
The method of fundamental solutions for time-

dependent problems

M.A. GolbergO, <- 5. Chen<*> and A.S. Muleshkov^

<*>2025 University Circle, Las Vegas, NV89119, USA

Email: mag741@aol.com
D̂epartment of Mathematical Sciences, University of Nevada, Las Vegas,

NV89154, USA
Email: chen@nevada.edu, muleshko@nevada.edu

Abstract

1 Introduction

Boundary methods for solving elliptic particular differential equations have
become well established tools for solving many problems of engineering sci-
ence. In particular, Trefffcz-type methods such as the method of fundamen-
tal solutions(MFS) have become increasingly popular over the past decade
[1, 2]. However, for parabolic and hyperbolic equations the situation is less
satisfactory and boundary methods for these equations seen to be less devel-
oped. A major difficulty is that the traditional formulations usually require
the evaluation of numerous domain integrals which can be time consuming
to compute. One way around this is to use Dual Reciprocity techniques
which can be effective, but cumbersome [3]. Until recently, no boundary-
only formulations appeared to be available for this class of problems. In this
paper we develop an approach to solving a variety of time-dependent prob-
lems which requires neither domain nor boundary discretization by coupling
the MFS with recently derived particular solutions for the inhomogeneous
Helmholtz equation with thin plate and higher order splines as right hand
sides.

Our algorithms proceed by showing how boundary value problems for a
variety of time-dependent partial differential equations can be reduced to
solving boundary value problems for inhomongeneous Helmholtz-type equa-
tions. Using the particular solutions derived in [4], these inhomogeneities
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378 Boundary Element Technology

can be eliminated. The resulting homogeneous equations can then be solved
using a variety of boundary methods. As we show, the MFS is a highly ef-
ficient method for doing this.

Two approaches are given for reducing the time-dependent problems to
time-independent ones: Laplace transforms and finite differencing in time.
In Section 2 we apply these methods to the diffusion equations in R^, d = 2, 3
and this is followed in Section 3 by a discussion of methods for computing
particular solutions to the inhomogeneous Helmholtz equation. In Section
4 we show how to extend these techniques to solve the wave equation and
in Section 5 we generalize a scheme of Tabarrok and Su [5] to solve the
convection-diffusion equation and a class of semilinear diffusion equations..
We close with some preliminary numerical results in Section 6.

2 The diffusion equation

As motivation for our work we consider boundary value problems for the
diffusion equation

&u(P,t)-Ut(P,t) = f(P,t), PeDCRd, d = 2,3 (1)

where D is a bounded domain in R^,d = 2,3. For simplicity, we assume
Dirichlet boundary conditions

u(P,t) = g(P,t), P€dD, t>0 (2)

and the initial condition

TED. (3)

As is well known, the initial boundary value problem (IBVP) (l)-(3) has a
unique solution under quite general conditions on (/,#,/&) and 3D [6].

To solve (l)-(3) numerically, we consider two approaches: (i) taking the
Laplace transform in T [7] and (ii) finite differencing in T [8]. Defining the
Laplace transform

= /
Jo

s > M (4)
o

and applying (4) to (l)-(3) u satisfies the boundary value problem

',s)-66(P,a) = /(P,s)-/,(P)=m(P̂ ) (5)

(6)

If m(P, s) 7̂  0, then (5) is an inhomogeneous modified Helmholtz equation.
Defining v — u — Up where Up is a particular solution to (5), v satisfies

= 0, PE&D, (7)

(8)
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Boundary Element Technology 379

Equations (7)-(8) can now be solved by using boundary methods such as
the MFS [1].

In the MFS we approximate the solution to (7) by

k=l

where G(P, Q',s)is the fundamental solution for A — s [7] and {Qk}™ are
source points on a fictitious surface S containing D. Typically, {&&}̂  are
determined by collocation by setting

6=1

where {Pj}™ are n distinct points on dD. (Although we have not done so in
our work, least squares techniques for choosing {&&}]* and {Qfc}™, can also
be used [2].) Having determined t̂ an approximation to u is given by

Un = Vn +Up. (11)

We then obtain an approximation u^ to u by numerical inversion of Un-
Following work by Zhu [9] we have found Stehfest's algorithm [10] to be an
effective method for this purpose.

To complete the algorithm we need to determine Up. In general, this
cannot be done explicitly, so a further numerical approximation is necessary.
In [11] we used an idea of Atkinson to do this. As observed in [11] a
particular solution to (5) is given by

%„ (P, a) = C(P, Q; 6)m(Q, s)<6, (12)
JD

where D is a domain containing D in its interior. Choosing D to be a circle
in R^ or a sphere in R^ (12) can be reduced to an integral which can be
evaluated by standard numerical methods [11]. Although this approach is
effective, it can be inefficient, particularly in R^ where G(P, Q\ s) is a Bessel
function [11].

