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In the functional analysis abstract linear spaces are considered which may 

have for their elements mathematical objects of a various nature: numbers, 

sequences of numbers, functions etc. Therefore theorems established for such 

abstract spaces usually can be applied to very different branches of mathematical 

analysis. Thus the general theory of functional equations, i.e. of-such equa- 

tions where the unknown quantities are elements of a linear space, comprises 

the theories of differential, integral and some other equations considered in ana- 

lysis as well as the theory of finite and infinite systems of algebraic equations. 

One of the most important methods for establishing the existence of solutions 

and for the investigations of these solutions is the method of successive approx- 

imations. We shall give here the geaera] theory of this method for linear and 

non-linear functional equations in a very wide class of spaces viz. the spaces 

normed with the elements of a semi-ordered space. This class comprises inter 

,~lia Banach's spaces and semi-ordered spaces. ~ The theory of this method will 

be based on the principle of majorants. We shall give also some applications 

of the general theory to the systems of alo'ebraic equations and to the differential 

and integral equations. 

1 For the  case of semi-ordered spaces some theorems on these funct ional  equat ions  have been 

publ i shed  already by  the  au thor  of the  present  pa.per. See Lis t  of Literature,  vide ]~ANTOROVITC]-I, ~I. 
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w I. T h e  S p a c e s  C o n s i d e r e d .  

i .  S p a c e s  o f  t h e  T y p e  B .  

A l i n e a r  (o1" vec to r )  se t  is by  d e f i n i t i o n  a se t  X = {x} in  w h i c h  t h e  f o l l o w i n g  

o p e r a t i o n s  a r e  de f i ned  a n d  s a t i s f y  t h e  u s u a l  ru l e s  t: sum x~ + .% of  two  e l e m e n t s  

of  X ,  t h e i r  d i f f e r ence  x ~ - - x ~ ,  t h e  p r o d u c t  )~x of  x E X  by a r e a l  n u m b e r ;  a n d  

t h e  zero  e l e m e n t  o of  X.  

Cf. S. 7[L~.NACIr, l, p. 26. 
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A l inear  set X is called a no rm ed  space if to every e lement  x of X a 

(necessarily non-negat ive)  real  n m n b e r  ~ !  is corre la ted  (which is called the  

no rm of ;r) and  the  fol lowing 3 condi t ions are satisfied: 

'). i x  i := :o  if and  only if x =  o, 

2). !! X 1 -~ ;/' 2 / ~'~ ii '/'1 -}-! '9C2 i '  

3 )  z; , .  - -  I z : , i l x l  

W e  shall say t h a t  a sequence {x,,} of e lements  of a no rmed  space X con- 

verges towards  . ~ ( x E X )  and wri te  x , , - ,  x or x , - ~  x(b) if  

lira i .r,~ . .r ii = o. 

A no rmed  space X is called a space of the type  B if i t  is complete  i .e .  if 

wha t eve r  be a sequence :r,, of e lements  of X sa t i s fy ing  the condi t ion 

lira i I ,%, - x, , ,  : = o 

there  exists an e lement  :rE X such t h a t  x,, ~ .r(b). ~ 

2, S e m i - o r d e r e d  Spaces."  

A senti-ordered space is a l inear  set  Z in which the  re la t ion  z~ > z,, is de- 

fined for  cer ta in  pairs  of its elements.  "~ This  re la t ion  mus t  sa t is fy  the  usual  

rules concern ing  the  inequali t ies.  In  these spaces we can define (in the  usual  

manner )  the not ions  of an upper  and  a lower  bound of a set E ~  Z and also 

of its least  upl)er and g rea tes t  lower bounds.  W e  shall  suppose moreove r  t h a t  

every finite set  is bounded  and  tha t  any bounded  subset  E of Z has  a leas t  

uppe r  and a g rea tes t  lower bound.  These bounds  we shall  denote  resp. sup E 

and  inf  E.  A space possessing all these proper t ies  we shall  call a space of the  

type  /s ~ 

1 Ib id . ,  p. 33. 

" I(ANTOItOVITCII, l l, w167 I---  4. 

:~ F o r  t w o  g i v e n  e l e m e n t s  .z~ alld .z~ m a y  s u b s i s t  n e i t h e r  of t h e  r e l a t i o n s  zt  > z.2; ,'G < 7,.2; 

Z I ~ Z2. 
4 A l l  t h e s e  c o n d i t i o n s  a re  f u l f i l l e d  i f  Z s a t i s f i e s  t i l e  f o l l o w i n g  5 " tx ioms  

I) O i s  n o t  > o. 

2) zl  > o a n d  z 2 > o i m p l i e s  z~ + z2 > o. 

3) F o r  a n y  z E Z  t h e r e  e x i s t s  a n  .G ~ o s u c h  t h a t  z~. - -  z ~ o. 

4) I f  z > o, z E Z  a n d  ~. i s  a p o s i t i v e  r e a l  n u m b e r  t h e n  ).z > o. 

5) A n y  b o u n d e d  s e t  E p o s s e s s e s  t h e  l e a s t  u p p e r  b o u n d .  

Cf. KANTOROVIT(?II, ~1. 

9=-3932. Acta mathematlca. 71. I m p r i m 6  le 2 mars  1(t3!). 
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The fol lowing definitions will be useful:  

The  positive and the negat ive par ts  of z (z+ and z - )  are defined as follows: 

z+ ~ sup (o, z) ; z - ~  sup (--  z, o). I t  m~y be easily seen tha t  z = - z + - - z - .  

The  ~absolute value>> izl of z is defined as i z i = s u p ( z ,  - - z ) - - z t _  + z - .  

This absolute value possesses the fol lowing proper t ies :  I). o i = o; !z > o if 

A linfit. I f  Z,~ is a bounded  sequence, we shall denote  

l im z,, ~ inf  [sup (z,, z,,+~, . . .)l; lira z,, ~ sup [inf (.e',, z',,§ . . .)]. 

I f  lira z'~ = : l im z ~ - - z  we shall say tha t  the sequence .z,~ converges (o) 

towards z and write lira z n - - z  or z ,~-~ z (o) .  This l imit possesses all the  
?l-~ cr 

e lementary  propert ies  of the ord inary  limits. In  par t icu la r  i t  satisfies the  cri- 

te r ium of Cauchy, i .e .  if  for  a given sequence lim .z,~--Zm!----o then  the  

sequence .z'~ converges (o) i . e .  z E Z exists such tha t  zn-> z(o), or (which is 

the same) lim I z~ - - z '  "- o. 1 

3. Spaces,  l~ormed wi th  t i le E l e m e n t s  o f  a S e m i - o r d e r e d  S p a c e J  

Le t  Y be ~ l inear  set and suppose tha t  to every e lement  y E Y is cor- 

re la ted an e lement  ]!]1 of a cer ta in  semi-ordered space Z (of the type K~), so 

tha t  the  fol lowing condit ions are satisfied: 

I). [y[ 0 if and only if y ~-o;  

2) I!/, + -< I + I:i_  l; 

3). IZ? l=l llyl. 
W e  shall say then  t ha t  Y is normed  with Z. F rom ~)--3) follows t h a t  for  

~my y ~ o we have lY[ > o. 

We shall write !1,~-~ y ( b s ) i f  [!/ , ,---y[--~ 0 ( 0 ) i n  the space Z.  I f  the  space 

Y is complete,  i .e.  if any sequence !t,~ such t h a t  lira ]y,~ ~ y m [ =  o converges 
751 m ~  

(bs) towards  an e lement  yE Y, i .e .  y , , -~ y (b s )  then  we shall call Y t h e  space 

of the type  B s .  This type  includes both  preceding types B and K~ or more 

precisely any space of one of these types can be easily conver ted  into a space 

of the type  B s .  In  fac t  if Y is a space B we may take for  Z the space of real  

1 ] ~ A N T O R O V I T C H ,  J [ .  T h e o r e m  X X  b). 

2 T h e s e  spaces  were in t rod/ leed  in  ]{ANTOROVITCH, I l l ,  p. 272. 
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numbers and set I V l -  ,!'Ji. In the ease when is a space n ;  then we set 

Z - -  Y and l Y I =  l Y[. All the propert ies  enumera ted  above of the space (Bs) 

are then  satisfied (this follows f rom what  has been already said in 2. and 3.). 

Accordingly in what  follows we shall consider chiefly the spaces B,~,. 

4. S o m e  P a r t i c u l a r  Spaces.  1 

I). The  space of measurable  funct ions.  Consider the set S of all measur-  

able funct ions  defined in a given measurable set E.  Two elements  of the  set S 

we shall consider  as identical  if  the i r  values coincide ahnost  everywhere  in E.  

