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1 INTRODUCTION.

In their book Mathematics for the Analysis of Algorithms, Greene and Knuth [9, p. 7] show
how the sum

Sm =
m∑

k=0

(
m

k

) (
−1

2

)k
(

2k

k

)

(1.1)

can be found in closed form by means of certain transformations on generating functions and
the extraction of coefficients (see the end of section 3) suggested by Ira Gessel, and they com-
ment: “He [Gessel] attributes this elegant technique, the ‘method of coefficients,’ to G. P.
Egorychev.” Actually, in his book Integral Representation and Computation of Combinatorial

Sums, Egorychev [4] (see [3] for the Russian edition) deals with the representation of combina-
torial expressions in terms of integrals and uses the notation restL(t) (in the Russian edition
CoeftL(t)) for the residue of the formal Laurent series L(t) (i.e., the coefficient of t−1 in L(t) or
in the present, widely accepted notation, [t−1]L(t)). The residue notation has been widely used
because of the “change of variables” formula [t−1]g(t) = [t−1]g(f(t))f ′(t), where g(t) is a formal
Laurent series and f(t) is a formal power series having f(0) = 0 and f ′(0) 6= 0. It appears
that this result is equivalent to the Lagrange inversion formula (see rule (K6) and section 5)
but is more compact and easy to remember. The change of variables formula was first proved
by Jacobi [14]; a discussion with application can be found in [7, p. 15]. Egorychev gives an
equivalent formula [4, p. 16]. With the residue notation, the coefficient of tn in L(t) is written
restt

−n−1L(t), and this is equivalent to [t−1]t−n−1L(t) = [tn]L(t), which is certainly more direct.
Egorychev’s method is especially elegant when he does not complicate proofs with the use

of integral representations. An interesting example [4, p. 28] is his derivation of the Grosswald
identity,

n−r∑

k=0

(−2)−k

(
n

r + k

)(
n + r + k

k

)

= (−1)
n−1

2 2r−n

(
n

n−r
2

)

, (1.2)

which we establish in section 3.
The aim of this paper is to present the method of coefficients. From our perspective it can

be roughly described in the following way: we suppose that we have to prove some identity or to
evaluate some expression (i.e., to find a closed or asymptotic formula for the expression). Instead
of operating directly on the identity or on the expression we look for the generating functions
related to the quantities involved in the problem. We manipulate these functions in order to
arrive at a single expression, which we obtain by extracting the coefficient of the relevant power
tn. This gives the solution.

Generating functions have emerged as one of the most popular approaches to combinatorial
problems, above all to problems arising in the analysis of algorithms (see, for example, D. E.
Knuth [15] and R. Sedgewick and Ph. Flajolet [22]). A clear exposition of this concept is given
in three books: namely, those of I. P. Goulden and D. M. Jackson [7], R. Stanley [26], and H.
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S. Wilf [28]. In particular, Wilf develops the snake oil method, which is closely related to the
method of coefficients.

Somewhat less familiar are the “coefficient of” functionals, whose notation has become stan-
dard in the form [tn]f(t) only in the last ten to fifteen years (the reader is referred to the criticism
of Egorychev [4, p. 41] ). The interpretation of [tn]f(t) has also created problems, about which
the interested reader can see Knuth’s paper [16].

What we wish to show is how a simple set of rules taken from Egorychev [4, sec. 1.2] or
[5] (see also [8, Table 320]) can provide us with a way of solving a number of combinatorial
problems that lend themselves to expressions in terms of generating functions. We start with
very simple examples and go on to treat more complex cases, trying to convince the reader of
the effectiveness of the method of coefficients. Consequently, while this paper does not contain
any really new results, it is rich in examples “seen from a slightly different point of view.” We
hope that this small change of perspective will be instructive to the general reader and be of
special interest to anybody involved in combinatorics and in the analysis of algorithms.

2 COEFFICIENT EXTRACTION.

We denote by F any field of characteristics 0; in practice, we consider mainly the fields R
and C of real and complex numbers. Let F = F[[t]] be the ring of formal power series in the
indeterminate t with coefficients in F. If f(t) =

∑∞
k=0 fkt

k belongs to F and r is the minimum
integer for which fr 6= 0, then r is called the order of f(t). The set of formal power series having
order r is denoted by Fr. In particular, F0 is the set of invertible formal power series, that
is, series f(t) for which a series f−1(t) exists in F such that f(t)f−1(t) = 1. The ring F is
an integral domain and therefore its quotient field is well defined. It is denoted by L, and its
elements are called formal Laurent series. The reader is referred to [7] or [11] for a complete
treatment of formal power and formal Laurent series. Finally, we introduce an infinite number
of linear functionals [tn] : F → F (n = 0, 1, 2, . . .) that are defined by their behaviour on the
monomials tk:

[tn]tk = δn,k,

where δn,k is the Kronecker delta. From this definition we have:

[tn]f(t) = [tn]
∞∑

k=0

fkt
k =

∞∑

k=0

[tn]fkt
k =

∞∑

k=0

fk[t
n]tk =

∞∑

k=0

fkδn,k = fn

(i.e., [tn]f(t) equals the coefficient of tn in f(t)). Because of this, the [tn] are called the “coefficient
of” functionals.

