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Abstract

A new unfolding method is presented for the case where the unfolded distribution is
known to be non-negative everywhere. The method combines the least squares method
with the principle of minimum cross-entropy. Its properties are discussed together with
an algorithm for its realization and illustrated by means of a numerical example.
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1 Introduction

Aside from purely statistical fluctuations, experimental measurements often are also systematically
distorted with respect to the true distribution due to a non-uniform efficiency or the finite
resolution of the apparatus. The deformation can be described by a convolution of the true
distribution with the response function of the apparatus. Unfolding, i.e. correcting for those
distortions, is comparatively easy if the true distribution is given by a parametric function with a
small number of free parameters. Then a least squares fit can be used to infer the true distribution.
This paper deals with the case that no such function is given. Typical examples include correcting
momentum spectra, mass spectra or multiplicity distributions. An excellent introduction into the
field can be found in reference [1].

Various approaches to solve the unfolding problem are possible. The most popular one relies on
estimating a ratio between true and observed distribution and to use this ratio to correct the
measurements. This approach has the distinct advantage of being simple and statistically stable,
but is unsatisfactory because it requires an assumption about the true distribution which should
be as close as possible to the truth [1]. It also is incapable to take into account information

measured outside phase space limits.

Rigorous unfolding methods use only the known properties of the apparatus in order to obtain
an estimate for the true distribution. Using for instance histograms to represent the true and the
observed distribution, the convolution which describes the measurements can be approximated by a
matrix equation. The observed distribution is obtained as the product of the true distribution with
the response matrix of the apparatus, which may be known from test measurements or detailed
Monte-Carlo simulations. Of course one could try to infer the true distribution by applying the
inverse of the response matrix to the measurements. However, due to the statistical errors of the
measurements this tends to yield extremely unstable results [1]. Because of these instabilities the
simple method described before usually is the preferred method, despite its conceptual weakness.

An alternative is offered by regularization methods, which combine the rigorous approach with
an attempt to filter out the statistical fluctuations. Then the true distribution for example is
estimated by the smoothest or least curved distribution which is still statistically compatible with

the measurements [1].

The “Method of Reduced Cross-Entropy” (MRX) described here is a regularization method which
is applicable whenever the true distribution is known to be non-negative everywhere. It is based
on the result [2, 3], that the unique consistent estimate for a probability distribution which is not
specified unambiguously by a set of measurements is given by the principle of minimum cross-
entropy [4]. An introduction to the principle of minimum cross-entropy is given in appendix A.

After formally stating the general linear unfolding problem in section 2, the MRX and its properties
are discussed in section 3. Section 4 illustrates its practical application by means of a numerical

example.



2 The General Linear Unfolding Problem

The MRX as described in this paper will be formulated for the discrete case of the general linear
unfolding problem, where the true distribution is the probability distribution P;

P;>0, j=1...n and ) P, =L (1)

J=1

A set of measurements a?** providing experimental information about P; then can be written as

afb"mZG’;jﬁj+A;=ﬁ,-+Ag with :2=1...m. (2)

i=1

In this expression the response matrix G;; describes how the apparatus distorts the true
distribution. ldeally one would have Gi; = &;;. The offsets A; are statistical fluctuations by
which the actual measurements o¢** deviate from their expectation values ;.

For the following it will be assumed that the response matrix Gi; is known together with the
measurements a?®* and their covariance matrix Ci

Cix =< (a?* — 7)) (a2 — @) >=< AA; > . (3)
The general linear unfolding .problem then can be stated as follows:

Given iIs a set of measurements a?®*,i = 1...m with covariance matrix Cix and the
response matrix G;; which relates those measurements to an unknown probability
distribution p;,j = 1...n. Based only on this information, the aim is to derive an
estimate p; of the unknown distribution 7; for arbitrary values m and n.

This formulation is general in the sense that it admits arbitrary dimensions m and n. Its
solution requires a method of inference which is able to provide a meaningful estimate of the
true distribution both when p; is overconstrained (m > n) and when it is underconstrained
(m < n) by the measurements. Optimal solutions for limiting cases of both classes of unfolding
problems can be found in the literature. For the case of the overconstrained problem it is the
least squares method [5], which yields an unbiased estimate with minimum variance. For the
underconstrained problem and disregarding statistical errors the unique consistent estimate for a
probability distribution is obtained by the principle of minimum cross-entropy [2, 3].

