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5. Conclusion. The methods presented above have been applied to more complicated

frames and readily give the required solutions for collapse design under constant or

varying loads. For shakedown design, the iterative numerical method converges fairly

rapidly. It may be found easier for highly redundant frames to obtain a new elastic

solution at each stage using the numerical values obtained from the previous analysis,

since an analysis with numerically unspecified flexural rigidities is extremely tedious.

For all three types of design, the introduction at an early stage of the numerical values

of the loads simplifies the work greatly, since it will be found that a large proportion

of the inequalities generated become redundant and can be ignored.

Only examples of concentrated loads on straight members of uniform cross-section

between joints have been examined, making it possible to pick by inspection the critical

cross-sections. However, the basic ideas are not altered by the introduction of other

variables; the analysis will be more complicated, but aids to calculation may be in-

troduced which leave the basic problem unchanged.

THE METHOD OF CHARACTERISTICS APPLIED TO PROBLEMS OF

STEADY MOTION IN PLANE PLASTIC STRESS*

By P. G. HODGE, JR. (University of California at Los Angeles)

A method is outlined for obtaining the stress, strain, and thickness distribution in a

thin sheet which is strained plastically in its plane. For the particular case of steady

motion, a method is given for obtaining directly the final solution to certain types of

boundary value problems. A step by step procedure is indicated for the general case of

non-steady motion.

1. Introduction. This paper is concerned with the stress and strain distribution in

a thin sheet which is strained plastically in its plane, under conditions of plane stress.

It will be shown that three types of problems may be distinguished. In certain special

cases the stress distribution may be found independently of the velocity or thickness

by solving three equations in as many unknowns. For general steady motion problems

it will be necessary to solve six equations simultaneously for three stress components,

two velocity components, and the thickness. These equations will be stated in Sec. 2,

and reduced to a system of five first order, quasi-linear differential equations under the

assumption of initial isotropy. For suitable boundary conditions, it will be possible to

find the final stress, strain, and thickness distribution of the material directly, using

the method of characteristics. The details of this method of solution will be described

in Sees. 3 and 4. Finally, in Sec. 5, a step-by-step procedure for solving problems of

non-steady motion will be briefly indicated.

2. Basic equations. Let the sheet be referred to a set of Cartesian axes such that

the x,y plane coincides with the middle surface, and let z = ±%h{x,y) be the equations

of the bounding surfaces. Under the assumptions of generalized plane stress, the only

non-vanishing averaged stress components are ax , ay , and rxy . These components

must satisfy the equations of equilibrium

*Received March 29, 1950.
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|~(.h*x) + = X, (la)

|'(hrxt) + -~(hav) = F. (lb)

Here X and F are the components of body force in the x and y directions, respectively.

They may be functions of x, y, and h.

In addition, if the material is to behave plastically, the stress components must

satisfy a yield condition which may be written in the form

F(<rx , <jv , txv) — 0. (lc)

Strictly speaking, Eq. 1(c) must be satisfied by the actual stress components. However,

if the variation of the stress components across the thickness is not too great, it will be

satisfied by the averaged stress components to a high degree of accuracy.

In the particular case where h is known, and where the boundary conditions in

stresses are sufficient to set a fully plastic problem, Eqs. l(a-c) may be solved directly

for the stresses with no reference to the velocities.1 However, in general neither of these

conditions will be satisfied, and it is necessary to consider the stress-strain relations.

According to the "plastic potential" stress-strain law,2

du/dx dv/dy _ du/dy + dv/dx

dF/dax dF/day dF/drxv

Since F is a known function, Eqs. 1(d) provide two additional equations, but introduce

two additional functions u and v, the averaged velocity components in the x and y

directions respectively. The final necessary equation is obtained from the assumption

that the plastic material is incompressible. For steady flow, this condition may be

written in the form3

|(*») + - 0. (le)

Equations l(a-e) are a set of six equations for the six unknown functions <rx , <rv , txv ,

h, u, and v.

It will prove convenient to make the substitutions

ax = 2k[u + X sin 20], txv = —2kx cos 29, )

> (2a)

<jy = 2&[<u> — xsin 20], H — log h. )

The function 6 may be interpreted as the angle between a fixed direction and a principal

direction (see, for instance, Ref. footnote 1), so that if the yield condition is isotropic,

it may be written

F(<*x , <ry , txu) = x — /(w) = 0. (2b)

'This has been done by the author in another paper. P. G. Hodge, Jr., Yield conditions in plane plastic

stress, to be published in the J. Math, and Physics.

2R. v. Mises, Mechanik der plastischen Formaenderung von Kristallen, ZS. angew. Math. Mech., 8,

161-185 (1928).
3R. Hill, Plastic distortion of non-uniform, sheets, Phil. Mag. (7) 40, 971-983 (1949).