As described in the introduction, the functionals [tn] are very important in the present
approach to solving combinatorial problems or problems arising in the analysis of algorithms.
We could establish a series of their properties, from which the “method of coefficients” derives.
However, we choose to follow a more direct approach, as proposed by Egorychev [4]. We use
six basic properties of the functionals [tn], which we state without proof. All except (K6) are
straightforward consequences of the definitions of basic operations with formal power series. The
consequences of these rules constitute the “method of coefficients.” If f(t) and g(t) are formal
power series, then the following statements hold:
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K1 (linearity) [tn](αf(t) + βg(t)) = α[tn]f(t) + β[tn]g(t)

K2 (shifting) [tn]tf(t) = [tn−1]f(t)

K3 (differentiation) [tn]f ′(t) = (n + 1)[tn+1]f(t)

K4 (convolution) [tn]f(t)g(t) =
n∑

k=0

(
[yk]f(y)

)
[tn−k]g(t)

K5 (composition) [tn]f(g(t)) =
∞∑

k=0

([yk]f(y))[tn]g(t)k

K6 (inversion) [tn]f(t)k =
k

n
[tn−k]

(
t

f(t)

)n

In (K1) α and β are arbitrary constants from F. In (K4) and (K5) the indeterminate y is
used only to distinguish the action of the functionals on different formal power series. In (K5)
the composition is only possible when g(0) = 0 or f(t) is a polynomial, so the sum is actually
finite. In (K6), f(t) denotes the compositional inverse of f(t), that is, the formal power series
such that f(f(t)) = f(f(t)) = t. It is known that a formal power series f(t) has a compositional
inverse if and only if f(t) belongs to F1. Finally, we state explicitly the principle of identity,
a very important rule that is often applied without mention: the formal power series f(t) and
g(t) are equal if and only if [tn]f(t) = [tn]g(t) holds for n = 0, 1, 2, . . . .

Some points require more lengthy comments. The property of shifting can be easily gen-
eralized to [tn]tkf(t) = [tn−k]f(t) and also to negative powers: [tn]f(t)/tk = [tn+k]f(t). The
property of differentiation for n = −1 gives [t−1]f ′(t) = 0, a well-known and important situation.
Finally, rule (K3) can be written in the form

[tn]f(t) =
1

n
[tn−1]f ′(t). (2.1)

Certain power series are used with great frequency in what follows:

• the exponential series: et = exp(t) =
∞∑

k=0

1

k!
tk

• the logarithm series: log
1

1 − t
=

∞∑

k=1

1

k
tk

• the binomial series: (1 + t)r =
∞∑

k=0

(
r

k

)

tk

Rule (K5) leads to the more general formula (known as Newton’s rule)

(1 + αt)r =
∞∑

n=0

(
r

n

)

αntn

or, equivalently,

[tn](1 + αt)r =

(
r

n

)

αn.

We remark that when r = −1 we thus obtain

[tn]
1

1 − αt
=

(
−1

n

)

(−α)n =

(
1 + n − 1

n

)

αn = αn.
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In the sequel we also use two familiar properties of binomial coefficients:

(
−r

n

)

=

(
r + n − 1

n

)

(−1)n,

(
r

n

)(
n

k

)

=

(
r

k

)(
r − k

n − k

)

.

The following result will be called the partial sum theorem:

Theorem 2.1 (Partial Sum Theorem). If f(t) belongs to F , then

[tn]
f(t)

1 − t
=

n∑

k=0

[tk]f(t) = f0 + f1 + · · · + fn.

Proof: By applying the previous observation when α = 1 we conclude on the basis of (K4) that

[tn]
f(t)

1 − t
=

n∑

k=0

(
[tk]f(t)

) (
[yn−k]

1

1 − y

)
=

n∑

k=0

[tk]f(t).

Theorem 2.1 allows us to establish a number of important properties. For example, we can
easily find the sum of a geometric progression 1 + α + α2 + · · · + αn. Since, as observed before,
αk = [tk](1 − αt)−1, we have

n∑

k=0

αk = [tn]
1

1 − t

1

1 − αt
= [tn]

1

α − 1

(
α

1 − αt
− 1

1 − t

)
=

αn+1 − 1

α − 1
.

We are now ready to prove a classical result in binary searching (see, for example, [15]
and [22]). Suppose that we have a sorted table T with n keys: T = (k1, k2, . . . , kn) with
k1 < k2 < · · · < kn. Given a key k in T, we wish to find the index j for which k = kj

(successful searching). A binary search consists in comparing k against the median element kr,
with r = b(n + 1)/2c. (Here bxc signifies the greatest integer not exceeding x.) If k = kr we
are done; otherwise if k < kr we proceed by using the subtable T ′ = (k1, . . . , kr−1), while if
k > kr we proceed by using the subtable T ′′ = (kr+1, . . . , kn). We are interested in finding the
average number bn of comparisons necessary to conclude the search for any k in T. There is
only one element that can be found with a single comparison, the median element in T. There
are two elements that can be found with two comparisons, the median elements in T ′ and T ′′.
Four elements can be found with three comparisons and so on up to a maximum of 1 + blog2 nc
comparisons. Therefore, summing the number of comparisons corresponding to each of the n
keys, we have

bn =
Bn

n
=

1

n
(1 + 2 + 2 + 3 + 3 + 3 + 3 + · · · + (1 + blog2 nc)) .