W e  shall wri te  901 -> 90,2 if 901 (t)--> 90,2 (t) for  almost  all points of E.  

This last  condit ion t ransforms  S into a semi-ordered space; 90,l -~ 90 (o) if 

90,, (t) -~ 90 (t) a lmost  everywhere.  

suct~ measurable  funct ions  tha t  ; 1 9 o  (t)i~ d t < + ~z (19 is here  2). Secondly 

a fixed number  > x) cons t i tu te  ano the r  semi-ordered space L~; in this case 

90,~-7 90(0) means  that  90,,-~ 90 (o) in S and there  exists a func t ion  900 e L~' such 

tha t  for  any ~l: [q),,] <- 90o. The  set L(P) may be considered also as a space of 

1 / p .  

the type B:  if we set ]90 ~-1 l:90(t):vdt) v" The convergence (b ) , , i l l  be in 
x I I 

1,1 

this ease the convergence in m e a n  of the order  p, i .e .  ~f,,,-~90(b) in L'P is equi- 

valent  to 

j '190,,(t) - -  (t)i , '~tt ~ o. 90 

E 

3)- Consider fu r the r  the space s of all sequences :s] = (@), ~2(2), . . . )  of real  

nmnbers,  where yx > y~ if for  all i: V~) >-- ~2~ '). In  this space y,~ ~ y(o) if for  

every i we have V~[)-> ~]()(when n--~ ~c). We may consider  also the  space (m) 

I~(ol < + ~ This last  of bounded s e q u e n e e s , i ,  e. of such sequences tha t  sup~ 
i 

space anay be cons idered  ei ther  as selni-ordered or as normed,  .with lY. =~ 

= sup I~/')!. The convergence will be different  in both  eases. 
i 

4). The mdimensional  vec tor  space is the set of all systems y=(~](~), ~)(.2, . . . ,  ~i(,,)) 

of ~ real numbers.  This space may  be considered e i ther  as semi-ordered (as 

above) or as a space of the type  B with e i ther  

1 Vide ]~ANTOROVITC/I ~], ~ I o - - I 2  and  S. BANAC~I w 7, 
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�9 r l , -  s u p  ',?'71 or  i ,~':  i = ,~i,)),2 
i 

5). The  space C of cont inuous  func t ions  x ( t )  defined in a segment  [a; b] 

,vith the n o r m  ! x l , - - s u p  i x ( t )  i. 
a : ~ t ~ b  

w 2. F u n d a m e n t a l  T h e o r e m s  o n  F u n c t i o n a l  E q u a t i o n s .  

5- E x i s t e n c e  T h e o r e m s .  

T h e o r e m  I.  Le t  Z be a space of the  type  K> Consider  the  equat ion  

= 

W e  shall suppose t h a t  ( z ' >  o being a cer ta in  fixed e l emen t  of  Z ) :  

I). V ( z )  is defined for  every z E Z  such t h a t  o - - -<z~<z '  and  t ha t  fo r  any 

such z we have  V(z)E Z. 

2). I f  o --< Zl ~< z,2 ~ "" <~ z; and lira z,, = z (in this  case evident ly  o --< z ~ z') 

t hen  l i r a  V (z,) = V (z). 

3). V ( z )  is mono tonous  for  o--<z--< z', i .e .  if o - - < z < z +  H z - - < z '  then  

�9 v (.-) _< v ( z  + 

4). (o)~> o. 

5). v ( z ' )  _< 

I f  all these  condi t ions  are satisfied then  the  equa t ion  (1) has  a solut ion z* 

such tha t  o ~ z* ~ z '  and this solut ion can be found  by the  me thod  of succes- 

sive approximat ions .  

Proof .  L e t  z' o - :  o, z ' , , - -V ( z ,~_~)  for  any  na tu r a l  u; we shall prove  t h a t  

for  any ,i, 

O .... 2' o ~<~ Z 1 ~ . . . .  ~ ~ ~ ~P. 

Fo r  u - - o  these inequal i t ies  subsist. Suppose t h a t  they  are p roved  for  ~ = -"0 ;  

we shall  prove  t h e m  for  ,, ~ ' 0  + I .  I n  fac t  Zno+l = V(.Yno) ~- V ( z n o - 1 ) ~ ' n o  

(by 3). and 5).), if  "o > o and  Z,o+l- -  V(,Z,,o)-~ V ( o )  >~ o = z~,o (by 4).), if  , o = o ;  thus  

in all cases Z,oH >-- Z,o; on  the o ther  hand  z,,o+x =- V(z',,o)<-- V ( z ' )<- - z  ' (by 3). and  5).). 

W e  have  proved  thus  t h a t  the  sequence zl, z., . . . .  is m o n o t o n o u s  (increasing) 

and  bounded.  There fo re  i t  converges  towards  an e lement  z* of Z such t h a t  

o ~< z * - -  < z'. Hence  follows by condi t ion 2). 
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V(z*) = lira V(~n) 

69 

or, V(z,~) being identictd with z.+~ and lim V(z,,) 

lira ,-'n+l = z*, we have 
~t~ ~_ 

being there fore  equal  to 

. 9 =  ~" (~*). 

As besides o--< z* - -  < z' and z * =  lim z,, Theorem I is completely proved. 

Remark .  Suppose tha t  besides condit ions I).--S)., V satisfies the  fol lowing 

condi t ion:  2'). if  z' --> z 1 --z, ,  --> . . . . . .  >-- o and lira z,~ = z ,  t hen  V(z) = l i m  V(z~). 

r ~ t t 
Then  set t ing z o z ,  z'~+l-- V(,z~) we obtain as before a solut ion z'* of the 

equat ion (1). This solution will not  necessarily coincide with z*. I t  is easy to 

see however  tha t  

The o re m II .  Le t  Y be a space of the type  Bs normed by the elements  of 

the space Z. The space Z and the operat ion V, us well as the element  ~ ' E Z  

shall be the same as in Theorem I. We  shall consider  the equat ion 

:y = u (:q) (~) 

where the operat ion U is such tha t  the  equat ion  (t) is a ma jo ran t  of (2). 

By this we shall mean tha t  

I). U(.q) is defined for  every !]E Y such tha t  

and for  any such y we have U(y) E Y, 

2). IU(o)l  < V(o), 

3). I t7(:,t + ~4 , j ) -  u(~,~)l -< v(~ + 3 ~ . ) -  r(~) if only I:'tl --< ~, iA.,Jl--< ~ ;  
+ J ~  ~ Z'. 

Then the equat ion (2) possesses a solut ion y* satisfying" the inequal i ty  

l y * l - -  < z' (or more precisely l y * l - -  < z * )  which can be found  by the method  of 

successive approximations.  

Proof .  Set Yo .... o, y,, U(y,,-~). We shall prove tha t  for  any n and m 

such tha t  m > u 

I n  f a c t  ] f f l  - -  frO ] = I Yl  [ = ] U ( o ) ]  --< t z (o )  - -  ,~1 - -  2/1 - -  ,~'o. Suppose that w e  

have proved the above inequal i ty  for  any m and ~ such t h a t  ~ < m --< mo(m o >-- I). 

We  shall prove it for  /t < m <~ m o + I; then  (by 3).) if ~o -> ~ >- I 
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I ~ . ~ o + , -  : , J , , I - -  I u ( y , , - 1  + ( ~ j ~ o - : , j , , - 1 ) ) -  v ( ~ n - 1 ) l  

_< v ( ~ , , _ ,  + (~.,; - ~,~_,)) - v ( ~ , , _ l )  = ~mo+, - -  ~-,~ 

b e c a u s e  I ~ n _ l  I = ] y n - - 1  - -  if01 ~'~ ~n--1 - -  z 0 = zn--1  (,1 - -  I ~ $~)'0)' I I1  t h e  e a s e  w h e n  

n - - o  we have  

I ~ o + 1 - y , , I  = I y,,,~+, I -  I : /~  + I :'/, I-< (,~,,,o+,-~,) + ,~ , - -z . ,o+,-~, , .  

We have proved thus our  inequa l i t y  fo r  any n,,m such thu t  ~t < n~. Bu t  now as 

z , ,~-  z,~-~ o (o) in Z 

i t  fol lows t h a t  ]ym--:q,*[-+ o (o) (in Z)  whence (by Cauehy ' s  e r i te r ium for  the  

space) the re  exists  a 

( b , )  l i r a  :,/,, - -  , / '  'Jo + (:Jl - :'/o) + (;I~ - 'J,) -I . . . .  . 

As on the o the r  hand  [y,, [-< z,,, i t  follows t h a t  [y* [ -<  z * - -  ~ z'. 

