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» The methodologies of systems biology

Hans V. Westerhoff and Douglas B. Kell

School of Chemistry, The University of Manchester, Manchester
M60 IQD, UK

e SUMMARY

18 In this book on philosophical aspects of systems biology, this chapter sum-
19 marizes the philosophical status of a variety of sciences. Biology, physics and
20  molecular biology offer particular contrast here. It is contended that philos-
21 ophy and methodology should be determined substantially by the degree of
2 complexity of the system under study. Some of the new experimental methods
23 that have made systems biology possible are summarized. Research strategies
2« that claim to be systems biology yet approach the topic in different ways are
»s  described. Inductive reasoning and the development and exploitation of suitable
%  technologies are important parts of the systems biology agenda but are not them-
27 selves hypothesis-dependent science. A new methodology for systems biology
s 1s sketched that spirals in an iterative manner between experiments and theory
2  but makes inherent use of mathematics in ways that are new to the life sciences.
s It is shown that the construction of a computer replica of parts of living systems
;1 has become possible and that the ‘silicon cell’ strategy enables the calculation
5 of emergent properties. This may then serve as a basis for subsequent discus-
;3 sions with philosophers of science about how new and unique the philosophical
5 foundations of systems biology are or should be.

1. THE METHODOLOGY AND PHILOSOPHICAL FOUNDATIONS
OF THE VARIOUS SCIENCES
1.1. Physics

a1 According to classical philosophy of science (e.g. Carnap, 1966; Nagel, 1961),
«  science advances by an iteration between the world of mental constructs (ideas,
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o background knowledge, hypotheses) and the world of sense data (experimental
o2 observations). Laws (theories, hypotheses) are induced from empirical findings
03 (Carnap, 1966). Consequences deduced by combining hypotheses with estab-
o lished underlying principles (such as fundamental laws of chemistry and physics)
os are examined experimentally to test the new hypotheses (see also Fig. 3). Given
os  sufficient positive testing, they are transformed to underlying principles through
o7 theorization. For testing, theories should be quantitative (Carnap, 1966). It is
¢ seen as a great asset when laws and theories can also be reduced to underlying
o theories of greater validity and generality. Here thermodynamics has always
o served as an example; its first and second laws were first determined empiri-
i cally (Nagel, 1961). The former was then elevated to a general scientific law
2 that is also valid at the more microscopic level. The latter was deduced from
13 the underlying principle of large numbers of substates and evolution towards
4+ increased probability with time. Quantum mechanics has also served as such an
5 example: Schrodinger’s equation and wave functions were ‘induced’ so as to be
s able to explain observations, such as the periodicity in the Table of Chemical
»  Elements. Modern elementary particle physics appears to continue along these
s lines, ever inducing new phenomena and properties such as quarks, charms and
v colours. More generally, physics aims to explain multiple phenomena on the
» basis of simpler and fewer principles. Indeed, the first law of thermodynamics
,i  1s much simpler than the 100% efficient conversion between all sorts of energy
,, that it prescribes. In the classical philosophy of science, explanation by simple
,; underlying principles is important (cf. Nagel, 1961, p. 321).

" Of course, this philosophy of science is incomplete. It is very often too
,s  simplistic toDuce predictions from hypotheses that can be verified. Indeed,
, 1t 1s seen in most quarters as much more important to try to make predictions
,,  that can then be used to falsify hypotheses (Popper, 1992). Then in practice, the
sociology of science also comes in, where hypotheses are not actually falsified
by their originators, but rather by competing, younger researchers, albeit only
after the proponents of the original hypothesis have become less active or passed
on (cf. Kuhn, 1996; Lakatos, 1978; Primas, 1981). However, this is not the
issue we would like to discuss here, as we shall focus on the extent to which
classical, molecular and systems biology do conform to what used to be defined
as science by the main philosophers of science, or more specifically physics
(Carnap, 1966).

1.2. Biology

3 While theoretical physics is both respectable and a major part of the activities of
40  physicists, theoretical biology is a minor part of modern biology and is treated
a1 largely with disdain by most experimentalists (Kell, 2006). Not all of classical
2  biology conformed strictly to the scientific methods recalled above, as it was
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o largely observational (Brent, 1999). Much of that science of biology accepted
o2 the diversity that appeared to inhabit the biosphere: organisms were classi-
03 fied and compared, and their behavior was studied in the sense of establishing
o« correlations between properties. These correlations were rarely put to the test
os in the sense of falsification or even verification; observations were dominant;
os laws, even phenomenological ones, were rare. Classificatory concepts sufficed
o7 (Carnap, 1966).

08 Physicists were much stricter; they expected their codifications to produce
o immutable laws. Thus, the type of biology being studied caused many physicists
10 to disdain biology, which would then be seen as an ‘other science’ if a science
i at all. Biology was ‘stamp collecting’, and it was claimed that physics was
2 superior.|('ise who have witnessed field biologists efficiently recognizing birds
13 in complex ecosystems, and predicting with an 80% success rate what the
14 individual birds would do next, are perhaps less convinced of the truth of
15 the dictum of the physicists. After all, the complexity of the prediction made by
16 the biologist and what one might consider the total success of that prediction
17 (i.e. success rate multiplied by complexity) was many times higher than that of
18 the physicist predicting the probability of the location of an electron on the basis
19 of a wavefunction. Interestingly, chemistry and biochemistry have always been
20  middlemen; although chemistry was claimed to be a science conforming to the
21 principles proclaimed by the philosophers of science, it often was not; organic
2 chemistry, for instance, was rule-based rather than theory-based, albeit fairly
23 successful in predicting possible chemical reactions and reaction mechanisms.
2+ Chemistry warrants its own philosophy of science, distinct from that of physics
s (Primas, 1981).
26 We suggest that the basic problem of bi D at that time, and to some degree
27 now, which distinguished it from the objects of study surveyed by physicists,
23 was that the object of their study, i.e. life, was too complex to be amenable to
2 the ‘Physics’ of Rutherford. The number of unobserved and in fact unobservable
s  degrees of freedom was virtually unlimited. Every possible hypothesis would
st always be falsifiable, as there could always be exceptions, or additional unknown
»  components of the system that would perturb the rule (the ‘hidden variables’ of
3 certain approaches to understanding the behaviour of quantum systems). Even
¢ Mendel’s ‘laws’ were subject to many exceptions, and it is now all too easy to
35 scorn Mendel for overemphasizing the overall principles and for down playing
36 the aberrations (it is also widely accepted that Mendel’s data were ‘too good
3 to be true’). What would have happened with Newton discovering the laws of
38 classical mechanics had the velocity of light been 0.1 m/s? Then Newton would
3 have been plagued by apparent exceptions (because of relativistic corrections).
40  Or what would have happened if all the objects around us had had substantial
41 Coulombic charge, so as to perturb the observation of F = ma, in those days
42 at least?
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o1 Classical (Organismal (Nagel, 1961)) biology was (and is) a science in that
02 it obeyed strict methods, was devoid of unfounded predictions and aimed for
03 reproducibility. It was, however, seen as incomplete in that its predictions were
o« often perturbed by unexpected variations. On the contrary, it did not shy away
os from studying the complex and the most interesting phenomena in existence,
06 i.e. life.

07 Much (though not all (Primas, 1981)) of physics did conform to the scientific
o8  methods delineated by the classical philosophers of science. How could it? Well,
oo first of all it studied objects that happened to be simpler than the objects stud-
10 ied by biology; billiard balls, protons and electrons are inherently simpler than
11 haemoglobins, monkeys and tumor cells. Certainly, it has been an extreme chal-
12 lenge to mankind to understand the circling of electrons around conglomerates
13 of protons and neutrons, but the scientific achievements have been enormous.
14+ However, the number of degrees of freedom involved in the explanations of
15 physics has been much smaller than the number of degrees of freedom in the
16 objects of biology. Physicists (and engineers) sought this simplicity; they pre-
17 ferred to study single objects or systems with very few degrees of freedom, and
18 preferably linear interactions. This enabled the discovery of simple principles
19 and their codification by analytical mathematics. Physics could be physics and
20  not stamp collecting, precisely because physicists selected a particular subset of
21 stamps rather than the most beautiful and extensive stamp collections as objects
2 of study.

23 This focus on simpler systems and the emphasis on simple principles, often
2« enforced by first- and perhaps second-order linear approximations, have been
s very good for the development of science. Enormous progress was made for
26 those objects of study that were simple in the above sense. Doubts arose when
27 others noted that many problems in the environment around us were not being
28 solved by physics. These included the weather, the behavior of the stock market,
2 the behavior of the majority of (nonideal) gases, and life and disease.

30 When confronted with those issues, some physicists reversed the argumenta-
st tion. It was not physics itself that was unfit to study those systems that were
;2 more complex. Rather, those objects of studies were unfit for pure physics; they
33 might perhaps be studied by applied, less pure physics, perhaps through simula-
s« tion of all the special cases. Nonequilibrium thermodynamics of the Westerhoff
35 (Westerhoff & van Dam, 1987) type, nonequilibrium statistical mechanics of the
36 Keizer type (Keizer, 1987) and later the discovery of deterministic chaos (e.g.
s Gleick, 1988) were such ‘impure’ physics. On the contrary, they demonstrated
33 that many aspects of reality may be beyond the understanding of simpler phys-
3 ical theory. Prigogine was a case in point, searching for a general principle of
s  nonequilibrium steady states in arbitrary systems, which does not exist (Nicolis
a1 & Prigogine, 1977). Some physicists moved towards biology, accepting that
42  physics itself should change and adopt complexity. Terrell Hill is one of these,
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o being attracted to biology because its phenomena were inherently interesting
o2 and developing physics methods so as to be able to deal optimally with its
03 complexity (Hill, 1977). Much of modern physics of course does accept the
o« complexity and is subject to the limitations of nongenerality and nonlinearity
os  plaguing biology (Frohlich & Kremer, 1983; Primas, 1981). In this sense, we
os admit that we here caricature physics to serve as a contrast in a description of
o7 the essence of systems biology.

o 1.3. Biochemistry and molecular biology

Whilst it was welcome that physics was able to deal so elegantly with a number
of phenomena, the problem for science was that much of what is inherently
interesting to mankind appeared to be left intractable. Life itself, in the sense of
' understanding the material basis of the functioning of living organisms, therewith
15 eluded the science that followed the methodology of physics (Rosen, 1991).
16 There could be only two ways out of this dilemma: either physics adapted to
17 life as an object of study, or the object of study, ‘life’ was adapted to the
'8 methodology of physics (perhaps with new, superphysical laws to be added, as
1 in Schrodinger’s agenda (Schrodinger, 1944, p. 80)). The latter strategy has been
2 the basis of yet another success story, i.e. that of biochemistry, biophysics and
2t molecular biology. It was indeed set in motion by physical scientists such as
22 Michaelis and Menten, Franklin, Watson and Crick. Michaelis and Menten set
23 out to study the reaction catalyzed by a single protein, while Franklin, Watson
24 and Crick looked at a piece of a double-stranded DNA molecule. The molecular
35 processes carried out by macromolecules in living organisms were characterized
2% in this manner. In addition, simple and qualitative schemes of how they function
27 together were drawn as cartoons (such cartoon-based modelling was and is a
2 significant part of these sciences (Kell & Knowles, 2006)). This includes the
29 one showing that a piece of DNA contains the inheritable information, which
3 can be expressed through mRNA into proteins, which then carry out function by
31 catalyzing metabolic conversions, signalling and work. In these three disciplines
52 of biochemistry, biophysics and molecular biology hypotheses were proposed
33 and verified experimentally.

34 However, although they tried and claimed to operate in accordance with
35 the methodology of physics, as time proceeded, biochemistry and molecular
3%  biology became less and less anchored on the principles expounded by chemistry
37 and physics. The hypotheses and the activities of molecular biology became
3 intentionally largely qualitative, and the concepts comparative (Carnap, 1966),
30 so that their tests (verifications/falsifications) could give a digital yes/no answer.
40 With this and with a strong tendency to empirical-rather than hypothesis-driven
41 science, biochemistry and molecular biology became immensely successful. It is
2  now possible to purify many or most of the water-soluble macromolecules that
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o are active in living cells and determine their structure by X-ray crystallography.
02 For membrane proteins, this is still a challenge, but progress is being made.
03 The mechanism of quite a few enzymes is now considered to be understood
o reasonably well (although fundamental issues remain (Scrutton et al., 1999;

D@ s Sutcliffe & Scrutton, 2000)) and so are regulatory mechanisms in the sense of

os ~ which molecule might bind to which other molecule and regulate the activity
o7 of the latter. Pathways and networks of metabolism, gene expression and signal
os transduction have been mapped.

