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In the functional analysis abstract linear spaces are considered which may
have for their elements mathematical objects of a various nature: numbers,
sequences of mumbers, functions etec. Therefore theorems established for such
abstract spaces usually can be applied to very different branches of mathematical
analysis. Thus the general theory of functional equations, i.e. of such equa-
tions where the unknown quantities are elements of a linear space, comprises
the theories of differential, integral and some other equations considered in ana-
lysis as well as the theory of finite and infinite systems of algebraic equations.
One of the most important methods for establishing the existence of solutions
and for the investigations of these solutions is the method of successive approx-
imations. We shall give here the general theory of this method for linear and
non-linear functional equations in a very wide class of spaces viz. the spaces
normed with the elements of a semi-ordered space. This class comprises inter
alia Banach’s spaces and semi-ordered spaces." The theory of this method will
be based on the principle of majorants. We shall give also some applications
of the general theory to the systems of algebraic equations and to the differential
and integral equations. '

! For the case of semi-ordered spaces some theorems on these functional equations have been
published already by the author of the present paper. See List of Literature, vide KaAXTOROVITCH, T.



64 L. Kantorovitch.

Contents.
Page.
§ 1. The Spaces Considered.
1. Spaces of the Type B . . . . . . . . . . . ... . ..., .. 64
2. Semi-ordered Spaces . . . . . . . . . . . . .. . . . . .. 6D
3. Spaces Normed with the Elements of a Semi-ordered Spd(e . . . . 66
4. Some Particular Spaces . . . . . . . . . . . . . .. . . .. 67
§ 2. Fundamental Theorems on Functional Eqguations.
5. Existence Theorems . . . . . . . . . . . . . . . . ..., .. 68
6. Unieity Theorems . . . . . . . . . . . . . . . ... .... 17
7. Continuity Questions . . . . . . . . . . . . . . ..., ... 72
§ 3. Linear Equations.
8. Operations Admitting a Majorant .. 74
9. Fundamental Theorems for Linear Equations . . . . . . . ., . . 75
10. Approximative Solution of Equations . 77
§ 4. Systems of Algebraic Equations.
r1. A Class of Infinite Systems of Linear Equations . . . . . . . . . 78
12. A Class of non Linear Systems . . . .. .. . . . . . . . B2
13. A Theorem on Finite Systems of non Lmedr lquations .. . . . 8D
14. An Existence Theorem for Implicit Funetions . . . . . . . . . . 86
15. The Convergence of Newton's Method . . . . . . . . . . . . . 87
$ 5. Integral Equations.
16. Linear Equations of the Second Kind . . . . . . . . . . . . . 88
17. Systems of Fredholm’'s Equations . . . . . . . . . . . . . . . 90
18. An Approximate Solution of Integral Equations . . . . 90
19. A Theorem Concerning Fredholm’s Equations in an Inﬁmte Inter\(xl 92
20. Non-linear Integral Equations . . . . . . . . . . . . . . . . . 92
§ 6. Differential Equations. '
21. The Convergence of Picard’s Method . . . . . . . . . . . . . . 94
22. Cauchy’s Method of Majorants . . . . . . . . . . . . . . . . 96

§ 1. The Spaces Considered.

1. Spaces of the Type B.

A linear (or vector) set is by definition a set X = {i} in which the following
operations are defined and satisfy the usual rules': sum 2, + 2, of two elements
of X, their difference x; — x,, the product Az of x€ X by a real number; and
the zero element o of X.

' Cf. 8. BaxacH, I, p. 26.
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A linear set X is called a normed space if to every element x of X a
(necessarily non-mnegative) real number ! is correlated (which is called the
norm of i} and the following 3 conditions are satisfied:

1). ax ==o0 if and only if x = o,

2). lagtoay =lrp tla,

3. Ar =iz

We shall say that a sequence {x,} of elements of a normed space X con-

verges towards »(r € X) and write o, > x or i, - x(b) if

lim [ 2, — v =o.

n—x

A normed space X is called a space of the type B if it is complete i.e. if
whatever be a sequence ., of elements of X satisfying the condition

im {2, — xn =0

n, m—> %

there exists an element € X such that x, — »(b).!

2. Semi-ordered Spaces.®

A semi-ordered space is a linear set Z in which the relation 2z, > 2, is de-
fined for certain pairs of its elements.” This relation must satisfy the usual
rules concerning the inequalities. In these spaces we can define (in the usual
manner) the notions of an upper and a lower bound of a set I'< 7 and also
of its least upper and greatest lower bounds. We shall suppose moreover that
every finite set is bounded and that any bounded subset I of 7 has a least
upper and a greatest lower bound. These bounds we shall denote resp. sup F
and inf F. A space possessing all these properties we shall eall a space of the
type K;.*

! Ibid., p. 33
* Kanrorovrrey, I, 88 1—4.
¥ Jor two given clements z, and z, may subsist neither of the relations 2, > z,; 2, < 2,;

N
fi
o

* Al these conditions are fulfilled if % satisfies the following 5 axioms
1) 0 is not > o.

2) z; > o and 2z, > o implies z; + 2z, > o.

3) For any z€Z there exists an 7, = o such that z,-— z = o.

4 It 2> o0, zEZ and A is a positive real number then 1z > o.

5) Any bounded set E possesses the least upper bound.

Cf. KaxTorovrrew, IJ.

v

03932, Aecta mathematica. 71. Tmprimé le 2 mars 1939
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The following definjtions will be useful:
The positive and the negative parts of z (z4 and z_) are defined as follows:

zy=sup (0, 2); z—==sup (— 2, 0). It may be easily seen that z =z, —z_.

The »absolute value» [z| of z is defined as |z =sup (s, —2)=2z, + 2.
This absolute value possesses the following properties: 1). o' =o0; 'z >0 if
2#0; 2). |eg+ o] <z + i 3). e ==l

A limit. If Z, is a bounded sequence, we shall denote

2

lim z, = inf [sup (zs, Zns1, . . )5 Hm 2, = sup [inf (20, 2ne1, - . )]
n

n—> 0 n

N—r 0

If lim &n=1lim 2, = ¢ we shall say that the sequence z, converges (o)

n>x N>

towards 2z and write lim z,==2 or 2., — z{0). This limit possesses all the

n—r»

elementary properties of the ordinary limits. In particular it satisfies the cri-

terium of Cauchy, i.e. if for a given sequence lim iz, — sn| =0 then the

n, mer»
sequence z, converges (o) i.e. z€ 7 exists such that z, - z(0), or (which is

the same) lim |z, —z' =o0.!

3. Spaces, Normed with the Elements of a Semi-ordered Space.”

Let Y be a linear set and suppose that to every element y€ Y is cor-
related an element |y] of a certain semi-ordered space / (of the type K;), so
that the following conditions are satisfied:

1). |y|=o if and only if y=o;

2. Ny + vl =lvl+lul

3. ldyl=I11]lyl.