Besides 

I u ( : ; ) -  u (:,~,~) I -< v ( ~ " ) -  v ( ~ . ) - - ~ *  - ~,,~., 

( b e c a u s e  I t *  - r,, I -< ~-+ - ~,, and I :'~,, I -< ~,,)- H e n c e  fol lows 

U(y*)  = (b s) ] im U(y,,,) = l im  11.,+~ - .q* .  

So t h a t  y* is the  required solution. 

R e m a r k .  W e  shall  call these  solut ions z* and :q* of resp. equat ions  (I)and 
(2) ob ta ined  by the  m e t hod  of successive app rox ima t ions  and  s t a r t i ng  wi th  the  

value o, the  pr inc ipa l  solut ions of these equations.  

Co r ro l a ry .  ~ I f  the inequal i ty  

I u( , j  + a : y ) -  u ( , j ) I - <  ~ I ~, ,al ,  (3) 

where o < a < i, subsists  for  all values of y and  J y then  the  equa t ion  

,J = U (y) + ,~o (4) 
has  a solut ion wha teve r  be Yo. 

' In the case when Y = Z i s  a space of lhe type B (and ly[=i ly i l )  this corrolary coincides 
with the so-called principle of CACCIOPOLLI-BANACIt; vide, e.g., S. ]~ANACtI II, p. I6I and CAC- 
CIOPOLL~; I. 
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Le t  in fact  

then  sett ing 

v(~) = I u (o) + .Vo I + ,  

, Iv(o) +,~ol 
I - - - C r  

71 

we have V(z ' )= z'. On the other hand  V(o)--> o and V evidently satisfies also 

all other conditions of Theorem I. Also the funct ion U(y) + Yo satisfies all 

conditions of Theorem I I  (con& 3) is satisfied becnuse of (3)). Therefore we may 

apply Theorem I I  to this funct ion and conclude tha t  a solution y* of the equa 

t ion (4) exists such tha t  

I~,~* I ~ ! ~  (-~ .%1. 
I - - c ~ "  

6. Un ie i ty  Theorems .  

Generally speaking there can be more than  one solution of the equation (2), 

however if the majorant-equat ion (I) has only one solution then  the same is 

t rue of the e q u a t i o n  (2), or, more exactly: 

Theorem III .  I f  the functions U and Y satisfy all conditions of Theorem I I  

and V satisfies besides the condit ion 2'). (see 5. Rein.) and if moreover z * - - z ' *  

then  there exists but one solution of the equation (2) sat isfying the condit ion 

I y I g z '  This solution can be obtained by the method of successive approxima- 

tions s tar t ing with any value Y'o of y sat isfying the inequali ty [Y'o[ -< z'. 

v t _ _  : v v t 

Proof. Le t  y o E Y and suppose tha t  l y o l < Z'o Set yn = U(yn-I). 

Then we have (using the notat ions of Theorems I and II)  

r v : v 

I , ' o - y o l =  I?Jol-< ~o ~o -~o .  

We shall prove now tha t  in general  

l Y' I ' 

For  ~ : o this  inequali ty is true. Suppose tha t  it  is true for ,~ : ~%; we shall 

prove it for ~ = n  o +  I. I n  fact  

I.r -- ?I,,o+~ I = l ~" (J,,o) -- U(.~,o) I = I U(?Ino + (~/,,o -- i~,,o)) -- U(y,o) I --< 

_< r(~, ,o + (~',,o - ~,,0)) - v(~,,o) = / , , o + 1  - Z , , o + l .  
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,P , '# 
The above inequali ty is thus proved inductively. But  we have lira z , ~ - z  --  

z* -- lim z~ and consequently lira (z'~, --- z,) ~ o. Hence lim y',,~--lim yn~-y*; 

thus starting' with an arbi t rary Y'o sat isfying only the condition lY'ol -< z' we 

arrive at  the principal solution y* of the equation (2). 
t t P 

Suppose in par t icular  tha t  Yo satisfies the equat ion (2); then y , ~  Yo and 

y * ~  lim y',~ = Y'0, Thus we have proved tha t  there can be no other solutions 

y of (2) sat isfying the inequality l y l-< z.' except ?f. 

0orrola, ry.  The equation (4), where U satisfies the condition (3), admits  of 

but  one solution which c a n  be obtained by the method of successive approxima- 

tions s tar t ing with an arbi t rary element of y. 

In  fact  the ma.~orant equat ion 

Iu (o )+  :iol+ 

has evidently one solution only. 

Theorem II I ' ,  I f  U and V satisfy the condit ions of Theorem I I  then  there 

exists only one solution of the equation (2) sa t isfying the condition l y l ~  z*. 

This solution can be obtained by the method of successive approximations s t a r t -  
r ! 

ing with an), y o such t h a t  [y 0[--  ~ z ~. 

Theorem I I I '  is proved in exactly the same manner  as Theorem I I I  with 

this difference only tha t  everywhere in the proof we must  substi tute z* for z',,. 

7. (',ontinuity Questions. 

We shall prove now tha t  if an equation of type (2)depends in a continuous 

manner  on a parameter  then  (if certain conditions are satisfied) its solution is 

also a continuous funct ion  of the parameter.  

Theorem IV. I f  an equation is given 

:,~ = l '  (.'I; Z) (5) 

where U is a funct ion of y and ~ defined for a certain set /1. of values of 

containing )~0(40 El / ) ;  and if the following conditions are satisfied: I). the equa- 

t ion (T) is majoran t  to (5) for every value of 4; moreover V is defined and 

satisfy the above conditions for o--~ z ~ 3 z' and condit ion 3)- of Theorem I [  is 

satisfied for every y and z?!/ such that and 
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2). U(y, ~) as funct ion of ~ is cont inuous in the point  ~o, i .e .  lira U(y, ~ )=  
2 ~  Io 

U(Y,~o); 3). V satisfies condit ion 2') of Remark  to T h e o r e m  I;  then  the  

principM solution y* (~) of the equation (5) converges towards y* (~o) when ~-> ~o 

i.e. ?/* (~) regarded as a funct ion of )~ is cont inuous in the point ~o. 

Proof. We have (for any .n) 

. :  (x) = :~, (z) + (:F (z) - y,~ (~)) 

and besides 

I :  (~) - -  Y,, (X) I -< : - -  Zn. 

We shall prove now inductively tha t  for any .~ 

lira yn ()~) = y,, (Zo). 
2 ~  2o 

In  fact  for ~ = o this equality is t rue (because then both members  are o) 

suppose tha t  it is t rue for ~ = n o. Then we have 

I :/,,o+, (X) - -  :+,o+, (go) I = I U (,:/,,o (Z), Z) - -  U (Y.o (Xo), Zo) l -< 

--<l l; (.~,o (Z), Z ) -  U (Y-o (Zo), Z) I + I g (Y,o (Zo), Z ) -  v (y~o (Zo), go) l-< 

-< v(ly,,~ + ly, ,o(Z)- y , , ( ~ o ) l ) -  v(l.~no(Zo)l) + 

+ I u (y~o  (Zo), z ) -  u ( y , o  (Zo), Zo) l 

because [ y,~()~o)[ ~ z' and [ y,o (~) --  y,o()~o)[ ~ [ Y,,o()~)[ + ] Y,o ()~o)[ ~ 2 z'. The first 

summand in the r ight  hand  member  of this inequali ty converges towards  0 be- 

cause y,o(~)-> yno(]~o)(bs) and V satisfies the  condit ion 2'); the second summand  

converges towards 0 because U is continuous for ) .=s  This proves tha t  

Yno+l(Z ) -=> ff,o+i(~o). Thus we have proved tha t  for any n: y,,(2)-+ y,,(Z0). 
2 ~  2 0 

Now from the inequali ty 

Iv* (z) - nn (z) l -< : - -  ,~,~ 

follows 

I ~,:" (Z) - -  : (Zo) I -< I . :  (Z) - -  y,, (Z) I + I . :  (Zo) - -  Y,, (Zo)I + 

+ I:/, (z) --- y. (Zo) l -< 2 ( :  - .~,) + I.v,, (z) - y .  (Zo) I. 

I f  2-~ 2 0 then (according to what  precedes) 

lira l y + (z) - :/* (Zo) l -< ~ ( :  - ~.), 
2 ~ 2 o  

n being arbi t rary  there  follows 

lira y* (Z) = y* (Zo). q . e . d .  (6) 
2.~ 2o 

] 0 - - 3 9 3 2 .  Acta mathematica. 71. I m p r i m 6  le 3 m a r s  1939. 
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w 3. Linear Equations. 

8. Operations Admit t ing  a Majorant. 

In this w we shall apply the general theorems of the preceding w to the 

special case of linear equations. 

