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The Method of Matched Asymptotic Expansions for the

Periodic Solution of the Van der Pol Equation

by
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Summary

The purpose of this paper is to introduce the method of intermediate
matching for asymptotic expansions and to apply this method for
connecting the four local solutions of the Van der Pol equation,

given by Dorodnicyn [3]. It turns out that for the approximation

of the periodic solution a fifth local solution is needed. The present
approach results in a reduction of the computational work. The ampli-
tude of the periodic solution is determined up to a higher order

accuracy in v than has been done so far.

*presently Technische Hogeschool, Delft.



1. Introduction

In this paper an asymptotic expansion is given for the periodic solution

of the Van der Pol equation
) =+ x=0 (1.1)

for large value of the parameter v. Equation (1.1) has been studied exten-
sively by many authors. It is a well-known fact that a periodic solution
for this equation exists (cf. LaSalle [6]). In the phase-plane (x,p),
where p = %%, equation (1.1) transform into

—v(1 - %) p+x=o0. (1.2)

Qﬁgl
™

Van der Pol [T7] has already pointed out that the periodic solution for
large v can be approximated by the solutions of the following reduced

equations of (1.2)
d 2,
pa;}%_\)(‘] - X )p_o (1-3)

in a region of the phase-plane where p is large and
2
-v (1l -x")p+x=0 (1.4)

in a region where p and %ﬁ-are both small. The regions where these approx-
imate solutions are valid do not overlap and it was not clear at all how
these local solutions had to be matched. In 1947 Dorodnicyn L3] introduces
two new regions in which he gives asymptotic solutions for (1.2). His four
regions overlap, which makes 1t possible to find a complete solution for
the whole limit-cycle. However, Dorodnicyn's way of matching is rather
crude and his claim that the accuracy of the asymptotic solution can be
carried up to an arbitrary order of v is false (see Zonneveld [10]).
Furthermore, some computational errors in Dorodnicyn's work have been
noticed by Urabe [9], Zonneveld [10] and Ponzo and Wax [8].

If one tries to match the local solutions of Dorodnicyn by the method

described by Van Dyke [U4], one meets serious difficulties. Yet, it is



possible to apply a well-founded method of matching, if a fifth region
with its own local solution is added. Sﬁch a method of matching is based
on the principle that the asymptotic expansions of two adjacent local solu-
tions should be identical, if they are written in the local coordinates of
the overlapping region. It turns out that it is possible to choose the
constants of integration in such a way, that the terms of the two expan-
sions are completely identical. In the sequel we will call this the method
of intermediate matching.

Since equation (1.2) remains unchanged, if we substitute -x for x and
-p for p, each solution will show radial symmetry with respect to the
origin. Hence we will obtain two groups of five regions. The regions of

the first group are specified as follows:

-1/3

Ar —x +rvC<x<-1-ry (111'),
B: -1 - Rv—1/3 <x< -1+ Rv'1/3 (Iv'),
C: -1 + rv-1/3 <x <2 - rv—1 (1),
-1 2 =2 -2
D: p(2 = Rv ') < p(x) < p(xS + §-v log v = rv ) (I1),
2 =2 -2 -2
H —_ - > > —_ -
E: x  + 5 v log v-Rv =2x2 X Rv (-).

The constants r and R (0 < r << R) are independent of v. The point

(V—h/3))

X = X (=2 +0 will be specified more precisely in section 10.
We have given the notation of Dorodnicyn for the regions between brackets.

The regions of the second group K} B, 6; D and E are obtained by radial

symmetry.



The main modifications we made in Dorodnicyn's work are the following:

a. The region A(III') is taken as the starting-point of the calculations.

b. In the formal expansions of the regions C(I) and D(II) also fractional
powers of v are included.

c. Between the regions D(II) and A(III) a fifth region E(-) with its own
local solution is added.

d. For the local solutions of C and D and of D and E we apply intermediate
matching, since the Van Dyke matching fails here. In order to obtain a
uniform representation we also apply intermediate matching in the other
cases, although the Van Dyke matching is applicable there.