09

, 1.4, Cell Biology: The living cell

Near the tars, of the twentieth century genomics revolutionized this landscape.
This revolution was preceded by a long and ever accelerating progress in bio-
4 chemistry, molecular biology and the related disciplines of microbiology and
5 biophysics and led to a combined discipline: cell biology. It defined the orga-
6 nization of life at the cellular level in qualitative terms of its molecules. With
17 apologies for the readers who know their cell biology, but with due respect to
18 the philosophers who may not quite do so but are interested in systems biology,
19 we shall now describe the essence of this definition.

20 Early on, biochemistry had shown that all (most) chemical conversions carried
2t out by living organisms occurred in a number of simpler steps such as dehydra-
22 tion, transfer of phosphate from ATP, dehydrogenation and isomerization. Each
23 of these is catalysed by a protein, called an enzyme, which consists of one or
24 a few chains of amino acids and sometimes an additional organic or inorganic
25 chemical molecule or ion, folded into a complex structure. The amino acids are
26 virtually limited to a set of 20 types. The protein is different for every type
27 of molecule that needs to be converted. This led to the concept of metabolism
28 consisting of large networks of chemical reactions through which mass flows,
2 with a correspondence of every step to a protein (Beadle & Tatum, 1941). The
3 metabolic networks are extremely powerful chemically, being able to convert
31 many types of molecule into many other types, and many thousands of metabo-
2 lites are known (Kell, 2004). The former correspond to almost anything that
33 occurs in the environment of living organisms and is useful to them as food.
3¢ The latter are suitable building blocks for the organism. The pluripotency of
35 metabolism appears limited only by impossibilities stemming from a number of
36 fundamental laws, such as the impossibility to create chemigalelements from
37 other chemical elements and the impossibility to generate (Q>—free energy
3 (Westerhoff & van Dam, 1987). The consequence is that there are metabolic
3  networks ensuring that sufficient of each of these commodities is harvested
40 from the food and supplied to biosynthesis. Metabolism is a network that makes
4«1 biomass from food, although it does not seem to have evolved to be efficient in
#2  the thermodynamic sense (Kell et al., 2005; Westerhoff et al., 1983).
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ol The question of how the proteins are synthesized led to the discovery of
o2 a network that is orthogonal to this metabolic network at each step of the
03 latter (see Fig. 1). Each protein is synthesized from amino acids by a complex
o« machinery, called the ribosome, which consists of protein and a second main
os  type of macromolecule, i.e. ribosomal ribonucleic acid (rRNA). The diversity
os  of the proteins stems from the fact that the sequence at which amino acids are
o7 attached to its nascent chain is specified by a specific messenger RNA (mRNA)
¢ molecule. RNA molecules are chains of four types of nucleotide, which are
w referred to by a mnemonic of the name of the corresponding ‘bases’, i.e. as
0w A, U, G and C. Each of the 64 triplets of such bases corresponds to an amino
1 acid, with just a few exceptions that deal with the regulation of protein synthesis
12 itself. Each mRNA molecule is a copy of part of single stranded DNA, i.e. a
13 very long chain of nucleotides referred to as dA, dT, dG and dC (the ‘d’s are
14 often omitted). It occurs in combination with a complementary single stranded
s DNA molecule which has a T, A, C or G, respectively, where the other strand
s hasan A, T, G and C, respectively. This double strandedness makes the DNA a
17 robust way of storing the information. Damage that can be recognized as such
13 can be repaired by referring to the sequence of the complementary strand. The
19 part of the chain that is copied into an mRNA and is ultimately translated into
»  protein is often called a gene (although this word actually refers to a concept that
a1 predates the discovery of DNA). The copying, which is called transcription, is
22
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0 Figure 1 The hierarchical networking of the living cell.
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o carried out by a large enzyme complex called RNA polymerase. Preceding cell
02 division, the DNA is copied, and the original and the copy end up in different
03 daughter cells.

04 This set of networks that drive the synthesis of proteins on the basis of
os  information of nucleic acids and information concerning the status of the cell
os and its environment is one that is often summarized as ‘DNA makes RNA makes
o7 protein’ (see Fig. 1). It is the domain of molecular biology.

08 Two aspects are of additional importance here: (i) DNA is not converted
o into RNA, nor is RNA converted into protein. This is a difference with a
10 metabolic pathway where material parts (‘mass’) of the first molecule ends up
11 in the last molecule. The gene-expression pathways only transfer information.
12 (ii) Where the scheme suggests a hierarchy, DNA directing RNA, which directs
13 enzymes, which then catalyse and hence also direct metabolism, this ‘hierarchy’
14 is not dictatorial but ‘democratic’ (Westerhoff et al., 1990): The rate at which
15 transcription occurs depends on the binding of other proteins (called transcription
16 factors) to parts of the DNA close to or relating to the gene. That binding
17 in turns depends on the concentrations of metabolites that may bind to these,
15 depending on whether the transcription factors are in the proximity of the DNA
v or depending on whether they have been modified chemically.

20 The chemical modification of transcription factors responds to the status of
21 intracellular metabolism and to the presence of extracellular signals, such as
22 light, and the presence of food. This response is achieved by yet another set
3 of networks. These networks specialize in this signal transduction and again
24 consist of pathways in which each step is catalysed by proteins. In most of these
»s  pathways however, there is no transfer of mass from the beginning to the end.
2%  Only information about the conditions measured at the beginning of the pathway
27 is reflected by the state elsewhere in the pathway.

28 Metabolism, gene-expression and signal-transduction constitute networks in
2 the dimensions of time, information and chemistry. The living cell also depends
s  on other networks that address the dimensions of chemistry, structure and space.
st The cell itself is a membrane-bounded compartment. In eukaryotes such as mam-
32 mals, the cell also contains many membrane bounded subcompartments, which
;3 house networks that can be incompatible with networks in other subcompart-
s+ ments. Without catalysis, transport across most of the membranes is impossible,
35 and the transport of some macromolecules through compartments is also catal-
36 ysed. The DNA is folded into a complex structure with proteins called chromatin.
37 These networks of structure and transport through and around structures have
;s been well characterized. In recent years, more and more of these structures have
3  been shown to be displaced from equilibrium, being maintained continuously
40 by regulated active networks. Examples include the DNA structure, certainly in
a1 bacteria (Snoep et al., 2002), the asymmetric lipid distribution in membranes
4 and the microtubular and actin networks in the cell sap.
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ol Molecular biology became a further success story when it joined forces with
02 biochemistry and microbiology and became modern biotechnology. First, it was
03 discovered that many organisms make enzymes that cut DNA with specific
o+ nucleotide sequences. By not having those base sequences themselves, those
os  organisms could protect themselves against invading viruses. These ‘restriction
o6 enzymes were used by scientists to put genes of interest into organisms that did
07 contain those sequences. By growing these organisms and then again applying
os  the restriction enzyme to isolated DNA, pieces of DNA corresponding to genes
oo could be ‘cloned’, i.e. purified and their amounts greatly amplified. The result-
10 ing material could then be introduced into other living cells which would then
i express that DNA into protein. If those cells altered their functioning this helped,
12 establishing the function of the gene. The amplified amount of DNA also enabled
13 that DNA to be sequenced, first by tedious methodology, but in a demand-driven
14+ mode this led to the development of new and rapid sequencing methodology.
15 (The methodology to amplify DNA also became much more effective when the
16 polymerase chain reaction (PCR) was developed, allowing for the amplification
17 to occur in vitro.) The result was that the nucleotide sequence of each gene of
15 interest could be determined. Because of the 64-to-20 mapping of DNA sequence
19 to protein sequence, this implied that the amino acid sequence of the correspond-
20 ing protein was also determined. Through the above cloning procedure, larger
21 amounts of proteins could be obtained enabling structure determination through
2 X-ray crystallography and NMR. At present the structure of almost any soluble
23 protein can be determined, albeit at relatively low throughput.

24 It also became possible to determine whether any given gene was expressed
»s in an organism. Here the base-pairing phenomenon that underpins DNA and
26 mRNA function served molecular biology. Tagged DNA or RNA molecules that
27 were complementary in terms of nucleotide sequence were synthesized and made
s to react (‘hybridize’) with mRNA isolated from living organisms. If a certain
2 mRNA was expressed then the hybridization would betray this. Because so many
;0  genes are expressed in any organism and because of background reactivity, the
31 mRNAs first had to be separated from each other, which was accomplished
2 by gel electrophoresis. A corresponding methodology was developed for the
;3 measurement of expression at the level of protein, by using specific antibodies
s for the proteins. The separation power of these methods is however limited, and
35 therefore they were not suitable for genome wide measuring of gene expression.
36 Another powerful tool came from genetics applied to rapidly growing
37 microorganisms. Mutations were made in the DNA of these organisms and the
33 consequences for their functioning was determined. Through the above method-
3  ologies, mutations could be related to proteins. Deleting genes and observing
40  the consequences, pathways could be constructed that should be responsible for
41 certpingspects of cellular behaviour. When this was done for different organ-
2 ism astonishing phenomenon turned up. This was the extensive homology
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o of organisms in terms of their intracellular organization, as well as in terms of
02 the amino acid sequences of their corresponding proteins. In principle, the major
03 food substance glucose could be oxidized in many ways to carbon dioxide with
o+ the harvest of much of the corresponding free energy. Virtually all organisms,
os  however, possess the glycolytic pathway and the tricarboxylic acid cycle, and
os many contain the membrane-associated electron-transfer chain, which comprise
07 one way of accomplishing this overall process. A fortiori, the enzyme that catal-
os yses the phosphorylation of glucose by ATP, is sufficiently homologous also
o in terms of its amino acid sequence, for its sequence to be identified in many
0 newly sequenced genomes, through the sophisticated techniques of bioinfor-
11 matics. Even more strongly so, functional domains of proteins (such as ATP
12 binding sites) have been sufficiently conserved through evolution to be recog-
13 nized between genomes. On another planet with perhaps much higher rates of net
14 mutagenesis, and much lower selection pressure, this may be different, but for
15 our planet this phenomenon of extensive homology has been an enormous asset
16 to molecular biology. To many newly sequenced genes, a function is assigned
17 simply on the basis of seqze=ce of homology, and in many cases this assignment
18 turns out to be correct, q tively. An important consequence is also that the
19 phrase ‘understanding life’ does have a meaning. It could have been such that
20  molecules, mechanisms and pathways differed immensely between organisms
2 and that each organism had solved the problem of how to stay alive in its own,
2 entirely different way. It is quite clear now that this is not the case; life as we
23 know it in a broad sense is probably maintained in just one single way, with
24 ‘minor’ variations on the theme. This is not to say that this variation, which is
»s  minor in terms of principle and quality, is not vast in terms of quantity. Biolog-
% ical diversity especially in the microbial realm is enormous. Accordingly, life
27 is able to maintain itself under a very wide variety of conditions on this planet,
3 but again, essentially through extensive variation on a single theme. Of course,
2 this greatly motivates the scientific question of what constitutes this essentially
3  uniform molecular basis of life.

3l The maps and structures of living cells, i.e. the field that may be called cell
52 biology, were considered known in the 1980s in their essence. What was lacking
;3 was the completeness. Although for each type of network, a number of examples
s+ had been well documented, many actual networks had not yet been identified.
35 More disturbingly, however, every now and then a cellular component was
36 discovered that was strongly involved in the already ‘known’ pathways, most
37 often in their regulation, but often even in their mechanism. Examples included
3 fructose 2,6 bisphosphate in glycolysis, the chaperonins in the proteing synthesis
3  pathway and ubiquitinylation in signal transduction. In addition, although some
40  cellular behaviour could be explained qualitatively on the basis of the known
41 networks, much other behaviour was in conflict with what was known, or simply
42  notexplained by it. The conflicts could not be used constructively as falsifications
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o (Popper, 1992), because it was well recognized that there were many unknown
02 components and regulatory mechanisms in the cell that could affect the pathway
03 that was under investigation. For similar reasons verifications were limited in
o+  value. What often resulted was an escape of biochemistry and molecular biology
os to well defined in vitro systems, where at least the mechanisms of the proposed
os  pathway or molecules could be established, even though the relevance for their
07 operation in vivo became unclear.