Let Y be a space of the type B.s.. Consider an additive operation trans- 

forming the space Y into itself, i.e. such that  whatever be :]e Y there exist 

always f(!]) e Y and that  for any y, e Y, y.~ e Y we have f(Yl + !/~) =f(?]:l) +f(Y.2). 

Suppose that  there exists an operation g transforming the space Z into itself, 

additive, positive (i. e. such that  z > o implies g(z) > o) and besides such that  

for any y e Y the inequality 

I f(?/) I -< :: (I Y I) (7) 

subsists. We shall say then that the operation f admits a majorant and that  g 

is a majorant for f. 

In this case (i. e. if f admits a m a j o r a n t ) f  is necessarily homogenous, i.e. 

whatever be ye  Y and a real number E we have always f (~y)  =). f(y) .  In fact 

in the case of rational E this follows from the definition of an additive opera- 

tion. Suppose L irrational and let L~(~ ~ I, 2, . . . )  be rational numbers such 

that  I) . ,~--) ' I< ! .  We have then 
J/ 

I Zf(y) -:'(z?/)l <- l(z - z.)f(y) I + If(~..,/- ;.,,~/) I --: 

I 

-<-;If(y)l + ~(Iz- z,,l. I.'/I) -< ~If(:'/) I ~ :,:/(l?/I) 

whence ~ being arbitrary and in a semi-ordered space .z >--o always implying 

(') inf ;;z = o  we obtain f ( ) , y ) -~ . f (y ) .  

In the particular case when ] : =  Z and I : , J l - -  :,/I (i. e. when Z is a senti-  

ordered space and for the norm of an clement z of Z we take its >>absolute 

,value>; J zl) the set of all operations f admittin~q" a majorant g, (i. e. such t~hat 

for any z E Z 

I f(~):--< :/(Iz I) 

can be considered itself as a semi-ordered space (if we write f~ > f ~  when the 

operation f~ - - f~  is positive) which we shall denote (Z-~ Z). ~ Accordingly for 

1 KANTOROVITCH, I I I ,  Theor .  3. 
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such operations can be defined f+,  fi-, [f i  (which are again operations belonging 

to Z -~  Z and moreover positive) and hold the formulae f = = f + - - f ~ ,  ] f l  = 

:=-f+ + f - & c .  We see thus that  any operation belonging to Z - r  Z is the 

difference of two positive operations. On the other hand every positive opera- 

tion is its own majorant so thus every positive operation and consequently every 

difference of ~wo positive operations belongs to Z->  Z. 

I f  Z satisfies some additional conditions then the class Z -+ Z coincides with 

the class of (0)-continuous additive operations, i .e .  of such additive opera- 

tions that z~ -+ z (o) implies f{z,) - > f ( z ) ( o ) .  ~ 

We shall remark lastly that  if Y i s  a space of the t y p e B ,  i .e.  i f [ y ] =  y l  

then an additive operation admits a majorant  if and only if a constant C exists 

such that for any y e  15 

if(Y) ii < C Y .  

The smallest possible constant here we  shall define as ] f ] .  

This class of operations coincides with the class of {b)-eontinuous additive 

operations. 2 

9. Fundamenta l  Theorems for Linear Equat ions .  

In the case when operations mentioned in theorems of w z are linear these 

theorems may be somewhat simplified. 

Theorem V. Let f be a linear operation admitting a continuous majorant  g; 

then if for a certain z ' ,  z ' >  - -  o we have 

s0 - -  ~ '  - v (~ ')  -> o ( s )  

then the equation 

Y =f (Y)  + Yo (9) 

has a solution for any ?to such that l Yol -< zo. 

Proof. This theorem follows immediately from Theorem II,  if we set U (y) = 

=f (Y)  + Yo; V ( z )  := g (z) + zo. 

In fact all conditions of Theorem I [  are satisfied: 

V(o) = ,% -> o ;  v ( z ' )  = ~ ( z ' )  + zo - z ' ;  

V(z+dz)-- V (z) .= g (d z) --> o if Jz~o; 

1 As to wh ich  vide Ibid. ,  Theor .  IV. 

2 Cf. S. B ~ A C H ,  ], p. 54- 
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V(z) is a continuous function, 

I u (o) 1 = I y01 -< ~o = V(o) ;  

[ U(y + A y ) - -  U ( y ) [ = i f ( J y ) [  <-- g ( [ J y ] ) _ <  g(Az) = V(z + J z ) - -  V(z), 

if only [ J y ] - - < J z .  

Hence follows by Theorem I I  that  the equation y-~  U(y ) - - f ( y )  + Yo pos- 

sesses a solution which can be found by the method of successive approximations. 

Theorem VI. Let z* be the principal solution of the equation (8). Then 

there exists only one solution of the equation (9) satisfying the condition 

[y] --< kz* (k is a real number --> I), viz. the principal solution of (9). Besides 

if the equation (8) possesses only one solution satisfying the condition [z[--< z' 

then (9) has only one solution satisfying the inequality [y[--< k z'. 

The theorem follows immediately from Theorem I I I  if we take V ( z ) =  

= g(z)+ k z o and substitute k z' for z'. 

0orrolary.  Let Y be a space of the type 13. Then if i l f [ i - -a  < I then 

the equation (9) has exactly one solution whatever be go ~ Y. This solution 

satisfies the following inequality 

!l i! ~ yo 
I - -  ~ 

and can be found by the method of successive approximations starting with an 

arbitrary y E Y. 

This corrolary can be proved by applying to the equation (9)the corrolaries 

of Theorems I I  and I [ I ;  it may be found in Banach. 1 

Theorem VII. I f  
y = f ( y ;  z) + .~fo (z) (~o) 

is an equation depending of a parameter  Z and the equation (8) is majorant to 

(IO) for any Z and if (whatever be y e Y) 

f ( y ;  z) ~ f ( v )  and  yo(Z) ~ Yo 

then 
lim y* (Z) ~ y* 
2 0  ),o 

where y*(Z) and y* are principal solutions "of (IO) and (9) respectively. 

1 S. BANACFr, I, p. I58. 
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This theorem follows from Theorem IV where we set U(y; 2 ) = f ( y ;  ,a,)+ Yo 0,), 

U ( y ; ~ , o ) = f ( y ) + y o  and V ( z ) = g ( z ) + z  o. I t  is easy to verify that all the 

conditions of Theorem IV are thus fulfilled. 

io. Approximate Solution of Equations. 

In order to obtain an approximate solution of an equation of the type (9) 

we must substitute in (9) for f another simpler operation f '  such that the norm 

of difference f ' ( y ) - - f ( y )  be smM1 and that the solution of the equation 

v' --f' (v') + v0 (11) 

be known to us. Then this solution of (I l) will be the approximate value of 

the solution of (9). We shall give now a theorem which will enable us (under 

certain conditions)to estimate the error of this approximate solution and in the 

same time will prove (in the case the above mentioned conditions are satisfied) 

the existence of a solution of the equation (9). 

Theorem VIII.  Let the equation (I1) have a solution for every Yoe Y and 

suppose that this solution is an additive function of Y0 

,y = r 0Io) 

and that the following inequality subsists for every y e  Y 

I r(f(v)  - f ' (v ) ) l  _< ~1; I. ( o < ~ <  i) (i2) 

Then the equation (9) has a solution y and the following inequality subsists 

I ; -v ' l -<  1~,~1SI. (IS) 

Proof. We can write the equation (9) as follows 

Y -= ( f - - j " ) ( y )  + f ' ( y )  + ~to. (I4) 

This equation (I4) is evidently equivalent (because F(yo) is the solution of 

(1I)) with the equation 

y = r ( ( f - - f ' ) ( y )  + Yo) = r (y )  + y' (I5) 

where T =  1- ' ( f - - f ' ) .  To this equation we can apply the corrolary to Theorem I I  
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(condition (3) of this corrolary takes in this case the form of the inequality (T2) 

which we have supposed to be true). Therefore the equation (I5)has a solution 

y such that 

I:,II-< - - I ~  I J I. 
I - - ~  

This solution is in the same time a solution of the equation (9). Deducing 

the equation (II) from (I4) we obtain the equality 

: , / -  v' = f '  (.',t - .~') + ( f - f ' )  (y), 
whence 

:i - .,/- r ( ( f - f )  (y)) 
and 

I. ,f-y'l  ~ - I y l  -< " - I y ' l  I - -  C~ 

which prove (I3). 

Remark if Y is a space of the type B then the condition (12) may be written 

as follows 

cli.i!.f-f':i<_~ ( o < ~ <  ~). (~2a) 

w 4. S y s t e m s  o f  A l g e b r a i c  E q u a t i o n s .  

In  this paragraph 

to systems of algebraic 

of equations. 

we shall apply the results of the preceding paragraphs 

equations chiefly to certain classes of infinite systems 

T i. A Class of  Infinite Systems of Linear  Equations.  