1951] P. G. HODGE, JR. 383

The substitution of Eqs. 2 into Eqs. 1 leads to the five equations

(1 + /' sin 26) ux —/' cos 26 uv + 2/(cos 26 6X + sin 26 6U)

+ (to + / sin 26)HX — / cos 26 Hy = X,

— f cos 26 ux + (1 — /' sin 26)uu + 2/(sin 26 dx — cos 26 0„)

— / cos 26 Hx + (co — / sin 26)HV = Y,

ux + vy + u Hx + v H„ — 0, (3c)

— 2 cos 26 ux + (/' — sin 20)(w„ + vx) = 0, (3d)

(/' + sin 20)(w„ + vx) — 2 cos 20 vv = 0, (3e)

where subscripts now indicate differentiation. Equations 3(a-e) are a set of 5 quasi-

linear first order equations for the 5 unknown functions w, 6, u, v, H. Once these quantities

have been determined, the stress components are easily found from Eqs. 2.

3. Characteristic equations. The characteristics of Eqs. 3 may be defined as those

curves across which it is possible for the derivatives of the unknown functions to exhibit

finite jump discontinuities, the functions themselves being continuous. Let x = x(s),

V — y(s) be the parametric equations of a characteristic curve, and let «, 6, u, v and H

be given along the curve as functions of the parameter s. Then, along the curve,

ux dx + Uy dy = du, vx dx + vv dy = dv, (4a)

ux dx + uv dy = du, 6X dx + 6y dy — dd, 1

> (4b)
Hz dx + Hy dy = dH. )

Equations 3 and 4 may be regarded as a set of 10 linear algebraic equations for the 10

unknowns ux , co„ , 6X , • • • , Hv . In general they will possess a unique solution, so that

a discontinuity in these unknown derivatives will not be permitted. An exception can

occur only if the slope of the curve, dy/dx, is such that the determinant of the coefficients

D0 vanishes. By means of Laplace's expansion,4 the 10 X 10 determinant of D0 may be

reduced to the product of three determinants:

where

D'0 =

D0 = Da-D" • Do",

1 + /' sin 26 —/' cos 26 2/ cos 26 2} sin 26

—/' cos 26 1 — /' sin 26 2/ sin 26 —2/ cos 26

dx dy 0 0

0 0 dx dy

D'o' =

dx dy

4See, for instance, A. C. Aitken, Determinants and matrices, Oliver and Boyd, London, 1939.
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and

D'0" = -2 cos 26 f - sin 26 f - sin 26 0

0 /' + sin 26 f + sin 26 —2 cos 26

dx dy 0 0

0 0 dx dy

Do and D'0" each vanish along either of the curves

dy/dx — —cot a, dy/dx = tan /3, (5a)

where the substitutions

/' = sin 2\f/(\ ip ] < ir/ifi), a = 6 + x, = 6 — X

have been made. Obviously these characteristics are real only if | /' | < 1; n the re-

mainder of this paper it will be assumed that | /' | is actually less than one.5

Each of the curves 5(a) represent a multiple characteristic. The final family of

characteristics is obtained by setting D" = 0:

dy/dx = v/u. (5b)

The curves 5(a) are called the first and second characteristics, respectively, and the

curves 5(b) are called the streamlines.

4. Conditions along the characteristics. The problem of finding conditions which

must be satisfied along the characteristics is complicated by the existence of multiple

characteristics. It will prove convenient to use one method for Eqs. 3 (d, e) and find the

velocity conditions along the characteristics. The velocity derivatives will then be

regarded as known, and a different method applied to yield the stress relations along

the characteristics and the relations along the streamlines.

Consider the characteristic curves (Eqs. 5a) as curvilinear coordinates £ = const.,

rj — const., where £ and ij are functions of x and y. It is easily shown that the relations

1]x sin a + 57,, cos a = 0, cos /3 + £„ sin /3 = 0, (6)

must be valid along a first and second characteristic, respectively.

The substitution of Eqs. 6, together with the relations ux = u£x + , etc. into

Eqs. 3(d, e) leads to the equations

sin /3[m£ sin a — cos a] — cos a[w, cos /3 + y, sin /?] = 0, i

\ (7)
cos a cos2 /3[u( sin a — v( cos a] — ijx sin /3 sin2 a[u„ cos /3 + y, sin /3] = 0 J

If Eqs. 7 are regarded as simultaneous linear equations for the expressions in square

brackets, it is seen that the only solution is the trivial one. In view of the definitions of

£ and T], this may be written as

du sin a — dv cos a = 0 (8a)

6The meaning of this restriction has been discussed by the author (see footnote 1) and by R. Hill

(see footnote 3).
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along a first characteristic, and

du cos p + dv sin /3 = 0 (8b)

along a second characteristic.