These modifications result in a reduction of the computational work, so

that we determine the amplitude of the periodic solution up to a higher

order accurracy in v.

2. Solutions in region A

In region A the main term of the asymptotic expansion of the solution
originates from the solution of the approximate equation (1.4). It turns

-1 .
out that p = 0(v ') and that the formal expansion of the solution of (1.2)



takes the form

p=J y () v (2.1)
n=0

Substitution of (2.1) into (1.2) and equalization of the coefficients of

yoem (m=0, 1, 2, ...) lead to the system
_ X
yolx) = =25, (2.2)
1-x
1 n-1
= '
v, (x) 5 Z =) vy %) (2.3)
1-x k=0
(n = 1, 23 . )
For n=1and n = 2 we find
2
+1
y (x) = EEF)_ (2.4)
1 2.4
(1-x")

- 2x(3xh + 6x2 + 1)
(1-x2)7

3. Solution in region B

When x + ~ 1 the terms of the local expansion (2.1) become singular and
the solution can no longer be represented by (2.1). Following Dorodnicyn

we introduce the local coordinate u and the local dependent variable Q by
o
x=-1-1v (@ >0) , (3.1)

vPa(u; v) . (3.2)

b

Equation (1.2) will be transformed into an equation, which will have all

the terms of the same order 0(1), if
2R -—a=1+a+B8=0 . (3.3)

. 1 . .
Hence, by choosing o = ~ %3 B = - 3 in (3.1) and (3.2), we obtain the
appropriate local variables for the solution in region B. For Q(u; v) we
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construct a formal expansion of the type

alu; v) = § a (w3 (3.1)
n=0

so that the coefficients satisfy the following recurrent system

dQO
Qg - 2w, +1=0 , (3.5)
aqQ
o %8y 22
QO au - Q1 = u QO - uQO ' (3-6)
aq n-1 daq
2 _™m _ .2 n-k
Q’O du Qn - u QOQn—1 - kz1 QOQk du ' (3.7)
Equation (3.5) can be reduced to the Riccati type if one puts Qo = %%
and for the general solution of (3.5) one finally finds
2
Qo(u) =u” - z(u) , (3.8)
where z = z(u) is the inverse functions of
- C_Ai'(z) - C_Bi'(z)
u = — D : (3.9)
LO Ai(z) + CO Bi(z)
(Ai(z) and Bi(z) are the so-called Airy functions, CO and 60 are constants).
For the solutions of (3.6) and (3.7) one finds
a(w) = v (e + [ a(w) (v = X) av) (3.10)
1 Alu) “71 Q ’ |
0 0
u av
where A(u) = exp (- J —ET——ﬁ s
0 Qy(v)
1 b nst 2 av
Vo= ' - Uy
Q’n(u‘) e [c, +J Alv) { Z Qk(v) Qn_k(v) v Qn_1(v)} 3 (v)]’
0 k=1 0
n=2,3, ... (3.11)

It is still necessary to determine the constants occurring in (3.9) until

(3.11).
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4. Matching of the solutions for regions A and B

In order to obtain matching relations for the coefficients of the expan~
sions (2.1) and (3.4) we introduce the intermediate coordinates by

x=-1-gsv? » 0 < u <‘§- (L.1)

Then, after substitution of this new coordinate and after reordening of the
terms, (2.1) and (3.4) have to represent identical expansions. In order to

avoid unneccessarily complicated formal computations we select one value of

u and take p = %u Substitution of x = - 1 - s -1/3 into (2.1) yields the
expansion
p = %-3'1 v_2/3 + %_v_1 - %-sv_u/3 + é%-(sg - QS—M) v_5/3
- é%—s3 v-2 + é%-sv_7/3 - T%g (s5 - 205—7)\)_8/3 +
1 6 -6, -3 T -5, ~-10/3
35 (s” + 2 -bks ")v XY (s" + 8 +8s 7) v
+ o(v 1173, (4.2)
_.1/3

