
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 15, Number 3, Pages 573–597
S 0894-0347(02)00398-3
Article electronically published on April 8, 2002

THE METHOD OF ALTERNATING PROJECTIONS
AND THE METHOD OF SUBSPACE CORRECTIONS

IN HILBERT SPACE

JINCHAO XU AND LUDMIL ZIKATANOV

1. Introduction

The method of alternating projections and the method of subspace corrections
are general iterative methods that have a variety of applications. The method of
alternating projections, first proposed by von Neumann (1933) (see [31]), is an
algorithm for finding the best approximation to any given point in a Hilbert space
from the intersection of a finite number of subspaces. The method of subspace
corrections, an abstraction of general linear iterative methods such as multigrid
and domain decomposition methods, is an algorithm for finding the solution of a
linear system of equations. In this paper, we shall study these two methods in a
Hilbert space setting and in particular present a new identity for the product of
nonexpansive operators that gives a sharpest possible estimate of the convergence
rate of these methods.

Let V be a Hilbert space and Vi ⊂ V (i = 1, . . . , J) a number of closed subspaces
satisfying V =

∑J
i=1 Vi. One main result in this paper is that the following identity

holds for an appropriate class of operators Ti : V 7→ Vi (see Theorem 4.2 below):

‖(I − TJ) · · · (I − T1)‖2L(V,V ) = 1−
(

1 + sup
‖v‖=1

inf∑
i vi=v

J∑
i=1

(T̄−1
i T ∗i wi, T

∗
i wi)

)−1

,

(1.1)

with wi =
∑J

j=i vj − T
−1
i vi and T̄i = T ∗i + Ti − T ∗i Ti.

Roughly speaking, the above identity holds if each I − Ti is nonexpansive. For
example, if each Ti = Pi : V 7→ Vi is the orthogonal projection with respect to the
underlying inner product of V , the above identity reads:

‖(I − PJ ) · · · (I − P1)‖2L(V,V ) = 1−
(

1 + sup
‖v‖=1

inf∑
i vi=v

J∑
i=1

‖Pi
J∑

j=i+1

vj‖2
)−1

.

(1.2)
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574 JINCHAO XU AND LUDMIL ZIKATANOV

These identities give a precise quantitative estimate of the convergence rate of
the method of alternating projections and the method of subspace corrections. Such
identities are very desirable from the viewpoints of both theory and application.
The sup-inf term in these identities is easy to estimate in applications and many
existing convergent results can be derived from it in a straightforward fashion. It is
expected that new convergence estimates can also result from such an identity for
various applications. This result is also expected to be instrumental in the design
of the method of subspace corrections or alternating projections because it is an
identity, from which we know better than from any earlier theory what contributes
to the rate of convergence and hence know where to look for improvement.

The method of subspace corrections has often been discussed in finite dimensional
spaces in the literature since practical applications of this method are often for
problems posed in a discrete setting in finite dimensions. In this paper, however,
we shall discuss this method in a general Hilbert space setting. From a practical
point of view, this level of abstraction may not be essential, but working on a
general Hilbert space (which may be of infinite dimension) seems to make us see
things in a more appropriate way.

In addition to the aforementioned identities, we shall also present a number of
other important results in relation to these two types of methods. For example, we
shall prove that the method of alternating projections is in fact equivalent to the
method of subspace corrections in certain circumstances.

The rest of the paper is organized as follows. In §2 we introduce a framework of
the method of subspace corrections. In §3 we consider the method of alternating
projections and prove that it is equivalent to a special case of the method of subspace
corrections. The main result of the paper is contained in §4 (Theorem 4.2) and §5
illustrates how our new identity can be used to obtain estimates of the convergence
rate in multigrid and domain decomposition methods.

2. MSC: The method of subspace corrections

We shall present here the method of subspace corrections in the framework of
solving a linear variational problem. Let H be a Hilbert space and V ⊂ H a closed
subspace. We are interested in solving the following variational problem: Find
u ∈ V for any given f ∈ H∗ such that

a(u, v) = 〈f, v〉, ∀v ∈ V.(2.1)

Here a(·, ·) : H ×H 7→ R is a continuous bilinear form satisfying

a(u, v) ≤ ‖a‖‖u‖‖v‖, u, v ∈ H.

We assume that it further satisfies the following conditions:

inf
u∈V

sup
v∈V

a(u, v)
‖u‖‖v‖ = inf

v∈V
sup
u∈V

a(u, v)
‖u‖‖v‖ > 0.(2.2)

These conditions are often known as inf-sup conditions or Babuška-Brezzi condi-
tions. It is known that these are the necessary and sufficient conditions for the
well-posedness of the variational problem (2.1) (see [2], [14], and also [37]).

We would like to remark that the problem (2.1) often occurs with V = H in
most applications. The added twist here of using two possibly different spaces V
and H makes it more convenient to discuss the relationship between the method of
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ALTERNATING PROJECTIONS AND SUBSPACE CORRECTIONS 575

subspace corrections and the method of alternating projections (see Theorem 3.3
below).

We shall now discuss an iterative procedure for solving (2.1). Given an initial
guess u0, an iterative method produces a sequence of u` (` = 0, 1, 2, . . . ) that (hope-
fully) better and better approximate the exact solution u. A typical construction of
a linear iterative procedure can be described as follows. Assume u`−1 is given; then
we can define u` = u`−1 + ê where ê is an approximate solution of the following
residual equation:

a(e, v) = f(v)− a(u`−1, v), ∀v ∈ V.(2.3)

The residual equation is in general as difficult to solve as the original problem, but
it is possible to solve it approximately (economically) to produce certain corrections
on u`−1 to obtain a better approximation u`.

The idea of the method of subspace corrections is to solve the residual equation
(2.3) on some properly chosen subspaces.

We consider a collection of closed subspaces

Vi ⊂ V, i = 1, 2, . . . , J,

such that V is the closure of
∑
i Vi, namely

V =
J∑
i=1

Vi.(2.4)

Associated with each subspace Vi, we introduce a bilinear form ai(·, ·) which can be
viewed as an approximation of a(·, ·) restricted on Vi. To assure the well-posedness
of the subspace problems, we assume that the following inf-sup conditions are sat-
isfied for all i = 1, 2, . . . , J :

inf
ui∈Vi

sup
vi∈Vi

a(ui, vi)
‖ui‖‖vi‖

= inf
vi∈Vi

sup
ui∈Vi

a(ui, vi)
‖ui‖‖vi‖

> 0(2.5)

and

inf
ui∈Vi

sup
vi∈Vi

ai(ui, vi)
‖ui‖‖vi‖

= inf
vi∈Vi

sup
ui∈Vi

ai(ui, vi)
‖ui‖‖vi‖

> 0.(2.6)

2.1. SSC: Successive subspace corrections. The method of successive subspace
corrections (MSSC) is an iterative algorithm that corrects residual equation suc-
cessively on each subspace.