To improve the efficiency of the algorithm in [11] we considered using a
DRM-type technique by approximating ra(P, s) in (5) by thin plate splines
[7]. In contrast to the classical 1 -f r basis, in this case one can obtain
the particular solutions analytically using a generalization of the annihi-
lator method used to obtain particular solutions for ordinary differential
equations [12]. In [7] we showed how to extend this argument to analyt-
ically calculate particular solutions when higher order polynomial splines
are used as basis elements. This will be discussed further in the following
section.

Because numerical inversion of the Laplace transform is an ill-posed
problem, the above algorithm may not be effective for all problems. To
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380 B oundary Element Technology

overcome this difficulty, one can proceed by using finite differences rather
than the Laplace transform in time. A popular class of methods for doing
this are the 0- met hods defined as follows [3]: let r > 0 and define the mesh
tn = nr,n > 0. For t^ < t < £n+i, approximate u(P,i) by (0 < 9 < I)

u(P,t) ~ 0u(P,tn+i) + (l-0)u(P,tn) (13)

Ati(P,«) ^ 0Ati(P,tn+l) + (l-0)Att(P,tn) (14)

and

_u(P,tn+l)~u(P,tn)
Ut — - - (LO)

Using (14)-(15) in (1) and denoting the resulting approximation to u(P, <„) =
Un(P) by Vn(P), Vn satisfies

flAt>n+l + (1 ~ g)A«n - ̂"+*~ ̂ = fn (16)

so that (/«s/(P,t«))

A,, «n+l _ ~«n (1 ~ g)Attn , , >A<Wl- — - — - ^ +/„. (17)

For 0=1 we get the backward difference scheme (sometimes called Rot he's
method [8])

~Vn f /,2\
-— + fn (18)

T T

and for 9 = 1/2 we get the Crank-Nicholson scheme

Atfn+l ^̂  = - At7n -f 2/n. (19)
r r

Now observe that (17) is a sequence of inhomogeneous modified Helmholtz
equations which can be solved using VQ = h and the boundary conditions
Vn(P) — g(P,tn),P € dD. As before, Vn+i can be determined using the
MFS once the right hand side of (17) is known. Particular solutions can
then be determined using either Atkinson's formula (12) or approximations
using higher order splines. We turn to this next.

3 Particular solutions for polyharmonic splines

As shown above our approach to solving the diffusion equation requires
one to be able to calculate particular solutions for the operator A — A^ for
appropriately chosen right hand sides. Traditionally in the DRM one has
used 1 -f r basis functions for this purpose [3]. However, in this case closed
form particular solutions are not available [13] and so other choices need
to be considered. In [12] it was shown that closed form solutions could
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Boundary Element Technology 381

be obtained for thin plate splines and in [4] this was generalized to higher
order polyharmonic splines. Since those functions can provide arbitrarily
high orders of approximation, they appear to be very suitable for numerical
work. For completeness we give an overview of these results here.

Hence, we consider solving

A^ - A V = / (20)

where / is a polyharmonic spline; i.e.,

(r,)+p̂  (21)
j=i

where
n>l, in R^

(22)
- m>l, inR3

Here pn is a polynomial of degree n, TJ = \\P-Pj\\ and {Pj }^ is a unisolvent

set of points for polynomial interpolation. In addition, if {flj}j satisfy

0, 1<2<L, (23)

where {bj}̂  is a basis for the polynomials of deg < n, then for a given

/ there is a unique polyharmonic spline interpolant / of the form (21) on
{Pj}i . For a smooth / one can show that [14]

where h is the mesh width of

(24)

Hence, to obtain approximate particular solutions to (A — X̂ )Up = / we

approximate / by / and solve (A — X̂ )up = /. By linearity, it suffices to
solve

(A — >?)il>̂  = (p̂ . (25)

In [4] it was shown that tyy was of the form i/>y' = ̂ (̂TJ) where

n-fl n+l
,rf~* logr 4- Y] dkr™~* in R%,

Acosh(Ar) Bsinh(Ar) .
- ^ — '- 4- - - — - 4- > dkr in

where the coefficients in (26) are chosen to guarantee maximal smoothness
of î W at r = 0. Details and proofs are given in [4].
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382 Boundary Element Technology

4 The wave equation

Although much of the BEM literature on time-dependent problems is de-
voted to parabolic equations, there is a growing literature on hyperbolic
problems, particularly the wave equation [15]. Here we show how the ap-
proach in Section 2 can be extended to this class of problems.