0 2. LIMITATIONS TO THE SCIENTIFIC STATUS OF
1 BIOCHEMISTRY AND MOLECULAR BIOLOGY

13 Notwithstanding their success concerning the understanding of single types of
14« macromolecules, classical biochemistry and molecular biology face limitations
15 when compared to the science aimed at by the philosophers of classical physics.
16 These limitations are

17 Q
s (1) Inaccuracy: no quantitative, i.e. accura sting of hypotheses

1o (2) Inability to deal with emergent properties: because of lack of quantization

2 it is impossible to test a number of qualitative hypotheses that are highly
21 important for the emergent properties in living systems

»  (3) Irreducibility: biochemistry and molecular biology theories cannot be
2 reduced to physical chemical theories

2 (4) Impotency, i.e. inability to address Life itself and lack of connection to
25 organismal Biology

5 (5) Undefinedness: not all factors that play important roles are known and
27 consequently hypotheses cannot be tested

»  (6) Inaccessibility to experimentation: the systems under study cannot be exper-
2 imented on through a sufficient number of degrees of freedom

s (7) Lack of analyzability

We now discuss these limitations, one at a time.

2.1. Imaccuracy

s The first limitation is that the cartoon-type hypotheses were not quantitative and
37 thereby unfit for the strictest possible quantitative testing, a procedure desired
33 by the philosophy of physics (Carnap, 1966). Being quantitative enables tests to
3 be more stringent (Laughlin, 2005). If the temperature of a closed vessel with
40  anideal gas rises by 10% then the qualitative test of the law of Boyle asks if the
41 pressure goes up, whilst the quantitative test asks whether the pressure goes up
2 by precisely 10%. Clearly, the qualitative test has a 50% chance of being passed
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by coincidence, whereas the quantitative test has a much smaller such chance,
depending on the experimental accuracy.

2.2. Inability to deal with emergence

A second limitation also derives from the lack of being quantitative but, para-
doxically, pertains to failure to test the prediction of qualitative phenomena. The
behaviour of systems of independent components is nothing but the simple addi-
tion of the behaviour of those components. In sufficiently nonlinear systems and
even in linear systems with certain networking (for simplicity we shall here call
the latter also ‘nonlinear’), qualitatively new behaviour may emerge, which is
often important for biological function. In fact for survival of living organisms,
a number of properties is essential that are absent from the individual molecules
in those organisms. They must emerge from certain nonlinear interactions. We
shall refer to those nonlinear interactions as ‘essential’ nonlinearities. Examples
include oscillations in networks of components that would themselves never
oscillate (Goldbeter et al., 2001), and free-energy transduction between compo-
nents that would themselves only dissipate free energy (Westerhoff & van Dam,
1987). For biological macromolecules, the nonlinearity varies between condi-
tions, as it depends on their environment. We briefly illustrate this by considering
what may be the rate equation of an enzyme in an intracellular network:

[S]-V

=R M

where v, [S], K,, and V refer to the actual reaction rate, the concentration of the
substrate of the reaction, the Michaelis—Menten ‘constant’ and the ‘maximum’
reaction rate, respectively. The way in which the enzyme affects the behaviour
(both in the qualitative and in the quantitative sense) of the network is fairly well
described by the elasticity coefficients for the metabolites with which it interacts,
in this simplest case, the substrate S. This elasticity coefficient corresponds
to the log—log derivative of the rate with respect to the concentration of the
substrate, i.e.

dlnvy K

ST ams] K, n [5] @

The equation shows that the role of the enzyme in the system is not only
determined by that enzyme itself (through K ) but also by its environment (i.e.
by [S]) an ) how it interacts with that environment (in terms of S/K ).

Whethd==< new behaviour that emerges depends on the type of nonlineari D
that reigns in the network, e.g. on the value of the above elasticity coefficier
Consequently any theory explaining the occurrence of oscillations will only
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o predict oscillations for certain states of the system (i.e. certain magnitudes of
o2 [S]) and not for others (as is observed, e.g., Ihekwaba et al., 2004; Nelson et al.,
03 2004), and their nature can depend even qualitatively on multiple enzymes in the
o system (e.g. IThekwaba et al., 2005). Testing whether the theory indeed explains
os  oscillations that occur in a living cell will first have to determine what the
os  state of the system is, in a quantitative sense (i.e. how high [S] is, and not just
o7 whether there is some S or not), then to ask whether for that state the theory
s predicts oscillations, and then to test whether under those conditions oscillations
o are indeed observed experimentally. The implication is not only that theory and
0o experiments need to be quantitative but also that they need to pertain to the
11 conditions of the living state, i.e. they need to be performed under conditions
1> as close as possible to those that are considered to pertain in vivo, preferably in
13 the living organism itself.
14 An actual example is the following. If one observes synchronous glycolytic
15 oscillations in intact yeast cells (Davey et al., 1996; Richard et al., 1993),
s and one proposes that the stimulation of the enzyme phosphofructokinase by
7 AMP is ‘responsible’, one can test this hypothesis by mutating the enzyme
s and removing that stimulation. However, any alteration that alters the system
o such that its state is no longer in the oscillatory domain, will do away with the
o  oscillations. In fact the proposed mutation of phosphofructokinase could well do
. away with the oscillations by simply shifting the system to a different operating
,,  point even if this product stimulation were responsible for the oscillations. A
., proper test of the hypothesis thus removes the AMP effect whilst simultaneously
,» ~modulating the system so as to keep it at its operational state. Better, one
,s removes the AMP effect gradually and asks if the frequency or amplitude of
, the oscillations changes (Reijenga et al., 2005b). In nonlinear systems, even
,, qualitative statements therefore need quantitative tests (lhekwaba et al., 2005).
How important is this issue? Well, the rate and equilibrium equations for
most biological processes are nonlinear or at least nonproportional (Hill, 1977,
Westerhoff & van Dam, 1987). Moreover, many of the biological processes
that are important for function exhibit properties that one would not see in
individual molecules and that therefore require nonlinear interactions between
those molecules. These processes include differentiation, development, the cell
cycle, robust signal transduction and most transport processes. Their theories
can only be tested if they are quantitative, and strictly only by quantitative
experimentation that is performed inside the living cell.

28
29
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34
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*  2.3. Frustrated aspiration of biochemistry and molecular biology

to ... biology

39
40
41 Another type of limitation to biochemistry and molecular biology is that they
2 do not by themselves produce the overlying science, i.e. biology. In principle,



Elsevier AMS Job Code: BOSB Ch02-N52085 7-10-2006 6:24p.m. Page: 36 Trim size: 165mmX 240mm

36 H. V. Westerhoff and D. B. Kell

o biochemistry and molecular biology study all the molecules that occur in organ-
02 isms, but they refrain from addressing the life that is embodied by all those
03 molecules. Although this claim of insufficiency of biochemistry and molecular
o« biology has often been made by physiologists and other organismal biologists,
os it is not immediately appreciated by all, and certain its remedy is not. There
os 1s indeed a paradox: if biochemistry and molecular biology were to continue
07 to study and establish the structure and the mechanisms of action of every
s  macromolecule of a living organism, then they should ultimately understand that
o  whole living cell. For what else is there in a living cell than its molecules? This
0 contention is the most common version of the reductionist agenda: dissect any
11 system into its elements, study all those elements individually, and then just
1 understand the system. Technically, the ‘just understand the system’, implies
13 that systemgs behaviour can be understood as a superposition of how all its com-
4 ponents behave individually. The organismal biologists often observe that when
s aliving system is taken apart, it loses much of the essential behaviour of living
6 systems. This makes some of them turn to the holist agenda, which studies
» only intact systems. This then makes them subject to much of the limitations
s hoted above for organismal biology, and more importantly, it implies that those
v limitations will stay forever, independently of the progress of science.

% The reductionist and holist paradigms seem to be irreconcilable, but below
,;  we shall propose that through systems biology and the silicon-cell approach they
,, may not be. Here we shall first indicate why the ‘just understand the system’
,»  methodology does not work, i.e. why by themselves biochemistry and molecular
,,  biology cannot produce biology. The reason is again the essential nonlinearities
of biological systems. Much of biology depends on dynamic phenomena that
emerge in nonlinear interactions. These cannot be understood by the simple
addition of the behaviour of the components in isolation. This is one reason
why biology lies outside the realm of biochemistry and molecular biology sensu
stricto. In other words, what makes a system different from its parts list is the
non-linear interactions between those parts, and these are changed or lost upon
disassembly.

25
26
27
28
29
30
31
32

33

2.4. Eeeeducibility

34
3 A thita Tmitation is again related to the cartoon aspect of biochemistry and
3 molecular biology: in these new disciplines molecules are not drawn in terms
37 of their structure or chemical equation, but by coloured balls with short, non-
33 chemical names, such as hexokinase, HXK, Ras or wnt. These names serve
3  reasonably well as mnemonics. Attempts to give enzymes systematic names pro-
40 duced names that referred to their activity rather than to their chemical formula
41 or structure. The reason was that for many enzymes the chemical structure could
42 not be established, whereas at least some of the catalytic activities could be. The
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names and concepts of biochemistry were not reduced to the underlying physi-
cal chemistry (in the sense of reduction of theories to underlying more general
theories, cf. above). Similarly, ‘the’ structure of nucleic acids and proteins was
determined by X-ray crystallography, but the question of whether that structure
was stable with respect to the physical forces between amino acids and between
bases, was not addressed. This was in part because it could not be addressed
effaetively. Virtually none of these structures can presently be calculated ab
irD (see (Popelier & Joubert, 2002) for an example), precisely because the
interactions are nonlinear, and with many interactions depending on other inter-
actions. Likewise, electric field effects on transmembrane movements of ions
cannot be vested in physics and chemistry because too much of the details of
the transport matters and is in fact unknown. Although there has been some
progress in the calculation of enzyme catalysis in terms of physical-chemical
interactions, most such reaction mechanisms cannot be verified in terms of pre-
cise physics and chemistry. The same is true for the pathways of processes
that rmpake living cells operate. The fluxes through them cannot be calculated
ab inj Q ither, but only from direct physical-chemical interactions and atomic
structures. In biochemical textbooks, pathways are therefore drawn as roadmaps
running through many towns and connecting major cities or hubs (Barabdsi &
Oltvai, 2004). Indeed, reduction of molecular biology and biochemistry to the
underlying physics and chemistry is rare, and not even an aim of these dis-
ciplines anymore; both disciplines are entirely successful on the basis of their
own concepts and laws, immaterial whether these are reducible to physics and
chemistry or not. However, this general problem of intractability in terms of the
underlying physics and chemistry caused reluctance among many physicists and
chemists to consider biochemistry and molecular biology as serious sciences.
The biology of entire living systems was observed to be too complex and ill
defined for the hypotheses to be strict, testable and falsifiable. To some, this
made molecular biology and biochemistry appear to remain stamp collecting.

Indeed, the above limitations suggest that neither biochemistry nor molecular
biology connect to physics. They fail to meet the criteria of classical physics
that were once proposed to be the criteria of proper science (Carnap, 1966).
Looking at chemistry beyond quantum chemistry, this may not be a novelty
among the experimental sciences; chemistry may not connect to physics either
(Primas, 1981).

2.5. Lack of testability because of undefinedness

Another important limitation of biochemistry and molecular biology relates
more literally to holism. Returning to Eqn (1), we realize that the Michaelis
‘constant’ is independent of the concentration of S but not necessarily constant
otherwise. Agents binding to the enzyme catalysing the reaction may influence
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o this Michaelis constant, and certainly the concentration of the product of the
o2 reaction changes the (effective) K, i.e.