Algorithm 2.1 (MSSC). Let u0 ∈ H be given.
for ` = 1, 2, . . .

u`−1
0 = u`−1

for i = 1 : J
Let ei ∈ Vi solve

ai(ei, vi) = f(vi)− a(u`−1
i−1 , vi) ∀vi ∈ Vi(2.7)

u`−1
i = u`−1

i−1 + ei
endfor
u` = u`−1

J

endfor
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576 JINCHAO XU AND LUDMIL ZIKATANOV

We note that the above algorithm is well defined, thanks to the assumptions
(2.5) and (2.6). For the analysis of this algorithm, let us introduce another class of
linear operators Ti : V 7→ Vi that are defined by:

ai(Tiv, vi) = a(v, vi), ∀vi ∈ Vi.(2.8)

Again, because of (2.5) and (2.6), each Ti is well defined and

R(Ti) = Vi and Ti : Vi 7→ Vi is isomorphic.(2.9)

In the special case when the subspace equation is solved exactly, we shall use
the notation Pi for Ti, namely

Pi = Ti if ai(·, ·) = a(·, ·),

or Pi is defined by the following relation:

a(Piv, vi) = a(v, vi), v ∈ V, vi ∈ Vi.

Pi is idempotent, namely P 2
i = Pi. It is an orthogonal projection when a(·, ·) is

an inner product itself, namely when a(·, ·) is symmetric positive definite. We note
that the following relation holds:

Ti = TiPi.(2.10)

It is easy to see that

u− u`−1
i = (I − Ti)(u− u`−1

i−1).

A recursive application of the above identity yields

u− u` = E(u − u`−1) = · · · = E`(u− u0)(2.11)

where

E = (I − TJ)(I − TJ−1) · · · (I − T1).(2.12)

Because of this special form ofE, the error propagation operator, the successive sub-
space corrections method is also known as the multiplicative or product (Schwarz)
method.

The general notion of subspace corrections by means of space decomposition
(2.4) was described in Xu [35] based on the works of Bramble, Pasciak, Wang and
Xu [10, 9]. It is an abstract generalization of a large class of iterative algorithms
mostly used for solving systems of equations arising from the discretization of partial
differential equations, such as Gauss-Seidel, multigrid and domain decomposition
methods. In the last two decades a lot of effort has been put into the investigation
of the theoretical and practical issues related to these methods. For a literature
review and basic results we refer the reader to some monographs and survey articles:
Hackbusch [25, 24], Xu [34, 35, 36], Xu and Zou [38], Yserentant [39], Bramble [8],
and more recent works on this subject: Bramble and Zhang [13], Trottenberg,
Oosterlee and Schüller [30], Smith, Bjøstrad and Gropp [29].

2.2. Parallel subspace corrections. Related to the method of successive sub-
space corrections discussed above, the method of parallel subspace corrections
(see [35]) is another important class of algorithms. In this algorithm, the resid-
ual corrections are done in parallel in each subspace. The parallel nature of the
algorithm makes it attractive for parallel computations.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALTERNATING PROJECTIONS AND SUBSPACE CORRECTIONS 577

A typical parallel subspace corrections method may be described as follows.

Algorithm 2.2 (MPSC). Let u0 ∈ H be given.
for ` = 1, 2, . . .

for i = 1 : J
Let ei ∈ Vi solve

ai(ei, vi) = f(vi)− a(ul−1, vi) ∀vi ∈ Vi
endfor
u` = u`−1 +

∑J
i=1 ei

endfor

It is easy to see that u− u` = (I − T )(u− u`−1), where

T =
J∑
i=1

Ti.(2.13)

One more robust way of using parallel subspace correction to solve for (2.1) is
to use the operator T and solve the following equivalent equation:

Tu = w(2.14)

where w =
∑J

i=1 wi with wi ∈ Vi obtained by solving

ai(wi, vi) = 〈f, vi〉, ∀vi ∈ Vi.
The system (2.14) is often known as a preconditioned system of the original system
(2.1). Most often we expect that the operator T is well conditioned, namely it has
a relatively small condition number:

cond(T ) ≡ ‖T ‖ ‖T−1‖.
Because of the special form of T in (2.13), the method of parallel subspace

corrections is also known as the additive (Schwarz) method. In the context of the
multigrid method, (2.13) is closely related to the BPX-preconditioner (see Bramble,
Pasciak and Xu [11]).

For the study of the operator T , let us make the following assumption:

(A0)
J∑
i=1

Vi is closed, namely V =
J∑
i=1

Vi.

which, by a simple application of the Open Mapping Theorem, implies

sup
‖v‖=1

inf∑
i vi=v

J∑
i=1

‖vi‖2 <∞.(2.15)

The role of (A0) can be seen in the following simple result.

Theorem 2.3. The following two statements are equivalent:

(1)
J∑
i=1

Vi is closed, namely (A0) is satisfied.

(2) T =
J∑
i=1

Ti is an isomorphism on V if each Ti : V 7→ Vi is a symmetric

positive definite isomorphism on Vi.
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578 JINCHAO XU AND LUDMIL ZIKATANOV

Proof. We first note that (2) obviously implies (1) since each v ∈ V can be written
as v =

∑
i TiT

−1v.
Now we assume that (1) holds. We consider the following norm for Ṽ ≡ V1 ×

V2 × . . .× VJ :

|||ṽ|||2 =
J∑
i=1

(T−1
i vi, vi).

We define, as in (4.17),

T˜ : Ṽ 7→ V, T˜ ṽ =
J∑
i=1

Tivi.

Note thatR(T˜ ) =
∑J
i=1 Vi since each Ti is an isomorphism on Vi. By (1),R(T˜ ) = V

which implies that there exists a constant κ > 0 such that

(Tv, v) = |||T˜ ∗v|||2 ≥ κ‖v‖2, ∀v ∈ V.

This implies (2).

We shall now include one simple but important result on the operator T . Related
results can be found in [35, 33, 22].

Lemma 2.4. If (A0) is satisfied and each Ti is symmetric positive definite on Vi,
then

(T−1v, v) = inf∑
vi=v

J∑
i=1

(T−1
i vi, vi).(2.16)

Proof. To prove (2.16) we take v ∈ V and consider vi = TiT
−1v. Obviously v =∑J

i=1 vi. Then we have

inf∑
ui=v

J∑
i=1

(T−1
i ui, ui) = inf∑

wi=0

J∑
i=1

(T−1
i (vi + wi), vi + wi)

= (T−1v, v) + inf∑
wi=0

[
J∑
i=1

2(Tv,wi) + (T−1
i wi, wi)

]
= (T−1v, v).