Consider first the systems of equations of the form 

a v  

~2i -= ~_j ci, k ~k + bz 

k=l 
where (for any i) 

( i - -  1, 2 , . . . )  (16) 

c o  

Y, I~ i ,~ l -<~  < i. (I7) 
k=l  

Such systems were considered, e.g. by Helge v. Koch, I. 

Let I z be the space m of bounded sequences y = ( v l ,  V2,...) where i:Yi] is 

defined as sup I~/~[ and suppose thut the sequence b = (bl, b2, . . . )  belongs to Y, 
l 

i .e. that  
:lb : s u p  r])i[ ~2. 2c o~. (IN) 

i 
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The operation f ( y ) =  c;,~: w transforms the space Y into itself and we 

k = l  

have besides 

Z vk Z If(Y) [ =  sup i ei, k --< sup i(',~ J" t[:~iI--< ": V! 
i i k ~ l  i k = l  

or ]W]I--< ~ 

The equation (I6) is thus an equation of the type (9) satisfying the conditions 

of Corollary to Theorem u Hence follows 

Theorem I X ?  I f  conditions (J7) and (~8) are fulfilled then the system 06) 

possesses one and only one bounded solution (i. e. one and only one such solu- 

tion that  sup t w l <  + ~)- This only solution can be found by the method of 
i 

successive approximations starting with any bounded system a f values of {7;} and 

it satisfies the following condition 

sup i T,[ -< I _ ~ _  sup I bi'. 
i I - - ( ~  t 

Remark 1. If  

(weaker) conditions' 

instead of condition (I7) our system satisfies the following 

0r 

/; = N + I  

a ~  

2) y ,  

k = N + l  

ci, k i <  + 

( i =  N +  I ,  N + 2 ,  . . .) 

( i =  I, 2, . . . ,  N) 

(~7') 

and there exists an upper bound of all numbers !ci, k], then we can apply the 

preceding theorem to the system 

v , = Z ( ~ , , k ~ +  b,+Z<~v~ (i = N +  ~, N +  2, ) 06 ' )  
k = N + l  1.'~1 

and express the unknown quantities V~'+I, . . .  as functions of ~ 1 , . . . ,  ~]~-. Then 

after substituting these functions for W'+I, . . -  into the first N equations of the 

system (I6) we shall obtain a finite system of equations. Hence, e.g., such 

a system does not possess more than N linearly independent solutions etc. 

V. KOCH, [, KANTOROVITCH & KRYLOFF, p. 2 8 - - 3 I .  
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any 

Mark that conditions (~7') will be always satisfied when the system satisfies 

of the following two conditions (which were considered by Helge v. Koch) 

~ v  

a) Y~ I<~i  < + ~ 
i, k~l 

b) 

where ~_~ z i <  + m.2 

Remark 2. I f  instead of the space of bounded sequences we shall consider 

the space lv (where p > I) of such sequences y = (Vl, W, . . . )  that  

is finite then we can arrive to the analogous conclusions. 

In this case the expression of I]f'~ is rather complicated but it is easy to 

see that  in any case 

Consequently if H <  I then the system (I6) possesses a single solution satis- 

fying the condition 

E I':,!" < + ~ 
i=1 

i f  only 

1 v. KOCH, I I .  

V. Kocrr ,  I I I .  

I n  fac t  

I ! f ( x )  [] = ci, k Xk 
i=1~ 2 , . . .  

Vide K,t~'TOI~OVITCH, IV, Theorem 6. 

~]k=l ~' ~xk L i p -< 

IF ~ i a,,~ I~ ~ ~ = 

= H . L ! x I : .  
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I f  instead of the inequality H < I the (weaker)condition H < + ~ is satis- 

fied then for the system (I6') the corresponding number H '  will be < I provided 

that  N is sufficiently great. Consequently we may argue us in Remark I and 

reduce the system (I6) to a finite system. In particular when p = 2 this condi- 

tion takes the form ~e},k < + ~ .  This case (p = 2) has been considered by 

Helge yon Koch. ~ 

Consider again systems of the type (I6) but instead of (I7) we shall suppose 

the following weaker condition to be fulfilled 

The 

space. 

I say that  the system 

set of all bounded sequences we shall consider now as a semi-ordered 

is a majorant for the system (I6) provided only that  for any i we have 

b~l --< ~e~. 01) 

In fact if f*  (Y) ---- {~k=X [Ci'k{•k I" then 

f l ( y ) l :  ci, kw. ~ ,  lei, kilVkl ~- f * ( l Y l ) .  
1 i i 

I t  is also evident that  the operation f* is continuous, i.e. that  y-+ o implies 

f*(y)-+ o. The sxstem (20) possesses a positive solution, viz. the solution 

*A = V ~  . . . .  K. Hence Theorems V and VI of w 3 may be applied and we 

obtain the following theorems. 

Theorem X. The system (I6) satisfying the conditions (19) ~nd (2I)posses- 

ses a solution satisfying the inequalities / V~ I -< K (i = I, 2 , . . . ) ;  the solution can 

be found by the method of successive approximations. ~ 

1 See H. v. KOCH, IV'. 

" D I x o n ,  ~, I;  FELLET, I I I ;  WI~T~'ER, I I ;  KOYALOVITCH, I ;  KUZMIN, r ;  KANTOROYITCH ~5 

]~_RYLOFF. 

11--3932. Ac ta  mathemat ica .  71. Imprhn6 le 3 mars 1939. 
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Remark.  Note that  condition (21) is always satisfying in the case when 

all b~, with the exception of a finite number of them, are o. 

Theorem XI. t I f  {~*} is the principal solution of the system (20)then 

there exists one only solution of (~6) satisfying the inequality iWl~< )~7". In 

particular if the lower bound h of the sequence ~2~" is not 0 (i. e. if for any i: 

V* > h > o) then each of the systems (I6) and (20) possesses a single bounded 

solution. 

So, e.g., we find that  the system 

( ~ - ~ -  I ,  2 ,  . .) 

K 
possesses exactly one solution if ]bi[~< =-. On the other hand the system 

I I 
(i--- ,, z , .  .) 

I 
has two bounded solutions, viz. ~2~ = I and ~h = ~ - ~  }" 

We shall remark in conclusion that. from the next No. will follow that  the 

principal solution of the system (I6) may be obtained not only by the method 

of successive approximations but also as the limit of the solutions of (finite) 

>)reduced)> systems. 

i2. A Class of  Non-linear Systems. 

Consider two systems of equations 

oo r 

v, = b, + Y, 4:i ~ vk, + 2~ 4:, ~, ~k, ~., + . . . .  .f: (v,, ~ , . . . )  

and 

~, = B, + Z c(') ~~ + Z c~',!,,, ~, , " ~, ~,  + . . . .  S(~.,, ~ , , . . . )  

k t ~ l  kl, k.~:l 

( i=  , ,  2, . . .)  (22) 

( ? ' = I ,  2 ,  . . .) ( 2 3 )  

where we suppose that  the second system is a majorant for the first, i.e. that  

for any i and kl, . . . ,  kj 
.r 

I KANTOROVITCH t~ ~RYLOFF. 
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i b~l < B~ and c (~) C (i) i - -  "~ . . . . . .  ~:/ -< ~ . . . . . .  ~:~" ( 2 4 )  

Suppose moreover  tha t  the second system possesses a posi t ive solution, i. e. there  

exists such sequence of positive numbers  z '= - (~" ,  ~'2, - . . )  tha t  if we subs t i tu te  

in (23)  ~'1, ~'2, . . .  for ~ ,  ~s, . . .  then (for every i) the  series in the r ight  hand  

member  of (23) will converge towards  the lef t  hand member  of (23).  1 Then the 

equat ions (2z) and (23)  w e  may consider as the equat ions of the form (2 )and  (I) 

respect ively (see above, Th. II)  in the  space Y = - Z =  s (see above, p. 67) i.e. 

the  semi-ordered space of all sequences of real numbers.  W e  shall prove tha t  

all condit ions of Theorems I and I I  are satisfied. 

I. W e  know tha t  V(z') exists. I t  follows at once tha t  V(z)exists  for  any 

z = (~'1, ffs, �9 �9 .) such that  o ~ z--< z'. 

2. I t  is evident tha t  in the region o < z ~ z' each of the series ]} (~'~, ~'~, . . . )  

converges uniformly and consequent ly  if for every i we have lim L-(n)= ~ and 
~t~ao ~ i  

o --< ~ )  < ~'~ then limfi(~(f), ~(n), . . . ) = ] ~ ( ~ ,  ~.~, . . . ) .  Hence  follows the con- 

t inui ty  of the operat ion V (in the considered region o ~ z --< z') and in par t icular  

the condit ions 2) and 2'). 

