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The Method of Fundamental Solutions Applied to the Calculation of
Eigenfrequencies and Eigenmodes of 2D Simply Connected Shapes

Carlos J. S. Alves and Pedro R. S. Antunes 1

Abstract: In this work we show the application of the

Method of Fundamental Solutions (MFS) in the determi-

nation of eigenfrequencies and eigenmodes associated to

wave scattering problems. This meshless method was al-

ready applied to simple geometry domains with Dirich-

let boundary conditions (cf. Karageorghis (2001)) and

to multiply connected domains (cf. Chen, Chang, Chen,

and Chen (2005)). Here we show that a particular choice

of point-sources can lead to very good results for a fairly

general type of domains. Simulations with Neumann

boundary condition are also considered.

keyword: Eigenfrequencies, Eigenmodes, Acoustic

waves, Method of fundamental solutions

1 Introduction

The determination of the eigenvalues and eigenfunctions

associated to the Laplace-Dirichlet operator in a bounded

domain Ω is a well known problem with applications in

acoustics (e.g. Courant and Hilbert (1953), Cox and Uh-

lig (2003)). For simple shapes, such as rectangles or cir-

cles in 2D, this leads to straightforward computations,

without the need of a numerical algorithm. However,

when the shape is non trivial, that computation requires

the use of a numerical method. A standard finite dif-

ferences method can produce good results when dealing

with a particular type of shapes defined on rectangular

grids, while for other type of shapes the finite element

method or the boundary element method are appropriate

(e.g. De Mey (1976)). These classical methods require

extra computational effort; in one case, the construction

of the mesh and the associated stiffness matrix, and in the

other, the integration of weakly singular kernels. Here

we propose a meshless method for solving the eigen-

value problem using the method of fundamental solutions

(MFS). The MFS is a meshless method for linear PDEs
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with constant coefficients that falls in a general class of

approaches called Trefftz methods. It has been mainly

applied to boundary problems in PDEs, starting in the

1960s (e.g. Kupradze and Aleksidze (1964) or Arantes

e Oliveira (1968)). The boundary conditions are usu-

ally imposed with collocation techniques, but other pos-

sibilities can be explored using Meshless Local Petrov-

Galerkin schemes, as detailed in Atluri (2004). An ac-

count of the development can be found in Golberg and

Chen (1996). The application of the MFS to the calcula-

tion of the eigenfrequencies has been introduced in Kara-

georghis (2001), and applied for simple shapes. Later, in

Chen, Chang, Chen, and Chen (2005) it was studied the

application of the MFS for the eigencalculation of multi-

ply connected domains. It was found the appearance of

spurious solutions and to filter them out they applied the

singular value decomposition (SVD) and the Burton and

Miller method. In Karageorghis (2001) it is presented

a comparison with the boundary element method used

in De Mey (1976), and the results obtained for simple

shapes (circles, squares), show a better performance for

the MFS. The application of other meshless methods to

the determination of eigenfunctions and eigenmodes has

also been subject to recent research, mainly using radial

basis functions (e.g. Chen, Chang, Chen, and Lin (2002),

Chen, Chang, Chen, and Chen (2002)) or the method of

particular solutions (cf. Betcke and Trefethen (2005)).

Here we consider the application of the MFS to general

simply connected shapes. In this case the choice of the

source points in the MFS becames more important to re-

trieve with accuracy the eigenfrequencies. We are able

to obtain good results introducing an algorithm that as-

sociates the source points to the shape. Having deter-

mined an approximation of the eigenfrequency, we apply

a new algorithm based on the MFS to obtain the associ-

ated eigenmodes.
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2 Helmholtz equation

Let Ω ⊂ R
2 be a bounded simply connected domain with

regular boundary ∂Ω. For simplicity we will consider the

2D - Dirichlet eigenvalue problem for the Laplace opera-

tor. This is equivalent to obtain the resonance frequencies

κ that satisfy the Helmholtz equation

{

∆u+κ2u = 0 in Ω,

u = 0 on ∂Ω,
(1)

for a non null function u. As an application, this corre-

sponds to recovering the resonance frequencies κ > 0 as-

sociated with a particular shape of a drum Ω.

A fundamental solution Φω of the Helmholtz equation

satisfies (∆ + ω2)Φω = −δ, where δ is the Dirac delta

distribution. In the 2D case, we take

Φω(x) =
i

4
H

(1)
0 (ω |x|) (2)

where H
(1)
0 is the first Hänkel function.