We shall say then that 1 is normed with 7. From 1)—3) follows that for
any ¥ % 0 we have |y| > o.

We shall write 4, = y(bs) if |y — y| -> 0(0) in the space Z. If the space

Y is complete, i.e. if any sequence iy, such that lim |y, — ym]= 0 converges
! ) Yy 1 ] L ]
n, Mm—> 0

(bs) towards an element y€ 1, i.e. yn > y(bs) then we shall call 1" the space
of the type Bs. This type includes both preceding types B and K; or more
precisely any space of one of these types can be easily converted into a space
of the type Bs. In fact if Y is a space B we may take for Z the space of real

! KANTOROVITCH, II. Theorem XX D).
? These spaces were introduced in KaNTorOVITCH, ITIL, p. 272,
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numbers and set |y|=/y. In the case when 1 is a space K, then we set
Z =Y and |y|=|y|. All the properties enumerated above of the space (Bs)
are then satisfied (this follows from what has been already said in 2. and 3.).

Accordingly in what follows we shall consider chiefly the spaces By.

4. Some Particular Spaces.’

1). The space of measurable functions. Consider the set S of all measur-
able functions defined in a given measurable set . Two elements of the set §
we shall consider as identical if their values coincide almost everywhere in 7.
We shall write ¢, = ¢, if @, () = @, (f) for almost all points of E.

This last condition transforms S into a semi-ordered space; @n. — @ (o) if
@a(t) — @ (¢) almost everywhere.

2).  Secondly such measurable functions that f\gp(f)\p dt <<+ o (pis here
i

a fixed number = 1) constitute another semi-ordered space LP; in this case
@n —> @ {0) means that @, —~ @) in S and there exists a function @, € L? such

that for any n: [gan| =< ¢, The set L” may be considered also as a space of
1

the type B: if we set jp = ( /‘;(p(f)‘;v (lt)", The convergence (b) will be in
i ’

this case the convergence in mean of the order p, i.e. ¢, —> ¢ (b) in L? is equi-
valent to

[Igutr=gtyrar-o
B
3). Consider further the space s of all sequences y = (5, 4, ...} of real
numbers, where y, =y, if for all ¢: ol = ¢¥. Tn this space y, — y(0) if for
every ¢ we have nl¥ >y (when » - ). We may consider also the space (m)

of bounded sequences, i.e. of such sequences that sup || < + . This last
i

space may be considered either as semi-ordered or as normed, with |y =

=sup |7 |. The convergence will be different in both cases.
; :

4). The n-dimensional vector space is the set of all systems y=(3'V, 2, .., ")
of n real numbers. This space may be considered either as semi-ordered (as
above) or as a space of the type B with either

! Vide Kaxrtoroviren 1T, §§ 1o0—12 and 8. BavacH § 7.
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n 1
rl=sup g0 or lri= (z w)
z Ny
i=1

5). The space ( of continuous functions z(#) defined in a segment [a; 0]

with the norm |z! = sup 2 (f)".
(Et=h

§ 2. Fundamental Theorems on Functional Equations.
5. Existence Theorems.

Theorem I. Let 7 be a space of the type K;. Consider the equation
z= V2. (1)

We shall suppose that {z' > 0 being a certain fixed element of Z):

1). V(2) is defined for every z€ /7 such that o <z <2 and that for any
such z we have V(z)€ Z.

2 Ifo<gz <z, =--=¢ and lim z, =z (in this case evidently 0 < z < 2/)
then lim V(z,) = V (2). "

3). V{z) is monotonous for o<z<: ie fo<z<z+ Sz=¢ then
V)= TV(e+ A2). '

4. V{o)=o.

5). V(=27

If all these conditions are satisfied then the equation (1) has a solution z*
such that o =<z* <. and this solution can be found by the method of succes-

sive approximations.

Proof. Let z,==0, 2,== V(¢4—) for any natural »; we shall prove that

for any »

N

0 ==

[
©
N

’
'US‘ﬂLS....Sﬂn_ z.

For n=o0 these inequalities subsist. Suppose that they are proved for n = i;
we shall pfove them for » =+ 1. In fact zy 1= Vien)= V{(zn—1)= 2x,
(by 3). and 35).), if 1, > 0 and 2,41 = V (z,,) = V (0) = 0 = 2y, (by 4).), if #,=0; thus
in all cases #y,+1 = 2y,; on the other hand z,,+1 = V(z,) < V (¢') <2’ (by 3). and 3).).
We have proved thus that the sequence z,, #,, ... is monotonous (increasing)
and bounded. Therefore it converges towards an element " of Z such that
0=z"</7. Hence follows by condition 2).
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V() = lim ¥V (z0)

n—> o

or, V(z) being identical with 2,41 and lim V(z,) being therefore equal to

Lim zp41 = 2%, we have

n—>x

2= V{(z").

As besides 0 < z" =7 and z* = lim z,, Theorem I is completely proved.

n—>w

Remark. Suppose that besides conditions 1).—3)., V satisfies the following
condition: 2'). if /' =z, =z, = - =0 and lim 2, = 2z, then V(2)=1lim V(z,).
N 0

n—ox
Then setting 2/, =2¢', Zwy1= V(Z%) we obtain as before a solution £ of the
equation (1). This solution will not necessarily coincide with ¢*. It is easy to

see however that
gt =2t

Theorem II. Let Y be a space of the type By normed by the elements of
the space Z. The space 7 and the operation V, as well as the element 2/ € 7
shall be the same as in Theorem I. We shall consider the equation

y=Uly) (2)
where the operation U is such that the equation (1) is a majorant of (2).
By this we shall mean that
1).  Uly) is defined for every y€ Y such that

lyl=2

and for any such y we have U(y)€ Y,

2). |Uo)]= ¥,

3. NUy+ay)— U=V +d2)— Vi) if only |y|<e |dy|l= a2
g+ Az =<2z,

£s

Then the equation (2) possesses a solution ¥ satisfying the inequality
y'| =2 (or more precisely |y*|=2") which can be found by the method of
P y

successive approximations.

Proof. Set y,=o0, .= U(ys—). We shall prove that for any » and m
such that m > n
[ m — yn| = 2m — 2a.
In fact |y, —wol=|wl=|U00)| < V(0)=2 =2, — 2z, Suppose that we
have proved the above inequality for any m and » such that i << m =< m, (1 = 1).
We shall prove it for n << m < my + 1; then (by 3).) if my=n =1
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Vomors — gl =1 U (o1 + (o — tin—1)) — U (=) | =
= V(Znﬂl + (Zm;, - 5n—1)) - V(Zn—l) = Eme+1 7 En

because |yn—1| =91 — ¥y < 201 — 2= 2 (0 — 1 =<my). In the case when

2= 0 we have
| #mer1 = gl = Lpmer | < Lymesr — w1 | + Ly | = (g1 — 20) + 2, = 211 — 20
We have proved thus our inequality for any =, m such that » <m. But now as

Zm— &y~ 0 (0) in Z

m, n— @
it follows that |ym — yu] >0 (0) (in Z) whence (by Cauchy’s criterium for the

space) there exists a

(bs) Um y =y =y + (yy — po) + (Yo —92) + -,

n—w

As on the other hand |y.| =< z,, it follows that |y*| < ¢* <7’

Besides
I LT(!/*) - U (j’/n)' = V(Z*) - T/(Zn) =z" — Ent1

(because |y* — yul < 2" — 25 and |ya| < 2,). Hence follows

N-r o P> B
So that #* is the required solution.