3 The Method of Reduced Cross-Entropy

The MRX presented in this paper is a synthesis of the principle of minimum cross-entropy with
the least squares method. It extends the principle of minimum cross-entropy to the case that the
measurements are subject to statistical fluctuations and the least squares method to deal with
underconstrained problems. The current section focuses on a comprehensive presentation of the
MRX and its properties. Technical details and mathematical proofs are given in the appendices.
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3.1 Definition of the Method of Reduced Cross-Entropy

The MRX determines the solution of the general linear unfolding problem as that probability
distribution p; which minimizes

F=wy®+ 35, w = const > 0, (4)

where

= 3 (a:~a) Cit (s —a®) with a;=3.Gyp and S=Yp b (3)
=1 i b

1,k=1

Here x? measures the discrepancy between the estimate p; and the measurements a?® and the
cross-entropy S the deviation of this estimate from the “prior distribution” &; which contains
any a priori knowledge about the true distribution. If nothing is known except the fact that the
true distribution is positive everywhere, one has ¢; = const. In this case the MRX becomes the
“Method of Reduced Entropy” [6]. The “regularization parameter” w balances a better agreement
with the measurements (smaller ¥?) against a closer match with the prior distribution (smaller S).
How to determine its numerical value will be discussed later. For a given regularization parameter
w the minimum of (4) specifies the distribution p; uniquely. The proof is given in appendix (B)
together with an algorithm to actually determine p;.

Following the arguments presented in appendix (A) equation (4} can be interpreted as a maximum
likelihood ansatz, where the logarithm of the statistical likelihood {x?) for an estimate p; is
combined with the logarithm of the likelihood that it is compatible with the prior distribution ¢;.

How the ansatz (4) unifies the least squares method with the principle of minimum cross-entropy
becomes most transparent in the limit w > 0o, or equivalently when the statistical errors of the
measurements go to zero. In this case, since S is bounded both from above and from below,
the function F will always be dominated by the x%-term. If the problem is overconstrained the
estimate p; will be determined uniquely by the solution of minimum x?, i.e. according to the
least squares method. If the problem is underconstrained the requirement of minimum x* does
not specify a unique solution p;. The minimum of F' then will be obtained by that distribution
p; which for minimum x? has the smallest cross-entropy S.

3.2 The Regularization Matrix

The interplay between x? and S in the minimization of F' can be seen most clearly when starting
at the minimum value of % Here wy? varies quadratically while S in general will vary linearly.
For the minimization of F a slight increase in wy? thus will be more than compensated by a
corresponding decrease of §. Any deviation from the minimum x? can be viewed as ignoring part of
the experimental information. How much information is retained can be formulated quantitatively
by means of the “regularization matrix” R;;

_ aa_.,‘

Rij - 3(1?53 (6)




which describes how the estimates a; (eq.5) are coupled to the measurements %, The trace of
this matrix can be interpreted as the effective number of measurements actually used to determine

the estimate p;
™
Mg =3 Ra. 0
i=1
Functional form and specific properties of the regularization matrix are derived in appendix C.
For finite values w the quantity M.g is a continuous variable with ¢ < M.z < m. In the limit
w — oo it converges towards an integer. Generalizing the standard x*-test M,z can be employed
to determine a y*-confidence level for the unfolding result. With the mumber of degrees of freedom
given by Ny = m — M.,p this confidence level is obtained in the usual way from the incomplete

gamma function @Q

CL = QNy /2 X [2) = g [, db e (8)
T Ty Uy

which is well defined for both continuous x? and Ny. Small confidence levels either indicate that

the regularization parameter w was chosen too small or that the response matrix fails to describe

the apparatus.