03

o Km, apparent — K, - <1 + [P]/Kp) (3)
05

% All components of the same living cell may therewith affect the role the enzyme

plays in the cell’s behaviour, alsg, the components that are not yet known. . ..
This pinpoints one of the arguments of holism, in that to understand the role of
one of the molecules in a system with the type of nonlinearities found in cell
biology, one must look at the whole. We do not think that one should necessarily
be able to look at the whole all the time, but certainly one should be able to
look at all the possible molecular factors that play a role. Until recently, not all
molecules of the living cell were known or even knowable, making it impossible
for biochemistry and molecular biology even to determine with certainty the
role a molecule of choice might play in determining the nonlinear behaviour of
the living system, simply because unknown factors could well be clouding any
issue. Post-genomics is beginning to change this.
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,,  2.6. Lack of experimental accessibility

2 As emphasized by Carnap (1966) for physics, it is important that hypotheses
23 are tested under all relevant conditions and in terms of all relevant degrees of
24 freedom. In living systems, many factors may exert an influence and it should
25 therefore be mandatory that proposed mechanisms are tested by modulation of
26 all those factors individually. For as long as not all those factors were known,
27 it was difficult for biology to carry out these tests; the living system was not

28 accessible enough for such testing.
29

30
:; 2.7. Lack of analysability

33 Because many factors are likely to be involved in the sustenance of the liv-
s ing state, hypotheses concerning mechanisms are likely to be multifactorial.
35 Accordingly, many of these factors should be monitored simultaneously in tests.
36 Although quite a few factors can be measured individually by biochemistry and
37 molecular biology, until recently it was impossible to monitor many components
33 simultaneously.

39 Summarizing, we see a landscape where biochemistry and molecular biology
40 could extend neither to physics nor to organismal biology because of at least
41 these seven types of limitation. We shall now discuss recent changes in molecular
42  biology that would seem to do away with some of these limitations.
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1 3. RISING ABOVE THE LIMITATIONS
02
o 3.1. Genomics

04

A major cause of the above limitations was that there existed no complete
understanding of inventory of all the components of a living cell, even though
such an inventory had been identified in principle, i.e. the DNA: the DNA
contains the information for all the proteins in the cell and the proteins catalyse
all the reactions. It was thought that in principle, the sequence of the DNA
should determine everything that happens in the living cell, under any given set
of environmental conditions. It became quite important therefore to sequence
all the DNA of a living organism, and in the 1990s of the previous century,
large consortia of researchers embarked on accomplishing this aim in activities
referred to as ‘genomics’. It may seem that genomics was not much different
from the molecular biology that preceded it. Indeed, many of the most active
scientists in genomics continued to be molecular biologists as well. Yet, for
our discussion here, the transition between molecular biology and genomics
has been quintessential. Genomics went after the determination of the complete
DNA sequence of an organism, rather than of DNA sequence of many of its
' components, i.e. genomics went for the system rather than for its components.
2 By 1995, the first complete sequences of the genomes of free-living organisms
2 (cf mitochondria in 1981 (Anderson et al., 1981)) became available (Fleischmann
2 et al., 1995), and importantly also the sequences of the two best-known model
2 organisms soon followpd—.e. the eukaryote yeast (Goffeau et al., 1996) and
2 the bacterium Eschericg> oli (E. coli) (Blattner et al., 1997). By 2001, the
25 DNA sequence of humans was nominally established and sequences of many
2 organisms have become known as we write this. In essence, the DNA sequence
27 of any organism can now be determined. Because of the homology discussed
28 above and thanks to bioinformatics, the function of many genes can be proposed
2 with appreciable success rates when the homology to genes of known function
% s close. Although for half of all sequenced genes (this fraction differs between
31 organisms), the function is uncertain or unclear, this fraction is considered to
32 be on the decrease. (We would stress, of course, that many genes with some
33 ‘known’ functions will turn out to have other functions that are as yet unknown.)
34 Knowing most of the genes of an organism provided a strong motivation for
35 what has been called ‘functional genomics’, i.e. for determining whether those
3  genes function in terms of being expressed and what their role is. Because of
37 the strong tendency of nucleic acids of complementary sequence to react with
38 each other, this was possible in principle by making populations of small RNA
3  molecules each of which was complementary to part of one of all the genes in
40  the genome. A breakthrough came when those probe molecules could be spotted
41 as an array onto a slide and could be provided with a fluorescent tag that lights
2 up when an mRNA molecule hybridized. This nucleotide array technology is
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oo now used to determine the expression of all genes at the level of mRNA, at
o2 accuracies beyond 30%.

03 No similar hybridization chemistry exists at the level of a chain of amino
o+ acids (yet). Using immunological techniques however, antibody-like molecules
os  are now spotted onto arrays, and the abundance of proteins in extracts from cells
os is determined (Walter et al., 2000). Alternative modes of genome-wide detection
o7 of protein abundances include a methodology in which all proteins are separated
os in a highly reproducible way through two-dimensional (2D) gel electrophoresis,
oo such that each location in 2D corresponds to a specific protein. The mapping of
10 spot location to the identity of the gene is a slow process, but for smaller genomes
11 this methodology is getting close to the possibility of genome wide detection of
12 gene expression at the level of protein. This methodology is inherently limited in
13 three important ways. First, the resolution of 2D gel electrophoresis is insufficient
14 to separate all proteins of genomes larger than a few thousand genes; though
15 useful for bacteria, the methodology is still of more limited value for human
16 biology. Second, the method is not quantitative yet, and indeed many proteins,
17 especially membrane proteins, are missed entirely. And third, it is difficult
15 to identify the individual proteins. The latter problem is now being alleviated
v by the implementation of mass spectrometry. By extracting protein from a
20  specific location on the 2D gel, subjecting that to limited proteolytic digestion,
2 determining the precise mass and/or sequence of the resulting peptides and
22 combining the resulting information with the known sequence of the genome,
3 the protein spots can now often be attributed to specific proteins.

24 Mass spectrometry also offers methods that may analyse genome-wide expres-
s sion at the protein level. The gel-electrophoresis step can be replaced by capillary
26 chromatography, a separation by mass spectrometry on the basis of the total
27 mass of the protein (or fragments thereof), fission of the protein/peptide in the
23 gas phase and then a second mass spectrometry step to determine what the
2 resulting fractions are. Again the availability of the genome sequence enables
s  one to identify the protein. For mass spectrometry, molecules have to be brought
s into the gas phase as electrically charged molecules. However, existence in the
32 gas phase is far from the thermodynamically most favourable mode of existence
;3 for most of the molecules that constitute the living cell. The effectiveness at
3+ which the entry into the gas phase is achieved is low therefore more importantly,
35 it deper==mmuch on the presence and properties of the otholecules in the
36 mixtur D er molecules with electric charge can affect the tendency of a given
37 molecule to enter the gas phase. Consequently, the mass spectrometry method
;s is inherently irreproducible in the quantitative sense; it is hard to determine
3 expression levels accurately with this method (although this is improving both
s by changing conditions in the mass spectrometer (Vaidyanathan et al., 2003)
41 and by isotope-based quantification. This is because isotopes behave essentially
+  identically with respect to the above problems, yet can be discriminated readily
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o by the mass spectrometer. Spiking samples with known amounts of an isotope
02 of the substance of which the quantity needs to be determined, therefore enables
03 quantitative determination of amounts of proteins (more often in relative terms
o but occasionally absolutely (e.g. Beynon et al., 2005),

05 The genome-wide determination of gene expression at the levels of mRNA
o6  and protein are called transcriptomics and proteomics, respectively. Genome-wide
o7 analysis of the expression at the level of metabolism, which is often closest to
os  function, is called metabolomics. Genome-wide metabolomics has not yet been
o  developed to the same extent as transcriptomics (Dunn, Bailey & Johnson, 2005;
0 Dunn & Ellis, 2005; Goodacre et al., 2004). Mass spectrometry methods akin
11 to the ones described above for proteins are being developed for metabolomics.
12 Again it is a problem to get the metabolites into the gas phase and to determine
13 their level quantitatively; isotope methodology can again solve this problem
14 (though one needs an isotope for each determinand, and the larger problem
15 resides in the fact that we do not know what most of these molecules are. . .).
16 Cell function is determined not only by the expression levels of proteins but
17 also by where they are expressed. Here three developments are highly important.
15 One is that of high-resolution microscopy. The second is the development of
19 many fluorescent probes for important molecules and ions in living cells. And
20  third is the possibility of fluorescence- or luminescence-based reporter proteins,
21 which are either fused to proteins of interest or are put under the control of the
22 gene-expression control elements that normally drive the expression of proteins
23 of interest. Thanks to these methodologies, the timing of expression and the
24 dynamic localization of many molecules in the living cell can now be determined.
25 Another less profound, yet highly important advance in technology is that of
%  robotization and automation for high throughput experimentation. By using plates
7 with many reaction vessels and robots doing the pipetting, many experiments
s can be performed in parallel and at much enhanced reproducibility.

29 At present one can determine for all genes in a genome simultaneously whether
3  they are expressed at the level of mRNA. Soon this will also be possible at the
st level of protein and in terms of their relationship to further levels of function-
a2 ality, e.g. at the level of metabolites. Through functional genomics, therefore,
;3 everything will potentially soon be knowable and known about living cells. For
s unicellular organisms this should imply that everything will be known about a
35 living organism, albeit that collections of such cells remain highly heterogeneous
36 (Davey & Kell 1996). Every component can be manipulated by expressing the
37 corresponding gene in the organism under the control of a regulatory element
33 that can be steered by the experimenter. Everything will come to be known there-
s  fore and systems of Life will come under complete experimental control. The
40  limitations of the ‘undefinedness’ and inaccessibility to falsification—verification
41 experiments of biology, will soon be gone. Finally biology can stop collecting
42  stamps and become ‘proper Physics’, or so it would seem.
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oo 3.2. Soon everything will be known. . .: Will biology become physics,
0 at last?

®  Indeed, the vast increase in power of molecular biology, and the ability to

experiment and analyse genome wide, should get biology much closer to the
ideal of constructing completely verifiable and falsifiable theories. Of the above
list of seven limitations, it would seem that the ones regarding undefinedness,
inaccessibility and lack of analysability have disappeared with the advent of
functional genomics. These three criteria come close to the criteria that proper
physics should adhere to, e.g. according to Carnap (1966). Provided that the
analyses of functional genomics are made quantitative, it would seem that the
first criterion (accuracy) will also be met. It would seem therefore that with
functional genomics Biology would all but graduate to become proper physics.

From the point of view that science should be one and indivisible, the reduc-
tion of biology to just another physical chemical science with ’just’ the same
methodologies and quality criteria, would seem to be a great good. Whether this
should actually happen is the fundamental issue that is the subject matter of
this book. We shall now indicate why we think that this reduction is not to be
expected.
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Z 3.3. Observing or understanding?

23 Functional genomics will enable us to observe virtually everything that happens
24 in living organisms. The aim of the sciences, however, is also to understand the
25 observations. Such understanding can consist of the possibility of deducing what
26 is observed from pre-existing theories. It can also amount to the understanding
27 on the basis of theories that are being generated as many more observations are
23 made, i.e., through induction, principled hypothesis formulation and hypothesis
2 testing through verification/falsification procedures.

30 We shall first address the former basis of understanding. It turns out that
31 functional genomics has not removed the limitation of irreducibility from bio-
52 chemistry and molecular biology, and that it will not do this in any foreseeable
33 future. When it was proposed to sequence the whole genome of organisms, one
3 of the underlying arguments might have been that this should automatically lead
35 to the understanding of the functioning of living cells and organisms in molecular
36 terms. Folding of a protein was perhaps thought to be determined by it finding
37 the structure with the lowest free energy. Because that free energy is determined
38 by the interactions of all its amino acids and the sequence of these in the chain it
3 was perhaps thought that one should be able to calculate that structure ab Q
s  For all but the simplest proteins, the calculation of the structure with the lowest
4«1 free energy from the amino acid sequence is still impossible. The problem is
4  strongly nonlinear and hence much too complex to be carried out by existing
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o computers. In fact, the calculations of protein structure that are being done with
o2 some success are not truly ab initio but use phenomenological force fields and/or
03 knowledge of existing structures. At present structure predictions of proteins on
o+ the basis of their sequence are occasionally fairly successful, but such predictions
os are virtually only based on comparison with homologous structures. The next
o6 step, i.e. the calculation of catalytic action from the protein structure is equally
o7 difficult. Here too, success is based on comparison of homologous series. The ab
os initio calculation of kinetic properties of entire pathways might all be possible
oo in principle, but it is impracticable at present and in fact for any foreseeable
0 future, due to the sheer complexity and nonlinearities of the interactions that are
i involved (see also Westerhoff & Kell, 1987).

12 In the livin Il there are also catalysts of correct protein folding, i.e.
13 chaperonins or'sy—he action of the ribosome. Because both these assisting pro-
14 teins couple this process to a reaction consuming free energy, it is quite possible
15 that they put their target protein in a structural state with a free-energy that is
16 higher than minimal. Indeed, the structure of proteins may not even correspond
17 to the free energy minimum but be determined by the mechanism of folding.
15 After all, the spontaneous conversion between native and denatured states of
19 proteins is rarely effective.