In order to compute the sum, we consider the infinite sequence L = (0, 1, 2, 2, 3, 3, 3, 3, 4, . . .)
obtained by summing sequences (0, 1, 1, 1, . . .), (0, 0, 1, 1, 1, . . .), (0, 0, 0, 0, 1, 1, . . .), and so on,
the kth sequence starting with 2k zeroes. This means that the generating function of L is:

L(t) =
t

1 − t
+

t2

1 − t
+

t4

1 − t
+ · · · =

∞∑

k=0

t2
k

1 − t
.
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The total number Bn of comparisons for T is therefore given by the partial sum theorem (The-
orem 2.1), and we can proceed as follows:

Bn = [tn]
1

1 − t

∞∑

k=0

t2
k

1 − t
= [tn]

∞∑

k=0

t2
k

(1 − t)2
=

∞∑

k=0

[tn−2k

]
1

(1 − t)2
=

blog
2

nc∑

k=0

[tn−2k

]
1

(1 − t)2

(for k greater than blog2 nc the coefficients are zero). Finally,

Bn =

blog
2

nc∑

k=0

(
n − 2k + 1

n − 2k

)

=

blog
2

nc∑

k=0

(n + 1 − 2k) = (n + 1)(blog2 nc + 1) −
blog

2
nc∑

k=0

2k =

= (n + 1)blog2 nc + n − 2blog2
nc+1 + 2,

where we have used the formula for the sum of a geometric progression.
As another example, we now introduce a recurrence arising in the analysis of quicksort (a

fast method to sort a list of keys) or of the internal pathlength of a binary tree (see [15] and
[22]). For quicksort the average number Cn of key comparisons satisfies

Cn+1 = n + 2 +
2

n + 1

n∑

k=0

Ck

or

(n + 1)Cn+1 = (n + 1)(n + 2) + 2
n∑

k=0

Cn,

with initial condition C0 = 0. We can transform this recurrence into a relation concerning the
generating function C(t) =

∑
n≥0 Cntn by multiplying everything by tn and then summing over

all n (n = 0, 1, 2, . . .). The term (n+1)Cn+1 is transformed into C ′(t) by rule (K3) and the sum∑n
k=0 Ck into C(t)/(1 − t) by the partial sum theorem. Moreover, by Newton’s rule, we have

[tn]
1

(1 − t)3
=

(
−3

n

)

(−1)n =

(
3 + n − 1

n

)

=

(
n + 2

n

)

=
(n + 1)(n + 2)

2
.

Consequently, the recurrence corresponds to the differential equation

C ′(t) =
2

(1 − t)3
+

2

1 − t
C(t)

whose solution is

C(t) =
2

(1 − t)2
ln

1

1 − t
.

In order to find an explicit formula for Cn we have to extract the coefficient [tn]C(t). By using
formula (2.1) we obtain

[tn] ln
1

1 − t
=

1

n
[tn−1]

1

1 − t
=

1

n

for positive n, while the coefficient is 0 for n = 0. From the partial sum theorem we infer that

[tn]
1

1 − t
ln

1

1 − t
= 0 + 1 +

1

2
+

1

3
+ · · · + 1

n
= Hn,

where Hn is the nth harmonic number. Differentiating this expression, we find by (K3) that

[tn]
1

1 − t
ln

1

1 − t
=

1

n
[tn−1]

(
1

(1 − t)2
ln

1

1 − t
+

1

(1 − t)2

)
.
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Here we know the left-hand side and the last term, so we obtain

[tn]
1

(1 − t)2
ln

1

1 − t
= (n + 1)Hn+1 − (n + 1) = (n + 1)(Hn+1 − 1). (2.2)

We conclude that
Cn = 2(n + 1)(Hn+1 − 1).

3 CONVOLUTION AND COMPOSITION.

We have applied the rule of convolution in the proof of Theorem 2.1. Another classical ap-
plication is in counting binary trees according to the number of their nodes. A binary tree is
either empty or it consists in a node (called the root) to which are appended two binary trees
(called the left and right subtrees). In a binary tree with n+1 nodes, the left and right subtrees
contain k and n − k nodes, respectively (k = 0, 1, 2, . . . , n). If Cn+1 denotes the number of
binary trees with n + 1 nodes, we immediately find the recurrence Cn+1 =

∑n
k=0 CkCn−k. If

C(t) =
∑

k≥0 Ckt
k denotes the generating function of the sequence, we can observe by rule (K2)

that

[tn+1]C(t) = [tn]
C(t) − C(0)

t
= [tn]

C(t) − 1

t
,

since only the empty tree has zero nodes. Therefore we have

[tn]
C(t) − 1

t
= [tn]C(t)2

or
C(t) = 1 + tC(t)2,

where we have applied the convolution rule and the principle of identity to pass from a coefficient
to a formal power series identity. By solving this functional equation (taking into account the
initial condition C(0) = C0 = 1) we arrive at

C(t) =
1 −

√
1 − 4t

2t
.