3.3 The Choice of the Regularization Parameter

Deviating from the least squares solution, the unfolding result is always slightly biased towards
the prior distribution. The size of this bias is controlled by the regularization parameter w. A
variety of criteria which yield reasonable values for the regularization parameter is conceivable
and there is a certain freedom which one to choose as long as the unfolding result describes the
measurements with an acceptable confidence level (8). Then the bias can be expected to be small
compared to the statistical errors. The criterion put forward here requires w to be chosen such
that an estimated deviation of the actual x? from its minimum value is one unit:

Ax’= Y (ax - af*)Rk,-Cgl(a; —a*\Ry; = 1. (9)
ijki=1

The expression for Ax? is derived from the x? definition 5 by weighting the residuals with
the coupling of the @; to the measurements. Those components of a; which decouple from the
measurements and thus in the limit w — oo account for the asymptotic x? do not contribute. The
weighting with R;; is a way to suppress the y?-offset. Further details are discussed in appendix D.

3.4 Invariance Under Regular Transformations

One important aspect of any consistent unfolding method is the invariance of the result with
respect to any regular linear transformation of the constraints. Since the information content of
the measurements is not changed by such a transformation, the unfolding result must be invariant
too. The MRX satisfies this requirement. As shown in appendix E the unfolded distribution p; 18
invariant. The same holds for the regularization parameter w, the number M 5 of measurements
effectively used in the unfolding and the x? of the final result, which gives another justification
for the goodness-of-fit test according to equation (8).
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4 A Numerical Example

Using the example given already in reference [1) the MRX is employed to correct the measurement
of a one dimensional distribution for distortions due to detector effects’. The true distribution is

taken to be

4 0.4 0.2
ply) = it <y<9 1
PO = Ty —0ar T 00t T (y—0872 00kt (y—1ap o 0svs? (10)

and the response function which maps the true to the observable distribution as

The first term in square brackets describes a detection efficiency which varies between 0.5 and 1,
the second one a resolution function which is taken to be a simple gaussian smearing with the
observed variable z biased proportional to y2. The relation between true and observed distribution

18

)l with o=0.1. (11)

a(z) = [ dy o(2,9) 5) (12)

In order to apply the algorithms developed in this paper a discrete approximation of equation (12)
needs to be used. To go from the probability density 7(y) to a probability distribution p; the true
distribution is integrated over finite y-intervals. Applying the same procedure to @(z) yields

% =Gy P; (13)

with - »
a= [ daa), p=[ dyply) (14)

Ti-1 Yi—1

nd [, de ¥, dy o(z,4)B(0)
code [¥ dyg(z,y)ply 1 z; vj

Gy = —= il &> ] da:/ dy g(z,y). 15
J %y 5) sl N A y9(z,y) (15)

From (15) one sees that a reasonable approximation of the continuous problem is obtained as soon
as the bin width for the true distribution becomes smaller than the width of the resolution function.
Then the response matrix G;; becomes practically independent of the true distribution. Choosing
sufficiently narrow bins the original problem can be approximated to any desired precision.

For the following the observed distribution @(z} is considered over the range 0 < z < 2. Equal
size bins are used to represent both distributions, n = 20 for the true and three values m = 10,
20 and 40 for the observed one. Figure la displays the true distribution compared to a histogram
of the distribution @;. Simulating actual measurements the @; are fluctuated with the size of
the fluctuations corresponding to the result of a counting experiment which recorded 10* events.
These “measurements” a?®® are represented by the points with error bars.

Unfolding the measurements now proceeds in two steps. In the first step the MRX is used to
unsmear the normalized measurements, and in the second step the result of the unsmearing is

1A FORTRAN implementation of the MRX together with this example is available {from the author.
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properly re-normalized and efficiency corrected. The choice for the prior distribution &; to be
used in the unsmearing step is chosen according to the principle of minimum cross-entropy. Given
no additional input for the true distribution is given by the “phase space” prediction, i.e. if
nothing else is known it is taken to be flat. Then the prior distribution for the unsmearing step
the becomes ¢; ~ (y; — y;-1) - 05, where n; denotes the detection efficiency in bin j of the true
distribution.

