet of

Things’ (Ellis et al. 2015), scientific reasoning will be further

automated (King et al. 2004, 2009; Williams et al. 2015), and

in an era where the methods of ‘artificial intelligence’ are

starting to show human-level abilities, at least in restricted

domains (Koza 2010; Mnih et al. 2015; Silver et al. 2016), we

shall be wise to exploit such methods.

At least as judged by their appearance in the literature,

some enzymes in a given organism are much more greatly

studied than are others, a phenomenon referred to as ‘pub-

lication asymmetry’ (César-Razquin et al. 2015). As asses-

sed in that paper (César-Razquin et al. 2015), solute carriers

(SLCs (Hediger et al. 2004)) or transporters are the most

neglected group of genes in the human genome. Our own

analyses also point up their major importance in flux control

(Walter et al. 1987), drug transport (Dobson et al. 2009a;

Dobson and Kell 2008; Kell 2013, 2015a, 2015b, 2016; Kell

et al. 2013, 2011; Kell and Oliver 2014; Lanthaler et al. 2011;

Mendes et al. 2015; O’Hagan and Kell 2015a) and biotech-

nology (Kell et al. 2015b). Thus we consider that, although

challenging, compartment-based metabolomics, where such

transporters are necessarily involved, is likely to become a

substantial field of itself. Indeed, our improved understand-

ing of a special compartment called the microbiome shows

that not all of the genes and metabolites involved in sup-

posedly non-communicable diseases even arise from the host

(Honda and Littman 2016; Potgieter et al. 2015; Wang et al.

2011; Wikoff et al. 2009).

Biological studies will be much aided by the ability to

manipulate genomes at will. Henrik Kacser, as a major part

of his motivation for developing MCA in the first place,

had long ago explained why much more sensitive analyses

are possible with haploids than with diploids (Kacser and

Burns 1981). Thus, a particularly nice example was given

by the work of Superti-Furga and colleagues (Winter et al.

2014) on a near-haploid cell line showing that at least

99.5 % of the uptake of the drug sepantronium bromide

proceeded through a specific transporter, and thus that any

transbilayer flux was negligible.

The original paper (Oliver et al. 1998) concluded ‘‘many

of these techniques are sufficiently general that, once they

have been tried and tested in the experimentally

tractable yeast system, they should be directly applicable to

the study of the functional genomics of higher organisms’’.

Certainly this has been borne out, and overall, then,

metabolomics has had a very healthy childhood and ado-

lescence. Perhaps now the exposome, and even more

comprehensive studies, will usher in the (for us much-

vaunted (Kell 2004, 2006; Kell et al. 2005) but largely

awaited) integration of metabolomics and systems biology.

If it does, it will have been well worth the wait.

Acknowledgments SGO thanks both the BBSRC and the UK

Technology Strategy Board (Grants BB/C5051140/2 and BB/

L004437/1: ‘13TSB_SynBio’), as well the European Commission

(7th Framework Programme BIOLEDGE Contract No: 289126), for

research funds. DBK thanks the Biotechnology and Biological Sci-

ences Research Council (BBSRC) for financial support (Grant BB/

M017702/1). This is a contribution from the Manchester Centre for

Synthetic Biology of Fine and Speciality Chemicals (SYNBIO-

CHEM). We apologise to the many readers whose work was not cited.

Compliance with ethical standards

Conflict of interest DBK and SGO have no conflict of interest to

declare.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

148 Page 4 of 8 D. B. Kell, S. G. Oliver

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

Abate-Pella, D., Freund, D. M., Ma, Y., et al. (2015). Retention

projection enables accurate calculation of liquid chromato-

graphic retention times across labs and methods. Journal of

Chromatography A, 1412, 43–51.

Alexander, J., Gildea, L., Balog, J., et al. (2016) A novel methodology

for in vivo endoscopic phenotyping of colorectal cancer based on

real-time analysis of the mucosal lipidome: A prospective

observational study of the iKnife. Surgical Endoscopy 1-10.

Allen, J. K., Davey, H. M., Broadhurst, D., et al. (2003). High-

throughput characterisation of yeast mutants for functional

genomics using metabolic footprinting. Nature Biotechnology,

21, 692–696.

Allen, J., Davey, H. M., Broadhurst, D., et al. (2004). Discrimination

of the modes of action of antifungal substances by use of

metabolic footprinting. Applied and Environmental Microbiol-

ogy, 70, 6157–6165.

Ashton, P. M., Nair, S., Dallman, T., et al. (2015). MinION nanopore

sequencing identifies the position and structure of a bacterial

antibiotic resistance island. Nature Biotechnology, 33, 296–300.

Athersuch, T. J., & Keun, H. C. (2015). Metabolic profiling in human

exposome studies. Mutagenesis, 30(6), 755–762.

Ball, P., & Garwin, L. (1992). Science at the atomic scale. Nature,

355, 761–766.
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