In order to obtain an explicit formula for Cn we extract the nth coefficient:

[tn]C(t) = [tn+1]
1 −

√
1 − 4t

2
= 0 − 1

2
[tn+1]

√
1 − 4t = −1

2

(
1/2

n + 1

)

(−4)n+1 =

= −1

2
· (−1)n

4n+1(2n + 1)

(
2n + 2

n + 1

)

(−4)n+1 =
1

2

2n + 2)(2n + 1)

(2n + 1)(n + 1)2

(
2n

n

)

=
1

n + 1

(
2n

n

)

.

We have therefore proved that binary trees are counted by the well-known Catalan numbers
(see, for example, R. Stanley [27, p. 173]).

Sometimes, in order to apply the convolution rule some manipulation is necessary. For
example, consider the sum

Sm,n =
n∑

k=0

(
k − m − 1

m − 2

)(
n − k + m − 1

m − 1

)
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taken from the paper by C. Ó’Dúnlaing and L. Erickson [18]. The summation variable k is in the
numerator of the binomial coefficient, but it is more convenient to have it in the denominator
in order to apply the method of coefficients. This is easily done as follows:

(
k − m − 1

m − 2

)

=

(
k − m − 1

k − 2m + 1

)

=

(
−m + 1

k − 2m + 1

)

(−1)k−2m+1 = [tk]
t2m−1

(1 − t)m−1
,

(
n − k + m − 1

m − 1

)

=

(
n − k + m − 1

n − k

)

=

(
1 − m − 1

n − k

)

(−1)n−k = [tn−k]
1

(1 − t)m
.

Now the convolution is clearly identified, and the sum reduces to a special case of the so-called
Vandermonde convolution (see, for example, [8, p. 169]). We obviously have

Sm,n = [tn]
t2m−1

(1 − t)2m−1
= [tn−2m+1]

1

(1 − t)2m−1
=

(
n − 1

2m − 2

)

.

In our opinion, the most striking aspect of the method of coefficients is the rule of composi-
tion. For instance, consider the Grosswald sum (1.2) after the change of variable k 7→ n− r−k :

Gn,r =
n−r∑

k=0

(−2)−k

(
n

r + k

)(
n + r + k

k

)

=
n−r∑

k=0

(−2)−n+r+k

(
n

k

)(
2n − k

n − r − k

)

.

Applying Newton’s rule and (K5), we compute:

Gn,r = (−2)r−n
n−r∑

k=0

[uk](1 − 2u)n[vn−r−k](1 + v)2n−k =

= (−2)r−n[vn−r](1 + v)2n
n−r∑

k=0

[uk](1 − 2u)n vk

(1 + v)k
.

The crucial point is that we can invoke the composition rule, so the whole expression collapses:

Gn,r = (−2)r−n[vn−r](1 + v)2n
(

1 − 2v

1 + v

)n

= (−2)r−n[vn−r](1 − v2)n.

We conclude that

Gn,r = (−1)
n−r

2 2r−n

(
n

n−r
2

)

,

which is 0 when n − r is odd.
We now adopt a notational convention. When we wish to denote the substitution of a formal

power series g(t) for the indeterminate y in f(y) (i.e., to form the composition f(g(t))), we write

f(g(t)) = [f(y) | y = g(t)] ,

which is a variant of the common notation f(y)|y=g(t). The latter notation becomes awkward
when g(t) is a complicated expression.

The following general result deals with the so-called Euler (or binomial) transformation and
involves sums containing binomial coefficients:

Theorem 3.1 (Euler Transformation). If f(t) belongs to F , then

n∑

k=0

(
n

k

)

fk =
n∑

k=0

(
n

k

)

[tk]f(t) = [tn]
1

1 − t
f

(
t

1 − t

)
.
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Proof: From the properties of binomial coefficients (see section 2) it follows that

(
n

k

)

=

(
n

n − k

)

=

(
−n + n − k − 1

n − k

)

(−1)n−k =

(
−k − 1

n − k

)

(−1)n−k,

which is the coefficient of tn−k in (1 − t)−k−1. We then observe that the sum in the theorem’s
statement can be extended to infinity, giving

n∑

k=0

(
n

k

)

fk =
n∑

k=0

(
−k − 1

n − k

)

(−1)n−kfk =
∞∑

k=0

[tn−k](1 − t)−k−1[yk]f(y) =

= [tn]
1

1 − t

∞∑

k=0

(
[yk]f(y)

) (
t

1 − t

)k

= [tn]
1

1 − t
f

(
t

1 − t

)
,

in which we have applied the composition rule (K5).