"The unfolding result obtained with the MRX compared to the true distribution is shown in Fig.1b.
Also shown in the inset is the result one obtains by simply inverting the response matrix. The
oscillating pattern is a consequence of the strong correlations between adjacent bins. In addition
there are hughe error bars. The dotted line shows the true distribution whose amplitude of
variation turns out to be negligible compared to the size of the errors of the corrected distribution.
Though statistically correct, this result apparently holds no information about the shape of the
true distribution. It even violates the a priori knowledge that the true distribution is non-negative
everywhere. Only for much smaller measurement errors than assumed in this example the result
from the simple matrix inversion stabilizes. The comparison between the MRX result and what
one gets from an inversion of the response matrix thus underlines the importance of filtering
statistical fluctuations in order to arrive at meaningful results.

The concept of regularization versus matrix inversion can also be interpreted in the following
way {7]: The inversion method essentially is an attempt to undo all detector effects up to the
resolution implied by the bin size chosen for the true distribution. The regularization approach
corrects up to a residual smearing which is determined by the size of the statistical errors of
the measurements. The width of the residual smearing can be extracted quantitatively from the
covariance matrix of the unfolded distribution which contains the complete information about how
the bins are correlated. Since the rms-width of a rectangular distribution is 1/+/12 times its total
width, the rms-width of the residual smearing in units of bins can be estimated by

n 1

JTBS - Meﬂ m' (16)
In the current example with n = 20 bins for the unfolded distribution one finds M,g = 11.2, which
corresponds to a residual resolution of o,; = 0.5 bins. This is only half the size of the original
smearing. The unfolded result thus not only is bias and efficiency corrected, but is also able to
resolve structures which are significantly narrower than those which are visible in the uncorrected
measurements. Comparing the “observed” distribution from Fig.la to the unfolding result in
Fig.1b one sees that the price to pay for this improvement is that the error bars of the unfolded
distribution are larger than those of the measurements. In other words, 10* events observed with
a given resolution function correspond to fewer events at an improved resolution.

Figure 2 shows how in the limit of small statistical errors the MRX converges towards the least
squares method or the principle of minimum cross-entropy. Using 20 bins to represent the true
distribution, Fig.2a shows the MRX estimate where 10 bins were used to represent the measured
distribution compared to the result obtained according to the principle of minimum cross-entropy.
Both agree perfectly. A very close inspection reveals that the peaks in the unfolded distribution
are slightly broader than in the true distribution. No such bias of the unfolding results relative to
the true distribution is visible in Fig.2b where 40 bins were used to represent the measurements.
Here the MRX result is compared to the least squares estimate and again found to be in very
close agreement.



5 Summary

The MRX has been shown to be a universal method of inference for a probability distribution
which is constrained by a set of measurements. It is a synthesis of two methods which are
known to be optimal in certain limiting cases: the least squares method and the principle of
minimum cross-entropy. The MRX complements the principle of minimum cross-entropy with the
ability to handle statistical fluctuations and the least squares method with a way of dealing with
underconstrained problems. It has a unique solution and is invariant with respect to any regular
linear transformations of the measurements. The compatibility of the unfolding result with the
measurements can be judged by means of a generalized y2-test.
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Appendix

The following sections focus on specific technical and mathematical aspects concerning the method
of reduced cross-entropy. Even though some of the points discussed here are textbook material,
they are kept in order to provide a coherent presentation of the method. Depending on what is
more convenient, equations are either written in matrix or index notation. Where appropriate
Einstein’s summation convention is adopted. Normal characters are used to demote scalar
quantities or individual matrix elements, bold face characters refer to entire arrays or matrices.
A bold-face 1 denotes the unit matrix.

A The Principle of Minimum Cross-Entropy

The principle of minimum cross-entropy specifies a method how to infer an estimate p; for an
unknown probability distribution p; when the available information is insufficient to specify it
uniquely. If this information is given in terms of a set of expectation values

ki)

E"=ZG{5§_.’;, with 2=1...m<n (17)

=1

this estimate is that distribution p; out of all solutions satisfying the constraints (17) which
minimizes the cross-entropy S

§$=>"p; ln%. (18)
7 f

Generalizing Shannon’s “Information Entropy” [8], § is a measure for the difference between the
distribution p; and a “prior distribution” &; which contains any a priori knowledge about the
true distribution. If nothing is known except the fact that the true distribution is non-negative
everywhere one has ¢; = const, i.e. a priori all probabilities of the true distribution are taken
to be equal. The principle of minimum cross-entropy then becomes identical to the principle of

maximum entropy [9].