A density result in Alves and Chen (2005) states that if ω
is not an eigenfrequency for the domain Ω then

L2(∂Ω) = span
{

Φω(x−y)|x∈∂Ω : y ∈ Γ̂
}

, (3)

where Γ̂ is an admissible source set as defined in Alves

and Chen (2005), for instance, the boundary of a bounded

open set Ω̂ ⊃ Ω, considering Γ̂ surrounding ∂Ω.

Definition 1 The MFS approximations in the discrete set

Γ̂m = {y1, ...,ym} ⊆ Γ̂ are elements of the linear space

Vm = span{Φω(•−y1), ...,Φω(•−ym)}|∂Ω

The result (3) allows to justify the approximation of a

L2(∂Ω) function, with functions in Vm using a sequence

of functions (um) with

um(x) =
m

∑
j=1

αm, jΦω(x−ym, j), (ym, j ∈ Γ̂) (4)

that converges to u|Γ in L2(∂Ω). This is a partial justifi-

cation to the convergence of the Method of Fundamental

Solution (MFS) based on density results. It is similar to

the approach in Bogomolny (1985), but it avoids the use

of boundary layer potentials. As pointed out in Alves

and Chen (2005), the convergence of the MFS, in a gen-

eral case, is not completely related to the discretization

of a single layer potential, although there is a straightfor-

ward relation. A single layer potential defined on Γ̂ is an

analytic function in Ω, and therefore such an approach

would only be appropriate for analytic functions. Since

u|Γ ≡ 0 is an analytic function, here it makes sense to

consider the approach of the MFS as being related to the

discretization of the single layer potential, for x /∈ Γ̂,

Sωϕ(x) =
Z

Γ̂
Φω(x−y)ϕ(y)dsy ≈ um(x)

=
m

∑
j=1

αm, jΦω(x−ym, j). (5)

Theorem 1 If ω is not an eigenfrequency of the interior

Dirichlet problem then dim(Ker(Sω)) = 0.

Proof. If ω is not an eigenfrequency then Sωϕ = 0 on

∂Ω implies Sωϕ = 0 in Ω, by the well posedness of the

interior Dirichlet problem. Using the analyticity of Sωϕ,

this implies Sωϕ = 0 in Ω̂ and the continuity of the traces

implies (Sωϕ)+ = (Sωϕ)− = 0 on Γ̂. Therefore, by the

well posedness of the exterior Dirichlet problem, with the

Sommerfeld radiation condition (verified by Sωϕ), this

implies Sωϕ = 0 in R
2. In conclusion, Sωϕ = 0 on ∂Ω

implies ϕ = 0, and therefore dim(Ker(Sω)) = 0.

♦

Thus, using this result, we search for ω such that

dim(Ker(Sω)) 	= 0. These ω will be the eigenfrequencies

for the Laplace-Dirichlet operator in Ω.

Note that instead of using a single layer representation in

(5) it is also possible to use double layer representation

(eg. Chen, Chang, Chen, and Chen (2005)).

3 Numerical Method using the MFS

3.1 Determination of the eigenfrequencies with

Dirichlet boundary condition

From the previous considerations we present a procedure

to find the eigenfrequencies by checking the frequencies

ω for which dim(Ker(Sω)) 	= 0. Defining m collocation

points xi ∈ ∂Ω and m source points ym, j ∈ Γ̂,we obtain

the system

m

∑
j=1

αm, jΦω(xi −ym, j) = 0, (xi ∈ ∂Ω). (6)
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Therefore a straighforward procedure is to find the values

ω for which the m×m matrix

A(ω) = [Φω(xi −y j)]m×m
(7)

has a null determinant. However, an arbitrary choice

of source points may lead to worst results than the ex-

pected with the MFS applied to simple shapes as in

Karageorghis (2001). We will choose uniformly on the

boundary ∂Ω the points x1, ...,xm (cf. Alves and Valtchev

(2005)) and y1, ...,ym ∈ Γ̂ in a particular way. Given an

integer m, the collocation points are obtained (cf. Alves

and Valtchev (2005)) recursively such that |xi+1 − xi| =

|∂Ω|/m, and we take m point sources

yi = xi +β
ñi

|ñi|
where ñi is approximately normal to the boundary ∂Ω on

xi. The vector ñi will be given by

ñi =
(∆xi)

⊥ +(∆xi+1)
⊥

2

where ∆xi = xi − xi−1 and v⊥ = (v1,v2)
⊥ = (−v2,v1).