This same theorem allows us to perform a two-line procedure to obtain the closed form of
Sm, the sum reported by Greene and Knuth in [9] and quoted in the introduction. It is well
known that

[tn]
1√

1 − 4t
=

(
2n

n

)

,

[tn]
1√

1 + 2t
=

(
−1

2

)n
(

2n

n

)

(see also section 5). Hence we have

m∑

k=0

(
m

k

) (
−1

2

)k
(

2k

k

)

= [tm]
1

1 − t

[
1√

1 + 2y

∣∣∣ y =
t

1 − t

]
= [tm]

1√
1 − t2

.

This quantity is clearly 0 when m is odd and equals
( m
m/2

)
/2m when m is even.

4 COMBINATORIAL SUMS.

As shown in the examples at the end of the previous section, the method of coefficients can be
used to evaluate combinatorial sums by passing through generating functions. Nowadays, gen-
eral techniques have been studied to perform definite and indefinite summation for large classes
of expressions. Gosper’s method [6] and the Petkovšek-Wilf-Zeilberger approach [19] are the
most conspicuous examples, and every system for computer algebra embodies the correspond-
ing algorithms. However, these methods are not convenient for hand calculation. Moreover,
although they furnish the sums of very complicated expressions, something unsatisfactory re-
mains in the results: you have proved what you wished to prove and you are now convinced that
your theorem is true, but in reality you do not know “why” or “how” it is true. For this reason,
we think that the method of coefficients might be interesting in the following situations:

(1) to obtain a constructive and “human” proof of sums for which it could be important to show
the steps used to find the closed form (Often, mechanical proofs give the same unpleasant
feeling that proofs by verification do. Think, for example, of proofs by mathematical
induction.)
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(2) to deal with different classes of expressions (The Gosper and Petkovšek-Wilf-Zeilberger’s
methods consider only sums of hypergeometric terms. In this way, they leave out expres-
sions containing, for example, harmonic or Stirling numbers. The method of coefficients
can also be used for these quantities.)

(3) to obtain asymptotic estimates (Another drawback of the aforementioned methods is that
if a sum does not have a closed form, the user is informed thereof, but no hint is furnished
for obtaining an asymptotic approximation, which can be almost as useful as a closed form.
The method of coefficients usually arrives at a generating function and, even if extracting
a coefficient is too difficult, asymptotic techniques can be used to obtain an estimate of
the sum. A recent example can be found in H. K. Hwang [12].)

An interesting method for evaluating combinatorial sums has surfaced in the Riordan arrays
concept (see [23], [24]). This concept is just a generalization of two theorems discussed earlier:
the partial sum theorem (Theorem 2.1) and the Euler’s transformation (Theorem 3.1). As a
matter of fact, Riordan arrays correspond to a special application of the method of coefficients
that allows one to compute (see Theorem 4.1) a vast number of combinatorial sums in a uniform
and often very simple way.

Formally, a Riordan array is a pair of formal power series D = (d(t), h(t)). If both d(t) and
h(t) are in F0, then the Riordan array is called proper. Here we always assume our Riordan
arrays to be proper. A Riordan array D can be identified with the infinite, lower triangular
array (or triangle) (dn,k)n,k≥0 defined by

dn,k = [tn]d(t)(th(t))k. (4.1)

In fact, we are mainly interested in the sequence of functions (dk(t)) defined recursively as
follows: {

d0(t) = d(t),
dk(t) = dk−1(t)th(t) = d(t)(th(t))k (k = 1, 2, . . .).

These functions are the column generating functions of the triangle. A common example of a
Riordan array is the Pascal triangle, for which we have d(t) = h(t) = 1/(1− t). Indeed, by (4.1)

[tn]
1

1 − t

(
t

1 − t

)k

= [tn−k](1 − t)−k−1 =

(
−k − 1

n − k

)

(−1)n−k =

=

(
k + 1 + n − k − 1

n − k

)

=

(
n

n − k

)

=

(
n

k

)

.

The most important algebraic property of Riordan arrays lies in the fact that the usual
row-by-column product of two Riordan arrays is likewise a Riordan array. This is proved by
considering two Riordan arrays (d(t), h(t)) and (a(t), b(t)) and computing the product. Its
generic element is

∑
j dn,jfj,k, where dn,j is the generic element in (d(t), h(t)) and fj,k is the

generic element in (a(t), b(t)). In fact

∞∑

j=0

dn,jfj,k =
∞∑

j=0

[tn]d(t)(th(t))j [yj ]a(y)(yb(y))k =

= [tn]d(t)
∞∑

j=0

(th(t))j [yj ]a(y)(yb(y))k = [tn]d(t)a(th(t))(th(t)b(th(t)))k.

9



We conclude that

(d(t), h(t)) · (a(t), b(t)) = (d(t)a(th(t)), h(t)b(th(t))). (4.2)

This expression is particularly important and is the basis for many developments in the Riordan
array theory. It is now easy to show that the set of (proper) Riordan arrays is a group in which
(1, 1) acts as the identity.