20 A lingering feature of biology could well be important here. This is its inher-
2 ent hysteresis. The concept of biology as straightforward though complicated
22 physical chemistry, should be most consistent with the following picture of the
23 genesis of a new living cell: in an existing living ceD 1 the components of a
24 daughter cell might be synthesized independently de tovo, inclusive of the lipids
»s  necessary for its membrane and its DNA. Then a closed spherical lipid bilayer
2% would be formed around all the newly synthesized components, and the newly
27 formed cell that sat inside the mother cell would be extruded by that mother
s cell. After their synthesis, all components for the new cell would assume their
2»  minimum free energy structure independent of the activities of the mother cell.
s  The state of the daughter cell would then be determined entirely by free-energy
31 minima, hence by the physical chemistry of its molecules. This mechanism of
32 generating new cells might be entirely possible and would in fact be consistent
;3 with what Van Leeuwenhoek expected to see in terms of homunculi through his
3 microscope. But it is not what actually happens. Instead, the membrane of the
35 daughter cell is formed by splitting off a part of the membrane of the mother
36 cell; the DNA of the daughter cell is the result of a semiconservative replication
37 of the mother cell, i.e. the mother and the daughter cell receive both one strand
;s of the DNA of the mother cell, the other strand having been synthesized de novo.
3  According to our current knowledge, the proteins that end up in the daughter
40  cell are not all proteins that have been synthesized de novo. Newly synthesized
41 proteins and pre-existing proteins and even newly synthesized organelles and
42  pre-existing ones end up in both the daughter cell and the mother cell. In many
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o organisms the mother cell after division and the daughter cell are effectively
02 the same; division yields two daughters and the mother ceases to exist. In other
03 organisms such as Saccheyoryces cerevisiae, division is asymmetric, and the
o+  mother differs fromthe daughter, yet appreciable mixing has occurred. Impor-
os  tantly also, the DNA4 D RNA and proteins of the young daughter cell have been
os  synthesized by the DNA polymerase, RNA polymerase and ribosomes of the
o7 mother cell. Consequently, rather than that each cell is an entirely new physical-
os  chemical phenomena, all cells are in fact continuous with each other. If there
o  were a process of excessively slow relaxation in a the same p D s would
10 be in the same state in all daughter cells. That this'ror'so is in partrsreflected
11 by observations of epigenetic phenomena.

12 The extent to which this possible hysteresis is actually important is unclear
13 at the moment. For molecules of low molecular weight and complexity, it is
14 unimportant because relaxation to an equilibrium structure is fast enough. For
15 macromolecules and for the regulatory state of networks it might be important.
16 This issue simply has not been looked at sufficiently yet. In some cases of
17 regulation, such as for instance with the lac operon in E. coli, the regulatory state
15 is effectively inheritable through this type of mechanisms, which has the effect
19 of zonation of its colonies. In its ultimate form the point of hysteresis appears
20  obvious. All amino acids in proteins have the L-stereoisomeric constellation. The
21 mirror world with all R amino acids should be energetically equally probable.
2 Yet new cells with all their proteins in the R form do not arise, because the
3 enzymes that make their amino acids make the L form.

2 The conclusion is that the feature that it is too difficult to calculate structures
»s  of proteins on the basis of physical-chemical principles may not even be too
%  relevant. It is quite possible that most of the structures that exist in living
27 cells are determined by more than the straightforward physical chemistry of
23 those molecules themselves. They may also depend on pre-existing structures
2 of other molecules with which they interacted during synthesis. The fact then
3  that biochemistry and molecular biology do not start from underlying physical—
st chemical principles but with their own elementary objects such as enzymes and
32 genes, may be an asset rather than a disadvantage. The corollary is that also the
;3 irreducibility of biochemistry and molecular biology to physics is much more
s fundamental than technical. Any molecule-based biology may therewith be a
35 science that is fundamentally different from physics.

36 Evolution has not selected structures with maximum entropy (Schrodinger,
3 1944), minimum free energy (Nicolis & Prigogine, 1977) or maximum thermo-
33 dynamic efficiency (Westerhoff & van Dam, 1987), and in fact much of the
3  functioning of biological replication may have been structured so as to prevent
40 relaxation to such a state. Also here simple physical-chemical considerations
41 do not suffice to understand biology. As also proposed by Schrodinger (1944),
42  biology warrants its own explanatory principles.
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01 Of course physics too has undergone a tremendous evolution since the days
o  of Schrodinger and Carnap (Schredinger, 1944; Carnap, 1966). It has been rec-
03 ognized that far away from equilibrium, physical-chemical systems may relax
o+  towards metastable states rather than to equilibrium, and anyway such states are
os typically well isolated from each other in the form of local minima as in any
os  other search landscape (Bick et al., 1997; Frauenfelder & McMahon, 2001).
07 The states can be more complex than the equilibrium state, i.e. appear to be
os  more organized than the latter. Such physical self-organizing systems have been
o  proposed to be at the basis of the tremendous organization that is observed in
10 biology. Accordingly, parts of modern physics address the generation and main-
11 tenance of complex dynamic structures, and how new properties may emerge
12 from nonlinear dynamic interactions. However the mechanisms that have been
15 proposed such as the Brussellator (Nicolis & Prigogine, 1977) are themselves
14 nonverifiable/nonfalsifiable. This is because they were formulated in much too
15 general terms, causing loss of the specificity of the biological system at hand.
16 Testing of nonlinear phenomena requires precision, hence a precise matching
17 of mathematical model and experimental system. Wolf et al. (Wolf et al., 2000)
15 have recen Qvorked towards such a testing of a proposed self-organization
19 mechanismsTor synchronization of the glycolytic oscillations in a population
20  of yeast cells, but this may only serve as an incomplete example. This brings
21 us to the second type of understanding, i.e. on the basis not of the principles of
22 underlying sciences but of principles that are discovered in the science at hand,
23 i.e. on the basis of newly discovered principles of biological systems. Here there
2+ is the issue whether anything is to be expected from the search efy such theories.
25 Metabolic and hierarchical control analysis are theories that may serve as
%  examples of theories that are custom-made for biological systems (Westerhoff &
27 Hofmeyr, 2005). By making an idealized description of intracellular networks,
s i.e. metabolic networks for the former theory and gene-expression or signal
2 transduction networks for the latter, a mathematical set of definitions can be
s made and laws can be deduced from the time-transformation invariance and
31 from stability against fluctuations (cf. Hornberg et al., 2005; Peletier et al., 2003;
»  Westerhoff & van Dam, 1987). These theories are in a sense comparable to
33 theories in physics in that they derive from observations that falsified alternative
s hypotheses, and led to conjectured new laws, which could then be deduced
35 from postulated fundamental properties (axioms) of the system. Other ‘laws’
36  that derive more as a result of induction from experimental observations may
37 also be found for biological systems, such that proteins are encoded by mRNAs
33 which are in turn encoded by pieces of DNA, and the law that for every natural
3  substance on this planet that can be broken down to yield free energy, there is
40  an organism that does precisely that.

41 On the basis of this experience, we expect that many more theories will be
4  established for living systems. These will differ from those we already know
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o from physical chemistry and then not only in terms of their precise meaning, but
o2 perhaps also in terms of their structure. Perhaps such biological theories will be
03 less general, more condition dependent, and much more complex. This remains
0+ to be seen. Automated hypothesis generation from experimental data may show
os  new ways in this respect (King et al., 2004).

06
07
08

3.4. Systems biology

09
o Our contention that the molecular biology of living systems is neither physics

1 nor biology, but rather a science in its own right, suggests that it is entitled to
» aname. Such names already exist, i.e. systems biology and integrative biology.
3 We shall here use the former. We propose that systems biology attempts to
4 establish principles of operation of biological systems such as the living cell.
s It should thereby find its own concepts rather than reduce them to physical
6 chemistry. It should strive to be quantitative enough to be able to understand the
» emergence of functional properties from nonlinear interactions between com-
s ponents of biological systems. It should also appreciate that such interactions
v depend on the precise state that the biological system is in. This has the con-
»  sequence that laws should address specific conditions rather than be completely
,1  general. For instance a law could be that the glycolytic pathway can engage
» in oscillations provided that the elasticities of the following stated reactions
,3  fall within the following range. ... The law should not be of the generality
.  of physics i.e., that the glycolytic pathway might engage in oscillations under
»s  any, unspecified conditions. Systems biology should synthesize the following
6  features

27

28 (1) Information on expression levels is contained in the DNA and is expressed

29 through mRNA into proteins which then catalyse reactions.

30 (2) The expression levels are not simply determined by transcription activities
31 of the DNA in a dictatorially hierarchical fashion, but controlled by a
» combination of extracellular signals and intracellular concentrations.

X! (3) The concentrations of intracellular substances are determined by all the
34 intracellular processes and extracellula D'ether.

35 (4) The intracellular processes are determined by the expression levels of
36 the enzymes, by the kinetic parameters of those enzymes, as well as by
37 extracellular signals and intracellular concentrations.

38 (5) Much of biological regulation is one of circular or spiraling causality
39 (Rosen, 1991; Westerhoff & Hofmeyr, 2005), i.e. a concentration of a
40 substance may co-determine the concentration of another substance at later
4 times and be co-determined by the concentration of that other substance at

) earlier times.
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01 (6) Due to nonlinear interactions, qualitatively new properties may emerge;

02 whether this happens depends on the precise magnitudes of the parameter
03 values.

04 (7) Part of the structure and dynamics of the living cell may be prespecified
05 by evolution, by its mother cell and by the synthetic machinery therein.

06 (8) Living organisms are the product of dynamic interactions between struc-
07 tures and chemical reactions, where the latter determine the former and the
08 former determine the latter to quite significant extents.

09 (9) Much of biological mechanism and regulation is not determined by any
10 single factor but by a multitude of factors.

11 (10) The simplicity of mechanisms that serves as Occam’s razor in the decision
12 between competing theories in physics is of comparatively lower real value
13 in biology. Functionality and fitness and empirical facts rule over sim-
14 plicity. The actual mechanisms in systems biology may be more complex
15 than possible because of coselection for other purposes in evolutionary
16 optimization, because evolution may have led to systems that are optimal
17 locally but not globally, and because simpliciQ human eyes may be
18 complex in systems biology terms (and vice versay.

19

20 Much of life is associated with organizational and intelligence aspects that

un ‘emerge’ from molecular behaviour (Kell & Welch, 1991). Although these emer-
2 gent properties are not in conflict with physics and chemistry, much of physics
;3 and chemistry traditionally shies away from complexity, hysteresis and nonlin-
1 earity (although other parts such as those dealing with superconductivity, lasers,
s ferroelectricity and other highly nonlinear phenomena cannot escape it). As we
»  discussed above, their paradigms favour the kind of simplicity and Occam’s
27 razor strategy that may not be relevant for biology. We propose that this makes
s systems biology (the part of biology that focuses on this kind of complexity)
2 its own science with, indeed, its own methodology and its own philosophical
s  foundations. We shall here then seek to contribute to the development of a
s philosophical basis for this new science by describing some of the modes in
;2 which it operates in practice.

35 4. TOWARDS A SYSTEMATIC METHODOLOGY OF SYSTEMS
36 BIOLOGY

38 Other chapters in this book describe philosophical aspects that underlie modern
3 systems biology. Here we shall set down some of the methodologies of systems
40  biology as we observe them. As a conceptual context coming from practitioners
4«1 of systems biology, this may then serve for the further development of the
4  philosophy of this science.
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oo 4.1. The goals of systems biology

® A discussion of what is or should be the methodology of systems biology requires

us to be explicit about our goals in systems biology. The main one, of course, is
to understand more general principles underlying the behaviour and mechanistic
workings of the complete biological systems that sustain life. After all, and as we
discussed above, systems biology should be a science and not just a technology
for analysing special cases. Systems biology should discover new scientific
laws, which may relate as much to physical-chemical, organizational and fitness
aspects as to biochemical principles. With respect to this aim, mathematics
should not take the form of modeling but rather constitute a way of codifying
proposed or verified laws or principles. A case in point is the connectivity
law of metabolic control analysis (see Fell, 1996; Heinrich & Schuster, 1996;
" Kell & Westerhoff, 1986; Westerhoff & van Dam, 1987), which can be most
strictly formulated after defining a new property (i.e. the elasticity, see above)
in mathematical terms.