The parameter β is a constant value choosen such that:

(i) the source points remain outside Ω (in convex shapes

it is sufficient to consider β > 0).

(ii) by experimental criteria obtained with simple shapes

mβ/|Ω| can not be too large.

The components of the matrix A(ω) are complex num-

bers, so the determinant is also a complex number. We

consider the real function g(ω) = |Det[A(ω)]|. It is clear

that the function g will be very small in any case, since

the MFS is highly ill conditioned and the determinant is

quite small.

Golden Ratio Search. To search for the point where

the minimum is attained we use an algorithm based on

the golden ratio search method. First we plot the graph

of log(g(ω)) using a fewer number of points to choose

an interval ]a,b[ where there is only one eigenfrequency.

Then we choose an error tolerance ε and we define r1 =√
5−1
2

, r2 = r2
1 and the sets

X0 =
{

a0
0,a0

1,a0
2,a0

3

}

and

G0 =
{

g0
0,g0

1,g0
2,g0

3

}

where a0
0 = a, a0

1 = a + (b − a)r2, a0
2 = a + (b −

a)r1, a0
3 = b and g0

i = g
(

a0
i

)

. As the function g is sup-

posed to have only one minimum in the interval ]a,b[, we

have

min
{

g(a0
0),g(a0

3)
}

> max
{

g(a0
1),g(a0

2)
}

so minG0 is attained at a0
1 or a0

2. Then for k = 1,2, ...
while |ak

3−ak
0| > ε,

if g0
1 ≤ g0

2 then we define the sets

Xk =
{

ak−1
0 ,ak

1 = ak−1
0 +(ak−1

3 −ak−1
0 )r2,ak−1

1 ,ak−1
2

}

Gk =
{

gk−1
0 ,gk

1,gk−1
1 ,gk−1

2

}

else if g0
1 > g0

2 we define the sets

Xk =
{

ak−1
1 ,ak−1

2 ,ak
2 = ak−1

0 +(ak−1
3 −ak−1

0 )r1,ak−1
3

}

Gk =
{

gk−1
1 ,gk−1

2 ,gk
2,gk−1

3

}

In each new iteration we only need to evaluate the func-

tion once. This method showed itself to be quite accurate.

Repeating some calculations of Chen, Kuo, Chen, and

Cheng (2000) or Chen, Chang, Chen, and Chen (2005)

we can prove that for a circular domain with radius ρ, if

we place 2N collocation points uniformly distributed on

the boundary and 2N points on the boundary of a circu-

lar domain with radius R > ρ then the eigenvalues of the

stiffness matrix are such that

λm
N→∞→ 2NJm(ωρ)H

(1)
m (ωR),

m = 0,±1,±2, ...,±(N−1),N

where Jm is the first kind of the mth order Bessel function.

So we have

g(ω)
N→∞−→ 2N

N

∏
m=−(N−1)

∣

∣

∣
Jm(ωρ)H

(1)
m (ωR)

∣

∣

∣
.

3.2 Determination of the eigenmodes with Dirichlet

boundary condition

To obtain an eigenfunction associated with a certain res-

onance frequency κ we use a collocation method on n+1
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points, with x1, · · · ,xn on ∂Ω and a point xn+1 ∈ Ω. Then,

the approximation of the eigenfunction is given by

ũ(x) =
n+1

∑
j=1

α jΦκ(x−y j). (8)

To exclude the solution ũ(x) ≡ 0, the coefficients α j are

determinated by the solution of the system

{

ũ(xi) = 0, i = 1, . . .,n
ũ(xn+1) = 1

(9)

When we take n = m this resumes to add one line and one

column to the matrix A(ω) defined in (19).

This procedure may fail if the selected point xn+1 is on

the nodal line (cf. Chen, Chen, and Chyuan (1999),

Chen, Huang, and Chen (1999)). Depending on the mul-

tiplicity of the eigenvalue, we will add one or more collo-

cation points to make the linear system well determined.

A simplified version of the method is presented in the

flowchart. The eigenmode calculation may be better us-

ing a different choice of collocation points xi and a dif-

ferent choice of source points y j (by changing β).