After substitution of u = v '~s the leading term of expansion (3.4) has to

*1/3).

be 0(v It follows from (3.8), that this is only possible if u + =

as z > . The asymptotic expansions of the Airy functions (see [1], ch. 10)

show that dO in (3.9) has to be chosen 0. In fact, we have

u = (z > =)

Jaile) L2 g L2 oy

Thus, by (3.8) we may conclude that

U_1/3 Q (V1/3S) =

0 S

-1 -2/3 1 -b -5/3 5 -7 -8/3
v - 8 S v + 32 i§ v

-

S AL TI0TB oy, (4.3)

Estimation of the order of magnitude of the solutions (3.10) and (3.11)
1/3

for u=wv s and comparison with (4.2) lead to the following choice for

Qn(u):
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_ (" : v 2
Q1(u) = (u) Ju A(V) {QO(V) -v } av >

© n-1
1. - ' 2 dv
0, =5y [ A0 €1 e a0 - o)
u k=1 0
n=2, 3, ...
By taking the asymptotic expansions of Qn(u) for large values of u, one
obtains
v—1 Q1(v1/3s) = %v -1 é%-s—6 v_3 + fg% 5_9 \)_h + O(v-s) , (L.4)
53 0 (1) = oL e M3 L 5 103 o3y )
\)-7/3 Q3(\)1/38) = _1_16_ 82 \)—5/3 + O(\)_11/3) R ()4-6)
V30,003 = - L3 v v o™ (5.7)
\)_11/3 QS(\)1/3S) = _é‘_)I Sbf'\)"T/?) _ —61—)4— S\)—10/3 + O(\)~13/3) , (’4-8)
_ 2nt] n-1 - Bte _ n+3
v 3 By =T E—y 3 o 3),a=6,71, ...
n 2n+1
(4.9)

It is also possible to derive these asymptotic expansions directly from
the differential equations (3.5), (3.6) and (3.7).
Comparing expansions (4.2) with the expansion given by (4.3) until (4.9),

one concludes that the expansions are identical indeed.

5. Solution for !egion C

For u +» -~ « the first two terms of (3.4) behave as

ap(w) = u® + v o), a(w) = 3w’ + o) (5.1)

The constant & denotes the first zero of Ai(z) : Ai(-a) = 0, a = 2.338107.
From equation (1.2) we learn that in the case that p is large (p = 0(v)),
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the first two terms of (1.2) are dominant. Therefore we suppose that the

solution in region C can be expanded as follows

(1-2n)/3

p=f(x,v) v+ } £ (x,v) v (5.2)

0 n=1

It is assumed that for any constant € > 0 the relations lim lfn(x,v)| vE = w

Voo
and 1im £ (x,v) v ° = 0 are valid for n = 0,.1, 2, ... . For the function
NEI
fn we have the recurrent system
£'= 1 - x° =0 f ofl= —x
0 > > o "2 >
f3 0 s fo fh Xf1 5 fo f5 sz Y (5'3)
£3 PV 4 xfS o xf £ =0 , fof'+ 2xf .+ xf £, =0
06 1 0 3 >0 T 1 2 0 k4
etc.
Hence,
f =a(v) +x- 1 x3 £, =a (v) (5.4)
0 0 3 ? 1 1 i

In order to avoid unnecessary difficulties, we determine the constants

aO(V) and a1(v) immediately by matching with (5.1). We obtain

p=t - vraBro) (5.5)
s0 that ao(v) = %-and a1(v) = a. The higher order terms become
f,= -+ 2 (log [2-x] - log [x+ 11) +ay(v) , (5.6)
£y = ag(v) » (5.7)
f), = [é%—(log |x+1]| - log [2-x|) +
N e T R
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2 1
fo = 5 5y (2 106 [2-x| + 1 - 2 log [x+1] + 38,(v))