A rigorous axiomatic derivation of the principle of minimum cross-entropy can be found in [2].
Here a more intuitive explanation shall be given, which shows that the principle of minimum
cross-entropy can be viewed as a maximum likelihood estimate. Out of all possible solutions
p; satisfying the constraints (17) that one is selected, which has the largest likelihood of being
compatible with the prior distribution &;. The following considerations show that up to a constant
term the logarithm of this likelihood is proportional to —S.

Having NV events distributed according to the estimated probability distribution p; one expects
n; = Np; events in each class. The likelihood £ that a distribution of n; events is observed if the
true probabilities are given by ¢; is given by the multinomial distribution

N! ny N Ty
L= ——nl!nzl.”nn!sllszz---sn . (19)
Taking the logarithm of £ and approximating the factorials by the leading term of Stirling’s
formulia

Inz!~ o(lnz — 1) + %ln(%m) ~z(lnz —1) (20)
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one gets

InfL=mIN'+ Zlns : ~In N+ ) " fnilne; — ni(Inn; — 1)] = const — anlnn—f, (21}

S
i=1 T i=1 i=1 i
and after re-substituting n; = Np; one obtains

InL = const — N> _ p; lng = const — N§S. (22)

i=1 t

B Finding the Distribution of Reduced Cross-Entropy

The problem of finding the distribution p; of reduced cross-entropy which minimizes F
(equation (4)) can be solved by generalizing the approach [10] for finding the distribution of
maximum entropy. The solution is obtained by minimizing the function P

P= %Ak/\lcfkf —al® +1n)_ B where B =g MO (23)
§=1

with respect to the parameters A;. For each set of parameters A; a probability distribution is
defined by
=B/ B (24)
J

which becomes the distribution of reduced cross-entropy at the minimum of P. The proof proceeds
in two steps, the first one establishing that P has a unique minimum and the second one showing
that this minimum also determines the minimum of F.

Since Cy; is positive definite the quadratic term AxA; which dominates the behavior of P for
A — Too is bounded from below. All other terms do not vary faster than linearly with A;.
Consequently P as a whole is bounded from below, i.e. it must have a global minimum. The
derivatives of P with respect to the A; are given by

1 . =
P = %C}ﬁ)\l — a4 a; with  ax =Y Gyp;, and (25)
=1
P” — ""]:"'CH -+ % = ickl + QH Wlth Qk!’ = Z GkGIP - Z ka ZG iP; (26)
ki 2w aAl 2w - FRRF Y o] - ¥ o4 - iP5+

Since p; > 0 for any set of parameters A; the matrix Q; is always positive definite. By definition
the same holds for Cy;. Thus also the second derivative of P is always positive definite, i.e. the
function P is concave everywhere. It follows that the global minimum is the unique minimum.

With P equation (4) can be rewritten as
F=wxy’-S=wPPICJ~P (27)
and the condition for F to acquire a minimum becomes

F, =2wP (QmCq') = 0. (28)
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One solution is given by the minimum of P where P! vanishes. That this is the only solution
where the gradient of F' vanishes can be seen from the fact that, due to the positive definiteness
of @Qim and Cj; each non-zero gradient P/ results in the norm of F’ being different from zero.
Numerically the minimum of P can be found by a simple Gauss-Newton minimization procedure.