To find the relations between co, d, and H along the characteristics and streamlines,

let us assume that u and v and their derivatives are known from Eqs. 8 (a, b) and con-

sider Eqs. 3(a-c) as a set of three equations for the three unknowns co, 6, and H. The

characteristics of these three equations will be those curves for which the determinant

of the coefficients of cox , • • • , Hy vanishes. Let this determinant be denoted by A0 ,

and let Ak be the determinant formed by replacing the fcth column of A0 by the inhomo-

geneous terms (i.e., the terms not containing cox , • • ■ , //„) of Eqs. 3(a-c) and 4(b).

In order for the derivatives cox , • • • , //„ to be able to exhibit finite discontinuities across

the characteristics, it is necessary for all of the determinants A0 , , • • • , A6 to vanish.

The first condition leads to the three curves given by Eqs. 5, of course, and the re-

maining conditions lead to the relations

(u cos a + v sin a)[2/ dd — cos 2\p du — (X sin /? — Y cos 0)(dy/cos a)]

= [(u cos /3 + v sin 0)co + (—w sin a + v cos a)/] dH (8c)

+ («, + f„)(/ — co sin 2if)(dy/cos a)

along a first characteristic,

(u sin /3 — v cos /3)[2/ dd + cos 2ip dw — (X cos a + Y sin a)(dy/sin /3)]

= [(—u sin a + v cos oi)u + (u cos /3 + v sin /?)/] dH (8d)

+ (ux + vy)(f — co sin 2^)(%/sin 0)

along a second characteristic, and

(ux + vu) dy + v dH = 0 (8e)

along a streamline.

5. Conclusion. Equations 5 and 8 may be replaced by finite difference equations and

used to obtain numerical solutions of boundary value problems. There are a great num-

ber of possible such problems, corresponding to various combinations of the Cauchy

and Riemann problems for a system of two hyperbolic equations. The details of the

method may be readily adopted from corresponding treatments in compressible flow.6

For the general case of non-steady motion, it is necessary to first solve the problem

at the instant t0 when plastic flow begins. Since II is an initially known function, this

involves solving Eqs. 3(a, b, d, e) for u, 9, u, and v. This problem is similar to the one

discussed in the preceding sections, and, in fact, (5a) and 8(a, b, c, d) may be used,

since they are not dependent upon the motion being steady. The right hand side of

6See, for instance, W. Tollmien, Stationaere ebene und rotationssymmetrische Uberschallstroemungen,

Technische Hochschule Dresden, 1940. This work has been translated by the Air Materiel Command,

Wright Field, Dayton, Ohio as translation A9-T-1. Contract W33-038-ac-15004 (16351), Brown Uni-

versity, Providence, Rhode Island.
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Eq. 3(c) must now be replaced by — H, , and, since the left side of Eq. 3(c) is known at

t = t0 , H,(t0) is known throughout the field. A finite difference approximation then

yields H(t0 -f At) throughout the field, so that the process may be repeated. Thus a

step-by-step solution may be obtained for all values of t.

A NOTE ON THE PRINCIPAL FREQUENCY OF A TRIANGULAR MEMBRANE* 1

By G. POLYA (Stanford University)

The principal frequency of a membrane of triangular shape is exactly known in

two simple cases: for the 45°, 45°, 90° and the 60°, 60°, 60° triangles.2 As will be shown

in this note, an exact solution of comparable simplicity exists also for the 30°, 60°, 90°

triangle-a result which, to the author's knowledge, has not been observed before.

The three lines the equations of which in rectangular coordinates x, y are

y = 0, z = a31/2/2, y = x3"1/2 (1)

delimit a triangle, one half of an equilateral triangle with side a. Define

u = sin 7r(y — 3~1/2x)/a ■ sin r{y + 3~1/2a;)/a • sin 2ir3'inx/a

(2)
• sin n(y — 3I/2a;)/3a • sin ir(y + 31/2x)/3a • sin 2iry/da

By elementary transformations we find that

-32m = cos 2ir(5y + 31/2x)/3a - cos 2x(4y + 3I/22x)/3a + cos 2ti {y + 31/23a;)/3a

(3)
— cos 2ir(by — 31/2z)/3a + cos 2ir(ty — 31/22x)/3a — cos 2ir(y — 3I/23x)/3a.

We see from (3) that u satisfies the equation

uxx uvv 9 '1127r2a \ = 0,

from (2) or (3) that u vanishes along the lines (1), and from (2) that u does not vanish

in the interior of the triangle between the lines (1). Therefore, u represents the principal

mode.

The well known solution for the two other triangles mentioned at the beginning

can be presented in a strictly analogous form. Any of these three triangles, repeated by

successive reflections, covers the whole plane without overlapping and there are no

further triangles of this kind. Therefore, there are no other triangles for which the

solution can be presented in a comparably simple form as a function of x, y without

singularity in the whole plane. The last remarks indicate also the heuristic reasoning

which led to the solution (2).

*Received April 17, 1950.
'Sponsored by the Office of Naval Research.

2Rayleigh, The theory of sound, Dover Publications, New York, 1945, §199.