The above result can be used to estimate the condition number of T . For example,
the following estimate is very useful:

(λmin(T ))−1 = sup
‖v‖=1

inf∑
vi=v

J∑
i=1

(T−1
i vi, vi).(2.17)

3. MAP: The method of alternating projections

In this section, we shall discuss another class of iterative methods, namely the
method of alternating projections, and its relationship with the method of subspace
corrections.
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3.1. A description of the method of alternating projections. The method
of alternating projections is, in its simplest form, due to von Neumann [31]. Let us
now briefly describe this method. Let H be a Hilbert space and let M1,M2 ⊂ H be
two closed subspaces. Let PM1 and PM2 be two orthogonal projections from H to
M1 and M2 respectively. It is easy to see that PM1PM2 = PM1∩M2 if (and only if)
PM1 and PM2 commute, namely PM1PM2 = PM2PM1 . Von Neumann [31] proved
that, even if PM1 and PM2 do not commute, the following identity holds:

lim
k→∞

(PM2PM1 )k = PM1∩M2 .

The above result generalizes to more than two subspaces in a straightforward
fashion. Let Mi ⊂ H be closed subspaces or affine subspaces for i = 1 : J . Let PMi

be orthogonal projections from H to Mi. Given w ∈ H , the MAP algorithm for
finding the projection PMw where M =

⋂J
i=1Mi is as follows.

Algorithm 3.1 (MAP). Set w0 = w.
for ` = 1, 2, . . .

w`−1
0 = w`−1

for i = 1 : J
w`−1
i = PMiw

`−1
i−1

endfor
w` = w`−1

J

endfor

Roughly speaking, the iterates {w`} are obtained by alternatively computing the
projections onto individual subspaces Mi. This method is thus useful when each
PMi is “easier” to compute than PM . We note that

w` = (PMJPMJ−1 · · ·PM1)w`−1 = (PMJPMJ−1 · · ·PM1 )`w.(3.1)

3.2. Relationship between MSC and MAP. The method of alternating pro-
jections is closely related to the method of subspace corrections. We shall now
discuss their relationship.

Let us first include (and prove for completeness) the following well-known result.

Lemma 3.2. Let Mi be closed subspaces of H and M =
⋂J
i=1Mi. Then

M⊥ =
J∑
i=1

M⊥i .

Proof. Denote V =
∑J

i=1M
⊥
i . Let u =

∑
i ui ∈ V . For each i, (ui, v) = 0 for all

v ∈ M ⊂ Mi and hence (u, v) =
∑

i(ui, v) = 0. This proves that V ⊂ M⊥. Hence
V̄ ⊂M⊥ since M⊥ is closed.

On the other hand, if u ∈ V ⊥, then (u, vi) = 0 for each i and vi ∈ M⊥i ⊂ V .
This means that u ∈ (M⊥i )⊥ = Mi for each i and hence u ∈ M . This proves that
V ⊥ ⊂M and hence M⊥ ⊂ (V ⊥)⊥ = V̄ .

Theorem 3.3. Let Mi ⊂ H be closed subspaces and M =
⋂J
i=1Mi. Given w ∈ H,

Algorithm 3.1 (MAP ) for computing PM by using PMi is equivalent to Algorithm
2.1 (MSC) for solving (2.1) if

(1) a(·, ·) = (·, ·)H ;
(2) f ∈ H∗ is given by 〈f, φ〉 = (w, φ)H , ∀φ ∈ H;
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580 JINCHAO XU AND LUDMIL ZIKATANOV

(3) V =
J∑
i=1

Vi with Vi = M⊥i ;

(4) ai(·, ·) = a(·, ·), namely Ti = Pi for each i;
(5) u0 = 0.

Furthermore

u = PV w = P⊥Mw, u
` = w − w`.

Proof. For Algorithm 2.1, with (1)–(5), we have, by (2.11)

u− u` = [(I − PVJ ) · · · (I − PV1)]`u = [PMJ · · ·PM1 ]`u.

Thanks to Lemma 3.2, V = M⊥. Hence u = PV w = w − PMw. Thus

w − PMw − u` = [PMJ · · ·PM1 ]`(w − PMw) = [PMJ · · ·PM1 ]`w − PMw.
Namely

w − u` = [PMJ · · ·PM1 ]`(w − PMw) = [PMJ · · ·PM1 ]`w

which, by (3.1), is w` from Algorithm 3.1. This completes the proof.

The relationship between the method of alternating projections and the method
of subspace corrections has been observed by some authors although their algorith-
mic equivalence has not been explicitly stated before in the literature. For example,
in Gilbert and Light [21], it was observed that the multigrid method (which is a
method of subspace corrections; see [35] and §5) can be analyzed in the theoretical
framework of alternating projections (although it was also stated there that the
multigrid method, as an algorithm, would not be a method of alternating projec-
tions).

3.3. On the convergence of MAP. It has been proved (von Neumann [31] for
J = 2 and Halperin [26] for J ≥ 2) that

lim
`→∞

‖(PMJPMJ−1 · · ·PM1)`w − PMw‖ = 0 for all w ∈ H.

The following rate of convergence is known (see Aronszajn [1] and Kayalar and
Weinert [27]):

‖(PM1PM2)k − PM1∩M2‖ = c2k−1(M1,M2)

where c(M1,M2) is the cosine of the angle between M1 and M2:

c(M1,M2) = sup{ (u, v)
‖u‖‖v‖ : u ∈M1 ∩ (M1 ∩M2)⊥, v ∈M2 ∩ (M1 ∩M2)⊥}.

Such an estimate has been rediscovered several times, and we refer to Deutsch [15,
16, 17] for a more detailed discussion and literature review. An estimate like this
has been tried to generalize to the case of more than two subspaces and similar
(but less sharp) estimates for the rate of convergence have also been obtained in
the literature (see Deutsch [18], Bauschke and Borwein [5], Bauschke, Deutsch and
Hundel [4]).

It is interesting to note that, despite the close relationship between MAP and
MSC, the aforementioned estimates for MAP in the literature are quite different
in nature from those for MSC. In the next section, we shall present an identity for
the product of operators (such as projections) and this identity can then be used
for sharp convergence estimates for both the method of subspace corrections and
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the method of alternating projections. Our new convergence theory is more closely
related to those for the method of subspace corrections (cf. [35, 13]).

4. A new identity for the product of nonexpansive operators

The aim of this section is to present a new identity for the norm of a product of
nonexpansive operators. This identity can be used for estimating the convergence
rate of the method of subspace corrections and the method of alternating projec-
tions. We shall first confine our discussion on the method of subspace corrections
and use the relevant notation.

Given a Hilbert space H and a closed subspace V ⊂ H , the method of subspace
corrections is based on a collection of closed subspaces Vi ⊂ V , i = 1, 2, . . . , J ,
satisfying

V =
J∑
i=1

Vi.(4.1)

In view of (2.11), the convergence of the method of subspace corrections is equiv-
alent to

lim
`→∞

E` = 0(4.2)

where E is given by (2.12), namely

E = (I − TJ)(I − TJ−1) · · · (I − T1).