Remark. We shall eall these solutions ¢* and y* of resp. equations (1) and
(2) obtained by the method of successive approximations and starting with the

value 0, the principal solutions of these equations.
Corrolary.! 1If the inequality
|Uly + 49— Ulpl=elay], | (3)

where 0 < « << 1, subsists for all values of y and /4 then the equation

y=Ul) + (4)
has a solution whatever be y,. :

! In the case when Y = Z is a space of the type B (and |y| =y |) this corrolary coincides
with the so-called principle of CAcCIOPOLLI-BANACH; vide, c.g., S. BavacH, IT, p. 161 and Cac-
cloroLLy, I.
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Let in fact
Vi) =|U@©) + 9| + ez
then setting
o U + wl
I«

we have V(¢')==¢. On the other hand V(0)= o0 and V evidently satisfies also
all other conditions of Theorem I. Also the function U (y) + ¥, satisfies all
conditions of Theorem II (cond. 3) is satisfied because of (3)). Therefore we may
apply Theorem II to this function and conclude that a solution y"* of the equa
tion (4) exists such that

| U (o) + |

w7 < L L
e

6. Uniecity Theorems.

Generally speaking there can be more than one solution of the equation (2),
however if the majorant-equation (1) has: only one solution then the same is

true of the equation (2), or, more exactly:

Theorem III. If the functions U and V satisfy all conditions of Theorem II
and ¥ satisfies besides the condition 2'). (see 5. Rem.) and if moreover z* = z"*
then there exists but one solution of the equation (2) satisfying the condition
|y| < 2. This solution can be obtained by the method of successive approxima-
tions starting with any value ¢, of ¥ satisfying the inequality |y/o| <2

’

Proof. Let % €Y and suppose that |y,| =<2 =2". Set y= Ulyn—).

Then we have (using the notations of Theorems I and II;
I?f’o—yo‘: |4/l SZ’OZZ’Q“%-
We shall prove now that in general
|?/’n - .’/nl < 2w —on

For » = o this inequality is true. Suppose that it is true for » = n,; we shall

prove it for n=mn, + 1. In fact

[ i1 = o1 | = | U @) — Uy | = U @y + (4 g — t0) — U )| =

= V(‘g“o + (2,770 - Z"o)) - V('gno) = Zl"c"rl — &ngt1.
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The above inequality is thus proved inductively. But we have lim 2/, =2"* =

n—w

==7* =1im #, and consequently lim (z’y — z,)=o0. Hence lim y’»=1lim y,=y*,

P Rz } N> 0 N0
thus starting with an arbitrary y', satisfying only the condition |y, | < ¢ we
arrive at the principal solution y* of the equation (2).
Suppose in particular that y', satisfies the equation (2); then y', =y, and

y*=1lim y', =19y',, Thus we have proved that there can be no other solutions

n-—» o

y of (2) satisfying the inequality |y] <2 except y*.

Corrolary. The equation (4), where U satisfies the condition (3), admits of
but one solution which can be obtained by the method of successive approxima-
tions starting with an arbitrary element of y.

In fact the majorant equation
z=|U0) +y| + ez
has evidently one solution only.

Theorem III'. If U/ and V satisfy the conditions of Theorem II then there
exists only one solution of the equation (2) satisfying the condition |y| =< z*.
This solution can be obtained by the method of successive approximations start-.
ing with any %', such that |y,] < z*.

Theorem III' is proved in exactly the same manner as Theorem III with
this difference only that everywhere in the proof we must substitute z* for z/,.

7. Continnity Questions.

We shall prove now that if an equation of type (2) depends in a continuous
manner on a parameter then (if certain conditions are satisfied) its solution is

also a continuous function of the parameter.

Theorem IV. If an equation is given

y=Uly; 4) (s)
where U is a function of # and A defined for a certain set .4 of values of 4
containing 4,(%, € 4); and if the following conditions are satisfied: 1). the equa-
tion (1) is majorant to (5) for every value of 4; moreover V is defined and
satisfy the above conditions for 0 <z < 32 and condition 3). of Theorem II is
satisfied for every y and 4y such that |y|<z=<:¢ and |Ay| < d2=<27;
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2). Uly, 4) as function of i is continuous in the point 1, i.e. hm Uly, 2) =

-7
= Uy, &); 3)- V satisfies condition 2') of Remark to Theorem I; then the
principal solution y*(1) of the equation (5) converges towards y*(1,) when 4 —> 4,
i.e. " (4) regarded as a function of A is continuous in the point A,

Proof. We have (for any #)
YA =y () + (g (A) — ya ()

ly* (2) — yu (A)| < 2* — 2a.

and besides

We shall prove now inductively that for any #

lim y, (A) = yn ().

LAy

In fact for » = o this equality is true (because then both members are o)
suppose that it is true for » =mn, Then we have

| et 1 () — g1 (Ao | == | U (g, (R), 2) — U (31, (Ao}, 2) | =
S| U (yny (), 1) — U (g (Aods W]+ 1 U (ym, (o) A) — U (my (ho)s 20) | =
=< V{lyne Ro)| + [yna ) =t ) [) — V(A ) +
| U (yny (), 2) — Uy, (o), 20) ]

because |yn(do)| =< 2" and |yn, () — yn, (Ao)| < |yn, ()| + |y, (A)| = 22". The first
summand in the right hand member of this inequality converges towards O be-
cause ¥n, (1) > ¥n,(4) (bs) and V satisfies the condition 2); the second summand
converges towards o because U is continuous for A4 =1, This proves that
Yng+1(%) = yne+1(%4). Thus we have proved that for any #: ya (/'L)Z > o (Ay).

- 79

Now from the inequality
ly* )~ )] = 2" =20
Ly™ (1) — " Aol | = 1" () — o ()] + 1" (A) — wa (R) | +
+ 1 (A) = g (o) | = 2 (" — 2a) + [y () — 9 (Ao) |-

follows

If 4 — 4, then (according to what precedes)

Lim | 4 () — y* (h)| =< 2 (* — 2u),

Ay
n being arbitrary there follows

lim y* (A) = ¢* (4,). q. e. d. (6)

IR

10—-3932. Acta mathematica. 71. Tmprimé le 3 mars 1939,
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§ 3. Linear Equations.

8. Operations Admitting a Majorant.

In this § we shall apply the general theorems of the preceding § to the
special case of linear equations.