A second aim then is the ability to understand the inner workings of particular
living systems. Ultimately this is best done by having a computational or math-
'8 ematical model of the system in terms of its components and the quantitative
' nature of the interactions between them. Such a model could be the result of
2 “‘simulation’ and ‘fitting’, the model being adjusted in terms of its structure
2t and/or its parameter values, until it describes the observed system behaviour.
22 That description may then constitute understanding. Such a description corre-
2 sponds to a mechanistic explanation but now in the systems sense.

24 However, as in other kinds of modelling (Corne et al., 1999; Kell & Knowles,
% 2006) we want more: A third aim derives from the ability to make predictions
26 about the possible future behaviour of the system on the basis of changes we
27 might make to our models. This creates possibilities of further testing the quality
28 of the model, which is the third aim of modelling. Using a model to make such
2 predictions forbids its further adjustment whilst calculating the prediction; no
3% fitting should be involved at such a stage. The same is true in machine learning
31 (Duda et al., 2001; Hastie et al., 2001; Rowland, 2003). A related, fourth aim
2 of modelling is the use of the model for technological or therapeutic purposes.
33 The fifth or ultimate aim of systems biology combines the above; it is the
3 aim of accomplishing the mission of the life sciences and understand, living
35 systems in molecular terms, thereby opening such ‘applied’ avenues as prognosis,
36 diagnosis, preventive medicine and lifestyle adjustment, therapy, drug design
37 and biotechnology.

38 Here we have addressed the understanding of biological systems more than
3  their explanation in an evolutionary context. Where we addressed explanation
40 this is in terms of the direct causal mechanisms rather than those that derive
4«1 from divergence and selection for fitness or stability or observability. After
«  all, biological systems live in the absence of evolution. Our discussion has

03
04
05
06
07
08

09
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o also refrained from discriminating explictly between the two chief strategies for
02 scientific understanding, i.e. by unification through subsumption to laws and
03 understanding in terms of causation through mechanisms.

04

05

o 4.2, Systems biology: What it is

07
From the above aims and from the background of the limitations of molecular

biology and functional genomics, one may surmise which activities are nec-
essary for a successful systems biology. Many of the tools and techniques of
functional genomics are in place as are the techniques from molecular biology
and biochemistry. In view of the complexity of the subject matter, and because
a focus on parts is ultimately not advised, our present strategy is to focus on
a single system of life that is relatively autonomous. Ultimately this should
result in a complete living organism being the object of study, and as scientific
data and knowledge become distributed and available to all via the Internet this
is increasingly possible in a coherent manner. At first these are likely to be
unicellular microorganisms, or relatively autonomous subsystems thereof. The
mathematical tools will be discussed in more detail below.

Figure 2 therefore shows some of the elements of the systems biology agenda
(Kell, 2006). It gives a certain primacy to the system of interest as a circle in the
centre. However, while specifics of methods will vary between organisms and

08

09

20

21

22

23

24

25

Genome-wide Genome-wide
26 protein-metabolite Regulatory interactions protein—protein
27 binding constants binding constants

28

29

Genome-wide Model ism/ Transcriptome
30 high-throughput ote orgf;ar;llgm Proteome
31 enzyme kinetics system of choice Metabolome
32
33 Genome-wide
protein-inhibitor Database, schema
34 binding constants standards
35 (Chemical genetics)
36
37 Modelling; ODEs, constraint-based optimisation,

solving inverse problems, novel strategies

38

39

40 Figure 2 Some elements of the systems biology agenda. D
41

4 These are purposely not interconnected in this figure for reasons of clarity.
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or  systems (e.g. the optimal extraction method for the transcriptome of Streptomyces
02 coelicolor—an organism with an unusually high GC content — differs substantially
03 from that for the transcriptome of other organisms), we shall more or less ignore
o+ these specifics and here concentrate on generic issues and methodologies.

05

06

v 4.3. The spiral of knowledge

®  We maintain that for systems biology as well as for science generally, scien-

tific thinking should consist of an interplay between (i) the mental worlds of
knowledge and ideas and (ii) the physical world of observations and sense-data.
Figure 3 sketches a straightforward view of the relationships between the two
worlds, which is usually described as a cyclic interplay between experimental
observation and theory, with induction on the basis of experimental observations
leading to new, more acute experiments testing the hypotheses. The new experi-
ments should then lead to a further adjustment of the intellectual world view and
good hypotheses that derive therefrom. We note then that functional genomics
without the systems biology dimension might remain in Q a cycle of data
collection, pattern recognition and the generation of ad mpirical ‘laws’
and hypotheses describing those data phenomenologically. The application of

09
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22

23

2 OVER AND UNDERLYING THEORIES

25

26

27

2 KNOWLEDGE/
2 HYPOTHESIS
30

31

32

. INDUCTION DEDUCTION
34

S

% ] OBSERVATIONS/
37 DATA

39

40

~

1 Figure 3 An iterative interplay between the world of ideas and the world of data as
4 the hallmark of both science and systems biology.
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o systems biology in addition to functional genomics should lead to a progression
02 of insight that is also outside the range covered by the primary dataset. The
03 developing insight is effectively a third dimension, which is one of the aspects
o+ that systems biology may help add to functional genomics.

05 An example would be the observation in a large number of datasets that
os mRNA for a protein A always goes up or down together with that of protein
07 B. This would lead to the empirical law that proteins A and B always behave
os  similarly. This empirical law would reside on the same conceptual plane as the
o  primary data set and would therefore fit into the cycle picture of Fig. 3. Here
10 the broad aim of functional genomics could be seen to have been satisfied, and
11 experimentation could stop. However, systems biology would search further for
12 the cellular control and regulation hierarchy to find that the two corresponding
13 genes are regulated by the same transcription factor; it would then search for
14 interactions responsible for the correlation. Not only would this explain the
15 observed correlation of mRNA-A and mRNA-B, it would also predict exceptions
16 to these correlations, e.g. when a second transcription-factor footprint would
17 map to gene A but not to gene B. In this way understanding will slowly but
s steadily grow outside the primary data set and elucidate more and more of cell
19 biology, hence add a dimension of understanding.

20 We therefore recognize that systems biology may be among the sciences that is
21 better described by a spiral of knowledge rather than a cycle (cf. Fig. 4). A further
22 addition to the traditional vision is that of a box with overlying and underlying
;3 theories, with a deductive arrow stemming from that (cf. Figs. 3 and 4). Indeed,
»  any law or hypothesis of systems biology should be consistent with underlying
»s  physical-chemical principles and in good systems biology any such hypothesis
%  should therewith also be deduced in part from those underlying principles (this
»7  may seem a superfluous remark but we have seen systems biology-type theories
;s that were inconsistent with the second law of thermodynamics and principles of
» electric fields).

30

si 4.3.1. Systems biology: The inductive versus the deductive mode

32 The recent developments in postgenomics have caused the empirical branch of
33 systems biology, which is closest to functional genomics and stems from the
1 developments in molecular biology (Westerhoff & Palsson, 2004), to develop
35 most strongly. This branch emphasizes the observation component, i.e. the mea-
36 surement of the dynamic variables. It then establishes patterns in the observed
37 dynamic responses of the system to perturbations, whereby it uses mathematics
33 for the analysis of multidimensional systems. This functional genomics activity
3 tends towards systems biology because it accommodates the feature that the var-
s ious molecules in the living cell vary coordinately in concentration. Often it is
41 not yet the science of systems biology because it sticks to the observation of the
4  correlations, without necessarily understanding their basis or whether they are
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05 DEDUCTION
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Knowledge/
ideas by hypothesis

10 Knowledge/
ideas by hypothesis

07

INDUCTION OBSERVATIONS/

DATA

08

09

DEDUCTION

INDUCTION OBSERVATIONS/

DATA

14
Knowledge/ DEDUCTION

» ideas by hypothesis

16

7 INDUCTION OBSERVATIONS/

DATA
18
" Underlying theory DEDUCTION

20
(physics, chemistry)
21

Z Figure 4 The advancement of Science and of Systems biology as a spiral.
24 Since the hypotheses are (hopefully) not the same at each turn of the cycle of Fig. 3, one may
,5  also or better view the iterative interplay between the elements of Fig. 3 in terms of a spiral.

26

27 in an explicit sense causal. This is not to say that this activity is not extremely
23 useful, however, since observations of correlations between the transcriptome
2 of tumours and their response to chemotherapy may help therapy tremendously,
50 long before any mechanistic basis for understanding (and one might comment
st that this is widely true in medicine).

32 Functional genomics does become part of the science of systems biology when
33 it makes the step of induction of Fig. 3. In practice, this has not yet happened very
s often. It seems important to redress the balance by transforming this empiricism
35 into a principled hypothesis-generating arc that leads from data to knowledge.
36 One way in which this can be done is to map the mRINA concentrations that vary
37 coordinately onto the known regulatory maps of cell biology. Perhaps this leads
38 to the recognition of coherent regulation of a pathway, or of a limited number
3 of super-regulators. Either result would lead to a hypothesis which could then
40  be tested further.

41 The deductive mode of reasoning is a classical obsession of biology, and
4« remains entirely relevant. In the present context, it ranges from branches of
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o mathematical biology and metabolic control analysis which have been deduced
o2 from underlying principles, to proposed flux patterns (Reed & Palsson, 2003),
03 or distributions of control (e.g. Hornberg et al., 2005).

04 By contrast, much of postgenomics and systems biology, in which often
os we lack reasons or sufficient background knowledge that might lead us to
oo  realistically plausible hypotheses, has been data-driven, with a good hypothesis
o7 being the result, not the starting point, of the initial investigation. This brings
os  with it a requirement for a different kind of experimental design, in which
oo rather than seeking to hold everything constant except one parameter we seek
10 to vary conditions as much as possible (but in a controlled manner!) to produce
11 a ‘training set’ of data to establish rules that are likely to generalize well to
12 apply to examples not previously encountered (Kell & King, 2000). This entirely
13 different way of thinking also discriminates the methods of classical statistics
14 (that start with a model and test the goodness of fit of data to that model) from
15 those of machine learning (that start with data and determine the model that best
16 fits those data) (Breiman, 2001).

17 The chief element of this integrated view of the relation between ideas and
15 data is the recognition that induction is not simply the reverse of deduction
1o (Carnap, 1966; Kell & Welch, 1991). Deductive reasoning starts with an axiom
2 or set of axioms (i.e., a mental construct, the world of ideas, such as ‘all swans
a1 are white’) and a hypothesis such as ‘Alice is a swan’ that together allow one
2 to deduce with logical certainty that provided Alice is a swan one may make
23 an observation in the expectation that Alice will be found to be white and the
x»  data found to be consistent with the hypothesis. Alternatively if Alice is found
»s  to be black then either Alice is not a swan or the axiom should be modified
% (axioms are by definition true). This hypothetico-deductive framework, in which
27 hypotheses can be falsified by data but not proved true, was the focus of Karl
s Popper’s agenda to demarcate ‘science’ from ‘pseudo-science’ (Medawar, 1982;
2 Popper, 1992), although one must remark that in the real world some favoured
3 hypotheses can survive in the face of any number of inconvenient facts (Gilbert
31 & Mulkay, 1984; Kell, 1988; Kuhn, 1996).

32 The inductive mode of reasoning generalizes from patterns observed in a
;3 number of actual cases, and thus goes from the world of data to the world of
s ideas: If Alice is a Swan and is white, Bob is a swan and is white, and George is
35 aswan and is white, an induction might be that ‘all swans are white’. Now it has
3  been known since the time of Hume that such induction is logically insecure,
37 in the sense that a single black swan shows it, and that the fact that the sun has
33 risen every morning throughout one’s life does not mean it will provably do
9 so tomorrow. However, the existence of black swans is no less harmful to the
s  hypothesis on which the deduction is based that all swans are white than it is
41 to the same view arrived at inductively, and it is not at all clear why induction
42  should in fact be so disfavoured.
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01 The systematic genome sequencing programmes did not set out with any
o specific hypotheses, save that the provision of such data might be of value (Kell
03 & Oliver, 2004), and Sulston has stressed the importance of hypothesis-free
4 measurements at appropriate stages in the growth of a science (Sulston & Ferry,
o5 2002). Equally, the development of technology is also free of specific hypotheses
oo (again save that their availability would be of scientific value), and it is hard to
o7 imagine working in a modern laboratory without techniques (cloning, sequenc-
os  ing, PCR, mass spectrometry, etc.) that have only been available for a compara-
o tively short time (and many of which secured Nobel prizes for their developers).
o Equally, we see that many measurements, especially in postgenomics (Kell
11 & King, 2000), are designed to be data-driven rather than hypothesis-driven
12 (hypothesis-dependent). Thus in systems biology, science advances by an itera-
13 tive and spiralling interplay between deductive and inductive reasoning, with a
14 substantial amount of technology development also involved.