We shall establish such a convergence result under some natural conditions on
subspace operators Ti. In fact, we shall establish a uniform convergence result by
proving that

‖E‖ < 1(4.3)

under certain assumptions.
There are a lot of works devoted to the estimate of ‖E‖ (see [9, 35, 13]). But

the estimate that we will present is the sharpest possible. In fact, we shall give an
identity for ‖E‖, rather than upper bound estimates as in all other works.

4.1. Assumptions on subspace solvers. We now try to derive conditions on
the subspaces and subspace solvers for the convergence of the MSC.

First of all, we assume that

(A1) R(Ti) = Vi and Ti : Vi 7→ Vi is isomorphic for each i = 1 : J .

If Ti is given by (2.8), as mentioned earlier, this assumption is a consequence of
the inf-sup conditions (2.5) and (2.6).

In order for (4.2) to be valid, it is natural to expect that each factor I−Ti should
be nonexpansive, namely

‖I − Ti‖ ≤ 1(4.4)

which is equivalent to

(Tiv, Tiv) ≤ 2(Tiv, v), v ∈ V.(4.5)

There are operators Ti satisfying the above inequality but which may not lead to
(4.2). One simple example is that Ti = 2I. In this case, I − Ti = −I and (4.5)
is satisfied with equality. To avoid such type of operators, we are led to make the
following assumption on each Ti:
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582 JINCHAO XU AND LUDMIL ZIKATANOV

(A2) ‖Tiv‖2 ≤ ω(Tiv, v), v ∈ V for some constant ω ∈ (0, 2).

In the special case that a(·, ·) = (·, ·), the above condition is equivalent to the
same condition only in the subspace:

‖Tivi‖2 ≤ ω(Tivi, vi), vi ∈ Vi.(4.6)

The assumption (4.6) has been used in other papers; see [13] and the references cited
therein. As we shall see below, this condition means that I −Ti is a contraction on
the subspace Vi.

Associated with each Ti, we introduce its symmetrization (see [35]):

T̄ i = Ti + T ∗i − T ∗i Ti.(4.7)

This operator will play an important role in our analysis.

Lemma 4.1. Assume that Ti satisfies (A1) and (A2). Then
(1) I − Ti is nonexpansive.
(2) Ti, T

∗
i and T̄i have the same kernel: N (T̄ i) = N (Ti) = N (T ∗i ).

(3) Ti, T
∗
i and T̄i have the same range: R(T̄ i) = R(Ti) = R(T ∗i ) = Vi.

(4) The following inequality holds:
2− ω
ω
‖Tiv‖2 ≤ ‖v‖2 − ‖(I − Ti)v‖2 = (T̄iv, v), v ∈ V.

(5) As operators restricted on Vi, the above (1)–(3) are still valid.
(6) Ti, T

∗
i and T̄i are all isomorphisms from Vi to itself.

(7) T̄i is nonnegative on V and symmetric positive definite on Vi.

Proof. It is obvious that (1) holds. By (1) ‖I−Ti‖ ≤ 1, namely ‖Tiv‖2 ≤ 2(Tiv, v) =
2(v, T ∗i v); we see immediately that N (T ∗i ) ⊂ N (Ti). Similarly N (T ∗i ) ⊂ N (Ti)
since ‖I −T ∗i ‖ = ‖I −Ti‖. Hence N (Ti) = N (T ∗i ). It follows from the definition of
T̄i that N (Ti) ⊂ N (T̄ i). Note that (A2)

(T̄iv, v) = ‖v‖2 − ‖(I − Ti)v‖2 = 2(Tiv, v)− ‖Tiv‖2 ≥
2− ω
ω
‖Tiv‖2(4.8)

which implies N (Ti) ⊃ N (T̄ i). This completes the proof of (2). (3) follows from
(2) by the well-know relations between kernel and range of operators. (4) is already
contained in (4.8). (5)–(7) are obvious.

4.2. Main result. We are now in a position to present the main result of this
paper. The theorem presented below is based on the aforementioned (A1), (A2)
and also (A0) introduced in §2.2, namely

(A0)
J∑
i=1

Vi is closed, namely V =
J∑
i=1

Vi.

Theorem 4.2. Under the assumptions (A0), (A1) and (A2), the following iden-
tity holds:

‖E‖2L(V,V ) ≡ ‖(I − TJ)(I − TJ−1) · · · (I − T1)‖2 =
c0

1 + c0
(4.9)

where

c0 = sup
‖v‖=1

inf∑
i vi=v

J∑
i=1

(TiT̄
−1
i T ∗i wi, wi) <∞ with wi =

J∑
j=i

vj − T−1
i vi.(4.10)
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Proof. The proof of the theorem is based on a sequence of identities. We first set

E0 = I and Ei = (I − Ti)Ei−1 for i = 1 : J.(4.11)

We then have, with EJ = E,

‖v‖2 − ‖Ev‖2 =
J∑
i=1

(
‖Ei−1v‖2 − ‖Eiv‖2

)

=
J∑
i=1

(
(Ei−1v,Ei−1v)− ((I − Ti)Ei−1v, (I − Ti)Ei−1v)

)

=
J∑
i=1

((I − (I − Ti)∗(I − Ti))Ei−1v, Ei−1v)

=
J∑
i=1

(T̄ iEi−1v,Ei−1v).

Namely

‖v‖2 − ‖Ev‖2 =
J∑
i=1

(T̄ iEi−1v,Ei−1v).(4.12)

This identity is instrumental in many existing convergence analyses for the method
of subspace corrections (see Bramble, Pasciak, Wang and Xu [9], Bramble [8], Wang
[32] and Xu [35]), and it is the starting point of our analysis here.

We now consider the product space V J = V × V × · · · × V and Ṽ = V1 × V2 ×
· · · × VJ ⊂ V J . We write the elements in this product space as column vectors:

ũ =


u1

u2

...
uJ

 , ṽ =


v1

v2

...
vJ

 , ui, vi ∈ V (i = 1 : J), ũ, ṽ ∈ V J ,

and use the inner product in the usual way:

(ũ, ṽ)V J =
J∑
i=1

(ui, vi)H .

We introduce the following operators:

I˜ =


I
I
...
I

 , E˜ =


I
E1

...
EJ−1

 , L˜̃ =


I 0 0 . . . 0
T1 I 0 . . . 0
T1 T2 I . . . 0
...

...
...

. . .
...

T1 T2 T3 . . . I


and T̄˜̃ = diag(T̄1, T̄2, . . . , T̄J).

Note that I˜, E˜ : V 7→ V J , L˜̃ : V J 7→ V J and T̄˜̃ : V J 7→ Ṽ . Furthermore

L˜̃ : V J 7→ V J and T̄˜̃ : Ṽ 7→ Ṽ are apparently isomorphisms.
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By the defining relation (4.11) for Ei, we have the identities

i−1∑
j=1

TjEj−1 + Ei−1 = I, i = 1, 2, . . . , J,

which can be written in the following compact form:

L˜̃E˜ = I˜.
In view of (4.12), we have

‖v‖2 − ‖Ev‖2 = (T̄˜̃E˜ v,E˜ v)V J

= (T̄˜̃L˜̃−1I˜v, L˜̃−1I˜v)V J

= (I˜∗(L˜̃ ∗)−1T̄˜̃L˜̃−1I˜v, v).