Hence, we consider the IBVP

D, t>0 (27)

= %o (28)

with, for example, Dirichlet boundary conditions

t > 0. (29)

If one takes the Laplace transform of (27) , then the Laplace transform u of
u satisfies

A£(P, a) = su(P, S)-SUQ-VO, P G D, (30)

(31)

From (30) we see that u satisfies an inhomogeneous modified Helmholtz
equation so the determination of u proceeds as for the diffusion equation.
To obtain an approximation in '£' one needs to invert the numerical approx-
imation to u. For this, Stehfest's algorithm may not appropriate and we are
currently investigating a number of alternatives [18].

To avoid transform inversion problems one can resort to time-differencing
as for the diffusion equation. Generalizing the approach of Su and Tabarrok
[5] one can define a class of 6 algorithms as follows: approximate Utt by the
central difference formula (un = u(P,tn))

and
_i . (33)

Substituting (32) and (33) into (27) and denoting the resulting approxima-
tion to Un by Vn, it satisfies

_i. (34)

For 0 = 1/2 we get a second order accurate Crank-Nicholson scheme [5].
Again we see for 0 ̂  0 that Vn satisfies a sequence of inhomogeneous

Helmholtz equations which can be solved in the same fashion as for the
diffusion equation.
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Boundary Element Technology 383

5 The convection- diffusion equation

When the differential equation has non-constant coefficients and/or is non-
linear, then transform methods generally fail. However, time-differencing
can still lead to useful algorithms [5]. Here we illustrate this for the convection-
diffusion equation and a class of semilinear diffusion equations.

The convection-diffusion equation is of the form

Aw = aV • Vu + ut (35)

where V is a (possibly non-constant) Velocity' field, Vn is the gradient of
u and '•' the usual dot product in R^,d = 2,3. If one approximates Ut by
the central difference formula

Un+l —Un-l ,._\
%( ̂ - - (36)

and Aw as in (33), then substituting this into (27), the approximation Vn
to Un satisfies

6&Vn+i 4- (1 - 0) Avn-i - ĵ K+i - o«-i) = °V - Vu. (37)

On rearrangement (37) again is seen to be a sequence of inhomogeneous
Helm holt z equations which can be solved using the MFS as before.

We note that if the convection term aV • Vw is replaced by a general
nonlinear term of the form /(P, w, Vw) then the scheme given above can be
implemented to solve the nonlinear diffusion equation

Ati(P.t) - Ut(P,t) = f(P, Vu,u). (38)

Interestingly, this scheme requires no spatial iteration in contrast to the
steady state case Ut = 0 [17].

6 A numerical example

To illustrate some of these ideas numerically, we consider the following
boundary value problem for the diffusion equation:

-A%(P,t) = %,(P,t), P =(%,%/) €D, t>0, (39)
A)

u(P,t) = 0, P£dD, (40)

u(P,t) = 1, P€A (41)

where D - (-0.2,0.2) x (-0.2, 0.2) and k = 5.8 x 10"̂ . The analytic solution
to (39)-(41) was given by Carslaw and Jaeger in [18].

To solve (39)-(41) we use the backward difference scheme (18) with
r = 0.025 and time interval (0,0.9). To approximate the right hand sides in
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384 Boundary Element Technology

(18) we used polyharmonic splines of order n = 1 to n = 4. For interpola-
tion we chose 25 points uniformly distributed in D and 16 points uniformly
distributed on dD. To solve the homogeneous equation, the MFS was used
with 16 source points uniformly distributed on a circle of radius three con-
taining D and 16 collocation points uniformly distributed on dD. In Table
1 are shown the % relative errors of the solution at six interior points in
[0,0.2] x [0,0.2] (Sn, 1 < n < 4 denote splines of order n. Here n = 1 are
thin plate splines.). One should note the substantial increase in accuracy
as the order of splines increases.

Table 1. Relative errors (%) at six interior points.
X
0.00
0.10
0.10
0.05
0.05
0.15

y
0.00
0.00
0.10
0.05
0.15
0.15

TPS
3.93
8.00
11.50
6.04
13.00
13.47

82
1.70

1.71
2.07
1.69
2.44
0.53

S3
1.35
0.83
0.34
1.09
0.11
1.44

S4
1.01
0.40
0.39
0.68
0.58
0.49

7 Conclusions

We have shown how a number of second order time-dependent partial differ-
ential equations can be solved numerically by reformulating them in terms
of inhomogeneous modified Helmholtz equations. Using recently derived an-
alytic particular solutions for these equations the resulting boundary value
problems can be reduced to solving a homogeneous Helmholtz equation
which can be done effectively using the MFS. The resulting algorithms are
efficient in that they require neither domain nor boundary discretization.
Future work will be devoted to futher numerical experimentation and con-
vergence analysis to enable one to choose the various parameters in a more
systematic fashion.
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