Let Y be a space of the type Bs. Consider an additive operation trans-
forming the space Y into itself, i.e. such that whatever be y € ¥ there exist
always f(y)€ Y and that for any 4, €Y, 5, €Y we have fly,+y.)=fly,)+f (1)
Suppose that there exists an operation g transforming the space Z into itself,
additive, positive (i.e. such that z = o implies g(z) = o) and besides such that
for any y € Y the inequality

I/ Wi=gly) (7)
subsists. We shall say then that the operation f admits a majorant and that ¢
is a majorant for f

In this case (i.e. if f admits a majorant) f is necessarily homogenous, i.e.
whatever be y€ Y and a real number A we have always f(Ay) =Af(y). In fact
in the case of rational i this follows from the definition of an additive opera-
tion. Suppose A4 irrational and let Z,(n =1, 2, ...} be rational numbers such

that |1, — 4 < ’I] We have then

{4/ () )—FAy)) = I(l—}’ﬂ)f NWH SOy =y <

< SO+ g(li—nl 1D = S+ Dglls)

whence » being arbitrary and in a semi-ordered space z =0 always implying

In the particular case when ¥ = Z and |y|=|y| (i.e. when Z is a semi-
ordered space and for the norm of an element z of Z we take its »absolute
value» |z) the set of all operations f admitting a majorant ¢, (i.e. such that
for any z€ Z

Sl =gllz])
can be considered itself as a semi-ordered space (if we write f, > f; when the
operation f, — f, is positive) which we shall denote (Z - Z).! Accordingly for

! KaxToROVITCH, ITI, Theor. 3.
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such operations can be defined fi, f-, | f| (which are again operations belonging
to Z -~ Z and moreover positive) and hold the formulae f=f, —f_ |f|=
= fi + f. &. We see thus that any operation belonging to Z -~ Z is the
difference of two positive operations. On the other hand every positive opera-
tion is its own majorant so thus every positive operation and consequently every
difference of two positive operations belongs to 7 =+ Z.

Tf Z satisfies some additional conditions then the class Z ~ Z coincides with
the class of (0)-continuous additive operations, i.e. of such additive opera-
tions that z, - z(0) implies f{z,) = f(2)(0).!

We shall remark lastly that if ¥ is a space of the type B,i.e.if |y|= y
then an additive operation admits a majorant if and only if a constant C exists
such that for any y€ Y

SWi=C oy
The smallest possible constant here we shall define as | f|.
This class of operations coincides with the class of (b)-continuous additive

operations.®

9. Fundamental Theorems for Linear Equations.

In the case when operations mentioned in theorems of § 2 are linear these
theorems may be somewhat simplified.

Theorem V. Let f be a linear operation admitting a continuous majorant g¢;
then if for a certain 2/, 22 = 0 we have

zy=2¢—g{)=o0 (8)
then the equation
=S+ u (9)

has a solution for any y, such that |y,] < z,.

Proof. This theorem follows immediately from Theorem I, if we set U (y) =

=1 +y; Ve)=yl2) + 2.
In fact all conditions of Theorem II are satisfied:

Vio)=zy=o0; V({)=yg(&) + 2z,==1¢;

Vie+ d2)—V{e)=gde)=o0 if 42=0;

! As to which vide Ibid., Theor. IV.
% Cf. S. Bavacw, 1, p. 54
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V(2) is a continuous function,
| U©)] =y = 2,= V(o);
Uy + 49)— Ul =fanl=g(ayl)s=gde)=TVe+ 42— V),

if only |Ay|< 2.
Hence follows by Theorem II that the equation y = Uly) = f(y) + y, pos-
sesses a solution which can be found by the method of successive approximations.

Theorem VI. Let z* be the principal solution of the equation (8). Then
there exists only one solution of the equation (g9) satisfying the condition
|y| <%kez* (k is a real number = 1), viz. the principal solution of (9). Besides
if the equation (8) possesses only one solution satisfying the condition |z| =2
then (g) has only one solution satisfying the inequality |y|< %2

The theorem follows immediately from Theorem IIT if we take V(z) =
=g(2) + k2, and substitute k2" for 2.

Corrolary. Let Y be a space of the type B. Then if jfi==¢ < 1 then
the equation (9) has exactly one solution whatever be y,€ Y. This solution

satisfies the following inequality

Co Yo
[ —A S
v 1—«
and can be found by the method of successive approximations starting with an
arbitrary y€ Y.
This corrolary can be proved by applying to the equation (9) the corrolaries
of Theorems IT and ITI; it may be found in Banach.’

Theorem VII. If
y=rly; 1) + yo(4) (10)

is an equation depending of a parameter A and the equation (8) is majorant to
(10) for any A and if (whatever be y€Y)
flys 2) = fly) and y,(4)

Yo
T Ay 2> 2y

then
lim y* (1) = ¢*
PR

where y*(A) and »* are principal solutions of (10) and (9) respectively.

! 8. BANacH, I, p. 158.
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This theorem follows from Theorem IV where we set U (y; 1) = f(y; 4) + 9, (2),
Uly; b)) =fy) + ¥, and V(2)=g(e) + 2, It is easy to verify that all the
conditions of Theorem IV are thus fulfilled.

10. Approximate Solution of Equations.

In order to obtain an approximate solution of an equation of the type (o)
we must substitute in (9) for f another simpler operation f’ such that the norm
of difference f’(y) — f(y) be small and that the solution of the equation

’

v =5 W)+ v (1)

be known to us. Then this solution of (11) will be the approximate value of
the solution of (9). We shall give now a theorem which will enable us (under
certain conditions) to estimate the error of this approximate solution and in the
same time will prove (in the case the above mentioned conditions are satisfied)

the existence of a solution of the equation (9).

Theorem VIII. Let the equation (11) have a solution for every y,€ Y and
suppose that this solution is an additive function of ,

y = I(yo)
and that the following inequality subsists for every y€ Y
| T (f(y) = W < elyl. o<e<i) (12

Then the equation (9) has a solution y and the following inequality subsists

' (04 ’
ly=y'l=—__IvI (13)

Proof. We can write the equation (9) as follows

y=—F )+ ) + v (14)

This equation (14) is evidently equivalent (because I'(y,) is the solution of
(11)) with the equation

y=T(f=fVo) +y)=T@H +y (13)

where 7= I"(f—f’). To this equation we can apply the corrolary to Theorem II
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(condition (3) of this corrolary takes in this case the form of the inequality (12)
which we have supposed to be true). Therefore the equation (15) has a solution
y such that

I
|;?/|51“—_'a|;'/l-

This solution is in the same time a solution of the equation (9). Deducing
the equation (11) from (14) we obtain the equality
v—y =rly—y)+ (=1,
y—=y =r{f—ru)

(74

whence

and

I } < o
ly =y =elyl=—I¥I
which prove (13).
Remark if Y is a space of the type B then the condition (12) may be written

as follows o
Tif=fi=e« (0 <a<1) (12 a)
§ 4. Systems of Algebraic Equations.