3.3 Error bounds

An error bound can be derived using the following result

(cf. Moler and Payne (1968)).

Theorem 2 Let κ̃ and ũ ∈ C2(Ω)∩C(Ω) be an approxi-

mate eigenfrequency and eigenfunction which satisfy the

following problem:

{

∆ũ+ κ̃2ũ = 0 in Ω
ũ = ε(x) on ∂Ω

(10)

Then there exists an eigenfrequency κp such that

|κp − κ̃|
|κp|

≤ θ (11)

where

θ =

√

|Ω| ‖ε‖L∞(∂Ω)

‖ũ‖L2(Ω)

(12)

where |Ω| is the area of the domain Ω. If in addition,

‖ũ‖L2(Ω) = 1 and u is the normalized orthogonal projec-
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tion of ũ onto the eigenspace of κp, then

‖u− ũ‖L2(Ω) ≤
θ

ρp

(

1+
θ2

ρ2
p

)
1
2

(13)

where

ρp := minκn 	=κp

∣

∣κ2
n − κ̃2

∣

∣

κ2
n

(14)

Proof. It follows immediately from a result due to Moler

and Payne (cf. Moler and Payne (1968)) since

|κp − κ̃|
|κp|

≤ |κp − κ̃|
|κp|

|κp + κ̃|
|κp|

=

∣

∣κ2
p − κ̃2

∣

∣

∣

∣κ2
p

∣

∣

=

∣

∣

∣
λp − λ̃

∣

∣

∣

|λp|
≤ θ (15)

♦

Note also that using the inequality (11) we can easily ob-

tain

|κp − κ̃p| ≤
(

θ

1−θ

)

κ̃p. (16)

3.4 Determination of the eigenfrequencies with Neu-

mann boundary condition

Defining m collocation points xi ∈ ∂Ω and m source

points ym, j ∈ Γ̂, as in the Dirichlet case we obtain the

system

m

∑
j=1

αm, j ∂nΦω(xi −ym, j) = 0, (x1, ...,xm ∈ ∂Ω) (17)

where ∂n is the outnormal derivative. Defining the func-

tion

Φ̂ω(x) =
i

4
H

(1)
1 (ω |x|) (18)

we obtain the system

∂n(ũ(xi)) =
m

∑
j=1

αm, jω ñ.
xi −y j
∣

∣xi −y j

∣

∣

Φ̂ω(ω
∣

∣xi −y j

∣

∣)

= 0, i = 1, ...,m

where ñ is an approximation for unitary vector which is

normal to the boundary ∂Ω on the point xi. Therefore the

procedure is to search the values ω for which the m×m

matrix

A(ω) =

[

ñ.
xi −y j
∣

∣xi −y j

∣

∣

Φ̂ω(ω
∣

∣xi −y j

∣

∣)

]

m×m

(19)

has a null determinant.

3.5 Determination of the eigenmodes with Neumann

boundary condition

As in the Dirichlet case, for an eigenfrequency κ we use

a collocation method on n + 1 points, with x1, · · · ,xn on

∂Ω and a point xn+1 ∈ Ω (again, as in the Dirichlet case,

xn+1 should not be chosen on the nodal line). The ap-

proximation of the eigenfunction is given by

ũ(x) =
n+1

∑
j=1

α jΦκ(x−y j). (20)

The coefficients α j are determinated by the solution of

the system

{

∂n(ũ(xi)) = 0, i = 1, . . .,n
ũ(xn+1) = 1.

(21)

4 Numerical Results

4.1 Dirichlet boundary condition.

4.1.1 Calculation of the eigenfrequencies.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

Figure 1 : nodal line of the eigenfunction associated with the

2nd eigenfrequency of the square.
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Table 1 : absolute errors for the former three modes of the disk

m abs. error (κ1) m abs. error (κ2) m abs. error (κ3)

60 8.23746×10−11 60 9.30012×10−12 60 9.35225×10−11

Table 2 : absolute errors for the former three modes of the square

m abs. error (κ1) m abs. error (κ2) m abs. error (κ3)

60 1.46642×10−9 60 1.44218×10−9 60 3.17219×10−9

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

�3 �2 �1 1 2 3

�2

�1

1

2

�3 �2 �1 1 2 3

�2

�1

1

2

�3 �2 �1 1 2 3

�1.5

�1

�0.5

0.5

1

1.5

Figure 2 : domains obtained for c = 1, c = 1.3, c = 1.8 and c = 600 (resp.).
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Figure 3 : collocation points and point sources with m = 80

and β = 1.