We now suppose that (d(t), h(t)) is a proper Riordan array. In view of formula (4.2), we can
look for a proper Riordan array (a(t), b(t)) such that (d(t), h(t)) · (a(t), b(t)) = (1, 1). If this is
the case, we should have d(t)a(th(t)) = 1 and h(t)b(th(t)) = 1. Setting y = th(t) we require that

a(y) =
[
d(t)−1

∣∣∣ t = yh(t)−1
]
, b(y) =

[
h(t)−1

∣∣∣ t = yh(t)−1
]
.

As we shall see, this allows us to find the inverse of a given Riordan array by appealing to the
Lagrange inversion formula, which is introduced in the next section.

From our point of view, one of the most important properties of Riordan arrays is that sums
involving the rows of a Riordan array can be calculated by first applying a suitable transfor-
mation on a generating function and then extracting a coefficient from the resulting function.
More precisely, we can prove the following theorem:

Theorem 4.1 If D = (d(t), h(t)) is a Riordan array and f(t) is the generating function of the
sequence (fk)k≥0, then

n∑

k=0

dn,kfk = [tn]d(t)f(th(t)). (4.3)

Proof: The proof consists in a straightforward computation with the method of coefficients:

n∑

k=0

dn,kfk =
∞∑

k=0

[tn]d(t)(th(t))kfk = [tn]d(t)
∞∑

k=0

fk(th(t))k = [tn]d(t)f(th(t)),

as desired.

In the case of the Pascal triangle Theorem 4.1 reduces to the Euler transformation (Theorem
3.1). More general formulas are obtained if we consider simple binomial coefficients (i.e., binomial
coefficients of the form

(n+ak
m+bk

)
, where a and b are parameters and k is a nonnegative integer

variable). If we consider n a variable and m a parameter, and vice versa, we get two different
infinite arrays (dn,k) and (d̂m,k) whose elements depend on the parameters a, b, m and a, b, n,
respectively. In either case, if certain conditions on a and b hold, we have Riordan arrays and
therefore we can apply formula (4.3) to determine the value of many sums. In this way we arrive
at the following formulas:

∑

k

(
n + ak

m + bk

)

fk = [tn]
tm

(1 − t)m+1
f

(
tb−a

(1 − t)b

)

(b > a), (4.4)

∑

k

(
n + ak

m + bk

)

fk = [tm](1 + t)nf(t−b(1 + t)a) (b < 0). (4.5)

If m and n are independent of each other, these relations can also be stated as generating
function identities.

10



As a simple example, we consider the following sum, in which we apply (4.5) with n = 0, m =
n, a = 1, and b = −1 :

n∑

k=n/2

(
k

n − k

)
1

k
= [tn]

[
ln

1

1 − y

∣∣∣∣ y = t(1 + t)

]
= [tn] ln

1

1 − t − t2
=

=
1

n
[tn−1]

1 + 2t

1 − t − t2
=

Fn + 2Fn−1

n
=

Fn+1 + Fn−1

n
,

where Fn = [tn]t/(1 − t − t2) is the nth Fibonacci number. We also refer the reader to [17] for
a recent application of formula (4.5) to prove the identity

(x + m + 1)
m∑

k=0

(−1)k

(
x + y + k

m − k

)(
y + 2k

k

)

−
m∑

k=0

(
x + k

m − k

)

(−4)k = (x − m)

(
x

m

)

.

These examples of combinatorial sums derived from formulas (4.4) and (4.5) illustrate the
situation described in point (1) at the beginning of this section. As to point (2), very important
examples of Riordan arrays are given by the Stirling numbers of both kinds. A Stirling number
of the first kind, usually denoted by

[n
k

]
, counts the number of permutations of n elements

containing exactly k cycles. A Stirling number of the second kind, usually denoted by
{n

k

}
, is

the number of partitions of a set with n elements into k nonempty parts (see, for example, the
book of Graham, Knuth, and Patashnik [8, p. 243]). If we set

sn,k =
k!

n!

[
n

k

]
, Sn,k =

k!

n!

{
n

k

}

the corresponding Riordan arrays are:

(sn,k) =

(
1,

1

t
ln

1

1 − t

)
, (Sn,k) =

(

1,
et − 1

t

)

.

In [24] the second author establishes a number of identities on Stirling numbers by invoking
these Riordan arrays. Here we limit ourselves to demonstrating the orthogonality property of
the two arrays:

∑

k

[
n

k

] {
k

m

}
(−1)n−k = (−1)n n!

m!

∑

k

k!

n!

[
n

k

]
m!

k!

{
k

m

}
(−1)k =

= (−1)n n!

m!
[tn]

[
(e−y − 1)m

∣∣∣∣y = ln
1

1 − t

]
= (−1)n n!

m!
[tn](−t)m = δn,m.

Another orthogonality property is proved in an analogous way. Namely, the reader is invited to
prove the following identity:

∑

k

[
n

k

] {
k

m

}
=

n!

m!

(
n − 1

m − 1

)

.