In this paragraph we shall apply the results of the preceding paragraphs
to systems of algebraic equations chiefly to certain classes of infinite systems
of equations.

11. A Class of Infinite Systems of Linear Equations.

Consider first the systems of equations of the form

T?i—:zci,k"?k‘*'bi (".::Iazv ) (16)
k=1
where (for any 1) ‘
Dlarl<e<r (17)
k=1

Such systems were considered, e.g. by Helge v. Koch, T.
Let Y be the space m of bounded sequences y = (1, %, . . .) where ' y| is
defined as sup |7;| and suppose that the sequence b= (b, b,, . ..) belongs to ¥,
3

1. e. that ,
10 =sup |b;! < + . : (18)
i
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The operation f(y)= {Z ik m} transforms the space Y into itself and we
k=1
have besides

)] = su {Z zHikJ<SuPZ!€:kl ly|<ey

k=1
or |lf]l = e '
The equation (16) is thus an equation of the type (9) satisfying the conditions
of Corollary to Theorem VI. Hence follows

~ Theorem IX.' If conditions (17) and (18) are fulfilled then the system (16)
possesses one and only one bounded solution (i.e. one and only one such solu-
tion that sup |7;| < + ). This only solution can be found by the method of

successive approximations starting with any bounded system af values of {5} and
it satisfies the following condition

f

sup ;| < -
3

I !
_asgp‘bi .

Remark 1. If instead of condition (17) our system satisfies the following
(weaker) conditions:

1) D e =e< (1=N+1, N+2,..)
k-=N+1 ,
(17)
2) D lar| <+ o (t=1,2,..., N)
k=N+1

and there exists an upper bound of all numbers !¢, x|, then we can apply the
preceding theorem to the system

o0 N
7 = Z*":‘,km + (bf + Z Gi,mk) (=N+1,N+2,..) (16)
k=N+1 b1

and express the unknown quantities ny+1, . . . as functions of 7, . . ., 5. Then
after substituting these functions for nsx41, . .. into the first N equations of the
system (16) we shall obtain a finite system of equations. Hence, e.g., such
a system does not possess more than N linearly independent solutions ete.

' v. Kocr, I, KANTOROVITCH & KRYLOFF, p. 28—3I.
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Mark that conditions (17') will be always satisfied when the system satisfies
any of the following two conditions {which were considered by Helge v. Koch)

a) i ‘0;‘,;;\<'i‘°01
-

7, k=1

b) ici,k‘<7~i (]C:I, 2, )

where 2 % < + ».?

=1

Remark 2. If instead of the space of bounded sequénces we shall consider
the space 1? (where p = 1) of such sequences y = (,, 1y, ...) that

® 1
Y= (Z \m\”)”
=1

is finite then we can arrive to the analogous conclusions.
In this case the expression of ||f! is rather complicated but it is easy to

= [é (i In,-,kﬁﬁ‘l)p_l]; H?

=1 \k=1

see that in any case

I

Consequently if H < 1 then the system (16) possesses a single solution satis-
fying the condition

ilm]p< +

i=1
if only ’
Slblr< + oo

' v, Kocn, II.
? v. KocwH, III.
3 In fact

If@)] =

Gonl
ERE S

=1,2,...

] {@ [(Z o "’)” (Z e, L,ﬁl)’”;]v};)

Vide KANTOROVITCH, IV, Theorem 6.

i
o
K
8
5
~
3| -
,:—/—‘
I
kel
s
B
o
T
L
3
1)
[ —
s
l
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If instead of the inequality H < 1 the (weaker) condition H < + o is satis-
fied then for the system (16) the corresponding number H’ will be < 1 provided
that N is sufficiently great. Consequently we may argue as in Remark 1 and
reduce the system (16) to a finite system. In particular when p = 2 this condi-

tion takes the form D\eji < + «. This case (p = 2) has been considered by

Helge von Koch.?
Consider again systems of the type (16) but instead of (17) we shall suppose
the following weaker condition to be fulfilled

w0

Z/(%‘,k}zl'—@'<l. (19)
k=1
The set of all bounded sequences we shall consider now as a semi-ordered
space.
I say that the system

o= ler|ge + Ko (20)
k=1

is a majorant for the system (16) provided only that for any ¢ we have

bi| =< Ko (21)

In fact if f* (y)={2 [(;Hm] then

2 el
/)] :{i crm ‘}_S{i mmm}.:f*(wr).

It is also evident that the operation f* is continuous, i.e. that y > o implies

f*(y) > 0. The system (20) possesses a positive solution, viz. the solution
p =1ny= =K. Hence Theorems V and VI of § 3 may be applied and we
obtain the following theorems.

Theorem X. The system (16) satisfying the conditions (19) and (21) posses-
ses a solution satisfying the inequalities |7;| < K (¢=1, 2, ...); the solution can
be found by the method of successive approximations.’

! See H. v. KocH, 1V,
* DIxowN, I; PELLET, III; WINTNER, II; KovaLovIiTCcH, I; KvzMiN, I; KANTOROVITCH &
KRYLOFFT.

11—3932. Acta mathematica. 71. Imprimé le 3 mars 1939,
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Remark. Note that condition (21) is always satisfying in the case when
all b;, with the exception of a finite number of them, are o.

Theorem XI.' If {7/} is the principal solution of the system (20) then
there exists one only solution of (16) satisfying the inequality || <Agf. 1In
particular if the lower bound % of the sequence 7 is not o (i.e. if for any ¢:
7 = h >o0) then each of the systems (16) and (20) possesses a single bounded
solution.

So, e.g., we find that the system

o

- Yk e A b= =
§(2i+1—2k)(2i——1—2k)+bl ° (=12
L K
possesses exactly one solution if |b;' < 7 On the other hand the system
1 1 .
7 = (Z+Uz Ni+1 + (z:';'*{)é f=1,2,..)
has two bounded solutions, viz. ;=1 and mz@,—iﬂl-

We shall remark in conclusion that from the next No. will follow that the
principal solution of the system (16) may be obtained not only by the method
of successive approximations but also as the limit of the solutions of (finite)
»reduced» systems.

12. A Class of Non-linear Systems.

Consider two systems of equations

N = b; + ZC&) N, -+ Zt’g?, E, Mk Mk + o :./; (Tlh Ny - - ) (Z.ZL 2, .. ) (22)
=1 Ty, ko=1
and - ‘
G=Bi+ X000+ D00, b+ =filln G- ) (=1,2,..)  (23)
: b=1 Ky, Ry=1

where we suppose that the second system is a majorant for the first, i. e. that
for any ¢ and &y, ..., &

! KANTOROVITCH & KRYLOFF.
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'b;| < B; and }c@,,,,,kj\scﬁ’,..,,@. (24)

Suppose moreover that the second system possesses a positive solution, i. e. there
exists such sequence of positive numbers 2’ = ({';, {5, . . .) that if we substitute
in (23) &'y, & ... for &, L, ... then (for every ¢) the series in the right hand
member of (23) will converge towards the left hand member of (23).! Then the
equations (22) and (23) we may consider as the equations of the form (2) and (1)
respectively (see above, Th. II) in the space Y = Z =s (see above, p. 67) i.e.
the semi-ordered space of all sequences of real numbers. We shall prove that
all conditions of Theorems I and II are satisfied.