Namely

‖v‖2 − ‖Ev‖2 = (I˜∗(L˜̃ ∗)−1T̄˜̃L˜̃−1I˜v, v).(4.13)

The derivation so far has been rather straightforward by using properly chosen
notation.

We proceed to further modify (4.13). Let T˜̃ = diag(T1, T2, . . . , TJ) : Ṽ 7→ Ṽ .

We note that

[(L˜̃ ∗T˜̃ − T̄˜̃ )ṽ]i = T ∗i (
J∑
j=i

Tjvj − vi)(4.14)

which, thanks to (3) of Lemma 4.1, implies that R(L˜̃ ∗T˜̃ −T̄˜̃ ) ⊂ Ṽ . Since T̄˜̃ : Ṽ 7→ Ṽ

is an isomorphism, we can define the following operator (from Ṽ to Ṽ ):

S˜̃ = (T˜̃ ∗L˜̃ − T̄˜̃ )T̄˜̃−1(L˜̃ ∗T˜̃ − T̄˜̃ ).

By (4.14), we have

(S˜̃ ṽ, ṽ) =
J∑
i=1

(T̄−1
i T ∗i ui, T

∗
i ui) with ui =

J∑
j=i

Tjvj − vi.(4.15)

By means of the operator S˜̃ , we claim that the following relation holds:

‖v‖2 − ‖Ev‖2 =
(
T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗v, v

)
(4.16)

where, with a slight abuse of notation,

T˜ = (T˜ ∗)∗ = (T1, . . . , TJ) : Ṽ 7→ V.(4.17)

The identity (4.16) is one crucial step in our derivation. Its discovery might not
have been so obvious, but its verification can be carried out by direct calculations.
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First, we have

S˜̃ = (T˜̃ ∗L˜̃ T̄˜̃−1 − I˜̃)(L˜̃ ∗T˜̃ − T̄˜̃ )

= T˜̃ ∗L˜̃ T̄˜̃−1
L˜̃ ∗T˜̃ − T˜̃ ∗L˜̃ − L˜̃ ∗T˜̃ + T̄˜̃

= T˜̃ ∗L˜̃ T̄˜̃−1
L˜̃ ∗T˜̃ − T˜ ∗T˜ ,

since T˜ ∗T˜ = T˜̃ ∗L˜̃ + L˜̃ ∗T˜̃ − T̄˜̃ . Thus

S˜̃ + T˜ ∗T˜ = T˜̃ ∗L˜̃ T̄˜̃−1
L˜̃ ∗T˜̃

and hence

I˜∗(L˜̃ ∗)−1T̄˜̃L˜̃−1I˜ = I˜∗(L˜̃ T̄˜̃−1
L˜̃ ∗)−1I˜

= I˜∗T˜̃ (S + T˜ ∗T˜ )−1T˜̃ ∗I˜
= T˜ (S + T˜ ∗T˜ )−1T˜ ∗.

This leads to the desired identity (4.16).
By the identity (4.16), we deduce that

‖E‖2 = 1− inf
‖v‖=1

(
T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗v, v

)
.(4.18)

In regard to the last term in the above identity, we claim that the following identity
holds:

inf
‖v‖=1

(
T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗v, v

)
=

1
1 + c0

(4.19)

where

c0 = sup
‖v‖=1

inf
T˜ ṽ=v

(S˜̃ ṽ, ṽ).(4.20)

Let us now prove (4.19). To proceed, for any w ∈ V , let

w̃ = (S˜̃ + T˜ ∗T˜ )−1T˜ ∗w, v = T˜ w̃.
By a simple calculation, we have

(T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗w,w)

(T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗w, T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗w)
=

(S˜̃ w̃, w̃) + ‖v‖2

‖v‖2 .

By writing S˜̃ = S˜̃ + T˜ ∗T˜ − T˜ ∗T˜ , it is easy to verify that

(S˜̃ w̃, φ̃) = 0, ∀φ̃ ∈ N (T˜ )

which implies that

(S˜̃ w̃, w̃) = inf
T˜ ṽ=v

(S˜̃ ṽ, ṽ).
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Using the fact that T˜ is onto and therefore T˜ ∗ is one-to-one, we conclude that

T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗ is a symmetric, positive definite isomorphism. Hence(
inf
‖v‖=1

(T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗v, v)
)−1

= sup
w∈V

(T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗w,w)

(T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗w, T˜ (S˜̃ + T˜ ∗T˜ )−1T˜ ∗w)

= sup
w∈V

inf
T˜ ṽ=v

(S˜̃ ṽ, ṽ)

‖v‖2 + 1 = sup
v∈V

inf
T˜ ṽ=v

(S˜̃ ṽ, ṽ)

‖v‖2 + 1 = c0 + 1.

This proves the identity (4.19).
At this point, we can conclude that the identity (4.9) can be obtained by com-

bining (4.18), (4.19) and (4.15) together with a simple change of variable Tivi ↔ vi.
Finally, thanks to (2.15), we can easily prove that c0 <∞ (see §4.5 for relevant

details). This completes the proof.

Remark. In some sense, our (new) identity (4.9) for the method of successive sub-
space corrections is analogous to the (known) simple identity (2.17) for the method
of parallel subspace corrections although (4.9) is much more nontrivial than (2.17).

As a special case of Theorem 4.2, we have the following result when all the
subspace solvers are exact.

Corollary 4.3. Under the assumption (A0), the following identity holds:

‖E‖2 ≡ ‖(I − PJ )(I − PJ−1) · · · (I − P1)‖2 =
c0

1 + c0
(4.21)

where

c0 = sup
‖v‖=1

inf
T˜ ṽ=v

J∑
i=1

‖Pi
J∑

j=i+1

vj‖2.(4.22)

4.3. Application to the method of alternating projections. In this section,
we shall study the product operator E as an operator on the space H which may
contain V as a proper subspace. This line of result is related to the convergence of
the method of alternating projections.

Introducing the notation

Fix(E) = N (I − E) = {v ∈ H : Ev = v}
we have the following simple result on Fix(E):

Lemma 4.4. Let E = (I − TJ) · · · (I − T1). If each Ti satisfies (A1) and (A2),
then

Fix(E) = Fix(E∗) =
J⋂
i=1

Fix(I − Ti) =
J⋂
i=1

N (Ti) =
J⋂
i=1

V ⊥i

and, with M = Fix(E),

V ≡M⊥ =
J∑
i=1

(N (Ti))⊥ =
J∑
i=1

Vi.
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Proof. We first prove that

Fix(E) =
J⋂
i=1

N (Ti).(4.23)

If v ∈ N (Ti), for all i = 1 : J , then obviously Ev = v hence v ∈ Fix(E). This
proves that Fix(E) ⊃

⋂J
i=1N (Ti). To prove the other inclusion, let v ∈ Fix(E).