Finally, concerning point (3) and issues relating to asymptotics, we consider the following
sum, whose generating function is immediately found by the method of coefficients:

n∑

k=0

(
n

k

)(
2k

k

)

= [tn]
1

1 − t

[
1√

1 − 4y

∣∣∣∣y =
t

1 − t

]
= [tn]

1
√

(1 − t)(1 − 5t)
.
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That there is no closed form for this sum is confirmed by the Petkovšek algorithm (see [19]).
However, by Bender’s approach (see [1, Theorem 2, p. 496]) we find immediately that t = 1/5
is the dominant singularity and therefore

n∑

k=0

(
n

k

)(
2k

k

)

≈
√

5

πn
· 5n

2
,

which is easily checked.

5 INVERSION.

As already mentioned, the compositional inverse f(t) of a formal power series f(t) is defined
by the relation f(f(t)) = f(f(t)) = t. The form of f(t) is best determined by the Lagrange
inversion formula, which is our rule (K6). There exist many proofs of the Lagrange inversion
formula in terms of formal Laurent series, for which the reader is referred to [2], [10], [11], [13],
[14], [21], or [27]. (Further references can be found in Stanley [27, p. 67].) The method of
coefficients can be used to prove the Lagrange inversion formula, via the following steps:

1. consider the proper Riordan array F = (1, f(t)/t) whose columns are the successive powers
of f(t);

2. observe that the inverse Riordan array F−1 is just (1, f(t)/t), whose columns are the
successive powers of f(t);

3. verify directly that the array D defined by

dn,k =
k

n
[tn−k]

(
t

f(t)

)n

is also the inverse of F ;

4. conclude that D = F−1 and thereby deduce that formula (K6) is correct for every n and
every k.

There is another way to apply the Lagrange inversion formula. Suppose that we have a
functional equation w = tφ(w), where φ(t) belongs to F0, and that we wish to find the formal
power series w = w(t) satisfying this functional equation. Clearly w(t) lies in F1 and if we
set f(y) = y/φ(y), we also have f(t) in F1. However, the functional equation can be written
f(w(t)) = t, which shows that w(t) is the compositional inverse of f(t). We therefore know that
w(t) is uniquely determined, and we learn from the Lagrange inversion formula that

[tn]w(t) =
1

n
[tn−1]

(
t

f(t)

)n

=
1

n
[tn−1]φ(t)n.

The Lagrange inversion formula can also give us the coefficients of the powers w(t)k, but we
can obtain an even more general result. Let F (t) be a member of F and consider the composition
F (w(t)), where w = w(t) is, as before, the solution to the functional equation w = tφ(w) for
given φ(w) in F0. For the coefficient of tn in F (w(t)) we have

[tn]F (w(t)) = [tn]
∞∑

k=0

Fkw(t)k =
∞∑

k=0

Fk[t
n]w(t)k =

∞∑

k=0

Fk
k

n
[tn−k]φ(t)n =

12



=
1

n
[tn−1]

(
∞∑

k=0

kFkt
k−1

)

φ(t)n =
1

n
[tn−1]F ′(t)φ(t)n. (5.1)

Note that [t0]F (w(t)) = F0.
We are now in a position to prove the following important theorem on diagonalization:

Theorem 5.1 If F (t) and φ(t) belong to F , then

[tn]F (t)φ(t)n = [tn]

[
F (w)

1 − tφ′(w)

∣∣∣ w = tφ(w)

]
.

Proof: We first observe that

[tn]F (t)φ(t)n = [tn−1]
F (t)

t
φ(t)n = n[tn]

[∫
F (y)

y
dy

∣∣∣ y = w(t)

]

(to get the last expression we applied formula (5.1) backwards, so w = w(t) in F1 is the unique
solution of the functional equation w = tφ(w)). By now applying the rule of differentiation for
the “coefficient of” operator, we can proceed to obtain

[tn]F (t)φ(t)n = [tn−1]
d

dt

[∫
F (y)

y
dy

∣∣∣ y = w(t)

]
= [tn−1]

[
F (w)

w

∣∣∣ w = tφ(w)

]
dw

dt
,

in which we have applied the chain rule for differentiation. From w = tφ(w) we have

dw

dt
= φ(w) + t

[
dφ

dw

∣∣∣ w = tφ(w)

]
dw

dt

or
dw

dt
=

[
φ(w)

1 − tφ′(w)

∣∣∣ w = tφ(w)

]
,

where φ′(w) denotes the derivative of φ(w) with respect to w. We can substitute this expression
into the previous formula and observe that w/φ(w) = t can be taken outside of the substitution
parentheses, leading to

[tn]F (t)φ(t)n = [tn−1]

[
F (w)

w

φ(w)

1 − tφ′(w)

∣∣∣ w = tφ(w)

]
=

= [tn−1]
1

t

[
F (w)

1 − tφ′(w)

∣∣∣ w = tφ(w)

]
= [tn]

[
F (w)

1 − tφ′(w)

∣∣∣ w = tφ(w)

]
,

as desired.