1. We know that V(z') exists. It follows at once that ¥ (2) exists for any
2=y, {, .. .) such that o =z <7

2. It is evident that in the region o <z < 2’ each of the series f;((,, &, o)
converges uniformly and consequently if for every ¢ we have lim (¥ ={; and

.
o< {M=<{; then lim £, ¢, .. )=/, &, ...). Hence follows the con-
tinuity of the operation 7 (in the considered region o =< z =< /) and in particular
the conditions 2) and 2').

3.—5. Are evident

Vo) ={Bi}; V)=2¢].
As to operation U

1). Ul(y) evidently exists for any y such that iy </ i. e. that for every
o =0
2). [ U) = {|b } ={B. _
3). We must prove that if |y | <z, | Jy|=< Az and 2 + 42 <7 then
Uly+ay)—Uly=Vie+d:)— V()
or in other words, if

e =5 and || < A8 (k=1,2,..)
then

| o * .
12 ch)“,,,kj[(ﬂk, + A (A ) =) | S
|7 :

< Z Z E:)LJ[(QL, + A ... Gy + A0 — T, - ).

But this last inequality is almost evident.

! Finite systems of this form were considered by PELLET (ef. T and 1I).
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Thus all conditions of Theorem TI (see § 2) are satisfied; its conclusion is
therefore also true and we have thus

Theorem XII. Under the above conditions:
1). the system (22) possesses a solution satisfying the condition

nil =L (25)

which can be found by the method of successive approximations;

2). if {{'s} is the principal solution of the system (23) then there exists only
one solution of the system (22) satisfying the condition (23) viz. its principal
solution;

3). if coefficients of the system (2 ) depend in a continuous manner on a

certain parameter A (so that b; = b;(), ci, . = al ,1;(4)) and satisfy the in-

equality (24) for all values of 2, and if {#;(4)} is the principal solution of (22)
then the functions 7; are continuous.

This theorem follows immediately fromm Theorems IT—IV. But from Theo-
rem IV follows besides another interesting property of the systems of the type
(22) (satisfying (24)).

Theorem XIII. Consider together with the system (22) the following »reduced>
system (finite)
N N a
::2 ‘(\M,n-,’»‘_;'??h-”"?/fj—*"bi (i:I,Z,..., ;V) (26)

y Ry=1

b

.721 ku e

where N is a natural number, and let {5} be the principal solution of the
system (26). Then
lim 9{¥) = 99 (27)

N—w

where {r(o } is the principal solution of the system (25). In fact if we add to
the system (26) the equations 3;='0(i= N + 1, . ..) we obtain an infinite system
of equations with coefficients depending on N. When N — o these coefficients
converge towards coefficients of (22). Besides the system (23) is a common
majorant of all these systems. Consequently, by Theorem IV the principal
solution {n{™} of the system (26) converges towards the principal solution {7("}
of (22) which proves (27).
The following theorem is a corollary of Theorem XII.
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Theorem XIV.' If there exists such positive numbers a and b that (f; and
/i denoting the same operations as above, see (22) and (23))

fila, b, b, .. )= M (28)
for every ¢, then the system of equations

=i 1y 09 .. .) (¢=1,2,...) (29)
possesses a solution for all A’s such that [A| < 2, where 1, denotes Min (a, ]Tbl)’
this solution {r;(2)} depends on A in a continuous manner and vanishes for A==o.

Proof. The system (29) is evidently a system of the type (22) with coeffi-
cients depending continuously of 4. The following system will be its majorant

gi:lof;(’lm ny §27 .o ) + (b - lo.];i(lm b; b: . ))

(here the differences b— Aofi(dy, b, b, . .-.) are non-negative because of (28) and
of the definition of 1,). '

This majorant system possesses a positive solution {, ={,= - = b.

Applying now Theorem XII we arrive at once at the conclusion of our
theorem.

13. A Theorem on Finite Non-linear Systems.

Theorem XV.* TLet 1). fi(ly, & .- ) (=1, 2, ..., n) be n increasing
continuous functions of their arguments; 2). f;(0,0,...,0)=0 ((=1, ..., #) and

3). h'méfi(x, z, ..,x)=0fori=1,..., n (30)

XT—> 0

then the system of equations

G=FfC, ... G+ (e=1,...,m) (31)
has a solution whatever be a; = o.

Proof. If we denote by Z the n-dimensional vector space considered as a
semi-order space, ¢ = (H, H, ..., H) where H is a positive number such that
for (=1, ..., n)

1 A. WINTNER, 1.
* This theorem follows also from the BROWER's theorem on »Fixpunkten».
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H—ﬁ(H, H, ... H) — ;>0

(according to (30) this inequality will be always satisfied provided that H is
sufficiently great) and V()= V({, ..., &) ={fiCs - - ., &) + a;} then all con-
ditions of Theorem 1 are satisfied and therefore its conclusion is true q. e. d.

14. The Existence Theorem for Implicit Functions.

We are going to show that the classical existence theorem for implicit
functions® can be obtained as a particular case of the general theorems of § 2.

Theorem XVI. If a system of equations is given

Iﬂl’(nl) R /'7"; §17 ey §m):O (02 I> 27 vy ”) (32)

. v or; . .
where 1). F; as well as m are continuous functions of %, ..., o, &, .. ., En
in a neighbourhood of a certain point (y,, =)= (%!, ..., 72, &, ..., &n); 2). in

the point (y, x, the equations (32) are satisfied; 3). in the same point the

. Dy, ..., F . . .
Jacobian DI, ..., F) does not vanish, then this system possesses a continuous

D(’?n C ey ”}n) ]
solution in a neighbourhood of the point (y,, )

ﬂi:ﬁ(glv BRI Stm) ([: IL,2,..., n) (33)

fiB o By =n f=1,2..,n (34)

where

Proof. Consider the vector space of the points y =(,, .. ., Un) with the norm

yil=sap (19", ..., |7nl)

The system (32) may be then written as

Fly, x) =o0
where x is a system (&, ..., £.) of m real numbers. Besides
F{', 2% =o.
Set
Ay, @)= T2,

! Cf. VALLEE PoussiN, Ch, IV, § 1.
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Then A(y, ) is a matrix depending in a continuous manner on y and z;
if D{A) is the determinant of the matrix A then we have D(4,) = D (4 (y°, 2°) #o.
Let y =y + A7 'z, then we shall have the following equation for z

t=[A(A718) — F(y° + A7 2, )] = Ule, o) . . .. (35)

But [d U;l(i——x—)] =0 and consequently in a neighbourhood of the point 2=o0
< 2=0

the Lipschitz's condition (with an arbitrarily small coefficient) is fulfilled. In
particular there exists such d that [z + 142/ < d implies (for z sufficiently

near to x,) ‘
Ue+dz,0)—Ule,x) <aldz. o< a<i)

Thus the condition (3) of the Corollary to Theorem II is fulfilled, whence
we conclude that the considered equation in a meighbourhood of the point z=o0

possesses a continuous solution

z=0(x) where 0(z° =o.