Since every I − Ti is nonexpansive, we have that

‖v‖2 = ‖Ev‖2 ≤ ‖(I − T1)v‖2.

By Lemma 4.1 we obtain that v ∈ N (T1). A simple induction argument shows that
v ∈ N (Ti), for all i = 1 : J , that is

Fix(E) ⊂
J⋂
i=1

N (Ti)

and (4.23) follows. The proof of the lemma can be easily completed by using (4.23)
in combination with Lemma 4.1 and Lemma 3.2.

Combining Theorem 4.2 with the obvious identities

En − PM = (E − PM )n = (EPV ), ‖EPV ‖ = ‖E‖L(V,V )(4.24)

gives the following theorem for the method of alternating projections.

Theorem 4.5. Under the assumptions (A1), (A2)and (A0),

‖E(I − PM )‖2 = ‖E − PM‖2 = ‖EPV ‖2 =
c0

1 + c0
(4.25)

where c0 is given by (4.10), namely

c0 = sup
‖v‖=1

inf∑J
i=1 vi=v

J∑
i=1

(TiT̄
−1
i T ∗i wi, wi) with wi =

J∑
j=i

vj − T−1
i vi.

Consequently

‖Env − PMv‖ ≤ (1 + c−1
0 )−

n
2 ‖v‖ ∀v ∈ H.(4.26)

Remark. We note that the above theorem implies the convergence of a general-
ization of the method of alternating projections, namely the projection on each
subspace Vi only needs to be computed approximately: Ti ≈ PVi satisfying (A2).

4.4. Qualitative convergence without assumption (A0). In this section, we
shall present some results without assuming (A0). In this case, we can only obtain
a qualitative convergence result as the following simple result indicates that (A0)
is necessary for any quantitative result as in Theorem 4.2.

Theorem 4.6. Assume that (A1) and (A2) hold. Then the following two state-
ments are equivalent:

(1)
J∑
i=1

Vi is closed, namely (A0) is satisfied.

(2) ‖E‖L(V,V ) < 1.
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Proof. By our main Theorem 4.2, (1) implies (2). Now, if (2) holds, then by (4.16)
and the obvious fact that S˜̃ + T˜ ∗T˜ is isomorphism on Ṽ ,

(1− δ2)‖v‖2 ≤ ‖v‖2 − ‖Ev‖2

=
(

(S˜̃ + T˜ ∗T˜ )−1T˜ ∗v, T˜ ∗v
)

≤ ‖(S˜̃ + T˜ ∗T˜ )−1‖(T˜T˜ ∗v, v).

This means that T˜T˜ ∗ =
∑J

i=1 TiT
∗
i is a symmetric positive definite isomorphism

on V which, by Theorem 2.3, implies that V =
∑

i Vi, namely (1) holds.

We would like to point out that the above result was known before in the case
that each Ti is a projection; see Bauschke, Borwein and Lewis [3].

In view of Theorem 2.3 and Theorem 4.6, the convergence behavior of the method
of successive subspace corrections should be related to that of the method of parallel
subspace corrections. In fact, the norm ‖E‖ and the extreme eigenvalues of T may
be estimated in terms of each other and some estimates of this type can be deduced
from the proof of Theorems 2.3 and 4.6. We also refer to Griebel and Oswald
[23] and Bramble and Zhang [13] for an estimate of ‖E‖ in terms of the condition
number of T .

We are now in a position to present the main result of this section.

Theorem 4.7. Let E = (I − TJ) · · · (I − T1). If each Ti satisfies (A1) and (A2),
then

lim
n→∞

‖Env − PMv‖ = 0, ∀v ∈ H,(4.27)

or

lim
n→∞

‖[E(I − PM )]nv‖ = 0, ∀v ∈ H.

Proof.

‖v − Ev‖2 = ‖
J∑
i=1

(Ei−1v − Eiv)‖2

≤ J

J∑
i=1

‖Ei−1v − Eiv‖2 (Cauchy-Schwarz inequality)

= J

J∑
i=1

‖TiEi−1v‖2

≤ Jω

2− ω

J∑
i=1

(‖Ei−1v‖2 − ‖Eiv‖2) ((4) of Lemma 4.1)

=
Jω

2− ω (‖v‖2 − ‖Ev‖2).

Replacing v by EnJ v, we have

‖En(I − E)v‖2 ≤ Jω

2− ω (‖Env‖2 − ‖En+1v‖2)→ 0
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as n→∞ because ‖Env‖2, as a nonnegative decreasing sequence (since ‖E‖ ≤ 1),
has a finite limit. Thus Env → 0 for any v ∈ R(I − E). But since ‖E‖ ≤ 1, we
conclude that Env → 0 for all

v ∈ R(I − E) = N (I − E∗)⊥ = (Fix(E∗))⊥ = M⊥.

Thus, for any v ∈ H , we have

Env − PMv = En(I − PM )v = En(P⊥Mv)→ 0

as desired.

The above theorem generalizes a result, due to Smarzewski [28] (see Bauschke,
Deutsch, Hundal and Park [4]), which states that (4.27) holds if each Ti is self-
adjoint, nonnegative and nonexpansive (namely Ti is self-adjoint and satisfies (A2)
with ω = 1).

The above theorem is also related to a general result stated below (see Bauschke,
Deutsch, Hundal and Park [4]).

Proposition 4.8. Let E be a nonexpansive linear operator on H and M ⊂ H a
closed subspace. The following statements are equivalent:

(1) limn ‖Env − PMv‖ = 0 for all v ∈ H.
(2) M = Fix(E) and Env → 0 for all v ∈M⊥.
(3) M = Fix(E) and E is “asymptotically regular”, namely Env − En+1v → 0

for all v ∈ H.

4.5. On the estimate of c0. We shall now briefly discuss how the constant c0 in
(4.9) can be estimated. Basically, most existing theories can be recovered and/or
improved by certain upper-bound estimates of c0, but we shall not go through all
those estimates. Here we shall give some simple examples as an illustration. We
shall consider the special case when a(·, ·) is a symmetric, positive, definite bilinear
form, namely it is an inner product on H .

The following intriguing identity is useful.

Lemma 4.9. The following identity holds, for all i = 1 : J :

(T ∗i
−1 − I)TiT̄−1

i T ∗i (T−1
i − I) = T̄−1

i − I.(4.28)

Proof. Let Si = T ∗i
−1 + T−1

i − I. It follows that

(T ∗i
−1 − I)TiT̄

−1
T ∗i (T−1

i − I)

= (T ∗i
−1 − I)(T ∗i

−1 + T−1
i − I)−1(T−1

i − I)

= (Si − T−1
i )S−1

i (Si − (T ∗i )−1)

= Si − T−1
i − (T ∗i )−1 + T−1

i S−1
i (T ∗i )−1

= −I + T̄−1
i .