Since the values of the eigenfrequencies for the unit disk

are well known, given by a Bessel function, we will first

test the results of this method for the former three modes

considering β = 0.4 (Tab. 1)

and for the unit square we obtain the following results for

the former three modes considering β = 0.4 (Tab. 2).

Now we will apply the numerical method to a domain

for which the 5th resonance frequency is known. It’s

well known that the functions v(x,y) = csin(x) sin(2y)+

sin(2x) sin(y) are the eigenfunctions associated to the

value
√

5, the second eigenfrequency of the square

[0,π] × [0,π]. We can write the functions v as

v(x,y) = 2sin(x) sin(y) [ccos(y)+cos(x)]. So, for c ∈
[1,∞[ the respective nodal lines are given by y =

arcos(−1
c

cos(x)), x ∈ [0,π] (Fig. 1).

Then, the value κ5 =
√

5 is the 5th eigenfrequency of each

of the the domains presented in Fig. 2. The domains ob-

tained for the different values c ∈ [0,∞[ have the same

area and the same 5th resonance frequency. In the cases

c = 1 and c → ∞ we obtain (resp.) the square with length

side π and a rectangle with length sides 2π and π.

For c = 1.3 and β = 1 we obtain the points plotted in

Fig. 3 and the values of the absolute errors in Tab. 3.

We can use the same procedure to find the nodal line of

another eigenfunction of the square. We know that the

functions v(x,y)= csin(x) sin(3y)+sin(3x) sin(y) are the

eigenfunctions associated with the eigenfrequency
√

10.

We can rewrite the function v as

v(x,y) = sin(x) sin(y)
(

3−4sin2(x)+c(3−4sin2 y)
)

.

So the nodal line is given by the implicit equation

sin2(y) =
3+ 3−4 sin2(x)

c

4

Chosing c = 3 we obtain the domain plotted in Fig. 4.

For this domain the first eigenfrequency is exactly
√

10.
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Table 3 : absolute errors with β = 1

m abs. error (κ5) m abs. error (κ5) m abs. error (κ5)

20 2.10352×10−4 30 1.46198×10−5 40 1.2331×10−6

50 3.06129×10−7 60 2.52128×10−8 70 5.05447×10−9

80 3.19481×10−9 90 6.19889×10−10 100 1.87289×10−10

Table 4 : absolute errors with the proposed choice of point-sources

m abs. error (κ1) m abs. error (κ1) m abs. error (κ1)

60 3.90501×10−11 70 3.12239×10−12 80 5.81756×10−14

0 0.5 1 1.5 2 2.5 3
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1.5
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Figure 4 : nodal line of the eigenfunction associated with the

eigenfrequency
√

10 (for c = 3).

We will now consider three cases of different choices for

the point-sources. In the first case we consider as arti-

ficial boundary the ”expansion” of the boundary of the

domain; in the second case we consider the boundary of

a circular domain and in the last case we consider our

choice with β = 1 (Fig. 5).

In Fig. 6 we present the plot of log(g(ω)) with the points

plotted in Fig. 5. We note that in Fig. 6 the first two

plots present rounding errors generated by the ill condi-

tioned matrix. With the proposed choice of points the ill

conditioning decreases and the rounding errors are much

smaller (third plot).

Table 5 : absolute errors of the second and third eigen-

frequencies

m abs. error (κ2) abs. error (κ3)

60 1.15174×10−10 1.25×10−10

70 4.16147×10−11 6.83542×10−12

80 3.336×10−12 5.03242×10−12

With the proposed choice of point-sources we obtain the

absolute errors in Tab. 4.

The method revealed to be very accurate for the search

of eigenfrequencies even in the case of eigenfrequencies

near to each other. It’s well known that the second eigen-

frequency of the square has multiplicity two. We will

consider a rectangular domain with length sides 1 and

1 + 10−8. Since we have an explicit formula for all the

eingenfrequencies of a rectangular domain (eg. Courant

and Hilbert (1953)), it is easy to prove that κ3 − κ2 ≈
4.215×10−8 and we obtain the results in Tab. 5 for the

absolute error of the second and third eigenfrequencies

with β = 0.5.