3 .--5.  Are evident 

[V(o)-{~,}; v(~')=~']. 
As to operat ion U 

I). U(y) evidently exists for  any y such tha t  !y! --<z', i .e.  tha t  for  every 

i: l w [  < ( i .  

~). I U(o) i =  {Ib,: l  <-- lB,}. 
3). W e  m u s t  p rove  t h a t  i f  l Yl  --< ~, ~ ~'~ ' i  -< ~ '~  a n d  ~ + ~ ' Z  --< ~' t h e n  

i U ( y  + ~ y) - U(y)  I -< r(,~ + ~ ~) - v (~ )  

or in other  words, if 
~]k ~ ' k  a n d  I - / J~ ]k ! - - -~ /~ "  ( k - -  , ,  2 , . . . )  

then  

Y~ P.~,, .., ~ [(~., + ~ ~ ) . .  . ( ~  + ~ ~ )  - ~k~... ~?  -< 

< Z Z C/'l - -  I ; 1 ,  

j = l  k . . . . . .  9 =  l 

. ,  ~j [(;~.i + J ~;~,) �9 �9 (~;~; + ~ '  ~ j )  - ;~:, . . .  ;kj] 

But  this last  inequali ty is a lmost  evident.  

Fin i t e  systems of this  form were Considered by  PELLET (ef. I and /I).  
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Thus all conditions of Theorem I I  (see w 2) are satisfied; its conclusion is 

therefore also true and we have thus 

Theorem XII. Under the above conditions: 

I). the system (22) possesses a solution satisfying the condition 

-< (2s) 

which can be found by the method of successive approximations; 

2). if {.~'~} is the principal solution of the system (23) then there exists only 

o n e  solution of the system (22) satisfying the condition (25) viz. its principal 

solution ; 

3). if coefficients of the system (22) depend in a continuous manner on a 

certain parameter ~ (so that bi bi(~), ((~) (~) -- "k ...... kj-~ c~. ...... b' (~)) and satisfy the in- 

equality (24) for all values of Z, and if {Vi().)} is the principal solution of (22) 
then the functions ~ are continuous. 

This theorem follows immediately from Theorems I I - - I V .  But from Theo- 

rem IV follows besides another interesting property of the systems of the t y p e  

(22) (satisfying (24)). 

Theorem XIII.  Consider together with the system (22)the following ~)reduced>> 

system (finite) 

N N 

= y ,  . . . . .  + be 2 , . . . ,  (26) 
, i = 1  ,~ . . . . . .  1,~ :.: 1 

where N is a natural 

system (26). Then 

number, and let t~(~v)~ be the principal solution of the i'J~ / 

lira ~(N) ~o~o) 
- ~  : "]i ( 2 7 )  

where r is tile principal solution of the system (25). In fact if we add to 

the system (26) the equations ',2i--0 (i = N + I . . . .  ) we obtain an infinite system 

of equations with coefficients depending on 5 r. When N-+  ~ these coefficients 

converge towards coefficients of (22). Besides the system (23) is a common 

majorant of all these systems. Consequently, by Theorem IV the principal 

solution {~I iv)} of the system (26) converges towards the principal solution {V~ ~ 

of (22) which proves (27). 

The following theorem is a corollary of Theorem XII .  
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Theorem XIV. 1 I f  there  exists such positive numbers  a and b tha t  (y~ and 

~- denot ing the same operat ions as above, see (22) and 123)) 

(~, b, b, . . . )  --< M (28) 

for  every i, then the system of equat ions 

~ ] i : 2 f i ( Z ,  W, V.2, . . . )  ( i : I ,  2 , . . . )  (29) 

possesses a solution for a l l ~ ' s  such tha t  [;~[--).o where ;to denotes  M i n ( a , b ) ;  

this solution {V~(~)} depends on ~ in a cont inuous  manner  and vanishes for ;~-~o. 

Proof.  The system (z9) is evidently a system of the  type  (2z) with coeffi- 

cients depending continuously of 2. The fol lowing system will be its ma jo ran t  

~ '~=~ofi (4 ,  ~ ,  ;4, . . . ) + ( b - - 4 ~ ( 4 ,  b, b, . . . ) )  

(here the differences b -  ;~oy~(Xo, b, b , . . . )  are non-negat ive because of (28) and 

of the definition of 2o). 

This ma jo ran t  system possesses a posit ive solution ~'1 = ~.~ . . . . .  b. 

Applying now Theorem X I I  we arrive at once at the  conclusion of our 

theorem. 

I3. i Theorem on Finite Non-linear Systems. 

Theorem XV. -~ Le t  i). y~(~, ~,, . . . .  , ~',) (i--: i, 9_, . . . ,  , )  be n increasing 

cont inuous funct ions of their  arguments ;  2). f,.(o, o, . . . ,  o) ---- o (i---- I, . . . ,  ~) and 

3). lim I .j~(x, x, . . . ,  x ) - - o  for  i =  I, . . . ,  ~ (30) 
x ~  X 

then the system of equat ions 

~ , - J ; ( ~ l ,  . . . ,  ~,,) + ai (i = ~ , . . . ,  ~,) (3I)  

has a solution whatever  be ai ~ o. 

Proof.  I f  we denote by Z the ~udimensional Vector space considered as a 

semi-order space, z ' -~  (H, H,  . . . ,  H )  where H is a posit ive number  such tha t  

for  ( i =  I . . . .  , ~) 

2 ']]his theorem follows also from the BROWER'S theorem on ,Fixpunktem,. 
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H - -  f ~ ( H ,  H ,  . . . ,  H )  --  ai > o 

to (30) this inequali ty will be always satisfied provided tha t  H is 

great) a n d  V(z)--= V ( ~ ,  . . . ,  , n ) - - { j ~ ( ~ ' ,  �9 �9 ~ )  + hi} t hen  all con- 

ditions of Theorem I are satisfied and therefore its conclusion is true q. e. d. 

I4. The  Ex i s t ence  T h e o r e m  for  h n p l i e i t  Func t ions .  

We  are going to show tha t  the classical existence theorem for implicit  

funct ions 1 can be obtained as a par t icular  case of the general  theorems of w 2. 

Theorem XVI. I f  a system of equations is given 

F~.(~],, . . . ,  ~2,~; ~1, . . . ,  ~m)--o ( i =  I, 2 , . . . ,  n) (3 2 ) 

OF, 
where I). F i  as well as ~ are continuous funct ions of W, - . . ,  V,,  ~i, . . . ,  ~m 

~o 
in a neighbourhood of a ce r ta in  point  (Yo, Xo)= (V~, . . . ,  7 ~ s~, . . . ,  ~ ) ;  2). in 

the point  (Yo, Xo) the equations' (3 2) are satisfied; 3). in the same point  the 

D (/71, . . . ,  F~) 
Jacobian D(V~, . . . ,  W) does not  vanish, then  this system possesses a continuous 

solution in a neighbourhood of the point (Yo, Xo) 

Vi~- - -~ (~I ,  ' '  ", ~m) (, :---  I ,  2 , . . . ,  n)  (33) 
where 

. f / (~ i  0), . . . ,  ~(m 0)) = /]i 0). (i - -  I ,  2 , . . . ,  , )  (34)  

Proof.  Consider the vector space of the points y =- (~]~, . . . ,  Yn) with the norm 

~ F I - -  sup (iv11 . . . .  , Iv~l). 

The system (32) may be then  writ ten as 

F(y ,  x) = o 

where x is a system (~1, . . . ,  ~,~) of m real nmnbers. Besides 

F ( y  ~ x ~ = o. 
Set 

A (~, x) = a F ( y ,  x). 
d y  

1 Cf. VALL~:E POUSSIN, Ch. IV, w I. 
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Then A(y,  x) is a matr ix  depending in a continuous manner  on y and x; 

if  D (A) is the de terminant  of the matr ix  A then  we have D (Ao) = D (A (y0, x0)) ~ o. 