+ 0(log® |2-x|) (5.9)
£ o= - 3o £ 0(2-x)7") (5.10)

- L log |2-x a 2+ log 3-6a2(v) log [2-x
b o _ + ogeale=ly s )
(2-x) (2-x)

2 3 log |2-x|
£ o + O( ) > (5’12)
8~ 2h3 (2—x)3 (2—X)2

4
£" - e %y 0(L28 12;X|) (5.13)
2.3° (e2-x) (2-x)

6. Matching of the solutions for regions B and C

The matching relations are derived by substitution of

x=-1+4+ tv'1/3 (6.1)

1/3

into the expansion (5.2) and of u = - tv into (3.4). The choice of the

intermediate coordinate t in (6.1) is again made in order to avoid diffi-
cult formal computations. Any transformation of the type x = - 1 + tv_u
with 0 < p < 2/3 would work.

We first investigate the functions Qk(u) for large negative values of u.

=t

The functionu = -Ai(z§ has a simple pole at z = - a with residue - 1. Thus,
in the neighbourhood of z = - o we may write
2= -~qa - 1y .. .
u

Since u » - » if z + - a we finally obtain

v_1/3 QO(-vT/St) = t2 v1/3 + av—1/3 - t_1 v—2/3 +
%-at_3 v-u/3 - %—t-h -5/3 %—ue t—5 v_z +
7 at_6 v_7/3 + l»(a3 _ g) t—T v_8/3 v_3) ,
18 1



- 1 1 2 - -2 -
L Q1( v /Bt) = 23 + (b1 - g-log V-3 log |t]) v T %-at 2y 5/3
11 ) 2 -3 -2
+ (57-+ §-b1 - 57 lOg\J-'§ log |t]) t 3
1 2 L L -5 -8
_(ﬂ§6-+ ;—b1 ~ %5 log v - 15 log It[) at > v /3
+ o(u¥3) , (6.3)
V273 Q2(_\)1/31;) - g‘tv—h/3 + b, Vo3 %_ut—1 L2
1 1 1 1 -2 -
+(Elog\)+§log|tl+'§-gb1)t \)7/3
+ é o? 73,783, O(U_8/3) (6.4)
-7/3 /3,y . 1. .2 -5/3
v QB(_\) t) - - 27 t \Y) +
+ (é% a log |t]| + é%-a log v + b3) v_7/3
+ov T3, (6.5)
-3 /3,y _ 2 .3 -2 -7/3
v Qh(_ v ') = - 543 t7 v~ + olv )y, (6.6)
\)"11/3 Q (_ \)1/3t) = L t’"‘ \)‘7/3 + O(\)—T/3). (67)

5 - 486

These asymptotic expressions may also be obtained directly from the diffe-

13,

rential equations for Qn(-v . The constants are given by

a = 2.338107h41 ,

1 ® v v 2 2 log[v
b, = ———— A(v) { - -=+= } av , (6.8)
1T A(-=) J - Qn (V) 2 3v. 3,2
- 0 3Q0(v) QO(V)
1 Jw Q?(V) va,(v) o, . )
b = — Alv){ - + = - = dv , (6.9)
2 Al-=) ], Qg(V) QE(V) 9 9 Qi(V)