The covariance matrix C(p);; of the distribution p; is given by

dp; 8
CP)s = Gycis gasisCH (29)

where, using the result (34) derived below, the partial derivatives are

dlnp; 8 o
2= [ Zﬁ;] = m PlGﬂa h = = (P (Gsi—a;).  (30)

dagt dagbs

C Properties of the Regularization Matrix

To determine the functional form of the regularization matrix, first the sensitivity of the Ay to
changes of the measurements a?* shall be determined. Starting from the the condition P! = 0

one has

2w( ai — ai”")C,;‘ + A =0. (31)
Considering infinitesimal changes in the measurements yields
2w(day — dad®)Ct 4+ dX; = 0, (32)
which, using dag = (Oax/0A;)d);, can be rewritten as
Oa 1
da®®® = i O dA;.
ot = (G2 + o) (53)
The terms in parenthesis can be identified with the second derivative of P and one obtains
Ak _
Jad® = (—P”)kfl- (34)

From this the regularization matrix can be read off as

Rg"" 6&5 _3(1_1; 6,\k _( ”_i
77 Bad T A Oat T\ oy

1

7. Cin(P)i (35)

C,-k) (P! =65 -

As shown in appendix (E) the MRX is invariant under arbitrary regular transformations of the
measurements. Exploiting this invariance, the properties of the regularization matrix are most
conveniently discussed for a basis where the covariance matrix becomes the unit matrix and, using
the additional freedom of another orthogonal transformation, where Q as introduced in (26) is
diagonal. Then also the regularization matrix is diagonal with

2wy .
Ru—m, t=1...m. (36)
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Since the eigenvalues of Q all are non negative, it follows that the diagonal elements of R are
numbers between zero and one. For small values of w the regularization matrix is proportional to
w. For w — oo the behavior of R depends on the rank of Q, which is given by

Rank(Q) = min(m, ny,,) (37)

with m the number of measurements and r,,, the number of probabilities in p;, j = 1...n which
are greater than zero. At finite values w one has Rank(Q) = min(m,n). In the limit w — oo
some of the probabilities p; may go to zero, resulting in a reduced rank for Q. In this limit the
matrix elements (36) are either zero or one, with the number of ones equal to Rank(Q).

D Properties of the Regularization Parameter

This section complements subsection (3.3) by giving an alternative derivation of the criterion (9)
which defines the regularization parameter together with a more detailed discussion of the
properties of this criterion.

As a first step a differential equation relating the parameter vector A to changes of w shall be
derived. Starting again from the the condition P/ = 0 one has

AnCot = 2w(af™ — 1) (38)
and considering infinitesimal changes dw yields
obs dw
dAnCont = 2dw(af” — a;) — 2wda; = — A Crt — 2wday (39)
w

which, using da; = (8a;/0\m)dA,, can be rewritten as

1 Oar\  dw 1
dA, (%Cm( + m) = "t;/\mﬁcm:- (40)

Identifying the terms in parenthesis with the second derivative of P one obtains

Bl\k 1 "y — 1
o = %gf\mCmI(P i = E(&m — B )Am. (41)

Employing the properties of the regularization matrix R derived in appendix C the asymptotic
behavior of Az can be determined from (41). For w — 0 one finds

M _

dw  w
The behavior in the limit w — oo again is most conveniently discussed for the diagonal form of
the regularization matrix introduced in appendix C. For those parameters A; with By, — S
one gets

Ap ~ w. (42)

B
B0 0 = Ap— const. (43}
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The ones with Ry,, — 0 diverge proportionally to w
3Ak /\k
v

With the information gathered so far it is now possible to construct an estimate for the y2-bias
introduced by a given choice of w. Using equation (38), one obtains for x*

1
(aobs _ ak)(a?b" _ a;)C’Ql = wAkAICkI- (45)

Ax ~ w. (44)

One sees, that in the limit w — oo the minimal x? is due to those parameters A; which diverge
proportionally to w. An estimate for the x%-bias is obtained by filtering out the divergent
component of the A; according to

1 Oln|A d1n X 1 A oA
AX2 = m/\k (1 - Bl;niufl) Al (1 - %wal) Ch = E}? ()\k - wa_z:) ('\I wé‘“‘) Chi (46)

which, using (41), reduces to

1
sz = @ka /\m RJnAanj. (47)

From equation (35) follows that the product RC is a symmetric matrix. Using this information
together with equation (38) it is easy to show that (9) and (47) are identical. With