Le t  g ~ ?/0 + .4o~ z, then  we shall have the following equation for z 

z = [Ao(AT ~ z ) -  F(y  ~ + Ao lg ,  x)] ~ - - -  U(z, x) . . . .  (35) 

d z  ~0 o aud consequently in a neighbourhood of the point z = o  

the Lipschitz 's  condit ion (with an arbitrari ly small coefficient) is fulfilled. In  

par t icular  there exists such d tha t  IIzi! + ii.dz~!< d implies (for x sufficiently 

near  to  x0) 
(0  < :  {~ < I)  

Thus the condit ion (3) of the Corollary to Theorem I I  is fulfilled, whence 

we conclude tha t  the considered equation in a neighbourhood of the point  z = o 

possesses a continuous solution 

z = O ( x )  where O(x ~ 

But  then  
y ~_~/o + AolO(x)  

a n d  

where )~i(i = - I ,  . . . ,  n) are continuous funct ions and 

( i - -  I, 2 , . . . ,  3) 

( i =  I ,  2,  � 9  3 )  

The Convergence of Newton's Method. ~5' 

An approximate solution of a system of e q u a t i o n s  

/~;'(~21, " '  ", V n) = O ( i  ~--- I . . . .  , , )  (36) 

which can be writ ten shorter  as 
F(y) = o (37) 

of ten may be found by the Newtonian  method of successive approximations.  These 

successive approximations are expressed ~ by the following formulae .... 

y,,~ ~ .~n--1 -- A -1  (~]n--1) ~l(yn--1) (38) 
where 

1 ScA~no~owGn, No. 63; STONers, I; OSTROWSKI. 
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A (~j) - d F ( y )  _ 0~) i"  
d ~j 6 9 / ]k  !!i =1  . . . .  

We shall establish now (subject to certain conditions) the convergence of 

this process towards the solution of (36). W i t h o u t  detract ing of the genaral i ty  

of our reasoning we can suppose tha t  Yo = o = (o, o, . . . ,  o). 

Theorem XVII .  I f  all funct ions /+'i as well as all their  first and second 

derivatives are continuous then  the Newtonian  process converges towards a solu- 

t ion provided tha t  !F(o)II be sufficiently small. 

Proof. Consider the equat ion 

~l -~- A --1 (11) [A (y) ?! - -  1~'(?/)] = U (:/r (39) 

This equation is equivalent to the equat ion (37) and the expression (38) gives 

the usual  process of successive approximations for it. Consequently the process 

will surely converge towards a solution if the condit ion (3) is fulfilled. But  this 

I 
condit ion will evidently be fulfilled with c~ = if ~F(y),  is so small t ha t  

2 

; - d i ;  ! = F(?~) __<-' 

for such values of y tha t  ~y!i < 21 F(:~r ) . 

(40) 

w 5. Integral  Equations.  

i6. Linear Integral Equations of the Second Kind. 

Consider an equation of Volterra 's  type 

t 

(t) - [ K (8, t) 7/(4 ~t,~ =.f(~) (4i) Y 
. J  

a 

and suppose t ha t  in a certain interval  (a; b) we have: I K ( s ,  t)l<~ 21I, ! f ( t ) !<_ N.  

Then the equation 

d gf.v) 
i t tere  -dy is a ma t r ix  (depending on y) i .e.  an operat ion t r ans fo rming  the  space y into 

itself. I t s  norm is the  norm of an operation.  
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t 

N (42) 

will be a majorant equation for  (4I). 

But the equation (42) evidently possesses a positive solution which can be 

found e.g. by the method of successive approximations 

M ~ N ( t  - -  a)" 
~.(t) = N +  M N ( t - - ~ )  + + . . . .  x~"(~-~ .  (43) 

I 2 

Hence follows (if we apply Theorems V and VI) that  Volterra's equation 

has in an interval (a, b) one and only one bounded solution and that  this solu- 

tion can be found by the method of successive approximations; this single 

bounded solution will be also the only integrable solution because it is evident 

1 ' that  any integr~ble solution of Vo terra s equation is in the same time bounded 
c ' 

in (a, b). 

In ~ similar way we can make analogical conclusions concerning' Fred- 

hohn's equation 
b 

(t) - z ~ K (~, t).,~ (~) d ~ = f ( t ) .  (44) Y 
! 

a 

In this Case we shall obtain different boundaries for ,~ by using different 

spaces of functions (i. e. by giving different definitions to : ]Y:!). E.g .  if we set 

y ==sup y(s) then we can prove that  the solution of Fredholm's equation 
8 

exists when 
b 

sup f ,  K(,~, t) l a 8  < ~. (45) 

Theorem VII  will allow us to make several conclusions as to the con- 

tinuity of the solution regarded as a function of parameter and as to lawfulness 

of .passing to a limit in the solution when the nucleis converge towards a >>limit 

nucleus>>. In particular the solution of an integral equation can be obtained as 

a limit of solutions of a system of algebraic linear equations. 

] 2 - - 3 9 3 2 .  Actamathematica. 71. I m p d m 6  le 3 m a r s  1939. 
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I7. Systems of Fredholm's Equations. 

Consider u system 

.,<_t<_b,; , : , ( t ) - ~  fK,..~(.,t),a(,,)d.=9,(t) (i-~-- 1 , 2 ,  . . . , n ) .  (46) 
j = l  a?' 

Define in any way the norm of a funct ion vz(t) e .g.  l e t :  Wl]= sup ]w( t ) ] ,  
a i ~ t ~ b  i 

and take for y the set of systems of funct ions y = ( V l ,  . . . ,  V,) and for Z the 

semi-ordered space of systems of real nmnbers  z = (~1, . .  ,, ~.,) and set ] ! y - -  

= (]!V,I!, �9 �9 '*],, ). Denote, besides, 

t,j 

a i < t ~ b  i 

.j 

Then if we consider the system (46) as a single equation of the type (9) the 

following equation of the type (8) 

will be its majorant .  

Hence  follows : 

r - ~ < ~  C; = i= ~, i' (i = i ,  . . . ,  ,,,) (47) 
j = l  

Theorem XVlI I .  I f  the algebraic system of equations (47) has a positive 

solution z = (~1, . . . ,  ~n) then  the system (46) also has a solution. 

This theorem follows immediately from Theorem V. 

~8. A p p r o x i m a t e  Solu t ion  of  I n t e g r a l  Equa t ions .  

We  shall now apply Theorem V I I I  which will allow us to est imate the error 

of an approximate solution of an integral  equation. 

Theorem XIX. 1 Le t  k(s, t) and K(s,  t) be two nuclei such tha t  the  resolvent 

7(s, t, Z) of the nucleus k(s, t) be known and let 

b 

J K ( ~ ,  t) - -  k (8, t) I a .  = h s u p  
a ~ t ~ b  3 

a 

t KANTOROVITCIt & KRYLOFF, p. I59. 
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b 

f snp Iz(~, t, z ) [ d ~ = B  
a ~ t ~ - b  

a 

sup ia(t) l = 5~. 
a ~ t ~ b  

(48) 

In  this case if I - -  j g [ h( i  + I Z [ B) > o then the equat ion 

b 

Z f K(,, t) q9 (s) et s = g (t) (49) 

possesses one and only one solution which differs f rom the solution of the equation 

b 

(t) - f 
a 

I~ (~, t) ~ (~) d ,  = ~ (t) (50) 

not  more than by the fol lowing quant i ty  

!9(t)_~.(t)[<[A]h(' + iZ]-B) -71~ h i X i ( i +  [ Z ] B ) ~ N  

- ~ - - h ( ~  + t z IB)  -< , , - - h ! 2 1 ( r + ! Z I B  ) 

where ~ =  sup I~ (t)[. 
a ~ t ~ b  

(5~) 

Proof.  Apply Theorem VII I .  In  the place of the relation y ' =  F(yo) we 

have the following one 
b 

~(t)  = ~(t) + z f z ( ~ ,  t, z )a(~)d~.  (52) 
a 

Hence  considering all the funct ions as elements of the space of bounded funct ion 

M, i .e.  defining aortae f as !ifl i = sup [f(t)l we obtain the  inequali ty 
a ~ - t ~ b  

i ~ ' i '! 

~ i ! - <  I~y:t + I Z i B  !,gi �9 (53) 

W e  see hence tha t  in the present  case 

I, rH < - i + IZLB. 

Similarly (of. Theorem V I I I  a s  to notations):  ; f - - f ' ! !  <h]g I. 
follows tha t  

Hence  
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I l r l l l l f - - f ' l l - < h ( ~  + I z l ~ ) l z l  ..... - <  

supposed tha t  hlZl(~ + I Z l B ) <  ~ and consequently accord- 

ing to (13) 
h]2l(I  + 12IB) h l i l ( ~  + I X I B ) ' ~  " 

IIw-~11 <- ~_-h-i~l (;~_|L IB) ~ --< -- hlZl(~ +IZlB) 

Defining differently the norm of a funct ion we shall obtain (from the same 

Theorem VII I )  different other estimates for the difference I f -- ~] .  In  par t ieular  

we can obtain thus  two theorems of Akbergenoff giving such estimates. 1 

~9. A T heo rem on F r e d h o h n ' s  Equa t ions  on the Infinite In t e rva l .  