But then
: Y=y + A7 0(z)
and
ni=fil5, - . . &m) (t==1,2,...,0)
where f;(¢ =1, ..., n) are continuous functions and
ﬁ(gtl)’ §21~--7 ;;l):ﬂto (521,2,...,1’2)

15. The Convergence of Newton’s Method.
An approximate solution of a system of equations
Fi(n, ..., m)=o0 (t=1,...,m) (36)

which can be written shorter as

Fly)=o (37)

often may be found by the Newtonian method of successive approximations. These
successive approximations are expressed’ by the following formulae

Yn = Yn—1 — A7 (yn—1) F (yn—) (38)
where

! SCARBOROUGH, No. 63; STENIN, I; OSTROWSKI.
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_dT(y) _{oFy
A(y)_ﬁ dq/ _‘0"7Ic{z‘=l,u~:"
i =1

§
}
Bg- U '}

We shall establish now (subject to certain conditions) the convergence of
this process towards the solution of (36). Without detracting of the genarality

of our reasoning we can suppose that y,=o0=1{0, o, ..., o).

Theorem XVII. If all functions ZF; as well as all their first and second
derivatives are continuous then the Newtonian process converges towards a solu-
tion provided that |F(o}|| be sufficiently small.

Proof. Consider the equation
y=A") Ay —F)l= Ul (39)

This equation is equivalent to the equation (37) and the expression (38) gives
the usual process of successive approximations for it. Consequently the process
will surely converge towards a solution if the condition (3) is fulfilled. But this

condition will evidently be fulfilled with « =; if ‘F(y)' is so small that

AU _ 124720 ol < 1

d?/ ‘E—[V (l:l/* F(?/)’ 2 (40)

for such values of y that yl' < 2 Fl(y,) .
§ 5. Integral Equations.
16. Linear Integral Equations of the Second Kind.
Consider an equation of Volterra's type
4

y(t)— f K(s, () ds = (1) (41)

a

and suppose that in a certain interval (a; &) we have: | K (s, )| < M, |f(¢§)| < N.
Then the equation

1 ¢
Here q

is a matrix (depending on %) i.e. an operation transforming the space y into

dUy)
Yy

itself, Its norm is the norm of an operation.
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t

2() — ] Mz(s)ds— N (42)
83

will be a majorant equation for (41).
But the equation (42) evidently possesses a positive solution which can be
found e. g. by the method of successive approximations

MN(t—a)  M*N(t—a)
2

z(t)=N+- . + o= Nelit—o, (43)

Hence follows (if we apply Theorems V and VI) that Volterra's equation
has in an interval (@, b) one and only one bounded solution and that this solu-
tion can be found by the method of successive approximations; this single
bounded solution will be also the only integrable solution because it is evident
that any integrable solution of Volterra’s equation is in the same time bounded
in {(a, b). ‘

In a similar way we can make analogical conclusions concerning Fred-

holm’s equation

v —2 f Ko, 8 yls)ds = £(0) (44)

In this case we shall obtain different boundaries for 4 by using different
spaces of functions (i.e. by giving different definitions to [y {). BE.g. if we set
'y =sup y(s)’ then we can prove that the solution of Fredholm’s equation

s

exists when

b
v supfiK(s, i) ds < 1. (45)
t

Theorem VII will allow us to make several conclusions as to the con-
tinuity of the solution regarded as a function of parameter and as to lawfulness
of passing to a limit in the solution when the nucleis converge towards a »limit
nucleus». In particular the solution of an integral equation can be obtained as

a limit of solutions of a system of algebraic linear equations.

12—3982. Acta mathematica. 71. Imprimé le 3 mars 1939,
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17. Systems of Fredholm’s Equations.

Consider a system

b
)
n

a=t=b; nt)— | Kijls, yls)ds=¢i(t) (=1,2,..,%). (46)

Define in any way the norm of a function #,(f) e. g. let ;| =sup |5:(f)/,
a;=t=b;

and take for y the set of systems of functions y = (n, ..., n:) and for Z the
semi-ordered space of systems of real numbers z=({,, ..., {) and set |y =
= (g, ..., ma ). Denote, besides,

bj

sup f K ils, )| ds = ;.
(lii:tiibi
(Ij
Then if we consider the system (46) as a single equation of the type (g) the
following equation of the type (8)

Ci—z e = s (l=1,..,n) (47)

will be its majorant.
Hence follows:

Theorem XVIII. If the algebraic system of equations (47) has a positive
solution z=({,, . . ., {») then the system (46) also has a solution.
This theorem follows immediately from Theorem V.

18. Approximate Solution of Integral Equations.

We shall now apply Theorem VIIT which will allow us to estimate the error

of an approximate solution of an integral equation.

Theorem XIX.! Tet k(s, t) and K (s, t) be two nuclei such that the resolvent
y(s, t, &) of the nucleus %(s, {) be known and let

est=b

b
sup fuf(s, 0 — ks, ) ds=h
a

! KANTOROVITCH & KRYLOFF, p. 150.
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sup j ly(s, t, })|ds=B (48)

a=t=h
sap [g(f)[=N.
a=g=)

(

In this case if 1 — |[A[Ah(1 + |41 B) > o then the equation

—-lst Hepls)ds=g(t) ' (49)

possesses one and only one solution which differs from the solution of the equation

b

&uw-fk@w¢<m8-Jm (50)

a

not more than by the following quantity
| [ h(1 +/1_I£__ h\MI-I—MIBzN
pll—9) = LR 4B T i—klA[(1+|%]B) (51)
where M = sup | (2)].

as=t=b

Proof. Apply Theorem VIII. In the place of the relation y = I'(y,) we

have the following one
b

&m:gm+lf7&tMMﬂm. (52)

Hence considering all the functions as elements of the space of bounded function
M, i.e. defining norme f as | f|=sup |f(f)] we obtain the inequality
a=t=b
pli=lgi+[2[Buy. (53)
We see hence that in the present case
<1+ |A|lB

Similarly (cf. Theorem VIII as to notations): f— f | <h|Al. Hence
follows that
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WA= Il=h(x + 2] B)|a] =« <1
because we have supposed that h|i](x + |A|B)< 1 and consequently accord-

ing to (13) :
Rl + “IB),TI R0+ A BEN

— ol < 2 < .
Iy —ll = h|A [+ 2B T 1=k +|4]B)

Defining differently the norm of a function we shall obtain (from the same
Theorem VIII) different other estimates for the difference | — ¢|. In particular
we can obtain thus two theorems of Akbergenoff giving such estimates.!