A special decomposition. In some important applications, such as multigrid meth-
ods, a special decomposition v =

∑
i vi may be obtained by a sequence of linear

operators. If we assume that there exist operators: Πi : V 7→ Vi such that

R(Πi −Πi−1) ⊂ Vi, ∀v ∈ V,
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with Π0 = 0 and ΠJ = I, we have a telescopic decomposition

v =
J∑
i=1

vi with vi = (Πi −Πi−1)v.

Then, in view of (4.10), we have

c0 ≤ sup
‖v‖=1

J∑
i=1

(TiT̄
−1
i T ∗i wi, wi)

with

wi =
J∑
j=i

vj − T−1
i vi = (I −Πi)v + (I − T−1

i )(Πi −Πi−1)v.(4.29)

Furthermore

c0 ≤ sup
‖v‖=1

J∑
i=1

(TiT̄
−1
i T ∗i wi, wi)

≤ 2 sup
‖v‖=1

J∑
i=1

(
(TiT̄

−1
i T ∗i (I −Πi)v, (I −Πi)v)

+((T̄−1
i − I)(Πi −Πi−1)v, (Πi −Πi−1)v)

)
.

An important special case is when Πi = Pi. In this case, the expression (4.29)
is reduced to

wi =
J∑
j=i

(I − T−1
i )(Pi − Pi−1)v

and

c0 ≤ sup
‖v‖=1

J∑
i=1

((T̄−1
i − I)(Pi − Pi−1)v, (Pi − Pi−1)v).(4.30)

A general estimate. We now turn to another extreme to obtain some conservative
estimates in the most general setting.

Let Ḡ˜̃ = diag(T̄1, . . . , T̄J) and

T˜̃ =


T ∗1 (T−1

1 − I)P1 T ∗1 T ∗1 . . . T ∗1
0 T ∗2 (T−1

2 − I)P2 T ∗2 . . . T ∗2
...

...
...

. . .
...

0 0 0 . . . T ∗J (T−1
J − I)PJ

 .

Then

c0 = sup
‖v‖=1

inf∑
T̄ivi=v

‖Ḡ˜̃ −
1
2T˜̃ Ḡ˜̃

1
2 (Ḡ˜̃

1
2 ṽ)‖2

≤ sup
‖v‖=1

inf∑
T̄ivi=v

‖Ḡ˜̃ −
1
2T˜̃ Ḡ˜̃

1
2 ‖2‖Ḡ˜̃

1
2 ṽ‖2

= K0K1
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where

K0 = sup
‖v‖=1

inf∑
T̄ivi=v

‖Ḡ˜̃
1
2 ṽ‖2 = sup

‖v‖=1

inf∑
i vi=v

J∑
k=1

(T̄−1
k vk, vk)

and

K1 = ‖Ḡ˜̃ −
1
2T˜̃ Ḡ˜̃

1
2 ‖2.

For the special case that Ti = Pi, namely all subspace solvers are exact, we have

c0 = sup
‖v‖=1

inf∑
vi=v

J∑
k=1

‖Pk
J∑

i=k+1

vi‖

and the matrix T˜̃ is reduced to

P˜̃ =



0 P1 P1 . . . P1 P1

0 0 P2 . . . P2 P2

0 0 0 . . . P3 P3

...
...

...
. . .

...
...

0 0 0 0 0 PJ−1

0 0 0 0 0 0


.

Thus

c0 ≤ K0K1

with

K0 = sup
‖v‖=1

inf∑
i vi=v

J∑
i=1

‖vi‖2, K1 = ‖P˜̃ ‖2.

5. Some applications

In this last section, we shall give some examples to demonstrate how our main
result Theorem 4.2 can be applied in concrete situations. We shall consider two
simple examples, one is an overlapping domain decomposition method (with ex-
act subspace solvers) and the other is a multigrid method (with inexact subspace
solvers). The relevant convergence results are mostly known in the literature but
they will be obtained here in a different fashion by using our new theory.

We consider the following simple problem: Find u ∈ H1
0 (Ω) such that

a(u, v) = f(v), ∀v ∈ H1
0 (Ω).

Here Ω ⊂ Rd is a bounded Lipschitz domain and

a(u, v) =
∫

Ω

 d∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj

 dx, f(v) ≡
∫

Ω

fv dx.
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5.1. An overlapping domain decomposition method. We shall now describe
a simple overlapping domain decomposition method for solving (5.4) and analyze
its convergence property using our new theory. We shall only make a very weak
assumption on the coefficients (aij): namely we assume that each aij is bounded
and measurable (namely aij ∈ L∞(Ω)) and there exist two positive constants Λ0

and Λ1 such that

Λ0

d∑
i=1

|ξi|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ Λ1

d∑
i=1

|ξi|2, ∀ξ = (ξi) ∈ Rd, x ∈ Ω.(5.1)

We assume that we are given a set of overlapping subdomains {Ωi}Ji=1 of Ω such that
Ω =

∑J
i=1 Ωi. While there are many possible ways of defining such a decomposition,

as an illustration let us now give a specific example. We start by assuming that Ω
is triangulated with Ω =

⋃J
i=1 τi, where the τi’s are nonoverlapping simplexes of

size h0, with h0 ∈ (0, 1] and quasi-uniform, i.e. there exist constants C0 and C1 not
depending on h such that each simplex τi is contained in (contains) a ball of radius
C1h0 (respectively C0h0). Given every grid point xi in this triangulation, we can
define a subdomain Ωi to be the union of all simplexes containing xi as a vertex.
We then obtain an overlapping decomposition Ω =

∑J
i=1 Ωi.

Let V = H1
0 (Ω). Associated with each subdomain, we introduce the subspaces

Vi ⊂ V (1 ≤ i ≤ J) as follows:

Vi = {v ∈ V : v(x) = 0, ∀x ∈ Ω \ Ωi}.
We further introduce a linear finite element subspace V0 defined from the afore-
mentioned quasi-uniform triangulation of Ω, namely

V0 = {v ∈ H1
0 (Ω) : v|τ ∈ P1(τi), ∀τi}

where P1 is the space of linear polynomials.
With this definition of subspaces, a successive subspace correction method can

naturally be defined. This type of algorithm is often known as the Schwarz over-
lapping domain decomposition method. In this example, we consider the case that
all subspace solvers are exact. But of course, the case of inexact subspace solvers
can also be treated without many more difficulties.