Theorem XX. Let  

. f ]  K(8, t)! d8 : h(t) < I. (~4) 

Then the integral  equation 

~ (t) - f K(8, t)~ (~),l~--f(~) (55) 

possesses a solution if its r ight-hand member f(t) satisfies the inequal i ty ]f(t '  ~ 

--< C ( I - - h ( t ) ) ,  where C is a constant ;  this solution is bounded, viz. I~(t)!-< (:. 

Proof. This 

the equat ion 

theorem is an immediate  consequence of Theorem V because 

(t) --  f [ / ~  (,r ~)[~9 (8) (1,~' -~- C(I -- h (t)) (~6) 

which 

t ion ~ (t) = c'. 

is a ma.iorant for the equation (55), possesses evidently a positive solu- 

20. 

Applying theorems of 

Non-linear Integral Equation. 

w 2 to the case of non-linear integral  equation we 

may obtain several theorems of which we shall prove only one. 

Theorem XXI.  Let  the funct ion K(s, t, y) be defined and continuous for (s, t) 

lying in a certain region G and for y such tha t  l y ] - -  ~ yo(S) and suppose t ha t  

1 AKBER~EXOFF, I, pp. 68r and 689. 
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there exists 

in the s~me region (as K) and satisfying the following inequalities 

) I K(8 ,  t, o) ] -< ~v (8, t, o). 
t ## 

~) @:, (8, t, ~j) >- o;  @y~ (8, t, y) >_ o. 

3) !K(8, t, ff + z l y ) - - K ( 8 ,  t, y) <-- qi(s, t, iYl+l,aYl)--O(8, t, !y/ 

function ao (8, t, y) of the same variables, defined and continuous 

tha t  I y ~ + i ~ 'y l  -< y0 (8). 

In this ease if 

provided 

G 

then the integral equation 

( t )=  fK(8, t, :,j (ss) 
G 

has a solution y(t) such that  l y(t)l_< v0(s). 

than one solution of the equation 

If  besides there does not exist more 

6' 

satisfying the  condition J?] (t) J ~< Y0 (t) (one such solution always existing) then the 

equation (58) also possesses one only solution satisfying this condition and this 

solution can be found by the method of successive approximations starting with 

any function y~ (s) such that  [ y~ (8)[ --< Yo (s). 

Proof. This theorem follows immediately from Theorems I I  and III .  We 

must only ascertain that  the conditions of these theorems are satisfied. I t  is 

sufficient to prove condition 3) (all other conditions being evident). This con- 

dition is fulfilled because if ly(t) J ~ z(t) and i J y  (t) l ~ Jz(t)  

f f ~:  (8, t, ,j (8) + ~ u (~')) d 8 - ~:(~,  t, u (8)) d ~ ~ _< 

G (7 

<- f [~(8 ,  t, iy(8)l + I~y(8 ) l ) -  ~(8, t, ]y(8)l)]ds-< 
G 

-< . f  [@ (8, t, ~ (8) + d ~ (8)) d 8 - -  @ (8, t, ~ (8))] d 8 

G 
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0o ro l l a ry .  ~ I f  in par t icular  the funct ion  K(s,  t, y) satisfies the condit ion 

!K(s,  t, y + J y )  --  K(s, t, Y) I ~ C[ J y !  if l Y] + [~Yl  ~- n then the equat ion (58 ) 

has one and only one solution, sat isfying the condit ion [ y(s) ' ~ L provided only 

tha t  the  fol lowing condit ions be satisfied 

where 
C r a G <  i, S m G + L C m G < - - L  (60) 

s = ~ p  I K(~, t, o ) [  

This Corollary follows immediately  f rom Theorem X X I  if we set 

O ( s , t , y ) : S +  C y  and Yo(S)=-L- 

Remark .  I f  the second inequali ty (60) only holds then the sat isfying con- 

dition l Y(S)/ -~ L nevertheless exists but  there  may be in this case several such 

solutions. 

2 I .  

W e  shall prove 

method.  

Theorem XXII. 

w 6. Differential Equations. 

The Convergence of Pieard's }Iethod. 

now the classical theorem on the convergence of Picard 's  

Let  a system of differential  equations be given 

"~-~ =3ti(~]l ,  � 9  ~n, t) (~ /=  I,  2, . . . ,  ~/) (61) 

and suppose tha t  the funct ions 2~ are cont inuous  in t and satisfy the condit ion 

of Lipschitz rel. 71, �9 �9 ~ for I t l and [Vii sufficiently small i. e. tha t  for  I tl --< t o 

a n d  J 7, ] + ! ~ ~,: I <- h (i = ~, 2 . . . .  , ~) w e  h a v e  

I ~ (W + ~ W . . . .  , Vn + ~ Vn, t) - -  f ( v , ,  �9 � 9  V,~, t) i ---- 

--< C ( t ~ V l l  + " ~ I ~ V , , l ) .  (62) 

Then the system of equations (6I) possesses a solution ~/~= ~( t )  where the  

funet ions  v,(t) are defined for t sufficiently small ( I t l  _~ d) and satisfy ~he fol- 

lowing initial  conditions 
Vi(o)-~ o. (i : I , . . . ,  n) (63) 

I NIEMYTZKI, I, p. 656. 
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t 

f f ,  (,~ (t), > (t), t) d t. (64) ,~, (t) - - .  . . . ,  

o 

Then regarding the system of functions (~h(0, . . . ,  ~(t))  as an element y 

of the abstract (semi-ordered) space Y of systems of functions we may consider 

the system (64) as an equation of the type (2) y - -  U(y). As a majorant 

equation z = V(z) we can take the following system 

t t 

~t(t)= ; C ( r  q- ~n(t))dt -]. f lfi(o, . . . ,  o, t ) ldt  ( i = i ,  2 ,  . . . , , , ) .  (6S)  

o o 

(ttere Z =  Y which is considered as a semi-ordered space.) All conditions of 

Theorems I and I I  are fulfilled. In fact I)--4) of Theorem I are evident; 5)is 

satisfied if we take for z' the system of functions ~(t)~--ae '~ct ( i =  I, . . . ,  n) 

provided that d and ce arc such that  the following two inequalities subsist 

8 

f A(o, . . . ,  o, t) l dt--< a ( i =  ~, . . . ,  n) (66) 

0 
a e n6'd ---~ h 

(the second inequality (66) is not necessary in order that 5) of Theorem I be 

satisfied but it will be needed for proving property 3) of Th. II). 

I) and 2) of Th. I I  are evident. 3) is also true. In fact we have for 

!L/vi(t)!---< J ~ ( t ) ;  !~(t)!<--~'i(t) and ~i( t )+J~(t)<--ae '~ct ( i = I ,  2, . . . ,  n) 

t 

i ~ ( ~  (t) + d w (t), > (t) + / / ~ , ,  (t), t) d t - -  
i 

0 

! 

- f f , , ( ~  (t), . . . ,  7o (t), t) d t -< 
o 

t 

<_ . f  c(d~'(t) + ... + ~ ( t ) ) ( l t .  
0 

We have proved thus that  all conditions of Theorem I I  are satisfied; there- 

fore its conclusion is also true and thus Theorem X X [ I  is proved. 
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22. Cauehy's Method of Majorants. 

The classical method of proving the existence of the analyt ic  solution of a 

differential equation can be also shown as a part icular  case of theorems of w 2; 

viz. we can prove the following theorem. 

Theorem XXII I .  Le t  a system of equations be given 

ov 

d t ", - -  ..., 4~, �9 �9 �9 
k l , . . . , k  n , l = O  

Then if  the s y s t e m  

(i = ~, 2 , . . . ,  n). (67) 

d ~i 
d t - -  F ,  ( ~ , . . . ,  ~~, t) = F ~  C~ . . . . . .  ~ , ,  CI" �9 �9  g~,, t' (68) 

kl ,  . . . ,  kn ,  l = 0  

w h e r e !  ck ...... ~n, zl --< Ck-~ ..... ~,~ possesses a solution 

r 

~'~.(t) : ~ hj) t ~, where all h~ i) --> o ( i =  I, 2, . . . ,  ,~) 

8 = 0  

then  the  system (67) possesses a solution sat isfying the init ial  conditions ~i(o)=~]~) 

i - -  I, . . . ,  n) and having the form 

oo 

~,(t) = v~  + ~ ~i ~) t~ 
8 ~ 1  

where I g~ ) I -< h~) provided only t ha t  I VI~ ) ] -- h(d ) for i - I, . . . ,  ~ .  

Proof .  Subst i tu t ing in (67) and (68) for 7,' and ~'~ the corresponding series 

we sh~ll obtain in left  hand  and r igh t  hand members of these equations formal  

series by comparing coefficients of which we arrive at  the equations of the types 

(22) and (23). Applying to these equations Theorem X I I  we obtain the desired 

result. 
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