15 Our description of the (preferred) development of systems biology as a spiral,
16 should not be taken to imply that we think of this as unique to systems biology. The
17 development of many other natural sciences may be and have been described in
s similar terms. They can easily be represented as ‘the cycle of knowledge’ (Fig. 3).
19 It should also be mentioned that in many presentations of the novelty of
20  systems biology to audiences of biologists, physicists and chemists, the cycle of
21 knowledge is presented as something that can now finally be brought into effect
22 in biology. This has reasons. First, in biology the experimental activities have
;3 become so complex and extensive, and demand such extensive experimental
x4  expertise, that the corresponding scientists have had little opportunity to engage
s in the complete cycle of knowledge. Second, molecular cell biology has long
% been incomplete in the sense that at any moment an as yet unknown molecule
2 C Q turn up and explain experimental phenomena without having implications
;s orure theories being tested or examined. For instance, when a hypothetical
»  regulatory effect proposed by a theory is tested by an experiment, an additional,
s  parallel effect would most often turn up, incapacitating the experimental testing
;1 of the theory. With functional genomics, it has become possible to have a
»  complete inventory of virtually all relevant molecules, removing this limitation
;3 to the testing of theories. Third, in the case of systems biology, the complexity is
5 often so great that the experimental and theoretical parts of the cycle cannot be
;s within the expertise of the same individual. Therewith the cycle of knowledge
3 1s also relevant to indicate the roles various individuals in a project have with
37 respect to each other.

38

3 4.3.2. Systems biology: The top-down/analytic versus the bottom-up/

40 synthetic strategies

41 Strategies and methodologies for systems biology come in a number of flavours,
42 often discriminated as top-down and bottom-up, but also potentially including
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middle-out (e.g. Brenner, 2001; Noble, 2003). While the true understanding of
complex living systems and/or their subsystems will likely involve the judicious
and iterative blending of each, it is convenient to use this distinction as a means
of discriminating the necessary methodologies.

Analytical or top-down systems biology tends to start from the system as
a whole. In a way it comes from the direction of holism and moves towards
molecular mechanism. Either from empirical relations between genome-wide
patterns of gene expression, or by calculating properties of genome-wide net-
works, it induces or proposes the occurrence of more general principles, such as
the feature that metabolic networks correspond to small world, scale-free net-
works (Barabdsi & Oltvai, 2004; Wagner & Fel, 2001) and that genetic networks
abound in certain regulatory motifs (Itzkovitz & Alon, 2005; Milo et al., 2002;
Yeger-Lotem et al., 2004). These views may then be tested.

In the leaner, ‘Synthetic’ or bottom-up branch of systems biology, one typi-
cally starts with a qualitative (‘structural’) and often simple model of molecules
interacting with each other in networks, then seeks to determine what system
properties might emerge from the nonlinear interactions. By then parameterizing
the equations that describe these interactions and inserting parameter values that
correspond to actual subsystems, more or less realistic predictions of system
properties are achieved. When the predictions are accurate, the proposed mech-
anisms of emergence of the functional properties are considered to have become
more likely. This method is reductionist in that it prefers to deal with simple
parts of the true system but not so simple as to lose important aspects of the
interactions and the emergence of interesting functional properties. ‘Bottom-up’
methods start with purified entities (e.g. proteins) that allow the measurement of
the parameters, while ‘top-down’ methods seek to infer their values via ‘reverse
engineering’ of the parameters values through fitting of the calculated system
behavior to experimentally observed system behaviour.

4.3.3.  The bottom-up approach to systems biology

Our own prejudices — given a historical focus more on metabolic than signalling
systems (Kell et al., 1989; Kell & Westerhoff, 1986; Mendes et al., 1996;
Pritchard & Kell, 2002; Raamsdonk et al., 2001; Teusink et al., 2000; Westerhoff
& Kell, 1987; Westerhoff & Kell, 1988; Westerhoff & Kell, 1996; Westerhoff
et al., 1991), and on unicellular organisms rather than the more obviously (cf.
Davey & Kell, 1996; Kell et al., 1991) differentiated ‘higher’ organisms — leads
us to concentrate more on the ‘bottom-up’ approach (Fig. 5), embodied in the
‘silicon-cell’ concept (Westerhoff, 2001): if we can measure all of the ‘local’
properties of individual players in a complex system, including their interactions,
we can bolt the system together and whatever new properties may emerge will
indeed emerge and produce the ‘whole system’ properties that can indeed be
compared with those of the intact system. The apotheosis of this approach to

10)
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13 Figure 5 A largely ‘bottom-up’ strategy for systems biology.

16 date is the demonstration that the operation of yeast glycolysis under particular
17 conditions can indeed be rather well predicted on the basis of the ‘properties’
18 of the isolated enzymes which participate in the overall process (Teusink et al.,
1o 2000) (and see (Pritchard & Kell, 2002)). It takes its strongest form when the
20  interactive properties of all the relevant components of the system are put into a
21 precise mathematical model, that is a computer replica (‘silicon cell’, see below)
2 of the actual system; and if the system behaviour is then calculated successfully.
23 Occasionally it is argued that such a silicon-cell replica of an actual living
2« cell would be completely reductionistic and therewith incapable to deal with
s the systems biology of the living cell. This is incorrect. Save for vital force
2%  influences, and given an initial physiological condition (cf. below), all there is in
27 the living cell, at least in one way of looking at it, is a large number of molecules
23 and all their interactions. Therewith, all that matters is the components and the
2 relational properties of those molecules. If molecules and interactions (in their
3  spatial context) are precisely reproduced in a computer program, then all system
st behaviour should emerge. The crux resides in the live interaction between the
32 molecules both in the cell and in the computer program. Here one type of
33 macromolecule carries out a process for a little while, by which it changes its
¢ environment in terms of a few, nameable properties such as the concentration of
35 micromolecules like ATP, whilst leaving the rest of its environment unaltered
36 (see below). The change in environment leads to a change in behaviour of
3 other types of macromolecules in the same environment in the same cell (e.g.
33 other enzymes in the same metabolic pathway). The altered behaviour of the
3 latter molecules will again change the environment of the first macromolecule
40 and therewith the behaviour of the former. In this way the activity of the first
41 molecule depends on its own properties through the dynamic activities of the
4 other molecules. Loosely formulated, it is the resonance with other molecules that
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o determines much of the behaviour of each individual molecule. In biology, this
02 part of the molecule’s behaviour often leads to important function. An example
03 of the molecular behaviour that only originates in the dynamic interactions with
o+ the other molecules, is found with the molecules that are ‘responsible for’ the
os cell cycle. None of these would have a cyclic activity in the absence of the
os  others, and this collective cycling is assumed to be the only biological function
o7 of these molecules.

08 The ultimate silicon-cell strategy completely recovers the emergence of func-
o tional behaviour of molecules from this resonating with the other molecules.
10 A completely reductionistic approach would look only at the behaviour of the
11 individual molecules, perhaps in an environment that is a frozen representation
12 of the molecules’ environment in the living organism. It then sees the behaviour
13 of the living organism as the sum of these molecular behaviours, and thereby
14 misses the extra molecular behaviour that stems from the cycle of interactions
15 running through the other molecules. It would not comprehend the cell cycle, as
16 it would perhaps observe but not explain the cycling.

17 An important issue is whether the silicon cell requires only molecular knowl-
15 edge or also systems knowledge to start from. For sure, it does not require
v systems knowledge of the resonating type (cf. above). On the other hand, the
20  systems of interest are nonlinear and the response of the molecules to the changes
21 in their immediate environment do depend on the average state around which
22 these changes occur, such as intracellular pH and ionic strength. The latter are
23 indeed established by the system as a whole, and in this sense systems properties
24 that correspond to the static physiological state do enter the silicon-cell models.
»s  These properties are static in the sense that they could be determined by taking
% a photograph (Kell and Mendes, 2000), or when they are time dependent, by
7 a movie of the system around the macromolecule of interest. These properties
s are essentially parameters for the functioning of the interacting macromolecules,
2 whereas the properties that create emergent properties are dynamic variables
30 (Cf. below).

3l As in fundamental physics, there could be cases where it is not really possi-
32 ble to consider macromolecules separately from their molecular environments.
;3 In these cases, their complete environment is codetermined by the dynamic
s+ behaviour of the macromolecules of interest. Then also, that entire environment
35 consists of variables that are influenced by the macromolecules under study.
3 This might (but would not have to) happen with regards to amino-acid residues
37 in the system of the surrounding amino acids in a protein, or in MAP kinase
33 cascades when all the kinases and phosphatases form a supercomplex, a scaffold.
39 The silicon-cell approach assumes that there is substantial possibility to con-
40  sider macromolecules separately from their environments. In cases where parts of
4 that immediate environment is not separable, that part needs to be taken together
42  with the macromolecule. This then still does not incapacitate the silicon-cell
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o approach. If the inseparability is so massive that effectively the entire living
02 cell has to be treated as a single macromolecule, the silicon cell approach does
03 become impractical.

04 This issue has been alluded to in Boogerd et al. (2005). In the philosophi-
os cal sense, they have defined the generation of new properties in those systems
o  where macromolecules can be considered as separable from their physical—
07 chemical environment as weak emergence. The cases where macromolecules
os  are not separable from their environment would lead to strong emergence. We
oo  would here suggest that it will be possible to make all essential properties of
10 living organisms emerge from silicon-cell-type models. This then implies that
11 all functional properties of living systems come from weak emergence. We base
12 this conjecture on the experience that free-energy transduction, gene expres-
13 sion, cell cycling and developmental biology can be generated by such models
1 (cf. www.siliconcell.net). However, it is a conjecture at present; although these
15 functional properties can be calculated, it has not been verified by experimental
1 testing whether the models generate the functional properties in a quantitatively
17 correct way and from the actual kinetic properties of the constituent macro-
s molecules. And then, there are cases where function arises, where such calcula-
v tions have not yet been possible, such as in the cases of epigenetic regulation of
20  gene expression.

21

2 4.3.4. Parameters and variables and who controls whom

13 An important distinction to be made in systems biology (and not only there) is
24 between parameters and variables. Parameters are elements set to fixed values
25 by the system itself or controlled externally by the experimenter, while vari-
26 ables are those elements that change during the course of an experiment. (Note
27 that the elapsed time, though in fact a variable, is normally considered an hon-
28 orary parameter.) In an isolated metabolic system in which protein synthesis and
2 degradation are not occurring, the parameters are then the concentrations, and
s  especially the kinetic and binding constants, of the enzymes involved, as well
s as the ‘fixed’ concentration of ‘external’ substrates. The variables are then the
2 time-dependent concentrations of the intermediary metabolites and the flux(es)
33 through the pathway or network of interest. Two facts are to be noted. First, only
3 parameters can control variables; and variables cannot control other variables.
35 Parameters are controlled neither by other parameters nor by variables. Secondly,
3 normally it is variables that are measured experimentally, as such measurements
3 of changes are easier — and this statement includes all the ‘omics’ (‘expres-
33 sion profiling’) methods such as transcriptomics, proteomics and metabolomics.
3  Given these facts, it is seen that there has therefore been a very great dearth of
40  systematic measurements of the properties that we actually wish to measure, viz.
41 the binding and kinetic constants of individual proteins (and other molecules).
2 Such measurements were commonplace in the 1960s and early 1970s (a large
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o number of papers in the journal Biochemistry at that time were entitled ‘purifi-
e  cation and properties of ysome enzyme- ), and we need these times to return to
03 biology, with concomitant modernization of the way in which and the scale at
o« which the experiments are done. Indeed, in an account of what needs to be done
os by bottom up systems biology, one finds many ‘old-fashioned’ looking terms
oo (cf. Table 1).