The name “diagonalization” stems from the fact that if we imagine the coefficients of
F (t)φ(t)n as constituting row n in an infinite matrix, then the [tn]F (t)φ(t)n are just the el-
ements in the main diagonal of this array. One of its simplest applications is determining the
generating function of the central binomial coefficients. Since plainly

(
2n

n

)

= [tn](1 + t)2n,

13



Theorem 5.1 can be applied with F (t) = 1 and φ(t) = (1 + t)2. In this case, the function
w = w(t) is easily determined by solving the functional equation w = t(1 + w)2. Expanding, we
find that tw2 − (1 − 2t)w + t = 0 or

w = w(t) =
1 − 2t ±

√
1 − 4t

2t
.

Since w = w(t) should belong to F1, we must eliminate the solution with the + sign. Conse-
quently, using G to signify the generating function of a sequence, we have the following well-known
result:

G
{(

2n

n

)}

=

[
1

1 − 2t(1 + w)

∣∣∣ w =
1 − 2t −

√
1 − 4t

2t

]

=
1√

1 − 4t
.

As a more complex example, we prove the famous Abel identity (see [20]):

Sn =
n∑

k=0

(
n

k

)

a(a + k)k−1(b + n − k)n−k = (a + b + n)n.

This identity has application, for example, in the analysis of linear probing in hashing, a fast
method to find an element inside a table (see Sedgewick and Flajolet [22, p. 450]). The left-hand
term can be written

n!
n∑

k=0

a(a + k)k−1

k!
· (b + n − k)n−k

(n − k)!
,

revealing that the sum is actually a convolution. Now we have

(b + k)k

k!
= [tk]e(b+k)t = [tk]ebt(et)k

and can apply the diagonalization rule:

G
{

(b + k)k

k!

}

=

[
ebw

1 − tew

∣∣∣ w = tew

]

=

[
ebw

1 − w

∣∣∣ w = tew

]

. (5.2)

In a similar way we obtain

a(a + k)k−1

k!
=

(a + k)k

k!
− (a + k)k−1

(k − 1)!
= [tk]e(a+k)t − [tk−1]e(a+k)t = [tk](1 − t)e(a+k)t,

and proceeding as before we discover that

G
{

a(a + k)k−1

k!

}

= [eaw | w = tew] .

Finally, we convolve the two expressions, which yields

Sn = [tn]

[
e(a+b)w

1 − w

∣∣∣ w = tew

]

=
(a + b + n)n

n!

after applying the diagonalization rule backwards (since 1 − w = 1 − tew, as already seen in
(5.2)). A systematic approach of this type has been used in [25] to prove a number of identities
related to Abel’s and Gould’s formulas.
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We conclude this paper by returning to Riordan arrays in order to illustrate how that concept,
together with the technique of diagonalization, allows one to solve combinatorial inversions. Let
(an) be a sequence defined by an infinite set of equations

an =
n∑

k=0

fn,kbk,

where the sequence (bn) is unknown. The problem of inversion is to find the values of bn in
terms of those of an, that is, to express bn in the form

bn =
n∑

k=0

gn,kak.

As an illustrative example, we choose inversion (2.4.2) in Riordan’s book [20]. Although it is
not particularly important, it does provide an application of Riordan arrays that we have not
considered in our previous examples. We consider

an =
∑

k

((
n

k

)

− (c − 1)

(
n

k − 1

))

bn−ck.

Let a(t) and b(t) be the generating functions of the two sequences. The relevant Riordan array
R is given by bn−ck = [tn]b(t)(tc)k, whence R = (b(t), tc−1). The generating function of the other
term is determined by

(
n

k

)

− (c − 1)

(
n

k − 1

)

= [tk](1 + t)n − (c − 1)[tk−1](1 + t)n = [tk](1 − (c − 1)t)(1 + t)n.

From the summation formula (4.3) we infer that

an = [tn]b(t)(1 − (c − 1)tc)(1 + tc)n.

We now invoke the diagonalization formula to get

a(t) =

[
b(w)(1 − (c − 1)wc)

1 − tcwc−1

∣∣∣ w = t(1 + w)

]
=

[
b(w)(1 + wc)

∣∣∣ t =
w

1 + wc

]
.

Instead of trying to compute w = w(t), we substitute t into the left-hand term and change
variables directly:

a

(
w

1 + wc

)
= b(w)(1 + wc)

or

b(w) =
1

1 + wc
a

(
w

1 + wc

)
(5.3)

This, however, is the transformation related to the Riordan array (1/(1 + wc), 1/(1 + wc)), the
generic element of which is

dn,k = [wn]
1

1 + wc
· wk

(1 + wc)k
= [wn−k](1 + wc)−k−1 = [wn−k]

∑

j

(
−k − 1

j

)

wcj =

= [wn−k]
∑

j

(
k + 1 + j + 1

j

)

(−1)jwcj =

(
n − cj + j

j

)

(−1)j ,
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since the sum reduces to the case n − k = cj. If we now write k instead of j and pass to the
coefficients, equation (5.3) becomes

bn =
∑

k

(
n − (c − 1)k

k

)

(−1)kan−ck.
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