Let us now proceed with a concise convergence analysis for this overlapping
Schwarz method (with exact subspace solvers). As in the existing literature, one
main ingredient of the analysis is a partition of unity, {θi}Ji=1, defined on Ω satis-
fying

∑J
i=1 θi = 1 and, for i = 1, . . . , J ,

suppθi ⊂ Ωi ∪ ∂Ω, 0 ≤ θi ≤ 1, max
x∈Ω̄i

|∇θi(x)| ≤ c1h−1
0 .

The construction of such a partition of unity is standard. In this specific example,
we may simply choose each θi to be the local nodal basis function associated with
the grid xi. Another ingredient in our analysis is the L2 projection Q0 : V 7→ V0

which is known to satisfy (see Bramble and Xu [12])

h−1
0 ‖v −Q0v‖0,Ω + |v −Q0v|1,Ω ≤ c2|v|1,Ω.

With the partition of unity (θi) and the L2 projection Q0, given any v ∈ V , a
partition v =

∑J
i=0 vi for vi ∈ Vi can then be obtained with

v0 = Q0v, vi = θi(v −Q0v), i = 1, . . . , J,(5.2)

where Q0 : V 7→ V0 is the L2 projection.
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Introducing the notation

‖v‖2A,Ω =
∫

Ω

d∑
i,j=1

aij(x)
∂v

∂xi

∂v

∂xj
,

we have
J∑
k=0

‖Pk
J∑

i=k+1

vi‖2A,Ω ≤ ‖v −Q0v‖2A,Ω +
J∑
k=1

‖(
J∑

i=k+1

θi)(v −Q0v))‖2A,Ωk

≤ Λ1

(
|v −Q0v|21,Ω +

J∑
k=1

max
x∈Ω̄k

|
J∑

i=k+1

∇θi(x)|‖v −Q0v‖20,Ωk + |v −Q0v|21,Ωk

)

≤ Λ1C0|v|21,Ω ≤
Λ1

Λ0
C0‖v‖2A,Ω

with C0 dependent of c1, c2 (and the maximal number of subdomains to which a
given point may belong), but independent of aij , h0 and J . Hence for c0 given by
(4.22), we have c0 ≤ Λ1

Λ0
C0.

We conclude from the above analysis that the classic overlapping Schwarz do-
main decomposition method converges uniformly for the elliptic boundary value
problem with general bounded measurable coefficients and the rate of convergenc
only depends on the bounds, Λ0 and Λ1, of the extreme eigenvalues of the coefficient
matrix (aij(x)).

One interesting case is when the coefficients aij are highly oscillatory and, as we
see, the convergence rate of the classic Schwarz overlapping domain decomposition
is not affected by these possible oscillations as long as the aij stay within the bounds
as in (5.1).

By using the new theory, our analysis presented above is straightforward and
transparent. For works related to this problem, we refer to [19, 20, 35, 29].

5.2. A multigrid method. In this subsection we shall give another example of
the application of our identity to obtain a convergence estimate for a multigrid
algorithm. This estimate was known before, but the proof here is different from
those in the literature (see Braess and Hackbusch [6] and Bramble and Pasciak [7]).

We assume that Ω has been triangulated with a nested sequence of quasi-uniform
triangulations Tk = {τ ik} of size h for k = 0, . . . , j where the quasi-uniformity
constants are independent of k. These triangulations should be nested in the sense
that any triangle τ lk−1 can be written as a union of triangles of {τ ik}. We further
assume that there is a constant γ > 1, independent of k, such that

hk ∼ γ−k.

Associated with each Tk, a finite element space Vk ⊂ H1
0 (Ω) can be defined. One

has

V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ VJ .(5.3)

We are interested in the multigrid method for solving the following finite element
equation: Find uh ∈ V ≡ VJ satisfying

a(uh, v) = f(v), ∀v ∈ V,(5.4)
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where

a(u, v) =
∫

Ω

∇u · ∇v.

Define Ai : Vi 7→ Vi by:

(Aiui, vi)0 = a(ui, vi), ∀ui, vi ∈ Vi.

The subspace solver Ti in a multigrid method is often given by applying a number
of, say m, smoothings using, for example, a local relaxation method such as Gauss-
Seidel iteration (with perhaps the exception of i = 0 in which an exact solver may
be used, namely T0 = P0). Let Ri ≈ A−1

i denote one such smoothing. With
m smoothings, one strategy is to apply Ri and Rti alternatively. Here Rti is the
adjoint of Ri with respect to (·, ·); for example, if Ri represents forward Gauss-
Seidel iteration, then Rti represents backward Gauss-Seidel iteration. With this
kind of subspace correction, we have

Ti =
{
Pi − (K∗iKi)

m
2 Pi, if m is even,

Pi −Ki(K∗iKi)
m−1

2 Pi, if m is odd,

and

T̄ i = (I −Km
i,m)Pi

where

Ki = I −RiAi, K∗i = I −RtiAi
and

Ki,m =
{
K∗iKi, if m is even,
KiK

∗
i , if m is odd.

Note that K∗i is the adjoint of Ki with respect to a(·, ·).
In this example, we shall make two assumptions. The first assumption is on the

approximation of the finite element subspaces:

‖(I − Pi−1)vi‖2 ≤
c1
λi
a(vi, vi), ∀v ∈ Vi,(5.5)

where λi = ρ(Ai). The second assumption is on the smoother Ri:
c2
λi

(v, v) ≤ (R̄iv, v), ∀v ∈ Vi,(5.6)

where R̄i is the corresponding symmetrization of Ri.
We note that the first assumption is satisfied, for example, when aij are smooth

and Ω is smooth or a convex Lipschitz domain, and the second assumption is
satisfied for Gauss-Seidel iteration or the damped Jacobi method (see Xu [35])

To estimate the constant c0, we consider the decomposition v =
∑

i vi for any
v ∈ V with

vi = (Pi − Pi−1)v.(5.7)

Since, thanks to (5.3), Pi−1 = Pi−1Pi = PiPi−1, (5.5) implies that

λi(vi, vi) ≤ c1a(vi, vi).(5.8)
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We note that

a(T̄−1
i (I − T̄ i)vi, vi) = a((I −Km

i,m)−1Km
i,mvi, vi)

= (R̄−1
i R̄iAi(I −Km

i,m)−1Km
i,mvi, vi)

≤ λi
c2

((I −Ki,m)(I −Km
i,m)−1Km

i,mvi, vi)

≤ λi
c2

max
t∈[0,1]

[(1− tm)−1tm(1 − t)](vi, vi)

≤ λi
c2m

(vi, vi).

Hence, by (5.8), we have
J∑
i=1

a(T̄−1
i (I − T̄ i)vi, vi) ≤

J∑
i=1

λi
c2m

(vi, vi) ≤
J∑
i=1

c1
c2m

a(vi, vi) =
c1
c2m

a(v, v).

Thus, by (4.30), we have

c0 ≤
c1
c2m

.

Consequently, the method of successive subspace corrections, based on multilevel
subspaces (5.3) with a smoother satisfying (5.6), has the following convergence
estimate:

c1
c1 + c2m

.
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