1 1 .
5w ixRimAm = %Amcmkﬁki = (a3 — a3) Ry (48)
one immediately finds
1 1
Ax*= @kaz\mRm»\anr = Iw 75 Cit Ry A Cit Rin M Ot = (08> —ax) Rii(af —ar) RiyC7' (49)

Finally the w-dependence of Ax” needs to be discussed. This is being done most conveniently
using equation (47). In the limit w — 0 both the parameters A; and the regularization matrix R
are proportional to w. Introducing ¢ to denote the scale of the measurement errors one obtains
Ax? ~ w?e? For w — oo the diverging components of the parameters A; are filtered out by
the regularization matrices. Only the constant components remain. Thus asymptotically one has
Ax? ~ w202 As a consequence there will be two solutions w which satisfy the requirement
Ax? = 1, one on the rising edge ~ w? and one at the falling edge ~ w=2. Which one to take
can be decided from considering how the solution scales with the measurement errors. On the
rising edge the requirement Ax? = 1 results in w ~ 1/, on the falling edge one gets w ~ o.
According to equation (38) the difference between the measurements and the estimates obtained
by the MRX scale like
obs

al’® —a; ~ 0'2/'w. (50)

1
Since those differences should scale with the measurement errors, one needs w ~ o, i.e. the
solution on the falling edge of Ax? has to be taken.

Figure 3 illustrates how, for the unfolding example given in Fig.1, the estimate Ay? varies as
function of the regularization parameter w. The uncertainty due to statistical fluctuations is
indicated by the the width of the band which is small for most values of w. One sees that the
criterion Ax® = 1 selects a value w just at the edge where Ax? becomes unstable, thereby ensuring
that no significant information is lost while still maintaining an efficient filtering of statistical
fuctuations.
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E Transformation Properties of the MRX

Let M be any regular [m x m) matrix. Denoting transformed quantities by a tilde the unfolding
problem can be re-expressed 1n terms of

% =Ma®*, C=MCM? and G=MG. (51)
The invariance of x? follows immediately from these relations.
;CE — (aoba)T(é)—l(sobs) — (aobs)TMT(MT)—lc—lM—lMaobs — (aobs)Tc-laobs — X2. (52)

The function P, the minimum of which determines the solution of the unfolding problem, becomes

P= %AM;@‘H-—-Akﬁf”-}-lnz‘sge“"g"‘ = Z%-U—,\k,\;MjCJ;M,-k--AkMHaf’bs+lnZsie‘\"M"‘G“. (53)

i=1 i=1
Thus, if the parameters vector Ay determined the solution of the original unfolding problem, the
transformed problem is solved by M \; which leaves the distribution of reduced cross-entropy p;
unchanged.
The transformation law for the regularization matrix follows from its definition {6). One finds

~ dda; da

Bt = e = 5o Mu Mi = M3 Ry My or R=(M7)"RMT . (54)
m 7

As a consequence M.y, the effective number of measurements used to infer the unfolded
distribution and thereby also the number of degrees of freedom Ny = m — M.,z is invariant:

M. = TrR = Te(M™)T RMT) = TYR = M4 (55)

The invariance of the regularization parameter w follows from the invariance of its defining
relation (9). With Aa = (a — a®*) one verifies

—

AY? = (ha) RE-'RTAa

= (Aa)"MT(M-Y)TRMT(MCMT)-L((M-1)TRM?)TMAa
= (Aa)TRC!RTAa

= AxZ

(56)
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Figure 1: Numerical unfolding example with 20 bins both for the true and the observed
distribution. Figure (a) shows true, expected and actually observed distribution with its statistical
errors. Figure (b) compares the true distribution to the unfolding result obtained by the MRX.
The inset shows the result of unfolding by simply inverting the response matrix. A detailed
discussion is given in section 4.
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Figure 2: Limiting cases of the MRX. In figure (a) the MRX estimate for an underconstrained
problem is compared to the result obtained according to the principle of minimirnum cross-entropy,
figure (b) compares for the overconstrained case the MRX result to the least squares estimate.
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Figure 3: Illustration of the criterion used to determine the regularization parameter w for the
example given in figure 1. The width of the band shows the variation due to the measurement
errors. For a detailed discussion see appendix D.
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