In this case, if we consider less than 60 points, the

method is not able to recover the two eigenfrequencies as

we can see in Fig. 7. We present the plot of log(g(ω)) for

ω ∈ [7.02481465,7.02481474]. In each case, we repre-

sent with larger (red) points the two exact eigenfrequen-

cies.

4.1.2 Calculation of the eigenmodes.

In Fig. 8 we present the plot of the points considered to

obtain the eigenfunctions of the domain Ω1 with bound-
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Figure 5 : collocation points and three different choices for the point-sources with m = 70.
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Figure 6 : plot of the function log(g(ω)) with m = 70 for three choices of points.
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Figure 7 : plot of the function log(g(ω)) with m = 50 and m = 60.

ary given by the parametrization

t �→
(

cos(t), sin(t)+
5sin(t)cos(2t)

9

)

In Fig. 9 we show the plots of eigenfunctions associated

with the 21th and 22th eigenfrequencies for the domain

Ω1. In top of each picture it is written the associated

eigenfrequency. The resonance frequency was obtained

with β = 0.25 and m = 120; the eigenfunction with β =
0.25 and n = 150.

In Fig. 10 we present the respective nodal domains (ie.

the domains for where the real eigenfunction keeps the

same sign)

In Fig. 11 and Fig. 12 we present the same plots (asso-

ciated with the 20th and 26th eigenfrequencies) now con-

�1 �0.5 0.5 1 1.5

�1

�0.5

0.5

1

xn�1
yn�1

Figure 8 : plot of the points considered to obtain the eigen-

functions of the domain Ω1.
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Figure 9 : eigenfunctions associated with the 21th and 22th eigenfrequencies of the domain Ω1.

Figure 10 : nodal domains of the eigenfunctions associated with the 21th and 22th eigenfrequencies of the domain Ω1.

sidering a domain Ω2 with boundary given by

t �→
(

16.8cos(t),8

(

sin(t)+
5

9
sin(t)cos(4t)

)

+3cos(2t)

)

The resonance eigenfrequency was obtained with β = 3

and m = 170; the eigenfunction was obtained with β =
0.3 and n = 180.

Using the MFS we obtain the eigenfunction defined over

all the points of the domain. This allows us to answer

some questions: we may be interested to count the nodal

domains associated with a certain eigenfrequency. For

example, in the second plot of Fig. 10, we must study

the nodal lines. In Fig. 13 we present the sign of the

eigenfunction on a linear curve that connects the points

(0.5,0.15) and (0.75,0.47). As we can view in the sec-

ond plot of Fig. 13 the eigenfunction doesn’t change of

sign on this curve (the minimum on this curve ≈ 0.417).

4.2 Error Bounds: Dirichlet boundary conditions

In this section we will obtain bounds for the error of the

numerical values obtained for the domain Ω1.

4.2.1 Bounds for the error of the eigenfrequency.

In Fig. 14 we plot the values of |ε(x)|, on 1001 points

on ∂Ω1 for the eigenfunctions ũ1 and ũ2. We have

‖ε‖L∞(∂Ω1)
≈ 9.469× 10−15 and 1.355× 10−13 (resp.),
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Figure 11 : eigenfunctions associated with the 20th and 26th eigenfrequencies of the domain Ω2.

Figure 12 : nodal domains for the eigenfunctions associated with the 20th and 26th eigenfrequencies of the domain Ω2.

|Ω1| ≈ 2.2689 and we obtain that ‖ũ1‖L2(Ω1)
= 1.085 and

0.902 (resp.). By (16) we obtain the bounds

|κ1 − κ̃| ≤ 1.577×10−13

and

|κ2 − κ̃| ≤ 3.949×10−12.

4.2.2 Bounds for the error of the eigenmodes.

We have ρ1 = |λ1 −λ2| = 5.453 and as the

third eigenvalue is (approx.) equal to 30.728,

ρ2 = min{|λ1 −λ2| , |λ3 −λ2|} = min{5.453,13.267}=
5.453 and we obtain

‖u1− ũ1‖L2(Ω1)
≤ 2.898×10−15

and

‖u2 − ũ2‖L2(Ω1)
≤ 4.147×10−14.

We obtain the following results:

with m = 190, κ̃1 = 3.465228791746209 and κ̃2 =

4.178634826067797. The results obtained with m = 180

differ from these to order 10−16, so we expect that the

errors are of this order.