19. A Theorem on Fredholm’s Equations on the Infinite Interval.

Theorem XX. Let

[A( Bl ds—h(t) < 1. (54)
Then the integral equation
g (1) — f K(s, 9 (s)ds — (s (55)

possesses a solution if its right-hand member f(#) satisfies the inequality | f(t <
< C{1 — h(t)), where C is a constant; this solution is bounded, viz. | ()| < C.

Proof. This theorem is an immediate consequence of Theorem V because
the equation

7 () — f K5, )9 ds = C(1 —h(D) (56)

which is a majorant for the equation (55), possesses evidently a positive solu-
tion ¢ (t) = C.
20. Non-linear Integral Equation.

Applying theorems of § 2 to the case of non-linear integral equation we

may obtain several theorems of which we shall prove only one.

Theorem XXI. Let the function K (s, ¢, y) be defined and continuous for (s, ?)
lying in a certain region @ and for y such that |y | < y,(s) and suppose that

! AKBERGENOFF, I, pp. 681 and 689.
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there exists a function @(s, f, y) of the same variables, defined and continuous
in the same region (as K) and satisfying the following inequalities

1) | K(s, t,0)| =< @ (s, ¢, 0)

2) @yls, b, y)=0; @pls, t,y)=o.

3 [ K(s, t,y+ dy)—K(s, t,9) < @fs, t, [y|+|dyl)— @fs, ¢, 'y|) provided
that [y, + |4y < y,(s).

In this case if

%MZf@@a%®Ms (57)
G
then the integral equation
ywsz@twmm (58)
£}

has a solution y(f) such that |y(f)| < y,(s). If besides there does not exist more
than one solution of the equation

ym=fw@ammm (50)

g

satisfying the condition |y (t)] < y,(#) (one such solution always existing) then the
equation (58) also possesses one only solution satisfying this condition and this
solution can be found by the method of successive approximations starting with
any function ¥, (s) such that |y, (s)| =< y, (s).

Proof. This theorem follows immediately from Theorems Il and III. We
must only ascertain that the conditions of these theorems are satisfied. It is
sufficient to prove condition 3) (all other conditions being evident). This con-
dition is fulfilled because if |y ()| < z(f) and | Ay (B)| < 42(t)

{jmK(s, t,!/(s‘)+4g/(s))d.9-—f]{(s, t,?/(S))ds;S

sf@@ay@+~mmm—m@awwnms

62

=< [[LD(S, tz(s)+ A2(s)ds— D(s, ¢, 2(s)]ds.

@
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Corollary.! If in particular the function K (s, ¢, y) satisfies the condition
| K(s, ¢,y +dy)—K(s, t,y)| = C|Ay| if |y| + | 4y| <L then the equation (58)
has one and only one solution, satisfying the condition |y(s)| < L provided only
that the following conditions be satisfied

CmG<1, SmG+LCmG=<1L (60)
where
S=sup | K(s, t, 0.
This Corollary follows immediately from Theorem XXI if we set

Ofs, t,y)==8+ Cy and y,(s)= L.

Remark. If the second inequality (60) only holds then the satisfying con-
dition |y (s)| = L nevertheless exists but there may be in this case several such

solutions.

§ 6. Differential Equations.

21. The Convergence of Picard’s Method.

We shall prove now the classical theorem on the convergence of Picard’s
method.

Theorem XXII. Let a system of differential equations be given
d Ni .
Tt =filyy - o Nuy B) (e=1,2,...,n) (61)

and suppose that the funections f; are continuous in ¢ and satisfy the condition

of Lipschitz rel. 5, ..., ga for |¢| and |7;| sufficiently small i. e. that for || < ¢,
and | o] + |Ap|<h =1, 2, ... #) we have
‘ﬁ(’h + A0, s A )=y, g, )=
=C(dnl+ -+ [dm)) (62)

Then the system of equations (61) possesses a solution 7; = #;(¢) where the
functions #;(f) are defined for ¢ sufficiently small (|#| < J) and satisfy the fol-

lowing initial conditions
n:{0) = o. G=1,..,m) (63)

! NIEMYTZEI, I, p. 656.
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Proof. The system (61) we may write in the following form

t
wlt)= [0 (0, Dat (64)
b
Then regarding the system of functions (1;(f), . .., 7.(f)) as an element y

of the abstract (semi-ordered) space Y of systems of functions we may consider
the system (64) as an equation of the type (2) y = U(y). As a majorant
equation z = ¥V (z) we can take the following system

G = [C(Cl(t)+ ---+Cn(t))dt+f[ﬁ(o, o fldt (i=1,2,...m1). (65)

(Here Z =Y which is considered as a semi-ordered space.) All conditions of
Theorems I and II are fulfilled. In fact 1)—4) of Theorem I are evident; 5)is
satisfied if we take for 2 the system of functions (i(f) = ae"Ct (=1, ..., n)
provided that J and ¢ are such that the following two inequalities subsist

d
fﬁ(o,..., o dldt<a  (i—1,. ,n)  (66)
0
aeCd <),

(the second inequality (66) is not necessary in order that 5) of Theorem I be
satisfied but it will be needed for proving property 3) of Th. II).
1) and 2) of Th. Il are evident. 3) is also true. In fact we have for

A= 488 () = G(f) and &) + 4L(H) S e (i=1,2,...,7)

’fﬁ(m(f)wm(t), () + A D), Dt —
-fff(m(t), oy (), Ddt) =

< fC(dCI(t) + -+ A5 dt
0
We have proved thus that all conditions of Theorem II are satisfied; there-
fore its conclusion is also true and thus Theorem XXII is proved.
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22. Cauchy’s Method of Majorants.

- The classical method of proving the existence of the analytic solution of a
differential equation can be also shown as a particular case of theorems of § 2;

viz. we can prove the following theorem.

Theorem XXIII. Let a system of equations be given

d n; - ) .
72219'(’71: Ce e T f):ZC'kn---,kwlUlf' okt (=1, 2,..., n). (67)
Ry, ok, 10
Then if the system
a8 - - < 3 4
dt - E(éh ooy Cny t) :Z Ck”"-' knvlcl1 s -:n"t (68)
ki ook, 1=0

where | ¢, .., 1, 1| = Ck, ..k, 1 Possesses a solution

n

L) = DAt where all P =0 (i=1,2,...,n)

8=0

then the system (67) possesses a solution satisfying the initial conditions #; (o)==

t=1, ..., n) and having the form

where | g/ < hl) provided only that |#| <Al for /=1, ..., ».

Proof. Substituting in (67) and (68) for 7; and §; the corresponding series
we shall obtain in left hand and right hand members of these equations formal
series by comparing coefficients of which we arrive at the equations of the types
(22) and (23). Applying to these equations Theorem XII we obtain the desired
result.
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