[ 3 2
1 299, Ve, Qy ve, 4 2,
b, = A(v) { R L
3 Al==) ] _ Q3 Q2 Qh S T2 er
0 0 0 0 0
5 a 5 aloglv]
+ 57 v " 27 5 } dv (6.10)
%
Substitution of (6.1) into expansions (5.2) yields
_ .2 13 1.3
\)fo(x,v)—t v —3t s (6.11)
V3 2 () = V3 (6.12)
v f,(x,v) = - g7 V23, (- % loglt!| + S log v + % log 3 + ay(v)) v
2, -4/3 1,2 -5/3 2 3 -2 1k -7/3
—9t\) —27t\) —2u3t\) _)4-86t\)
so(v 3y (6.13)
v_5/3 £ (x,v) = a_(v) v_5/3 . (6.14)
3 3
e f),(x,v) = %'t_3 b3 %-t—e V3 %-t—1 ~
+ (é%'a logl t! - é%-a log v - é%—u log 3 + é%-a
+ oy () VT3 o053 (6.15)
V3 f (x,v) = - l-t-h v—5/3 + (g-log 3+ 1 (v) + L g-logltl
57 b 9 372 27 ~ 9
+Z10gv) vV w0V E) (6.16)
7
V13 g (x,v) = TP ao( ) (6.17)

We note that all terms depending on t are identical in both expansions. By

equating the constant terms we obtain the matching relations

-1
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_ 4 2
az(v) =b, - 5 log v - 3 log 3, (6.18)
ag(v) =,
ah(v) = b3 + %%-a log v + é%-a log 3 ~ é%'a . (6.19)

7. Solution for region D

The expansion (5.2) is no longer valid if x is in the neighbourhood of 2.
Therefore, we consider region D, where p = O(v-1) and, because of (5.5),

1 v-h/3

x =2 + 3 + O(v-z). Since p(x) is a double-valued function in this
region, we consider the inverse function x(p). Furthermore, the local

variable q is defined by

2 =1 -
P = Qv -‘3‘\) +§57Ct\)7/3 N (7-1>

so that equation (1.2) transforms into

2 5 =L/3 2 dx -2 2 =2 5 -10/3
- = - —_— = - — -
{(q 3t o7 av ) (% 1) + x} da Vg -3V o7 oV
(7.2)
We suppose that there exists an expansion of the form
x =2 + l'av_u/3 ) Xn (a,v) V-Z(n+1)/3 . (7.3)
n=2
It is assumed that for any € > 0 the functions Xn(q,v) ., n=2,3,
satisfy the relations 1lim lX (q,v)l v& = @ and lim X (g,v) vE = 0.
AVl n Voo n
For Xn(q,v) we find the following equations
ax
2 4.3
ax
3 =
aq 0 s (7.5)
..3 ﬂ_-’i qﬁ:é_ (76)
ax ax
-3 q 2 _ _2 _2 _
%3 (b q 3) X, r o . (7.7)

etc.
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The solutions are

1
(@) = - T a+Slog lal +a,(v) (7.8)
K@) = a,00) (7.9)
X,(a,) = 3= 0q - 2 @ log |a] + () (7.10)

2 8 4

Xo(av) = = 5= o + ('821'+8 log |q] +§d2(v))q+

13 10

(= 37 45(v) 1og |a| - 553 log |q] - 2&3 log” |q] + ag(v)) +
_ 20 20 10 1
Moreover, we have

X6(q,v) = - 577 azq + ;7 byg * ..., (7.12)
X7(q,v) = 87_1 aq2 + ..., (7.13)
Xg(a,v) = - E%q3 e (7.14)

8. Matching of the solutions for regions C and D

In order to derive matching relations we substitute in (5.2) an inter-

mediate coordinate X given by
-1
x=2-Xv , (8.1)

Reordening the terms we obtain

p=3X+av_1/3+(-2X2-%+%log lx|-—19—olog\) -g—log3+b1)\)
+ g-ax-1 VB3, (b, - é%—ag X"2) v—5/3+-(%~X3 5 X + l%—x_1log IX|
_%X_1logv __287)(110g3+—9—bX1+—227)<"1 2&3 9—;) v o
+ (b3 ;? log 3 + E%'a log v - f%g a - é%’a lif£X| + ;ﬁg a‘igg >
_2_27__b1 +8ia lo§3 . 2 - 16'%) LT3 +O(v7/3) . (8.2)