4.3 The Stadium conjecture

Now we apply the numerical method to a well known

problem. In Troesch (1973) it was formulated the con-

jecture that the stadium (the convex hull of two identical
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Figure 13 : nodal domains of the eigenfunction associated with the 22th eigenfrequency of the domain Ω1 and the sign of the

eigenfunction on the curve presented.
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Figure 14 : values of |ε(x)| on ∂Ω1 for the two eigenfunctions ũ1 e ũ2 (resp.).

tangent balls) was the open set of the plane which min-

imizes the second Dirichlet eigenvalue. This conjecture

was refuted in Henrot and Oudet (2001). In Oudet (2004)

it was proposed an optimization algorithm which allowed

to obtain a domain with a second eigenvalue which is

smaller than the value of the stadium. However, it wasn’t

presented an analytic expression for the domain. We are

able to specify some domains which have the second

eigenvalue smaller than the stadium. Consider the do-

main ploted in Fig. 15 which is the union of a rectangle

and two half of ellipses. The stadium is the particular

case of L1 = L2 = 2R. We will consider domains with

unit area, so we have L1 = 2−πL2R
2L2

. Numerically we ob-

tain that the domain whose second eigenvalue is smallest

satisfies L2 ≈ 0.7404695918 and R = 0.343193. We call

this domain Ω4 and S to the stadium, both domains with

RL1
L2

Figure 15 : plot of the proposed domain.

unit area. We obtain the following values

λ2 (Ω4)≈ 37.9875443; λ2 (S) ≈ 38.0021483
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Figure 16 : plot and contour plot of the second eigenvalue as function of r and L2.

In Fig. 16 we present the plot and the contour plot of

the second Dirichlet eigenvalue as function of R and L2

for some of the proposed domains. In the second plot

we mark the stadium and the domain Ω4. Using Theo-

rem 2 we can obtain the bounds λ2(Ω4) ≤ 37.98771 <
38.00194≤ λ2(S) which proves that λ2(Ω4) < λ2(S).

4.4 Neumann boundary conditions

4.4.1 Calculation of the eigenfrequencies.

Now we will first test the results of this method for the

former three modes of the unit disk considering β = 2

(Tab. 6). and for the unit square with β = 2 (Tab. 7).

4.4.2 Calculation of the eigenmodes.

Now we apply the method for domain Ω3 with boundary

given by the parametrization

t �→
(

cos(t), sin(t)+
sin(2t)

3

)

In Fig. 17 we show the plots of eigenfunctions associated

with the 21th and 26th eigenfrequencies of the domain

Ω3. The resonance frequency and the eigenfunction were

obtained with β = 0.4 and m = 100.

In Fig. 18 we present the respective nodal domains.

5 Conclusion

In this brief account we presented the MFS method with

an algorithm for the choice of source points that has

already been tested to the determination of eigenfrequen-

cies and eigenmodes for hundreds of non trivial domains

(cf. Antunes and Freitas (2005)). We have presented

some numerical results with a Fortran code running on

a standard Laptop. The numerical calculations, made

with double precision imply some limitations to the

system dimension (we only considered up to 200×200

matrices). With the proposed choice of collocation and

source points, a small dimension system allows very

small errors, almost at machine precision level. This is

no longer possible with more complicated shapes. In

this global method approach more collocation points

will be needed to approximate the shape, the dimension

of the matrices will be larger and ill-conditioned. To

decrease the ill-conditioning the source points should be

closer to the boundary, leading to worst results. Another

possibility is to consider local methods (eg. Han and

Atluri (2004), Han and Atluri (2003), Grannell and

Atluri (1967)).
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Table 6 : absolute errors for the former three modes of the unit disk

m abs. error (κ1) m abs. error (κ2) m abs. error (κ3)

20 1.59019×10−10 20 8.66227×10−9 20 2.48929×10−9

30 1.11022×10−14 30 8.26005×10−14 30 2.30926×10−14

Table 7 : absolute errors for the former three modes of the unit square

m abs. error (κ1) m abs. error (κ2) m abs. error (κ3)

20 1.29506×10−6 20 5.40504×10−7 20 3.56705×10−6

32 2.5788×10−10 32 9.7475×10−10 32 1.32234×10−9

Figure 17 : eigenfunctions associated with the 21th and 26th eigenfrequencies of the domain Ω3.

Figure 18 : nodal domains of eigenfunctions associated with the 21th and 26th eigenfrequencies of the domain Ω3.
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