07

s 4.3.5. Strategies for determining binding and kinetic constants for

09 individual proteins

10 In the spirit of Mrs Beeton (Beeton, 2000), ‘first get your protein’. While these
i will still require purification, often via dual affinity tags, they will normally

20
21
2
23
24
25
2
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

Table 1 Some methodologies of significance for ‘bottom-up’ systems biology

Stages Methodologies Comments Selected
references
‘First get your Cloning, Choice of
protein’ expression and hosts and
purification vectors, tags,
growth media,
glycosylation
and refolding
Qualitative Mass Allows (Muckenschnabel
binding assays spectrometry and production of a et al., 2004;

Quantitative
binding assays

High-throughput
kinetic methods

Omics
measurements

Bottom-up
model

FTIR

Mass
spectrometry

Optical, mass
spectrometry and
calorimetry
Microarrays

and mass
spectrometry

ODE modelling

structural model.

The binding of
some elements
may depend on
that of others.
High-resolution
methods such as
FTICR are
useful

‘Wharton, 2000;
Zehender et al.,
2004)

(Last &
Robinson,
1999)

(Shen et al.,

2004; Ward

& Holdgate, 2001)
(Aebersold &
Mann, 2003;
Goodacre et al.,
2004; Schena,
2000)

(Mendes & Kell,
1998)
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o be prepared by recombinant means. We shall not déardere in detail on these
o2 methods, save to note that the systematic production of nominally al/ the pro-
03 teins of baker’s yeast (S. cerevisiae) has been performed by Snyder and col-
o leagues (e.g. Phizicky et al., 2003; Zhu et al., 2001) and in this sense the
s industrialization of such processes has begun (see also, e.g. for C. elegans —
os  http://sgce.cbse.uab.edu/). It is also worth pointing out that even in well-
o7 established recombinant hosts there is a nonlinear interplay between the specifics
s of the recombinant vector, the exact host strain and the growth and production
o media used to induce the synthesis of the target protein of interest in a form that
o allows successful purification and refolding.

1 The next stage is represented by qualitative binding assay, by which we seek
1 the ‘structural model’ that describes the players including substrates, products
3 and effectors of enzymatic reactions, protein—protein and protein—nucleic inter-
4 actions and so on (see Fig. 5).

4.4. The special role of mathematics in systems biology: Calculating
emergence

9 As do most commentators (e.g. Hood, 2003; Ideker et al., 2001; Kitano, 2002;
2 Naylor, 2004/2005), we (Kell, 2004; Kell, 2005; Kell, 2006; Kell & Knowles,
2 2006; Westerhoff & Palsson, 2004) consider systems biology to involve an
2 interplay between theory, computation/modelling and experimental activities.
23 This interplay is strongly catalysed by the development of new technologies, and
24 in fact it is these developments more than anything else that has accelerated the
5 subject (Hood, 2003). It should be noted that Fig. 6 differs rather significantly
26 from Fig. 3, which we presented as our standard paradigm for scientific activity.
27 Indeed, we should like to suggest that in systems biology as in other systems
23 sciences, the role of mathematics is more fundamental than it is in sciences that
2 deal with single entities of much lower inherent complexity.

30 Of course, mathematics helps the analyses of the rather complex datasets in
3t helping to establish correlations, which then feed into the inductive mode of
32 Fig. 3. It helps ordering the data, then remaining in the empirical box of Fig. 3.
33 It also helps formulate the hypotheses and theories inside the box theory of
34 Fig. 3. And it may help deduce experimental implications from the theories,
35 helping the deductive process depicted in Fig. 3. The reasons for modeling are
3 numerous, and covered elsewhere (Kell & Knowles, 2006; Klipp et al., 2005),
37 and include testing whether the model is accurate, in the sense that it reflects,
33 or can be made to reflect, known experimental facts, analysing the model to
3  understand which parts of the system contribute most to some desired properties
40  of interest, hypothesis testing, allowing one to analyse the effects of manipulating
41 experimental conditions in the model without having to perform complex and
42 costly experiments, and seeing what changes in the model would improve the
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02 One view of systems biology
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12 Figure 6 Systems biology as an iterative interplay between theory, experiment and
13 technology development and modelling.

16 consistency of its behaviour with experimental observations. While these roles
17 of mathematics may be stronger in systems biology than in other sciences, they
18 are not qualitatively different.

19 The special role of mathematics (which we take to include numerical com-
2  putation) in systems biology derives from the following. It is an aim of systems
21 biology to understand how properties emerge in the interactions of components
2 of systems. The emergence of these new properties should be completely deter-
23 mined by all those interactive properties. If the interaction properties of the
24 components are correctly known on the basis of experiments with the individual
> molecule species, then emergence of the new properties in a precise computer
26 model is inescapable. The very emergence is thus not in this direct sense sub-
27 ject to experimental testing. In this aspect systems biology is not subject to
23 experimental testing either. It may be subject to computational testing, however.
2 In molecular biology similar situations may arise. The properties of a molecule
s  are proposed to have an effect on its behaviour, such as that the adjacency of
st two glutamate residues in a protein are responsible for the binding of calcium.
52 Usually in molecular biology no time nor effort is wasted in calculating whether
33 indeed in principle the adjacency of the two glutamate residues could enhance
s calcium binding; this is considered ‘obvious’ (actually, it may not be quite obvi-
35 ous; protein dynamics calculations should perhaps be carried out; but in view
36 of the many nonlinear interactions involved, this is akin to invoking systems
3 biology). In systems biology it is more often not trivial to see whether a proposed
33 mechanism for emergence could account for the emerging property, even inde-
3 pendent of whether the proposed interactive properties are real experimentally. It
s involves a computational experiment to check if indeed the proposed interactions
41 could generate the emergent behaviour. This is so because the interactions are
42 so complex that an immediate intuitive prediction is impossible, and because the
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o emergence depends on the particular magnitude of the parameter values, i.e. on
o2 the particular condition the system is in. (We note, though, that in a sense, such
03 questions about protein engineering are not quantitative, since changing one or
o+  both of a pair of adjacent glutamates to alanine may perfectly well change the
os  structure and dynamics of the enzyme irrespective of any effect on their ability
os  to bind calcium.) It is of course well known that even simple systems can exhibit
o7 very complex dynamics (Abraham & Shaw, 1992; May, 1976). Accordingly,
o8  computation here plays something of the role of experimentation in other sci-
o ences. The hypothesis that an experimentally established set of interactions is
10 responsible for certain emergent behaviour in the system needs to be tested by
11 performing calculations.

12 Although this situation is new to much of the life sciences and was not
13 made very explicit in the original philosophies of physics (Carnap, 1966), it
4 is standard to present-day physics and chemistry. In particle physics and in
15 statistical thermodynamics, certain properties may be known experimentally.
1o The question is then asked whether those properties may be responsible for
17 certain observed behaviour, and the answer is obtained solely by numerical
18 experimentation.

19 We recently carried out this type of numerical experimental systems biology
20 when proposing that the compound acetaldehyde might be ‘responsible’ for
2t the synchronization of glycolytic oscillations between individual yeast cells
2 (Reijenga et al., 2005a). Putting in the actual structure of the network in so
2 far as we could, we calculated that the synchronization should indeed occur.
2 More recently, we posed the hypothesis that the glycolytic oscillations in yeast
2 are not controlled at a single step such as the proposed pace-maker enzyme
% phosphofructokinase, but at many points in the network at the same time. Again
2 numerical experiments based on what was already known experimentally about
% the interaction and networking in the system, served to verify the hypothesis in
¥ the numerical sense (Reijenga et al., 2005b).

30 We should like to emphasize that in no way do we wish to detract from the
3 importance of experimental work for systems biology. If anything, experimenta-
tion is more important to systems biology than to molecular biology, in view of
the strong dependence of what actually happens on the precise parameter values.
It is just that mathematics is also more important to systems biology than it is
to molecular biology.

32
33
34
35
36
37
s 4.4.1. Precision, silicon cells and the calculation of emergence

3 The calculations we referred to here are often deductive in the sense that they
4  start from a hypothesis and calculate whether indeed the proposed mechanisms
4 of emergence deliver the proposed emergent property. However, calculations in
2 the sense of numerical experiments can also be used to induce general properties.
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o Indeed, this was involved in the origin of one of the more distinctive laws of
02 systems biology, i.e. the summation theorem as discovered by Jim Burns and
03 the late Henrik Kacser (Kacser, personal communication).

04 The emergence of properties from nonlinear systems depends on the values
os  of the parameters. The consequence has long been overlooked by theoretical
os  biologists and biologically inspired physicists. The latter supposed that it was
07 good enough to show that some, phenomenological model of the biological
08 gystem could produce the emergent property of interest. In this manner, Turing
»  modelled developmental biology (in a way that is now known to be wrong, even
10 though parts of the self-organization mechanisms may still act), and Nicolis
" and Prigogine modelled glycolytic oscillations in yeast. They did find that in
2= such a phenomenological model (with oversimplified and in fact unrealistic
rate equations and rather arbitrarily chosen parameter values) the emergent
phenomena occurred. For different rate equations or different parameter values,
the emergent property did not emerge from the calculations. Hence, to verify
whether a proposed systems biology mechanism is indeed responsible for an
observed emergent property, the model must be precise in terms of its structure
and parameter values. Until recently the handicap was of course that such precise
parameter values were not available. (Consequently, the above should not be
taken to question the importance of this earlier work in biological physics and
theoretical biology.)

With the advance of experimental techniques and thanks to the effort of many

scientists, it is now becoming possible to make the required precise models.
We refer to these precise models as ‘computer replicas’ of the real network
of interactions or ‘silicon cells’ (Westerhoff, 2001). In a sense, the silicon
cell strategy is entirely reductionist, yet at the same time upwardly compatible
with holism (Snoep & Westerhoff, 2005). All the molecules known to act in a
network are represented by a computer replica. At present this most often takes
the form of a rate equation and a reaction equation for each enzyme. The rate
equations, i.e. the reaction equations as well as the values of the parameters
, therein, should have been established experimentally (here we recognize the
5 irreducibility discussed above) and are all inserted into the computer replica
. of the network. All the computer then does is let the replica behave through
;s the integration of the equations in time. Emergent properties, if any, should
5  then show up in the computer calculations (modulo the statistical error in the
5 measurements).
8 In this manner, ordinary and partial differential equations may be used to
3  calculate life, i.e. to produce a silicon cell that will display the main properties
s of the real cell, inclusive of the emergent properties. The implications are
4« unprecedented for the sciences: If there is any place in the natural world where
4 qualitatively new properties emerge, this is life.
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01 In terms of philosophy, we are becoming iconoclastic here however.[==prgent
02 properties are sometimes defined as the properties that are irreducibl Q prop-
03 erties can be calculated then by some kinds of definition they are not emergent.
o+  We consider this definition inappropriate, and it may stem from an oversight
os  of the distinction between linear and nonlinear calculations. Properties that can
os be calculated from a linear superposition of properties of the components of a
07 system (such as their total mass) should indeed not be called emergent. The
os important distinction comes when qualitatively new properties can be calculated
o in systems with essential nonlinear interactions. Only then are the properties
0 new, they were not present in the components, and should indeed be said to
i ‘emerge’ (Solé & Goodwin, 2000, pace Boogerd et al., 2005).

12 We here make the challenging statement that life is calculable and can there-
15 fore be captured in a computer model. Within 10 or 20 years a silicon cell will
14 have been constructed that accurately describes the main elements and behaviour
15 of a living cell, and therefore can be rightfully considered a replica of the cell.
16 Of course there are some exceptions with respect to a straightforward calcula-
17 tion of all aspects of life. These include deterministic chaos, systems that are
s extremely heterogeneous, and life beyond its simplest form already present in
19 unicellular microorganisms. This said, a Digital Human, both generated and
2 available in silico at a suitably coarse-grained level, will be a fantastic boon for
21 both academic researchers and the Pharmaceutical industry alike; for the latter it
»  may be expect decrease substantially the present enormous attrition rates of
»3  candidate drugs—he issue of biological evolution too is much more important
»  than suggested by our virtual lack of reference here. However, we have decided
»s  here to focus on life as it is at a certain moment in evolutionary history, not
% on how it came about in the sense of evolution. We think that the explanation
»7  of life as such is already a significant and challenging problem that requires
s systems biology for good answers. Perhaps with this treatise, and certainly with
»  the entire book, we hope to have attracted Philosophers of science to a rapidly
» developing biology which may well be the place where things are happening in
51 philosophy right now.

32
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