X X 81X 2.3
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2 5 -4/3

Substitution of q = pv + 3 57 av into (7.13) yields
- ) _
X=%p_%av1/3+{-§-—510g|pl-‘S‘log\)+22—7pe-d2(")}\’1
b -k - ook 8
.."é’_fd,p\) /3—d3(\))\)5/3+{—2—75+—2-77—p—8—1p10g |p|
L 3. -
- é%-p log v - 3P d2(v) + §%§'P3} N {- é%—a - é% a
+ %%'a log |p| + %%-a log v - dh(v) —-g% a p2} v-7/3 + O(v_7/3).

The expansions (8.2) and (8.3) have to represent the same intermediate solu-
tion, so that substitution of (8.2) into (8.3) must lead to an identity.

Working out this identity we obtain the following matching relations

_1_16 2 °1
dz(v) =5 " o7 log v - 3 log 3+ 3 . (8.4)
b
-2 _2 2
d3(\)) = 3 o7 o Y (8'5)
d()—-_b§+1_?’_ 1 3+_1g"'_ 1 @ __h’_ b (86)
)4 Vv - 3 27 o Og 2)43 o Og Vv - l|»86 [0} 27 a _] » .

9. Solution for region E

Expansion (7.3) is singular in g = 0. In order to reveal the behaviour

of the solution near this singularity we introduce the local coordinate £ by
x=x_+ £v—2‘ . (9.1)
The coordinate x = X is defined in such a way that the exact solution

there takes the value

P(Xs) - _g_ LN 25_70“)—7/3 _

If we suppose that the following expansions exist

p='%\)_1 * 25_7 a3 4 ) n, (€5v) v_(5+2n)/3 > (9.2)
n=2
g =24 % V3, ) x (V) y2(n*1)/3 > (9.3)

n=2
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then by substituting (9.1) and (9.2) into (1.2) we obtain the recurrent

system

€
o3
dg
dnh
dg

dn

—2
ag

N RO

N RO

- 6n2(x2(V) +£) + (x

with the condition nk(O,v)

such that p = - %-v_1 +
n, = g-i + (%%
ng = (g x3(v) -
my = (2 %,(v) -

e
ng = %’(%% + g

10. Matching of

N N\ N o

he RN |

+

n

(9.4)

(9.5)

0, (9.6)

dn2

2 ag

(9.7)

., since x = x_ was chosen

(Xg(\)‘) + E) =0 )
1 2 _
x3(v) - o7 o =0 ,
xh(v) - g-a(xe(v) +£)
4 5 93
x5(v) - g5 x3(v) - 95 oFp
2 5 3
V) +E)T -
=0 , k=2,3, ..
2 W3
g'xz(vn (- e9€/2) ,
T ed) (1=
28 (v) - 12l
g1 **2\Y/ T o9
%%’u xz(v)) £69£/2 ,
xg( ))2 2% 4

the solutions for regions D and E

In region D we have q = 0(1), whereas in region E q = 0(v

@) (1 - e9€/2)

exactly. The solutions are

28

T 81

ag

(9.10)

(9.11)

_2).

Therefore, we introduce an intermediate coordinate § = qv in order to get

the matching relations. Substitution in expansion (7.3) yields

_ 1 =4/3 2 ~
X =2+ =ay + (§-log la| - 3
1. 20 A1, 20
=38+ (=g 1oe ] + g

log v + dz(v

))vTE+ dg(v) v

-8/3
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In order to obtain an intermediate coordinate £ such that the term n_(&,v)

. 2
in expansion (9.2) becomes of order 0(v), which is necessary for having
p + %-\)_1 = O(v_z), we use the following transformation

o 2
£ =&+ §'log Voo (10.2)

In the intermediate region expansion (9.2) transforms into

-1 /3 + nh(g,v) v_7/3 + 1 (E,v)'v—3 + ...

5
a4 2y Ie/2 -2/3

+ n3(E,v) v

fte}
It

nz(gs\)) AY

egg/2 + (— 2 X

[}
~~
i

- g-x (v))

8 2
2 7 10 Jo . 2
15 ergrloevrgr+gx, >

xu(v) + %%-axz(v) + %%%—a - jgi-a log v - fi%'ax2(v) log v

- f%% ag-g%-axg(v) £} JE/2 v-h/3 + (g-x (v) L az) w73

+ O(V-5/3) .

Inserting (10.3) into (10.1) we obtain an identity, when (9.1), (9.3) and

(10.2) are used. Consequently we obtain the matching relations

28 1 2 1 2 10
xg(v) = - 57-10g v+ 3" §-log 3+ §-b1 + 5 log IET-+ g'xz(v)l ,(10.h4)
2
b 135 x.{(v) - 1Lk d
-2 _2 2 2 3
SV =T e P T T 0 (10.5)
2
135 x..(v) - 14 «
= _ 13 0,2 _ 1 3 2
xu(v) = -3 log 81 + 5 Xé(v) 9 ( HeR 9x2(v)) )<+
2(Los xh(v) - 252 axe(v)~ 121) . Ei REE . 139 .
81(10 + 15 x,(v)) 3 27 & 486
4 108
- 27 ab1 + o3 © log v . (10.6)

From these relations xz(v) s x3(v) and xn(v) may be computed.
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11. Matching of the solutions for regions E and A

In expansion (2.1) we substitute

1 ,oh3 8/3 1073,

x =2 + + xh(v)

+ (xy(0) + 8) VT2 4 x (v) VT
(11.1)

and we obtain

+{gx (v) - —ﬂi—a2} v'11/3 + {2 x (v) - %%oc(xg(v) +g) -

v + .., (11.2)

which agrees with (9.2) for £ << -1. In this case there are no matching

relations: the solutions fit exactly.

12. The amplitude

In order to determine the amplitude a, of the periodic solution we

have to insert

_2_ 5,3
Q=337 ov (12.1)

into expansion (7.3). The constants dg(v), d3(v) and dh(v) which occur in

this expansion are computed in (8.4), (8.5) and (8.6). We obtain

S O 17 RS IO I 1,2 8 -2
a, = 2+ 3 av + (3 b1 - o7 log v - 9 + 9 log 2 - 9 log 3) v
1. 2 2, -8/3_ 1. . 104 4 91
+ (3 b2 - o7 a~ ) v + (3 b37+ 43 © log v - o7 ab1 -fgg >t
+ (53—? a log 3 - % a log 2) \)—10/3 + O(\)—1o/3) (12.2)

In formula (12.2) a = 2.338107T41 and the constants ., b, and b3 are given

by (6.8), (6.9) and (6.10). Numerical values for b,, b, and b3 will be
given in a subsequent paper. '
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13. The period

The computation of the asymptotic expression for the period cannot be
reduced. Therefore, we refer to Dorodnicyn's paper L3] or Bavinck and Gras-

man [2] , where all the details have been worked out. Integration of

_ av dx
T =2 J_a (<) (13.1)
AY]

over the five regions yields

1/3

T=(3-21og2)v+3av 2y log v +

+ (log 2 - log 3 + 3 b, -1 -logm- 2 log Ai'(-a))v_1

+ o(v ) - (13.2)

It should be noticed that the period computed in [3] and [9] contains com-
putational errors. We remark that in Dorodnicyn's paper the integration
(13.1) has been carried out over intervals in different regions, which are
separated by concrete points. It can be shown that one may take arbitrary
points in the regions of overlapping for the points of separation of the
different intervals of integration. In fact, 1t turns out that in the

final summing up of the contributions from the five regions the coordinates
of these points cancel. For the Volterra-Lotka type of relaxation

oscillations, where we have the same situation, this can be verified

rather directly (see [5] ).
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